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UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER
QUASI-NEWTON METHODS FOR GENERALIZED EOUATIONS

Norman H. Josephy

Technical Summary Report #1966
June 1979
ABSTRACT
Newton's method is a well known and often applied technique
for computing a zero of a nonlinear function. Situations arise in
which it is undesirable to evaluate, at each iteration, the deriva-
tive appearing in the Newton iteration formula. In these cases, a
technique of much modern interest is the quasi-Newton method, in
which an approximation to the derivative is used in place of the
derivative. By using the theory of generalized equations, quasi-
Newton methods are developed to solve problems arising in both
mathematical programming and mathematical economics.-
He-p;;;;AFwo results concerning the convergence and convergence
rate of quasi-Newton methods for generalized equations.
We preéaﬁ; gpmputational results of quasi-Newton methods applied
to a nonlinear c;mplementarity problem of Kojima [11].
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Significance and Explanation

Many practical problems in operations research and mathematical
economics can be formulated as a system of equations and inequalities.
A previous paper (Josephy [10]) developed an iterative procedure,
Newton's method, for computing a solution to such a system. However,
situations arise in which it is computationally unreasonable to
evaluate the derivative appearing in the Newton iteration formula.

In such cases, an approximation to the derivative which is easier to
compute is used in place of the derivative. The iterative procedure
with an approximation to the derivative is called a quasi~Newton
method. This paper extends the results known about the convergence
and rate of convergence of quasi-Newton methods for equations to the
case of equations and inequalities which arise in the nonlinear
programming problem and the economic equilibrium problem. The
method is illustrated by solving a small practical problem involving

equations and inequalities.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



QUASI-NEWTON METHODS FOR GENERALIZED EQUATIONS
Norman H. Josephy
1. Introduction.
We recall the definition of a generalized equation. Further

elaboration can be found in Robinson [13-17] and Josephy [10].

Let C be a non-empty, convex, closed subset of R". The normal
cone to C at x ¢ C is the set of outward pointing normals to C at x,
We have the following:
Definition 1. Let C be a nonfempty, closed, convex subset of R" .

The normal cone to C at x is given by

Ne@): = [ {z] <2,k S0VkecC if x e C,
é T ifx¢C
We can now define a generalized equation.
Definition 2. Let £:D < R" + R",
Let C be a non-empty, closed, convex subset of R" .

A generalized equation is a set relation

) 0c £(x) + N.(x) .

Thus, x* satisfies the generalized equation 0 ¢ f(x) + Nc(x) if
and only if x* satisfies the relations
x* ¢ C
and

Cf(x*), X = x*) >0 for all ke C
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2. Quasi-Newton Methods.

Newton's method for finding a zero of F proceeds by itera-
tively solving 0 = F(xn) + F'(xn)(x-xn) for a solution X el® A
quasi-Newton method iteratively solves 0 = F(xn) + Bn(x-xn), where
Bn approximates F'(xn) in some sense. An approximation of much cur-
Tent interest is a generalization to maps on R" of the secant approxi-
mation of the derivative of a real-valued map on R. Let f:R -+ R have
derivative f'. Given two points in R, say xn and xn+l’ the secant

approximation to f'(xn+l) is

b: = (£(x,,;) - £x))/(xg, - X)) -

Alternatively, the secant approximation b is the unique solution of
1) f(xn+l) - f(xn) = b(xm1 - xn) .

For F:R" + Rn, a secant approximation to F'(xn#l) is any matrix B

satisfying
(2 F(xn+l) - F(xn) = B(xml - xn) .

Since equation (2) does not uniquely specify B, additional conditions
can be imposed to guarantee desired properties of B, such as symmetry
and positive definiteness. This approach to secant approximations

is discussed in more detail in Dennis and Schnabel [6] . Stable
numerical techniques for efficiently implementing these secant ap-
proximations are described in Gill, Golub, Murray and Saunders [7].

The price one pays for using an approximation for F'(xn) is the
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R" to R". Let ||-]|M denote a matrix norm and let a > 0 be such that

Il S a| -|ly»> where |[+|| is a matrix norm subordinate to the given
vector norm on R", Suppose that two positive constants, a, and 3,,

exist such that the inequality
1B - Froxm) ||y = (eapemax(]] X-x [l [| x-x*[[})]] B-F* (x) I},

+ a emax{ || x-x*]] , || x-x*||}

2
holds whenever the following conditions are valid:

(x,B) ¢ Dx W, B e U(x,B), where U is an update function,
and x, the vector closest to x in the set

(F(x) + B(+-x) + N.)7'(0), exists.

Let b, e, r and R be the positive constants associated with the
strongly regular solution x*, as given in Corollary 1 . Fix p
positive and less than 1. Suppose the following relations hold, with

e and b reduced, if necessary, from those guaranteed by Corollary 1 .

| By-F* (x3ll < ba! ana | xg=x*1l < e.
3 -1 3
cike+b)e <R and d(1-db) CEKe+b) <Pp.
2a(a”ba,+a,)e (-p)"t <b and B(x*,e) < D.

Then a sequence of iterates {xn} and a sequence of matrices {B_}

>
exist and satisfy the following relations, for all n =0 .






that the norm of Jo is bounded by

ol = lFexey - LFxOC"*) I+ lFrex®) = Byll«]l x=-x I +

+

IFr x4y - B ixg) [ oy |

nA

2 2
1K]| xe-xg 12+ bl xe-xg]l + K| xt-x, |

A

3
G Kesb) [| x*-xo|| < R.

By definition of Ty X, € B(x*;r) and

0e F(xo) + Bo(xl-xo) + Nc(xl)
= F(x*) + Bo(xl-x*) - J0+Nc(x1)

Thus, Jo e F(x*) + Bo(xl-x*) + NC(xl) , So that X, € SO(JO)‘ But

I Jo Il < R, implying So(Jy) is a singleton and x, = S)(J We can

o)

now estimate the distance between x1 and x* as

I xy=x*]l = lIsg@q) - sq@ 1l = [l gl

HA

3 .

dG Kesb) || x*-xp l| < pll xp-x*]| .

We now proceed by induction. We will show that for all k =0 ,
-1

(3) I8 - Frix)fl y<ba™

< < k
@ %l S Bl xexel S K} xgexe]

We have already established (3) and (4) when k=0. We thus assume

that (3) and (4) hold for all k = m-1, where m21, and will establish
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4. Q-Superlinear Convergence

The preceding thcorem establishes local linear convergence
of the quasi-Newton iterates {xn} to a strongly regular solution x*
of the generalized equation, for any update function which satisfies
the given norm inequality. The results of Broyden, Dennis and Moré [1]
show that the traditional update functions satisfy this inequality.
Dennis and More [4] show that for the traditional update functions,
the limit appearing in the next theorem is zero. Theorem 2
proves that this suffices for the quasi-Newton iterates to converge

Q-superlinearly.

Theorem 2. Let D be an open, nonempty convex subset of Rn, and let

C be a closed, nonempty convex subset of R". Let F have a Lipschitz
continuous derivative F' with Lipschitz constant K. Suppose that

the generalized equation 0 ¢ F(x) + Nc(x) has a strongly regular solu-
tion x* with associated Lipschitz constant d. Let {Bk} be a

sequence of n x n matrices. Assume that the set of norms (”Bk"}

is bounded. Let x; e D and suppose that the sequence {xk} , k=0

satisfies the relation 0 ¢ F(xk) + Bk(xk+1'xk) + NC(xk+1)‘

Also assume that {xk} converges to x*., Define

Ek: = Bk-F'(x*) » Syl o= xk+1'xk , and vk+l: a -F(xk) - Bksk .
Then 1i -“-—T“ B 0 implies that th {x,}
en m = implies that the sequence {x,} converges
ko Sk ' k :

-13-



Q-superlinearly to x*.
Proof. By definition and some algebra, we have
Eksk = F(xk+l) - F(xk) - F'(x*)sk - (Vk+l + F(xk+l)) .

Letting Pye1’ ° F(xk+l) + Vi, We can solve for P+l and take norms

to obtain

Ipg, I o N8kl N Es,l

. — = + R
skl Msell 1 sgll

where AF: = F(xkol) - F(xk) - F'(x')(xk’l-xk) . But the Lipschitz

continuity of F' implies (see Ortega and Rheinboldt [12] )

}l

la Bl = Kemax{|| xk’l-x*" ol xp-x#| xkol'xk" . Hence,

(e
k+1 R
lin s; s i:: Kemax (|| x  -x*[, || x-x*]|}
I Es, |l
+ lim k%
ko k
=0,

To obtain the next result, we use a special case of the Implicit Func-
tion Theorem of Robinson ( 16 , Theorem 2.1). Specifically, we take
as the function f(p,x) in that theorem the function -p +F(x) . The
conclusions of that theorem give us the following results. Fixing
e > 0 , there exist neighborhoods Ue of 0 and N. of x* , and a single-

valued map x: U > W, such that x(p) is the unique solution in "e

-14-



of the generalized equation 0 ¢ -p + F(x) + Nc(x) . Also, for any

Pp.ac U, I x(p) - x(@) |l = (d+e)|| p+q]l . We now show that this

result can be applied to the generalized equation 0 ¢ F(xk)+B s, +

k7k
Nc(xk+l) , where X 41 18 the unknown variable, to obtain a bound on
l xpey - x*|| . Note that the assumptions that (|l B I} is bounded

and {xk} converges to x* imply the convergence of {Vk+l} to -F(x*).
Thus, {pk+1} converges to zero, and will be in Ue for all sufficiently

large k. Also, x(0) = x*. Thus, X1 € We
0¢ F(xk) + Bksk + NC(xk+1) = F(xk#l) = Pt NC(xk#l) and

Pra1 € Ve for all sufficiently large k, which implies i(pk’1)= Xie1

for all sufficiently large k. Hence,
- - < n
" X"xk,lll = ||x(0) - x(Pkd)" = (d+e) Pk,lll ’ and

< ' .
Dol e = lxgy x| S gy oxell + I xexrl] yiend

I pyall o el a Ix-x,ll

—— a (d+e —_— = (d+e) X T X x

I skl skl X=Xl +1x*-x ]
I x*-x 1l

Defining To= " x'-x:’h , we have

P i T
I :ull 2 (@oe)! oK
Sk | k

=15~



"pk+1H -1 r
Hence 0= lim ————— > (d+e) =~ lim , which implies
s, M = 1+r
k»mo k k> k

lim r . Hence, {xk} converges (-superlinearly, as was to be
k >0 k

shown. This completes the proof of the theorem.
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Table 1 Kojima Example

Initial x Iterations Final x Final f
1. 6 (1.2247449,0,0,.49999993) (.2.10-6. 3.224745, 5.0000002, -9,
3. 11 (1.2247449,0,0,.49999995) ( O, 3.224745, 5.0000000, IR
5. 12 (1.2247449,0,0,.49999999) (-.2.10-6,3.224745, 4.9999998, -.9.107"

Three starting points, with each component of x initialized to the entry in
column 1, all lead to a convergent sequence of iterates. The number of iterations
is listed in colummn 2, with the final value of x and f(x) given in columns 3
and 4, respectively. Each iteration consists of Lemke's algorithm applied to a
4x4 linear complementarity problem, each of which required two pivot operations

of Lemke's algorithm to solve.
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