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Newton's method is a well known and often applied technique for computing a zero of a nonlinear function. Situations arise in which it is undesirable to evaluate, at each iteration, the derivative appearing in the Newton iteration formula. In these cases, a technique of much modern interest is the quasi-Newton method, in which an approximation to the derivative is used in place of the derivative. By using the theory of generalized equations, quasi-Newton methods are developed to solve problems arising in both mathematical programming and mathematical economics. --, We-p~-~wo results concerning the convergence and convergence rate of quasi-Newton methods for generalized equations.

We pre~ %omputational results of quasi-Newton methods applied to a nonlinear complementarity problem of Koiima.~.

Many practical problems in operations research and mathematical economics can be formulated as a system of equations and inequalities.

A previous paper (Josephy [START_REF] Josephy | Newton's Hethod for Generalized Equations[END_REF]) developed an iterative procedure, Newton's method, for computin~ a solution to such a system. However, situations arise in which it is computationally unreasonable to evaluate the derivative appearin~ in the Newton iteration formula.

In such cases, an approximation to the derivative which is easier to compute is used in place of the derivative. The iterative procedure with an approximation to the derivative is called a quasi-Newton method. This paper extends the results known about the conver~ence and rate of convergence of quasi-Newton methods for equations to the case of equations and inequalities which arise in the nonlinear programming problem and the economic equilibrium problem. The method is illustrated by solving a small practical problem involvin~ equations and inequalities.

The responsibility for the wordinp, and views expressed in this descriptive summary lies with MRC, and not with the author of this report.

Introduction.

We recall the definition of a generalized equation. Further elaboration can be found in Robinson [13][START_REF] Robinson | Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems[END_REF][START_REF] Robinson | Regularity and Stability for Convex Multivalued Functions[END_REF][START_REF] Robinson | Strongly Regular Generalized Equations[END_REF][START_REF] Robinson | Generalized Equations and Their Solutions, Part I: Basic Theory[END_REF] and Josephy [START_REF] Josephy | Newton's Hethod for Generalized Equations[END_REF]. n Let C be a non-empty, convex, closed subset of R • The normal cone to Cat x £Cis the set ofoutwardpointing normals to Cat x.

We have the following: Definition 1. Let C be a non-empty, closec, convex subset of Rn .

The normal cone to C at x is given by

Nc(x): = {' :1 < z,k-x> ~ 0 Y k
We can now define a generalized equation.

Definition 2.

n n

Let f:D c R + R • £ C} if X E: c, if X i c•
Let C be a non-empty, closed, convex subset of Rn .

A generalized equation is a set relation involves the evaluation of F' , the derivative of F , at each iterate x (See Josephy [START_REF] Josephy | Newton's Hethod for Generalized Equations[END_REF]). In situations where this evaluation imposes an n excessive computational burden, we consider replacing F'(x)

n with an approximation. A quasi-Newton method for solving 0 £ F(x) + NC(x) replaces F with an affine map F(x ) + B(•-x )

n n whose derivative B is both an approximation to F'(x) n in some sense and is computationally easier to evaluate. One class of approximations, the secant approximations, has been the subject of great interest to those solving systems of equations and related problems, such as non-linear least squares estimation, unconstrained and equality-constrained optimization, and, most recently, inequality-constrained optimization. A sample of the recent work on quasi-Newton methods can be found in Brodlie [START_REF] Brodlie | Unconstrained Minimization[END_REF], Dennis and More [START_REF] Dennis | Quasi-Ne\Y'ton "'!ethods: rfotivation and Theory[END_REF], Gill and Murray [START_REF]Numerical Methods for Constrained Optimization[END_REF], Tapia [18], and Han [START_REF] Han | Super linearly Convergent Var.iable Metric Algorithms for General Nonlinear Programming Problems[END_REF].

In this paper, we will extend to the generalized equation case two fundamental results on the convergence and rate of convergence of quasi-Newton methods with secant approximations. Section 2 contains intraductory material on quasi-Newton methods. We prove local convergence of quasi-Newton iterates to a solution of a generalized equation in Section 3, and prove in Section 4 Q-superlinear rate of convergence for the quasi-Newton iterates. We conclude in Section 5 with the computational results of applying a quasi-Newton method to the p,eneralized equation representing a nonlinear complementarity problem of Koiima [START_REF] Broyden | On the Local and Superlinear Convergence of Quasi-Ne\Y'ton Methods[END_REF].

2. Quasi-Newton Uethods.

Newton's method for finding a zero ofF proceeds by iteratively solving 0 = F(x) + F'(x )(x-x) for a solution x 1 • A n n n n+ quasi-Newton method iteratively solves 0 = F(x) + 8 (x-x ), where Since equation ( 2) does not uniquely specify 8, additional conditions can be imposed to guarantee desired properties of B, such as symmetry and positive definiteness. This approach to secant approximations is discussed in more detail in Dennis and Schnabel [START_REF] Dennis | Least Change Secant Updates for Quasi-Newton Methods[END_REF] Stable numerical techniques for efficiently implementing these secant approximations are described in Gill, Golub, Murray and Saunders [START_REF] Gill | Methods for Modifying Matrix Factorizations[END_REF].

The price one pays for using an approximation for F'(xn) is the loss of the quadratic rate of convergence to a local solution. However, iterates generated by secant approximations typically exhibit Q-superlinear convergence, provided appropriate conditions are satisfied. We will need the concepts of linear and Q-superlinear convergence, which we now define. We conclude this section with a corollary to Theorem 2.4 of Robinson [START_REF] Robinson | Strongly Regular Generalized Equations[END_REF], and a lemma from Ortega and Rheinboldt [12]. 2 kJI u -vii whenever u, v £ D , where Lf (u

) := f(v) + f 1 (v) (u-v). v
The definition and properties of strong regularity of a solution to a generalized equation can be found in Robinson [START_REF] Robinson | Strongly Regular Generalized Equations[END_REF]. The use of strong regularity in establishing convergence properties of Newton's method for generalized equations can be found in Josephy [START_REF] Josephy | Newton's Hethod for Generalized Equations[END_REF].

-6- We begin with a definition. (~e+b)e < R and By definition of r 0 • x 1 & B(x*;r) and Thus, J 0 & F(x*) + s 0 (x 1 -x*) + Nc(x 1 ) • so that x 1 & s 0 (J 0 ). But II J 0 II < R, implying s 0 (J 0 ) is a singleton and x 1 = s 0 (J 0 ). We can now estimate the distance between x 1 and x* as

II xl-x*ll = IISo(Jo) -So(O) II~ au Joll ~ ac~ Ke+b) II x*-xo II < p II xo-x* II
We now proceed by induction. We will show that for all k ~ 0 ,

II Bk -F' (x*) II M < ba -l , (3) 
\1 xk+ 1 -x*\l ~ Pll xk-x*l1 ~ Pkll x 0 -x*ll • (4) 
We have already established (3) and (4) when k=O. We thus assume ' < > that (3) and ( 4) hold for all k = m-1, where m=l, and will establish show that the traditional update functions satisfy this inequality.

Dennis and !!ore [START_REF] Dennis | A Characterization of Superlinear Convergence and its Application to Quasi-Newton ~1ethods[END_REF] show that for the traditional update functions.

the limit appearing in the next theorem is zero. Theorem ?.

proves that this suffices for the quasi-Newton iterates to converge Q-superlinearly. -6 -12 (1.2247449,0,0,.49999999) (-.2.10 ,3.224745, 4 . 9999998, -. 9.J(l-'i

5.

Three starting points, with each component of x initialized to the entry in column 1, all lead to a convergent sequence of iterates. The number of iterations is listed in column 2, with the final value of x and f(x) given in columns 3 and 4, respectively. Each iteration consists of Lemke's algorithm applied to a 4x4 linear complementarity problem, each of which required two pivot operations of Lemke's algorithm to solve.

  (x) + Nc{x) • Thus, x* satisfies the generalized equation 0 c f(x) + NC(x) if and only if x* satisfies the relations x* c C and < f(x*), !<-x*) 0 for all k L C . Sponsored bv the United States Armv under Contract No. DMr.2'l-75-C-0024. This material is based upon work supported hv the National Science Foundation under Grant No. DCR 74-205R4 and r.rant No. HCS 74-20584 A02 and the r.raduate School of the University of Wisconsin -Madison.

  '(x) in some sense. An approximation of much curn n rent interest is a generalization to maps on Rn of the secant approximation of the derivative of a real-valued map on R. Let f:R + R have derivative f'. Given two points in R, say x and x 1 , the secant n n+ approximation to f'(xn+l) is Alternatively, the secant approximation b is the unique solution of (l) n n For F:R + R, a secant approximation to F'(xn+l) is any matrix 8 satisfying (2)

Definition 1 .

 1 A sequence {x } converges to x* linearly (Q-supern linearly) if and only if for some a t (0,1) (for some sequence {a } converging to zero),nThe Q-superlinear convergence of quasi-Newton iterates can be proven in the following fashion. In Theorem 1, we establish linear eonverp,ence for iterates determined by any quasi-Newton method whose approximations {B } satisfy a certain norm inequality. The proof for the generalized n equation case is modeled on the single-valued case ~iven in Broyden, Dennis and Mor~ [1, Theorem 3.2]. We can then invoke the results appearing in Broyden, Dennis and Mor~ [1] which show that the traditional update formulas, such as the Broyden rank one, Powell symmetric Broyden rank two, and the DFP update of {B } (see Dennis and Mori [5] for further n details) satisfy the required norm inequality. This establishes a linear convergence rate for the ~eneralized equation case. Dennis and Mor~ [4, Theorem 3.4 and Section 4] show that R. :• lim II (B -F' (x*)) (x +l-x )11/11 x +l-x 11 • 0 , n n n n n n _..,. -4-whenever the sequence {B } n is computed by one of the above mentioned update formulas and the sequence {x } converges linearly to x* • n They note, in a remark immediately following their proof of Theorem 3.4, that the limit Q .=O is established independent of how the sequence {X } n is generated. In particular, their result remains valid when {x } n is the linearly convergent sequence of solutions to the quasi-Newton method applied to generalized equations rather than to single-valued equations. Thus, for the update formulas mentioned above, the limit ~=0 is valid for the generalized equation case, since Theorem 1 of this paper establishes the linear convergence of {x }. n Theorem 2 shows that fices to establish Q-superlinear convergence of iterates {X } n 11.=0 sufgenerated by quasi-Newton methods applied to generalized equations. We note that proofs of the two theorems appearing in this paper, when restricted to the single-valued equation case, have appeared in the literature (Dennis and ~ore [5}). However, those proofs depend critically upon the fact that single-valued equations are bein~ solved. Hence, proofs are given in this paper which are valid for the generalized equation case.

Corollary 1 .

 1 Let C be a closed, convex, nonempty subset of let D be an open, convex, nonempty subset of Rn • Let f:D ~ Rn have Frechet derivative f'. Suppose the generalized equation 0 £ f(x) + NC(x) has a strongly regular solution at x* £ D , with associated Lipschitz constant d • -5-Then, for some positive constants r, R, b and e , the following hold. Let A be an nxn matrix and let i c Rn. Then B(x*,r) n (f(x) + A•(•-i) +Nel-l restricted to B(O,R) is single-valued and Lipschitz continuous with modulus d (1-d 1~-f' (x*) II ) -l , whenever II i-x* II< e and 1~-f' (x*) II < b • Lenuna 1. Let D be an open, convex subset of Rn Let f:D ~ Rn be continuously differentiable. Suppose that for some k > 0 II f ' ( u) -f 1 ( v) II ; kJI u -v II whenever u, v £ D . Then II f(u) -Lf (u)ll " v 1 2

3 .

 3 Local Convergence.

Definition 2 .

 2 (Dennis and r!ore[START_REF] Dennis | Quasi-Ne\Y'ton "'!ethods: rfotivation and Theory[END_REF]). n Let D be an open, nonempty convex subset of R , and let P denote a class of n x n matrices. Then an update function U is a map from D x P to subsets of P.An update function can be used to define a set of approximations to the derivative ofF at xn+l" In the typical situation, the present iterate x and the present approximation B will determine the new n n iterate xn+l" Both iterates x and x 1 are used to determine the n n+ next approximation B 1 • This procedure, by which B 1 is determined n+ n+ from x and B , can be represented by B 1 £ U(x ,B), where U is n n n+ n n the appropriately defined update function. We now state and prove the local convergence theorem. Theorem 1. n Let D be an open, nonempty convex subset of R , and let C be a closed, nonempty convex subset of Rn. Let F:D ~ Rn have a Lipschitz continuous derivative F' with Lipschitz constant K. Suppose x* t D is a strongly regular solution of the generalized equation 0 e: F (x) + NC (x) with .associate Lipschitz constant d. Let \~ be an open neighborhood of F'(x*) in the space of linear maps from
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 71 Rn to Rn. Let II •II t.t denote a matrix norm and let a > 0 be such that II •II ~ a II •II M' where 11•11 is a matrix norm subordinate to the given vector norm on Rn. Suppose that two positive constants, a 1 and a 2 , exist such that the inequality + a 2 •max{ II i-x* II , II x-x* II} holds whenever the following conditions are valid: (x,B) £ D x W , 8 £ U(x,B), where U is an update function, and i, the vector closest to x in the set-F(x) + B(•-x) + NC) (0), exists.Let b, e, r and R be the positive constants associated with the strongly regular solution x*, as given in Corollary 1 • Fix p positive and less than 1. Suppose the following relations hold, with e and b reduced, if necessary, from those guaranteed by Corollary 1 .

1 II 1 F 11 ~

 1111 ba 1 +a 2 )e (1-p) < b and B(x*,e) c D. Then a sequence of iterates {xn} and a sequence of matrices {Bn} > exist and satisfy the following relations, for all n = 0 Bn-F' (x*) II M < ba We will use the following notation. s B(x* ,r) n (F (x*) + B (•-x*) * ,r) n (F (x ) + B ( •-x ) By hypothesis, II s 0 -F' (x*) II M < lba-1 and II x 0 -x*ll< e • Thus, II s 0 -F'(x*)ll < b By Corollary l, T 0 restricted to B(O,R) is single-valued and Lipschitz continuous with Lipschitz constant d(l-dll Bo-F' (x*) II )-I' which is less than a. Similarly, so restricted to B(O,R) is single-valued and Lipschitz continuous with Lipschitz constant d, and s 0 (0) = x*. Define x 1 : = T 0 (0). In order to estimate the distance from x 1 to x*, we need to estimate the norm of J 0 • It follows from of J 0 is bounded by + IIF' (x*) -F' (x 0 ) ll•llx*-x 0 ~KII x*-x 0 11 2 + bll x•-x 0 11 + Kll x*-x 0 1! 2

- 10 -( 3 )m 11 ~

 10311 and (4) for k=m. \'/c first note that p < 1 and (4) imply < for all k = m-1, and Summing over k between 1 and m-1 yields By hypothesis, IIB 0 -F 1 (x*) II M < lba-1 and hence II Bm-F 1 (x*JI! M < ba-1 • Thus (3) is established. To prove (4), we note thatll xm-x*ll ~ Pmll x 0 -x•ll ~ pme < e. We can now apply Corollary 1 toT and S and conclude that, when restricted to m m i(O,R), both are single-valued and Lipschitz continuous with Lipschitz constant d (1-d II B -F 1 (x*) Ill -l. Let x 1 : ' "' T (0) and note that m m+ m x* • Sm(O). It remains to bound the distance between xm+l and x*. We will first obtain a bound on the norm of Jm' and then use that bOund to estimate II x 1 -x* II • We have that m+ -11-J : = F(x*) -F(x ) -8 (x*-x ) m m m m = (F(x*)-LF (x*)) + (F'(x*) -8 )(x*-x) + x 11 m m + (F' (x ) -F• (x*) (x*-x ) • m m Using Lemma 1 to bound t~e first term, (3) to bound the second term, and Lipschitz continuity of F' to bound the third term, we have II J II~ lKII x -x*ll 2 + bll x -x*ll + Kll x*-x 11 2 m m m m By definition ofT , x 1 t B(x*,r) and m m+ Hence, xm+l £ S 11 (J 11 ) and IIJ 11 11. < R, from which we can conclude that xm+l = S 11 (J 11 ). We finish the induction proof by noting that II X 1-x* II = ns (J ) -s (0) II m+ m d(t-dll s -F'(x*JII J-1 11 J 11 II II ~ aciKe+b) II Xll•x*ll < Pll X 11 -x*ll This completes the induction and the proof of the theorem. 4. Q-Superlinear Convergence The preceding theorem establishes local linear convergence of the quasi-Newton iter3tes {x } to a strongly regular solution x* n of the generalized equation, for any update function which satisfies the given norm inequality. The results of Broyden, Dennis and More [1)

n

  Let D be an open, nonempty convex subset of R , and let C be a closed, nonempty convex subset of Rn. Let F have a Lipschitz continuous derivative F' with Lipschitz constant K. Suppose that the generalized equation 0 t F(x) + NC(x) has a strongly regular solution x* with associated Lipschitz constant d. Let {Bk} be a sequence of n x n matrices. AssUllle that the set of norms { IIBk II } is bounded. Let x 0 t D and suppose that the sequence {xk} , k ~ 0 satisfies the relation 0 t F(xk) + Bk(xk+l-xk) + NC(xk+l). Also assume that {xk} converges to x*. Define Ek: = Bk-F'(x*) , sk: • xk+l-xk, and vk+l; ~ -F(xk) -Bksk Then lim k--= 0 implies that the sequence {xk} converges -13-Q-superlinearly to x*. Proof. By definition and some algebra, we have Letting pk+l: = F(xk+l) + vk+l' we can solve for pk+l and take norms to obtain < llt1 Fll II Ekskll II 5 kll + II sku continuity of F' implies (see Ortega and Rheinboldt [12] ) llfiFII ~ K•max{ll xk+ 1 -x•ll.ll xk-x*lll•llxk+l-xkll Hence, II Pk•l II ~!: II skll ~ ~!: K•max <II xk+l-x*ll, II xk-x*lll + II Ekskll • ~ II sku • 0 • To obtain the next result, we use a special case of the Implicit Function Theorem of Robinson ( 16 , Theorem 2.1). Specifically, we take as the function f(p,x) in that theorem the function -p +F(x) • The conclusions of that theorem give us the following results. Fixing e > 0 , there exist neighborhoods U of 0 and W of x* • and a singlee e valued map i: U + W such that i(p) is the unique solution in W equation 0 c -p • F(x) + NC(x) . Also, for any p, q £ u • II icpJ -icqJ II ~ Cd•e) II p•qll e . We now show that this result can be applied to the generalized equation 0 E F(xk)+Bksk + NC(xk+l) , where xk+l is the unknown variable, to obtain a bound on II xk+l -x• II • Note that the assumptions that <!! Bk II} is bounded and {xk} converges to x* imply the convergence of {vk+l} to -F(x*). Thus, {pk+l} converges to zero, and will be in Ue for all sufficiently large k. Also, x(O) = x*. Thus, xk+l t We pk+l £ ue for all sufficiently large k, which implies x(pk+l)= xk•l for all sufficiently large k. Hence, II x*-xk+lll • lli(O) -i(pk+l) II ~ (d+e) : 1 pk+lll , and DefininJ , we have

Table 1

 1 .10 • 3.224745, 5.0000002, -. <j • 1(,•• I \

	Kojima Example
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shown. This completes the proof of the theorem.

Computational Results.

The followin? 4x4 nonlinear complementarity problem is given in Kn i i mn Ill I .

The unique solution is given as

The generalized equation representing this nonlinear complementarity problem is 0 1 f(x) + N 4 (x). This generalized equation has the R+ linearization at x given by o , -u;> + f'(x)(x-x) + N 4 <x> . Since, bv definition, replacing xn+l by X n X is a solution to the original n s = 0, and the iterative procedure n The results of applying Lemke's algorithm to the linear complementarity problems with Broyden rank one approximations to the derivative f' are given in Table 1.