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Abstract: In this research report, an achievability region and a converse region for the two-user
Gaussian interference channel with noisy channel-output feedback (G-IC-NOF) are presented. The
achievability region is obtained using a random coding argument and three well-known techniques:
rate splitting, superposition coding and backward decoding. The converse region is obtained using
some of the existing perfect-output feedback outer-bounds as well as a set of new outer-bounds
that are obtained by using genie-aided models of the original G-IC-NOF. Finally, it is shown that
the achievability region and the converse region approximate the capacity region of the G-IC-NOF

to within a constant gap in bits per channel use.
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Résumé : Ce rapport présente une approximation de la capacité du canal & interférences
Gaussien avec rétroalimentation degradée (G-IC-NOF). A cette fin, une région atteignable et
une région converse du G-IC-NOF sont introduites, permettant de déterminer que la capacité
du G-IC-NOF est approchée a 4.4 bits par utilisation de canal.

Mots-clés : Région atteignable, région converse, canal & interférences Gaussien, rétroalimen-
tation dégradée.
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1 Notation

Throughout this research report, sets are denoted with uppercase calligraphic letters, i.e. X.
Random variables are denoted by uppercase letters, e.g., X. The realizations and the set of
events from which the random variable X takes values are respectively denoted by x and X'. The
probability distribution of X over the set X" is denoted Px. Whenever a second random variable
Y is involved, Pxy and Py|x denote respectively the joint probability distribution of (X,Y")
and the conditional probability distribution of ¥ given X. Let N be a fixed natural number. In
case a random variable is an N-dimensional vector, it is denoted by X = (X1, X5, ..., Xn5)' and a
corresponding realization is denoted by x = (21, 29, ...,2x5)" € AN, Given X = (X1, Xo, ..., Xn)
and (a,b) € IN?, with @ < b < N, the (b — a + 1)-dimensional random variable formed by the
components a to b of X is denoted by X (4:p) = (Xa, Xay1,--- ,X3)T. The notation (-)T denotes
the positive part operator, i.e., (-)* = max(-,0) and Ex|[] denotes the expectation with respect
to the distribution of the random variable X. The logarithm function log is assumed to be base
2.

RR n° 8861
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Figure 1: Gaussian interference channel with noisy channel-output feedback at channel use n.

2 Problem Formulation

This section introduces the two-user Gaussian interference channel with noisy channel-output
feedback (G-IC-NOF) and defines an approximation to its corresponding capacity region.
Consider the two-user G-IC-NOF in Fig. Transmitter ¢, with ¢ € {1,2}, communicates with
receiver i subject to the interference produced by transmitter j, with j € {1,2}\{¢}. There
are two independent and uniformly distributed messages, W; € W;, with W; = {1,2,..., 2N}
where N denotes the fixed block-length in channel uses and R; is the transmission rate in bits per
channel use. At each block, transmitter 7 sends the codeword X; = (X; 1, X, 2, ... ,X@N)T € XN,
where X; and XV are respectively the channel-input alphabet and the codebook of transmitter
i.

The channel coefficient from transmitter j to receiver 7 is denoted by h;;; the channel coefficient
from transmitter ¢ to receiver i is denoted by h ;;; and the channel coefficient from channel-output
1 to transmitter 4 is denoted by h ;. All channel coefficients are assumed to be non-negative real
numbers. At a given channel use n € {1,2,..., N}, the channel output at receiver ¢ is denoted
by Y ;. During channel use n, the input-output relation of the channel model is given by:

%
7i,n: hiXin +hijXjn + 772,7” (1)

where 7i7n is a real Gaussian random variable with zero mean and unit variance that represents
the noise at the input of receiver i. Let d > 0 be the finite feedback delay in channel uses. At the
end of channel use n, transmitter ¢ observes Y, ,,, which consists of a scaled and noisy version

of 7i,n—d (see Fig. . More specifically,

%
? Zin for ne {1,2,...,d} @)
in— —
VR Y ineat Zin, for ne {d+1,d+2,...,N},

where Z; ,, is a real Gaussian random variable with zero mean and unit variance that rgresents

the noise in the feedback link of transmitter-receiver pair . The random variables Z;, and

RR n° 8861
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L channel use n
Symbol Symbol
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Figure 2: Phases of channel use n at transmitter-receiver pair i: Symbol generation phase occurs
following (3]); Symbol transmission phase occurs following ; and feedback observation occurs
following (2)

?i,n are independent and identically distributed. In the following, without loss of generality,
the feedback delay is assumed to be one channel use (d = 1). The encoder of transmitter 4 is
defined by a set of deterministic functions fi(l), fi(z)7 cee fi(N), with fi(l) : W; — &; and for all
ne{2,3,....N}, f™ : W x R"! = X;, such that

X1 =f" (W;), and (3a)
X’L,n:fz(n) (W’Lv ?i,la Yi,Q? ) Yi,’nfl) . (3b)

The components of the input vector X ; are real numbers subject to an average power constraint:

1 N
~ Y E(Xin?) <1, (4)
n=1

where the expectation is taken over the joint distribution of the message indexes W7, W5, and the
noise terms, i.e., Z1, Z2, Z1, and Z5. The dependence of X; , on Wi, Wy, and the previously
observed noise realizations is due to the effect of feedback as shown in and .

Let T € IN be fixed. Assume that during a given communication, 7" blocks, each of N channel
uses, are transmitted. Hence, the decoder of receiver i is defined by a deterministic function

;i ]RﬁVT — WIT At the end of the communication, receiver i uses the vector il Yi2, oo

-
?z} NT) to obtain an estimation of the message indices
(Wi(l)a W, Wi(T))Z?ﬁi (?i,la 7i,2, e 7i,NT) ; (5)

where Wi(t) is an estimation of the message index sent during block ¢ € {1,2,...,T}. The
decoding error probability in the two-user G-IC-NOF during block ¢, denoted by e(t)(N ), is

RR n° 8861
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given by
(t) T (t) 7 ()
PY(N)=max| Pr (W, "#W;" ), Pr(Wy #£W, . (6)

The definition of an achievable rate pair (R1, R2) € R? is given below.

Definition 1 (Achievable Rate Pairs) A rate pair (R, R2) € R? is achievable if there exists
at least one pair of codebooks X' and X" with codewords of length N, and the corresponding

encoding functions fl(l), fl(Q), cee fl(N) and f2(1), ]‘2(2)7 cee Q(N) such that the decoding error prob-

ability Pe(t)(N ) can be made arbitrarily small by letting the block-length N grow to infinity, for
all blocks t € {1,2,...,T}.

The two-user G-IC-NOF in Fig. can be fully described by six parameters: SNﬁi, §NR¢, and
INR,;, with ¢ € {1,2} and j € {1,2}\{i}, which are defined as follows

SNE,= 12 (7)

(X2l

INR;;=h?; and (8)
o —
SNR,=h? (B2 +2hhi+h +1). (9)

The analysis presented in this report focuses exclusively on the case in which INR;; > 1 for all
(i,7) € {1,2} x {{1,2} \ {i}}. The reason for exclusively considering this case follows from the
the fact that when INR;; < 1, the transmitter-receiver pair ¢ is impaired mainly by noise instead
of interference. In this case, treating interference as noise is optimal and feedback does not bring
a significant rate improvement.

RR n° 8861
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3 Main Results

This section introduces an achievable region (Theorem [1j) and a converse region (Theorem 2,
denoted by Cqic_nor and Cgic—~or respectively, for the two-user G-IC-NOF with fixed pa-
rameters SNﬁl, SNﬁg, INR12, INRo1, §NR1, and §NR2. In general, the capacity region of a
given multi-user channel is said to be approximated to within a constant gap according to the
following definition.

Definition 2 (Approximation to within ¢ units) A closed and convex set T C R+ is ap-
proximated to within & units by the sets 7 and 7 if 7 C T C T and for all t = (t1,...,t,,) € T,

((tl - §)+ Yo (tm - §)+> eT.

Denote by Caic—nor the capacity region of the 2-user G-IC-NOF. The achievable region Cro_nor
and the converse region Cqic_nor approximate the capacity region Cqrc_nor to within 4.4 bits
per channel use (Theorem .

3.1 An Achievable Region

The description of the achievable region Cqic_nor is presented using the constants a ;; the
functions ag; : [0,1] = Ry, az; : [0,1]2 — Ry, with [ € {3,...,6}; and a7, : [0,1]*> — R, which
are defined as follows, for all ¢ € {1,2}, with j € {1,2}\ {i}:

—
alz—%log (2+ 1815;1) - %, (10a)
as.(p)=5 105 (bri(p) +1) — 1. (10b)

1 mZONRU + 1) +b1,(1)+1
a3,i(pa u):§log r ) (10c)
NR; (1= p)b2i(p)+2) +b1a (1) +1

as (.= g (1= 1)bos() +2) 2. (10d)
as,i(p; )= %log (2 + ISIiT\IﬁR;Z + (1 - M)bQ,i(P)) - %7 (10e)
ag,i(p, 1) *% (INR (1 M)sz( )*1)+2) *%a (10f)
az,qi(p, /141»/12):%1 (ISNﬁR:ZZ ((1—M)b2,j(/))+1> + (1_/~Lj)b2,i(p) + 2> _%' (10g)

where the functions b;; : [0,1] — Ry, with (I,i) € {1,2}? are defined as follows
bl,i(p):SNﬁi + 2p/ SNﬁiINRij +INR;; and (11a)
b2,i(p):(1 - p)INRU - 1, (11b)

with j € {1,2}\ {i}.
Note that the functions in and . 11)) depend on SN ﬁl, SN ﬁg, INR;2, INRoq, § NR;, and
§NR27 however as these parameters are fixed in this analysis, this dependence is not emphasized

RR n° 8861
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Theorem 1 The capacity region Carc—nor contains the region Cnio_nor given by the closure
of the set of all possible non-negative achievable rate pairs (R, R2) that satisfy
ngmin <a2,1 p)a aﬁ,l(pa ,ul) + 0'3,2(107 lu'l)a a1,1 + a3,2(p7 ,u'l) + Cl4,2(ﬂa ,ul)) ) (12&)
Ry<min <a2,2 p)s az(p, p2) + ae2(p; p2), az(p, p2) + as1(p; po) + 01,2)a (12b)

R + Ry<min <a2,1 p) +aiz, a1+ az22(p), a3 1(p, p2) + ary + az2(p, 1) + az2(p; p, p2),
as,1(p, p2) + az2(p, p1) + as2(p, p1),

az1(p, 1, p2) + as2(p, p1) + a1,2)7 (12¢)

az1(p, p2

(
(
(
)+
az1(p; p2) +
2Ry + Ry<min (a2,1(p) + a1+ az2(p, p1) + ar2(ps pa, p2),

az,1(ps p2) + a1, + az1(p, pa, p2) + 2a3,2(p, ) + as 2(p, pi1),

az21(p) + a1 + ag2(p, i) + as.2(p ) ), (12d)

Ry + 2Ry<min <a3,1(,0, p2) + as,1(p, p2) + az2(p) + a2,
a3,1(pa /-1‘2) + (1771([)7 M1, ,u’2) + 04272([)) + a1,2,
2a3.1(p, p2) + as,1(p, p2) + as2(p, p1) + a2 + a7 2(p, p, M2)), (12e)

. +
with (p, p1, u2) € [O, (1 — max <ﬁ,ﬁ)) ] x [0,1] x [0,1].

in the definition of these functions. Finally, using this notation, Theorem [I] is presented on the
top of this page.
Proof: The proof of Theorem [I]is presented in Appendix [A] ]

3.2 Comments on the Achievability

The achievable region is obtained using a random coding argument and combining three classi-
cal tools: rate splitting, superposition coding, and backward decoding. This coding scheme is
described in Appendix [A] and it is specially designed for the two-user IC-NOF. Consequently,
only the strictly needed number of superposition code-layers is used. Other achievable schemes,
as reported in [I], can also be obtained as special cases of the more general scheme presented in
[2]. However, in this more general case, the resulting code for the IC-NOF contains a handful of
unnecessary superposing code-layers, which complicates the error probability analysis.

3.3 A Converse Region

e .= . . . . INRy, INR;;
The description of the converse region Cgic—norF is determined by the ratios 2 and I
SNR, SNR,

for all ¢ € {1,2}, with j € {1,2}\ {¢}. All relevant scenarios regarding these ratios are described

RR n° 8861



Approzimate Capacity Region of the Two-User G-IC-NOF. 10

by two events denoted by S, 1 and Sy, o, where (I1,02) € {1,...,5}%

Si.: SNE, < min (INRy;, INR;;) | (13a)
S»s: INR;; < SNR; < INR;, (13b)
Ss.: INR; < SNR; < INR;,, (13c)
Sus: max (INR;;,INR;;) < SNR; < INR;;INR;;, (13d)
Ss.i: SNR; > max (INR;;, INR;;, INR;;INR ;) (13¢)

Note that for all ¢ € {1,2}, the events S1,, S2;, S34, Sa4, and Ss; are mutually exclusive.
This observation shows that given any 4-tuple ( Sﬁh SNRs, INR;2,INRg; ), there always exists
one and only one pair of events (S,.1,5,.2), with (I1,l2) € {1,...,5}?, that identifies a unique
scenario. Note also that the pairs of events (52,1, S2,2) and (5371, 5372) are not feasible. In view
of this, twenty-three different scenarios can be identified using the events in . Once the exact
scenario is identified, the converse region is described using the functions &, ; : [0,1] — Ry, with
le{l,...,3}; ki : [0,1] — Ry, with I € {4,5}; key : [0,1] — Ry, with I € {1,...,4}; and
K7l " [O 1] — Ry, with [ € {1,2}. These functions are defined as follows for all i € {1 2}, with

€ {12\ {i}

1
K1, =3 log (bl i( ) (14a)
1 by 1( )
=—1 1 71 1 14
w2i(p 20g( Tbs5(p °g<+1+b5](p)> (140)
b41 )+ bs.; (p +1)§ R,
R3, z +1 + = lOg (b4,z(p) + 1), (14(})
2
bl j (b4 z( )+ 1)
_ 1 b4 1 1
K4 p —5 log (1 + 1+b52()> +§ log (bLg(p) + 1), (14(31)
1 b4’2(p) 1
s (p)=7 log <1+ T5b51(7) +5 log (bl,l(p)+1), (14e)
ke1(p) if (S12V S22V S52) A(S1,1V S21V S51)
o(p)= ke2(p) if (S12V S22V S52) A(S31V Sa1) (14f)
ke3(p) if (S32V Ss2) A(S1,1V S21V S51)
kea(p) if (S32V Sa2) A(S31V San)
or 1) kri1(p) i (S1,;V 824V S5,) (14g)
7’1 k7,i2(p) if (S, V Sai)
where
_1 1 1 bs.2(p § NR;
liﬁ,l(ﬂ)—ilog(bm(p)+bs,1(,0)INR21) —5 IOg <1+INR12> + 5 log (1 + by 2( ) 1 )

1 1 1 bs,1( § NR;
+ log (bl,z(p) + b;,,l(p)INRQl) — 5 log (1+INR21)+§log <1+ bm( 1 >

+ log(2me), (15a)

RR n° 8861
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Figure 3: Genie-Aided G-IC-NOF models for channel use n. (a) Model used to calculate the
outer-bound on Ry; (b) Model used to calculate the outer-bound on Ry + Rs; and (¢) Model used
to calculate the outer-bound on 2R; + Rs

1 b INR 1
Ke,z(ﬂ):§ log <b6,2(ﬂ) + % (SNﬁ2 + b3,2>) —3 log (1+INR12> (15b)

Nk,

bs.1(p)SNR,

1 1 1
—|—§ log (1 + b1 1( ) ) + §lOg (b171(p)+b5,1(p)INR21) — 5 IOg (1 + INRQl)

Jr% log (1 + bs.2(p) (INR12 + bSZNRZ) ) — %log (1 + b5,1(p)INR21) + log(2me),

SNIt, bio(1) +1 SNE,
”6,3(/7):% log <b6,1( ) % (ﬁl + b3 1)) — %log (]. + INng) (15(3)
p)SNR,

1 bs o 1 1
+5 log (1 n bm( 1 > + 3 log (bl,Q(p)+b571(p)INRgl) —5 log (1+INR21)

1 bs,1(p) ( b3 1§NR1 ) < bs 1(P)INR21>
+-log |1+ = INRy; + ————— ——log| 1+ — + log(2me),
3 ( g, AN e, ) e

1
2
1 b5 1(p)INR, 1 1
K6,4(P)=§ log (bG,l( )+ % (ﬁl + b3 1)) —3 log (1 + INR12) —3 log (1 + 1NR21)
1
1
2

S
1 bs 2(p) b3 2§NR2 )) bs,1(p)INRg2q
+= log <1 2 INRyp + 222302 ) ) 200 (14 %5
2 2 ﬁ

SNE bi2(1) +1 SNR,
1 b5 1(p)INR21) 1 ( b5 1(p)INR21
—— log 1+—= + = log b672(p) + — SNﬁQ + bg,g
2 ( SNﬁl 2 SNEQ ( )
1 bs,1(p) b3 1§NR1
+-log |14+ = INRoy; + ————— + log(2me), 15d
B g< ﬁ% 21 51,1(1) ) g( ) ( )
and
1 1 1 bs.;(0)SNR,
Fria(p)=3 log (bm(p) + 1) — 5o (1 n INRU> + ; log (1 3 )
1 1 1
+§ log (bLj(p) + b57i(P)INRﬂ> + 3 log (1+b4ﬂv(p)+b5,j (p)) ) log <1+b5,j (p))
+2log(2me), (16a)
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1 1 1
57%2(/)):5 log (bu(/)) + 1) -3 log (1 + INRij) 3 log (1 + b5,j</’>)

1 1 INR;; b3 4§NRv
5108 (14 b14(p) +b5,5(p)) + 5 log | 1+ (1 ) = | INRy, + 29220
+5log (1 +ba,i(p) +b55(p) ) + 5 0g< +( )R, it D+l
1 bg,i(p)INRj-) 1 ( bs,i ())INRy; (o
—=log |14+ —= + -log| b, (p)+— SNR; + b3
2 ( SNR, 2 ! SNR, ( ’ J)
+2log(2me), (16b)
where the functions b ;, with (1,7) € {1,2}? are defined in ; bs; are constants; and the
functions b;; : [0,1] — Ry, with (I,¢) € {4,5,6} x {1,2} are defined as follows, with j €

{12} {i):

by ;=SNR, — 21/SNR,INR;; + INR;,, (172)
bui(p)=(1 - p*)SNE,, (17b)
bs.i(p)=(1 - p* ) INRy5, (17¢)

INR;; /INR;; —
bs.i (p):mi—FINRZ‘j—FQ[)\/INRij ( \V SNRl— \/INRJ'Z) + W (\/H\ITJ‘Z'—Q Sﬁl> .
l (17d)

Note that the functions in , , and depend on Sﬁl, Sﬁ% INR;2, INRo1, %l,
and mg. However, these parameters are fixed in this analysis, and therefore, this dependence
is not emphasized in the definition of these functions. Finally, using this notation, Theorem [2]is
presented below.

Theorem 2 The capacity region Carc—nor is contained within the region Cqrc—nor given by
the closure of the set of non-negative rate pairs (R, R) that satisfy for all ¢ € {1,2}, with

je{L2b\{i}:

Reomin (s1:(0), m21(9) (15a)
Ri<ks,i(p), (18Db)
Ry + Ro<min (k4(p), £5(p)) , (18¢c)
Ry + R2<K6(p), (18d)
2R; + Rj <K74 (p)7 (186)
with p € [0,1].
Proof: The proof of Theorem [2]is presented in Appendix [ |

3.4 Comments on the Converse Region

The outer bounds and correspond to the outer bounds for the case of perfect channel-
output feedback [3]. The bounds 7 and correspond to new outer bounds that
generalize those presented in [I] for the two-user symmetric G-IC-NOF. These new outer-bounds
were obtained using the genie-aided models shown in Fig. [3|

RR n° 8861



Approzimate Capacity Region of the Two-User G-IC-NOF. 13

2.5

B 1.5

0.66

0.5

0.088

0 0.5 1 1.5 2 2.5 3

«

Figure 4: Gap between the converse region Cqic—nor and the achievable region Caic_NOF
of the two-user G-IC-NOF, under symmetric channel conditions, i.e., SNR; = SNR, = SNR,

INR;5 = INRy; = INR, and SNR; = SNR, = SNR, as a function of o = %} and 8 = %
og og

3.5 A Gap Between the Achievable Region and the Converse Region

Theorem [3| describes the gap between the achievable region Cyic_nor and the converse region
Caic—norF using the approximation notion described in Definition

Theorem 3 The capacity region of the two-user G-IC-NOF is approximated to within 4.4 bits
per channel use by the achievable region Cs1c_nop and the converse region Cqic—NoOF-

Proof: The proof of Theorem [3]is presented in [C} [ |
Fig. [] presents the exact gap existing between the achievable region Cnio_nop and the con-

verse region Carc—nor for the case in which SNRl = SNHQ = SNR, INR2 = INRy; = INR, and

SNR; = SNR, = SNR as a function of o = 1125% and 8 = %' Note that in this case, the

maximum gap is 1.3 bits per channel use and occurs when o = 0.5 and 8 = 0.
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4 Conclusions

An achievable region and a converse region for the two-user G-IC-NOF have been introduced. It
has been shown that these regions approximate the capacity region of the two-user G-IC-NOF
to within 4.4 bits per channel use.
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Appendices

A Proof of Achievability

This appendix describes an achievability scheme for the IC-NOF based on a three-part message
splitting, superposition coding, and backward decoding.
Codebook Generation: fix a strictly positive joint probability distribution

Py, Uy vi Ve X1.p Xo.p (U, U1, U2, 01, V2, T1 P, T2, p) = Py (u) Py, v (u1lu) Py, v (uz|u)

Py, v v, (v1|u, u1) Py, o v, (v2|u, u2) Px, oo v, v (21,P |0, u1,v1) Pxy oo v, v (T2, P[4, U2, v2), (19)

for all (U,Ul,UQ,'Ul,’UQ,Z'lyP,xQ’P) c (Xl UXQ) X X1 X Xy x Xy X Xy x X1 x Xs.

Let Ry c1, Ri,c2, R2,c1, R2,c2, Ri,p, and Ry p be non-negative real numbers. Let also Ry ¢ =
Ric1 + Ryc2, Roc = Rac1 + Ra 02, R1 = Ric+ Ry p,and Ry = Ry ¢ + Ra p.

Generate 2V (F1.014H2,.01) 17 d. N-length codewords u(s,r) = (ur(s,7),uz(s,r), ..., un(s,r)) ac-
cording to

N
Py (U(S, T)) = HPU(Ui(saT)); (20)

with s € {1,2,...,2NFue1} and r € {1,2,...,2N Rz},
For encoder 1, generate for each codeword u(s, r), 2VF1.01 {i.d. N-length codewords u; (s, r,k) =

(ul,l(s, r.k),ui (s, k), ..., u1 n(s, 7 k)) according to
N
PU1|U(u1(s,r, k:)|u(s,7‘)) = HPUl\U(Ul,z‘(S,T, k)|ui(s,r)), (21)
i=1
with k € {1,2,...,2Nf1.c1}. For each pair of codewords (u(s,r),ul(s,r, kz)), generate 2V Fi.c2

iid. N-length codewords vy (s, k,l) = (vm(s,r, k1), v12(s,7,k,1),... ,vLN(s,nk,l)) accord-
ing to
N
Py vu, (vl(s,r, k,Dlu(s,r),u1(s,r, k)) = HPV1|U U (vu(s,r,k,l)|ui(s,r),u1,i(s,r, k)), (22)
i=1
with [ € {1,2,...,2Nf1.c2} For each tuple of codewords (u(s,r), ui(s,r, k), v1(s, 7, k, l)), gener-
ate 2VF1.P iid. N-length codewords x1 p(s,7, k,1,q) = (z1.p1(s,7, k,1,q), 71 p2(s, 7k, 1,q), .. .,
x1,pN(s,7,k,1,q)) according to

Plep\UUlvl(wl,P(‘% T, k7l7 q>|u(87 7")711/1(877', k),'U]_(S,T, kvl))
N

= H PXl,p|U U Vh (ml,P,i(Sy T, k7 l) q)‘ul(s7 T)7 ul,i(87 T, k)7 Ul,i(sa T, kv l))) (23)

=1

with ¢ € {1,2,...,2NRurY,
For encoder 2, generate for each codeword u(s, ), 2Vf2.c11i.d. N-length codewords us(s,r,j) =

(U/Q)]_(S, T7j)’ u2,2(s7 ’f‘,j), v 7’U/27N(3, raj)) according to
N
PUQ\U(UQ(SvrvjNu(SvT)) = HPU2‘U(U2,i(Sa r)j)|ui(8a T))v (24)
=1
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with j € {1,2,...,2V%2c1} For each pair of codewords (u(s,r),us(s,r,j)), generate 2Vf2.02
iid. length-N codewords va(s,r,j,m) = (’1}271(5, T, j,m),va2(s, 7,5, m),...,va N(s, 7,7, m)) ac-
cording to

N

PVQ\UUQ ('UQ(S?T;jv m)\u(s,r),uz(s,r,j)) = HPV2|UU2(D271(57ijvm)|ui(8aT)7u2,i(57r7j))7 (25)
i=1

withm € {1,2,...,2NF2.c2} For each tuple of codewords (u(s7 ), ua(s,r,7),va(s,r, J, m)), gen-

erate 2Nf2.7 i i.d. N-length codewords @2 p(s,r,j,m,b)= (r2,p1(s,7,j,m,blas pa(s,r,j,m,b). ..,

xo.p,N(s, 7,7, m, b)) according to

PXz,p\U UQVQ(:B27P(S7r7j7m7 b)|u(s7r), UQ(SaTaj)aUQ(Sv'ra jv m))
N

— H Px, pluvs va ($2’P’i(87 7, Jym, b)|ui(s, ), ug,i (8,7, 5), vei (s, 7, §,m, b)), (26)
i=1

with b € {1,2,...,2NF2.2} The resulting code structure is shown in Fig.
Encoding: denote by Wi(t) € {1,2,...,2NVE} the message index of transmitter i € {1, 2} during
block t € {1,2,...,T}, with T the total number of blocks. Let Wi(t) be composed by the message
index Wi(f(/)w € {1,2,...,2N.c} and message index Wi(tll c€{1,2,...,2NRur} That is, Wi(t) =
(Wl(g, Wi(’t)). The message index Wz(t}l must be reliably decoded at receiver i. Let also Wz(tc)w
be composed by the message indices Wi(%l €{1,2,...,2NRic1} and Wi(’tc)w2 €{1,2,...,2NRicz2},
That is, Wz(tc)* = (Wl(gl,Wl(?;?) The message index WZ.(’tC);1 must be reliably decoded by both
receivers and transmitter j (via feedback). The message index Wi(7tc)'2 must be reliably decoded

by both receivers.
Consider Markov encoding over the T blocks. At encoding step ¢, with ¢t € {1,2,...,T},

transmitter 1 sends the codeword a:gt) =0, (u (Wl(tgll),Wz(tgll)>, U (Wftgf), W;tgll),Wl(%l),
(t-1) (t—1) (t) (t) (t-1) (t—1) (t) (t) (t) .

U1 <W1,Cl 7W2,01 ’Wl,CDWl,CQ)’ mLP(Wl,Cl ’WQ,Cl ) Wl,Cl’Wl,C27W1,P)>’ where ©; :
(X UX) Y 5 XN x &N x &N — X} is a function that transforms the codewords u(Wl(tgll),
(t-1) (t—1) r(t=1) (1) (t=1) o (t=1) 18 () (t-1)
W2,01 )’ Uy (W1,C1 ’W2,01 7W1,Cl)’ G (W1,C1 ?W2,C1 7W1,017W1,C2> , and $1,P(W1,C1 )

W2(t511 ), Wl(%l, W1(,%27 Wf?;) into the N-dimensional vector :Bgt) of channel inputs. The indices

Wl(%l = Wl(%)l = s* and Wz(,o(,)*l = Wg(%)l = r*, and the pair (s*,7*) € {1,2,...,2N fuer} x

{1,2,...,2NR2.c1} are pre-defined and known by both receivers and transmitters. It is worth
noting that the message index Wg(tgll ) is obtained by transmitter 1 from the feedback signal
?gtil) at the end of the previous encoding step ¢t — 1 (see Fig. .

Transmitter 2 follows a similar encoding scheme.

Decoding: both receivers decode their message indices at the end of block 7" in a backward
decoding fashion. At each decoding step ¢, with ¢ € {1,2,... ,T‘{, receiver 1 obtains the message
indices (W0, Wit”, WU w0 Wit =y e (1, 2, 2VRiery x {1,
2,... 2NRac1) 5 {1 2 . 2NRiea} 5 {1 2. 2NRurY {1 2 ... 2NR2c2} from the channel
output 7?_(’5_1)). The tuple (Wf%}t), Wéfﬁ”, Wl(fj;(t_l)), Wl(?;;(t_l)), W2(7Tc_2(t_1))) is the
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_ _ -1 -1 t—1 t—1 t t t
uy (Wl(fc})aWQ(fC})7W1(f(),~1) U1 (Wl(,tm)vWz(.tc1)vW1(.t)c1-rW1(.%2) T1,p (Wl(,m)vWé,m)vW1<,2*17W1(,)02aW1(,1)3)

=

(t—1) 11,(t=1) 11-(t) t—1 t—1 t t t—1 t—1 t t t
U2 (W1.01 Wa e ’W2.01) v2 (Wl(,Cl>7Wé,cl)!WZ(‘()?UWé,é‘Q) T2,P (W1(,01)¢W2(,c1)7Wé,é1¢W2(,():2sz(,;3)

o
2N(R2,p)

Figure 5: Structure of the superposition code. The codewords corresponding to the message
indices Wl(tgll), WQ(tc_ll), Wi(,tc)l, Wi(22, Wl(tll with 7 € {1,2} as well as the block index ¢ are both
highlighted. The (approximate) number of codewords for each code layer is also highlighted.

unique tuple that satisfies
(s (L0 T (W Wi W),
o (WG WEe " w0 ).
1 p (Wl(?é’;t)’ /WQ(,%’E):)’ Wl(’T&(tq))’ Wl(’TCE(tfl)), Wl(i;(tfl)))
(W TS0 W) o (0, AT, W00 AT0),
?gT_(t_l))) < T[(IIJV:J)l Vi X1,p Uz Vo 71]’ 27

where Wl(%_l(t_l)) and W2(,TC_1(t_1)) are assumed to be perfectly decoded in the previous decoding

step t — 1. The set T(N’e) represents the set of jointly typical sequences of the
1% [ Uy Vi Xap Us Va ?1] 1% J Yy typ q

random variables U, Uy, V1, X1 p, Uz, V2, and ?1, with e > 0. Finally, receiver 2 follows a similar
decoding scheme.
Probability of Error Analysis: an error might occur during encoding step t if the message

index Wétgll ) is not correctly decoded at transmitter 1. From the asymptotic equipartion property
(AEP) [4], it follows that the message index I/Vz(tc_l1 ) can be reliably decoded at transmitter 1
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during encoding step ¢, under the condition:

Roc1 < 1(?1;U2|U7 U17V1,X1>
[(Yiutev.xy). (28)
An error might occur during the (backward) decoding step t if the message indices W1(7T(;1t),
WQ(’TC?), WI(TCQ( V) W(T (¢t=1) , and W( (t D) are not decoded correctly given that the mes-

sage indices Wl(%l(t 1)) and W(T (e 1)) were correctly decoded in the previous decoding step

t — 1. These errors might arise for two reasons: (i) there does not exist a tuple (Wl(TClt ,
WQH(}?), ﬁ/\l(j(wf(t*l)) /W(Tf(tfl)), WQSTCE(FU)) that satisfies , or (ii) there exist several tuples
(Wl(%lt)7W2(%1t)7W(T (t-1)) Wl(?;;(t_l)),WQ(z_z(t_l))> that simultaneously satisfy . From
the asymptotic equipartion property (AEP) [4], the probability of an error due to (i) tends to

zero when N grows to infinity. Consider the error due to (47) and define the event E ,.; .m) that
describes the case in which the codewords (u(s,r), wi(s,r, W1( Cl(t DY vy (s, Wl(%l(t 2 1),

x1,p(s,m, Wl()T(fl(tfl)),l,q) us(s,r, Wz(c (t= 1))), and va(s,r, Wy, T (t ) m)) are jointly typical
with 7?—(:&—1)) during decoding step t. Assume now that the codeword to be decoded at decod-
ing step t corresponds to the indices (s,7,1,q,m) = (1,1,1,1, 1), this is without loss of generality
due to the symmetry of the code. Then, the probability of error due to (i7) during decoding step
t, can be bounded as follows

Pe=Pr U E(sr1.q:m)
(s,r,l,q,m)#(1,1,1,1,1)
< Z Pr (E(s,r,l,q,m)) 5 (29)

(s,ml,q,m)ET

with 7 = {{1,2,...2“1,01} % {1,2,.. . 2NRzc1) 5 {12, 2NRie2) x {12, 2NRur) x {1 |
2,...2NR2«c2}} \{(1,1,1,1,1)}.

From the asymptotic equipartion property (AEP) [4], it follows that:

P, <oN(Ra.c2—I(Y 1Vl U.U1 U2, V2. X0)426) 4 gN(Ry p=I(Y 13X |U.ULUa Vi, Vo) +26)
+2N(R2,02+R1,P*1(71;V2,X1|U7U1,U2,V1)+26) + 2N(R1,02—I(71;V1,X1|U7U1,U2,V2)+25)
+2N(R1,02+R2,02*I(71;V17V2’X1|U7U1’U2)+2€) + 2N(R1,02+31,P*I(71;V1,X1|U,U17U2,V2)+2€)
+2N(R1,02+R1,P+R2,02*I(71;V1,V2~,X1|U7U1’U2)+26) + 2N(R2,01*I(71;U,U17U2’V1,V27X1)+26)
+2N(R2,01+R2,02*I(?1%U,Ul,Uz’V1,V2,X1)+2e) + 2N(R2,c1+31,}3*1(71;U,U17U2,V1,V27X1)+26)
+2N(R2,C1+R1,P+R2,C2*I(?l?U’UlaU2’Vl’V2aX1)+2€) 4 2N(R2,CI+RLC2*I(71§U~,U1,U2aV1’V2,X1)+26)
+2N(Rz,c1+R1,02+R2,C2*I(71§U7U1,UQ,Vl7V2,X1)+26)
+2N(R2,Cl+R1,Cz+Rl,P*I(?1;U,Ul,U27V1,V2,X1)+2e)
+2N(R2,0+R1,02+RLP—1(71;U,Ul,U2~,V1,V2,X1)+2€) + 2N(R1,C1_I(?1§U7U17U2»V17V27X1)+2€)

+2N(R1,01+R2,02—I(71;U,U17U27V1,V2,X1)+26) + 2N(R1,01+R1‘P—I(71;U,Ul,UQ,Vl7V27X1)+2€)
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2N Rl,ClJrRz,Cl+R1,P*I(71;U7U1,UQ,Vl,V2,X1)+25)

+

2N Rl,Cl+R2,Cl+R1,P+R2,CQ—I(?1;UyUlaU27V11V2aX1)+2€)

+

+2N(Rl,01+R1,P+R2,C2*1(71;U7U1,U2,V17V2,X1)+26) + QN(R1,01+R1,02*1(?1;U,U17U2,V1,V27X1)+26)
+2N(R1,01+R1,c2+R2,02*1(71;U,Ul,U2’V1,V27X1)+26)
+2N(R1,01+R1,02+R1,P*1(71;U7U1,U2,V17V2,X1)+26)
+2N(Rl,01+R1,02+R1,P+R2,02*I(?1;U,Ul,U2’V1,V2,X1)+2€)
+2N(R1,61+Rz,c1*1(71;U7U17U2,V1,V27X1)+25) 4 2N(Rl,c1+R2,C1+R2,c2*1(?1;U7U1,Uz,V17V2,X1)+26)

(

(

(

+2N R1,01+Rz,c1+R1,02—1(71;U,U17U27V1,V27X1)+2€)
L oN(B1c1+Ra, o1+ Ry 0o+ Ra,co =LY 13U,U1,U2, V1, Va X1 ) +26)

+2N(R1,Cl+R2,C1+R1,02+R1,P_I(?1;U1U17U27V1,V27X1)+2€) + 2N(R1+R2,c—1(?1;U7U1,U27V1,V2,X1)+26).

(30)

The same analysis of the probability of error holds for transmitter-receiver pair 2. Hence, in
general, from and , reliable decoding holds under the following conditions for transmitter

i€ {1,2}, with j € {1,2}\ {i}:

Rjci1<d (Yz‘;UﬂUa Ui,Vz',Xi)

-1(Ysu,u.x))

£0, .4, (31a)

Ri+ Ryo<I(Y U, U,, Uy, Vi, Vi, X3)

—1(Y;;U,U;,V;, X))

20y, (31b)
Ry co<I(Y 5 Vi|U, UL, U;, Vi, X;)

—1(Y VU U;, X))

203, (31c)
Rip<I(Y 3 X:|U, U3, Uy, Vi, V)
2044, (31d)
Rip + Ry ca<I(Y 5V, Xi|U, U, U;, Vi)
205, (31e)

Ri o2+ Ri,P<I(7i; Vi, Xi|U, Ui, Uy, V)
—I1(Y : Xi|U, U3, U, V)
£06.;, and (31f)
Rico+ Rip+ Rj,C2<I(?i§ Vi, Vi, Xi|U, U;, Uj)
—I(Y:;V;, Xi|U, U, U))
£07;. (31g)

Taking into account that R; = R; c1 + R;.c2 + R; p, a Fourier-Motzkin elimination process in

RR n° 8861



Approzimate Capacity Region of the Two-User G-IC-NOF. 20

yields
Ry<min (021,061 + 601,2,041 + 612+ 032), (32a)
Ro<min (029,611 + ag2,61,1 + 631 +642), (32b)

Ry + Ro<min(fa1 + 042,021 + a6 2,041 + 022,051 + 022,011+ 031+ 041+ 012+ 052,
011+ 0714012 +052,011+041+012+072,0114+051+012+0324 040,
0110+ 051+ 0124 052,611 +071+ 012+ 042), (32¢)
2Ry + Ro<min(fp1 + 041 + 012 + 072,011 + 041 + 071 +2012+ 052,001 + 041+ 012+ 052),
(32d)
Ry +2Ro<min(011 + 05,1 + 022+ 042,611 + 071+ 0224+ 042,201 1 + 6051 + 612 + 042+ 072),
(32¢)

where 6; ; are defined in with (1,7) € {1,...,7} x {1,2}.
Consider that transmitter ¢ uses the following Gaussian input distribution:

Xi=U+U;+V;+ X; p, (33)

where U, Uy, Uz, V1, Vo, X1 p, and Xy p in are mutually independent and distributed as
follows:

UNN( p) . (34a)
N (0, pidic) s (34b)
v~N< (- pi)hic)., (340)
z PNN (0 )\z P) (34d)
with

p+Xic+ A p=1and (35a)

1
A p=min { ———, 1), 35b
P mln(INRﬁ ) ( )

where p; € [0,1] and p € [O, (1 — max (ﬁ, ﬁ))q

The parameters p, p;, and \; p define a particular power allocation for transmitter i. The

assignment in is based on the intuition obtained from the linear deterministic model, in

which the power of the signal X; p from transmitter ¢ to receiver j must be observed at the noise

level. From l , % and , the right-hand side of the inequalities in can be written in
R1, SN

terms of SN 2, INR127 INRgl, NRl, NRQ, Py U1, and M2 as follows

(91)1‘:[ (?“ Uj|U, Xi)

) W%»(INRU " 1) Fbii(p) + 1
=—log
20\ SNRs ((1-15) boi(p)+2) +D1ip) + 1
=as,i(p, 145), (36a)
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00,=1 (Y U, U,V X))

:% log (bu(l’) + 1) -
=az,i(p), (36Db)
0s.=1 (Y 1 V;|U.Uj, X

:% log ((1 - Nj)b2,i(P) + 2) - %

N |

=a4,i(p, 115), (36c)
04,1'21 (?1, X2|U; Uia Uja Vvi7 ij)
_11 SN i 4+ 2 1
2 "8\ INR; 2
=ai,q, (36d)

05.=1 (Y ::V;, X,|U, UL, U, Vi)

1 SNE, 1
— 5 log (2 +im, (1 - uj)bz,i(p)> -3

=as,i(p, 115), (36e)
0.=1 (Y 1 X:|U. U, U, V;)

1. (SNE, 1
= 5 log (INRJI ((1 - ,ui)bg,j(p) + 1) + 2) — 5

:a’6,i(pv Hi)s (361)
O7=1 (?i;Vj,XﬂU, Uz’an)

Zélog (IS;\I?:ZZ ((1—Mi)b27j(ﬂ)+1) + (1—Mj>bz,i(f0)+2> - %

:a7,i(p7 Mlv:U/Z)' (36g)

Finally, plugging into (32 (after some trivial manipulations) yields the system of inequalities
in Theorem |1} Note that the sum-rate bound in (32c) can be simplified as follows

Ri 4+ Ro<min (az,l(ﬂ) +a1,2,a1,1 + az2(p), a31(p, p2) + ar1 + as2(p, 1) + az2(p, pi1, p2),
az,1(p, p2)+as1(p, p2)+as2(p, p1)+as2(p, p1),
az,1(p, p2) + az1(p, p1, p2) + az2(p, 1) + a1,2>- (37)

This is mainly because max(as1(p) + a1.2,a11 + a22(p) , asi(p,p2) + a11 + as2(p, p1) +
ara2(p, 1, p2), a31(p, pa) + as1(p, p2) + as2(p, 1) + as2(p, 1), az,1(p, p2) + az1(p, 1, p2) +
az2(p, p1) + a12) < min(agy + as2(p, 12), a6,1(p, p1) + a2,2(p), az,1(p, p2) + as,1(p, p2) + a1,1 +
az,2(p, 1) +as2(p, 1), as,1(p; p2)+az i (p, pa, p2)+as2(p, pa)+as2(p, 1), as,1 (ps p2) + as1(p, p2)
+ ag2(p, p1)+032+a1 2). Therefore, the inequalities in simplify into and this completes
the proof of Theorem
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B Proof of Converse

This appendix provides a proof of the Theorem The outer bounds and correspond
to the outer bounds of the case of perfect channel-output feedback [3]. The bounds ,
and correspond to new outer bounds. Before presenting the proof, consider the parameter
hjiu, with i € {1,2} and j € {1, 2} \ {4}, defined as follows

0 if (Slﬂ' V 8271' vV ngi)

hjiu = \/% if (S V S5,), (38)

where the events Sy ;, S2;, S3, Sa4, and S5 ; are defined in . Consider also the following
signals:

Xic=\/INR;;X; + Z; and (39)
Xiv=hjvX;+ ?ja (40)
where X; and 7]- are the channel input of transmitter ¢ and the noise observed at the receiver
j during a given channel use n € {1,2,..., N}, as described by . Note that the channel use

index n has been dropped for the ease of notation. The following lemma is also fundamental in
the present proof of Theorem

Lemma 1 For all ¢ € {1,2}, with j € {1,2} \ {i}, the following holds

N
1(Xi0n X0, Yo, Wi Y5 W3 ) <h (Y5 05) + 30 [0 (G0 Xiem) + b (Vi Xin, Xj0n)
n=1
3
~5 log (2me) } . (41)
Proof: The proof of Lemma [I]is presented at the end of this Appendix. [ |
Proof of (18b): From the assumption that the message index W; is i.i.d. following a uniform
distribution over the set W;, the following holds
NR;=H (W;)
= H (Wi|W;)
(a)

N
3 [h(?i,n, VinlWi ¥ i1, Vs tonny, Xj,(lm)) ~1(Z:n)-n(Z,

N

2|+ Nev)

s

3
Il
—

[0 (Vio Vil X5m) = 1 (Zin) = 0 (Z ) | + N6(V)

A
WE

— =

n

=N |h (?“ ?j|Xj> —log (27re)] + N§(N) for any n € {1,2,...,N}, (42)

where
(a) follows from Fano’s inequality (see Fig. [3h).
From , the following holds in the asymptotic regime:

Ri<h (Y1, Y|X;) ~ log (2me)
(bs. + baglp) +1)5NR,

) b3 () +1) (ba. + (1= p))

+1]. (43)

N |

log (bgﬂ- + 1) + %log (
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This completes the proof of (18b)).
Proof of (18d)):

From the assumption that the message indices W7 and Wy are i.i.d. following a uniform distri-
bution over the sets Wy and W, respectively, the following holds

N (By+ Rp) = H (W) + H (W2)

(%)I (Wﬁ?hvl) +I(W2;727?2) +N6(N)

—n(Y) +0(ZY)) - (Vi) —h (P, YL X0) + 0 (Vo) + 1 (Z,]Y)
—h (YaoWa) — h (Yo Wa, Yo, Xo) + NS(N)

<h (Y1) +1(Z)) - (Vi) = b (XoclW1, Y1, X0) + 1 (YVs) + 0 (Z2) — 1 (Val02)
—h (X 1clWa, Yo, X2) + NS(N)

0 (Y1) =0 (Vi) = h (Xac ZolWi Y0 X0 ) 4 0 (220, Y1, X0, X)) + 1 ()
—n (YaoWa) — b (X1c, Z1|Wa, Yo, X2) + 1 (Z1]Wa, ¥V, X5, X 1.0) + Nlog (2me)
TN§(N)

0 (Y1) =0 (Vi) = b (X X100, Y1, X))+ (Z2W, Vi, X0, Xo o)
+h (Ys) = h (YalWa) — h (X0 XowWa, Yo, Xo) + b (Z1|Wa, Vo, X2, X 1.0
+N log (2me) + NS(N)

=h (V1) =h (YuWn)+ |1 (Xa.c, Xo,0: Wi, V1) = h (X0, X10) | + 1 (V)
(Yo W) + [I (X0 Xo0:We, ¥3) — h (X100 X200
+h (21 We, Yo, X0, X1.0) + 1 (Zo)W, ¥ 1. X1, Xa.0) + Nlog (2me) + N3(N)

<h (V1) =h (Vaiwn) + 1 (Xae, Xa0 W2, Y1) = h (X0, Xo0) | + 1 (V)

“n (YaolWa) + [I (X0 Xowi We, ¥a) — h (X100 Xo0)] + E (Xocn X10[¥s)-
h(Xa.0 X101V, X1, Xo) | + [ (X 1.0, Xo,0[¥1) —h (X1.0, Xo0[P1, X2, X))
+h (Z1 W, Y3, X2, X1.0) + h (Z2W1, Y1, X1, Xa.0) + Nlog (2e) + N3(N)

Oh (YiX 10 Xow) = h (Vo) + 1 (Xoe, X1o: Wi Y1) + 0 (Yol Xoe, X10)
h(YaoW) + I (X XowiWa, Yo) — 1 (Z1, 25| Y2, X1, Xo)

(22, 2\ ¥ 1 X0 X0 ) + 1 (21 We, Yo, X0, X1.0) + 1 (Zo W, ¥ 1 X0 X )
+N log (2me) + NO(N)

(gh (71|X1,C7 X2,U) —h <?1|W1) +1 (Xz,(), X103 Wi, ?1) +h (?2|X2,C7 Xl,U)
—h (YolW) + (X100 Xo0:Wa, ¥5) + Nlog (2me) + N3(NV)

<h (71|X1,CaX2,U) —h <?1|W1) +1 (X2,07X1,U,W27?2; Wl,?1>

+h (?Q‘ch,XLU) — h (?2|W2) + I <X17C,X2_’U7W17 ?1; WQ, ?2) + NlOg (27T€)
+N§(N)
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() &
%Z {h (71,n|X17Ca Xou, 1—}1,(1:7171)) +h (X1unl|X2,0m) + R (?2,n|X2,m Xl,U,n)

n=1

+h (?2,n|X2,Ca X1,U72,(1:n—1)) +h(Xounl|X1,0n) + 1 (?1,n|X1,na Xz,U,n)
—3log (271’6)} + Nlog (2me) + N§(N)

N
<> {h <71,n|X1,c,n, X2,U,n) + h (X1 unlX2,0n) + R (?2,n|X2,n7 Xl,U,n)
n=1

+h (Yol X0 X1,00) + 5 (vl X1.00) + b (Vi X1, Xo.0n) — 3log (2e) |
+N log (2me) + N6(N)
=N [h (71|X1,07 X2,U> +h(X1u|Xo,c)+h (372\)(27 Xl,U> +h (72\X2,C, Xl,U)
+h (Xou|X1.0) +h (?1\)(1, Xa17) — 3log (2776)} + Nlog (2me) + N6(N) (44)
for any n € {1,2,..., N},

where

(a) follows from Fano’s inequality (see Fig. [Bp);

(b) follows from the fact that h ( i>—h (X0, X u)+h (Xi,C; Xj,U|?i) =h (?1|X10, Xj’U>;
(c) follows from the fact tha h (7i|Wj7?j,Xj7Xi’C) —h (7i,7j|?j,Xi7Xj) < 05

(d) follows from Lemma [I]

From , the following holds in the asymptotic regime:

Ri+Ry < h <71|X1,C>X2,U) +h(X1,u|Xoc)+h (?2|X2, Xl,U) +h (72|X27CaX1,U>
+h (XoulX1c) +h (ViIX1, Xa0) - 2log (2me)
<% log (det (Var (71,)(1,0, Xg,U))) - %bg (INRpp + 1) + %log (det (Var (‘?Z,XQ,XLU)))
—% log (det (Var (XQ, XI,U))) + % log (det (Var (72, XQ,C, Xl,U))) — % log (INRQl + 1)
+% log (det (Var (?1, X1, X27U>>) — % log (det (Var (X1, Xo.17))) + log (2me) , (45)
where for all ¢ € {1,2}, with j € {1,2} \ {i} the following holds
det (Var (?j7 X;.0, Xi,U)):Sﬁj +INRy; + h2;  — 2hji,0/INRy; + (1 - p?) (INRZ-jINRji
+h2,  (SNR, + INRy; ) — 2hy; v INR;; /INRy; )
+2p V Sﬁj (\/INTJZ - hji,U) s (468.)
det (Var <?j7Xj7Xi,U)):1 =+ h?i,U (1 — p2)
+m%j (1= p2) (k2. — 2hji0/INR;; + INRy, )
(SNE; +2p/SNR,INRy; + INRy; +1)

det (Var (X, X;.v))=1+ (1 - p*) h3; 1. (46¢)

and (46b)

The expressions in depend on Sy, S2,i, S3,i, Sa,i, and Ss; via the parameter hj; r in (38).
Hence, the following cases are considered.
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Case 1: (5172 \Y 5272 \Y 5572) A (5171 V 5271 V S5,1). From , it follows that h127U = 0 and
ho1,u = 0. Then, under these conditions, plugging the expressions into yields (15a)).
Case 2: (Sl 2V SQ 2 \Y 55 2) (Sg 1V S4 1) From , it follows that h12 U — =0 and h21 U =

\ /%m Then, under these conditions, pluggmg the expressions (46| into . 45)) yields (1
2
Case 3: (S5 V S12) A (S1,1V S21V S51). From (38), it follows that oy = %NRJ and
1
h21,ry = 0. Then, under these conditions, plugging the expressions into (45) yields (15¢].
Case 4: (S32V Si2) A (S31V Sy1). From , it follows that higy = 1/%& and
1

horv =,/ %T’Li. Then, under these conditions, plugging the expressions into

yields .

This completes the proof of .

Proof of (18¢): From the assumption that the message indices W; and W; are i.i.d. following a
uniform distribution over the sets W; and W; respectively, for all ¢ € {1, 2}, with j € {1,2}\ {3},
the following holds

N (2B: + R;) = 2H (W) + H (W)
H (Wi) + H (WilW;) + H (W;)
51(W4-7«,Yi)+1(W7;;?i,?j|wj)+I(Wj;?j,§7j)+N5(N)
<h(¥) +0(Z:) —n(Yaws) - n (Pawe, ¥.) + 1 (Y, 1w;) — 1w (V[ W)
I (W VAW, Y, 40 (Y,) +0(2,) =0 (Y,1w) = b (¥, W, ¥,) + No(N)
=n(¥) —n(Yaw) —n (Yaw,, Yo, X)) - 0 (YW w;) + 1 (Wi Yaw,, YY)
+h (Y,) =1 (Y51, Y, X,;) + Nlog (2e) + NS(N)
(¥ —n(Yaw) — (Y AW, Yo, X)) + 1 (W Yaw,, Y5) + 1 (Y))
(Y51, Y, X,) + Nlog (2me) + N3(N)
(¥ - n(Yaw) —h (X,clWe Yo X)) + 1 (W Y, ¥, + 1 (Y))
“h (XZ,C|WJ,? X) Nlog (2re) + N&(N)
(X0 2,W, Yo X)) + 1 (2, W, ¥ X0, X 0)
(¥)) — h (XiclW;, Y5, X,) + Nlog (2e) + NS(N)
(X o XiolW Yo, X)) + b (Z, W, Y X0 X )

_|_

(¥)) = h (XiclW;, ¥;, X,;) + Nlog (2e) + NS(N)
(X Xl W Y + 1 (2, WY X0, X 0)
(Wi ¥ o XocW,, ¥,) 4+ 0 (Y,) = b (X00[W,, ¥;) + Nlog (2me) + NS(N)
V) - h(Yiw) - b (Xpe, XooWo, ¥) + 0 (Z,W, Y0 X X 0)
+h (YA, Y. Xoc) —h (Yo, XoclW, W, Y5) + 1 () + Nlog (2re) + N3(N)
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n () - n (VW) = b (X0 XowlWe, V) + 1 (2,0, V0 X0, X0
+h <7Z‘Wj, ?j7X’i,C) — h (7iaXi,C|Wi7Wj7 ?]7X27XJ> + h (7J) + NlOg (27‘(‘6)
+N§(N)
—h(Y) - n(YiW) = h (X0, XoolWi, ¥) + 0 (Z,)W, Y0 X0 X 0)
+h <7Z‘Wj, ?ﬁxi’c) —h (31,7J|WZ,WJ, ?37X25XJ> + h (?j) + NlOg (27‘[‘6)
+N6( )
( ) (?1|Wz> —h(Xj,C,Xi’U|WZ‘,?Z‘>+h<?i|Wj,?j,Xi’c>+h(?j)
+N log (2me) + NS(N)
<h(¥3) = (Yaw) +1(X 0. X0 Wi ¥o) = 1
+h (Y,) + 1 (X0 X0Y;) + Nlog (2re) + NS(N
Dh(F)) —n (VW) + 1 (X0 Xoos Wi, V) + 1 (¥
+Nlog (2me) + NO(N)
<h (?1> —h (?2|Wz> + 1 (Xj,C7Xi,U5 Wj,?j;Wi,yi) +h (?ZWV], ?j7XZ’7C)
+h (Y,1X 0. X10) + Nlog (2me) + N3(N)
N
h ¥)+> [h (Kol Xcn) + 0 (¥ 5 Xy Xiwn) - glog (m)}

n=1

+h (YW, Y, Xoc) + 1 (Y1 X 0. Xou) + Nlog (2e) + N3(N)

j.cy Xiu) Jrh(? |WJ,?3,X1(;>
)
WY Xoe) +h (V51X 0, X o)

h(X
(v

N
(< h (? ) +> [h (Xi,unlXjom) +h (?j,n‘Xj,naXi,U,n) - glog (27r6)} +h (71|Xz‘,c,Xj)

n=1

+h (Y,|1X 0. X10) + Nlog (2me) + N3(N)

N
Z ( ) h(XiunlXjom) +h (?j,n|Xj,mXi,U,n) - glog (2me)

n=1

+h( 7,n|XzCn) ) +h (7jn|X’Cn7Xi Un)} + Nlog (2me) + N6(N)

=N [n(¥:) + h(XiulXs0) + 0 (V,1X,, X00) fglog(%ewh(?ﬂxw,xj)
+h (? |X]C, Xiv) +2log (2me) + 6(N)] for any n € {1,2,...., N} (47)
where,

a) follows from the fact that W7 and W5 are mutually independent;
b) follows from Fano’s inequality (see Fig. [3c);
¢
d

(
(
(c) follows from (I)) and (39);

(d) follows from (40);

(e) follows from ([3)) and the fact that conditioning reduces the entropy;
(f)

(

(

(

£) follows from the fact that h (Z,|W;, Y1, X0, X,0) — h (2., 2, /W W,, Y5, X0 X)) < 0;

g) follows from the fact that h (7]) —h (Xj7c', Xi,U)—‘rh (Xj,c, Xi,U‘?j> =h (7] |Xj7c', Xi,U);
h) follows from Lemma [T}
i) follows from the fact that conditioning reduces the entropy.
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From ([47), the following holds in the asymptotic regime:
2R+ R; <1 (Vi) +h(XowlXs0) + 0 (Vi1X, Xiw) +h (Vi Xo o, X5) +0 (V51X 0, Xw)

1
5 log (2me)

1 ﬁ 1
<§ log (SN i +2pV SNRINRU + INRU + 1) — 5 log (INRU + 1)

—&—% log (det (Var (?ﬁXj, Xi,U)) ) - %log (det (Var (X, Xiv) ))
% log (1+ (1 - p?) (SNR; + INRy;) ) - %log (14 (1-0?) INRy;)

—%log(det (Var (7j, Xj.c, XLU)) )+2log (2me) . (48)

The outer bound on depends on Sy ;, S2,, 53, Sa4, and Ss; via the parameter hj;; i in
(38). Hence, as in the previous part, the following cases are considered.

Case 1: (S1,;V S2,;V Ss5;). From (38)), it follows that hj; y = 0. Then, under these conditions,
plugging the expressions into (48) yields (16a)).

Case 2: (S3;V Sy;). From , it follows that hj; vy = %%. Then, under these

SNE,
conditions, plugging the expressions into yields (16b)).
This completes the proof of (18e)) and the proof of Theorem

Proof of Lemma [1]

Lemma [T} is proved as follows

I(Xi07 jUa?hWi;?ijj)
=1 (WHY ) ( icy X jUinQ?JHWj‘Wi)
=h (?j, W]) h (?J,W |W) +h ( i,y XU, ?7,|Wz) —h (Xi,c,Xj,U, ?i|Wi7Wj7?j)
=h (Y, w,) — n (Y Wi, W) + b (Xie, X0 ViAW) — 0 (Xoe, X0, YW, Y)
—h (Y, 1W,) + 0 (XKoo, X0 ViAW) = 0 (X0, X0 Y0 VW0 W)
N
=h (?J‘\WJ) + Z h(Xi,c,ij,U,m ?i,n‘WiaXi,C,(lzn—l)a XU, (1n—1)s ?i,(m—n, Xi,(l:n))

*h(Xi,c,m X5.Uns ?i,na ?j,n‘Wi, Wi, X c,(1m—1), X j,U,(1:n—1)> ?i,(m—n, ?j,(m—n,

Xi,(l:n)a Xj,(l:n))

N
n(Yw)+ >0 h(X@C,n,XLU,n, Vin

Xi,n) —h (7‘7,1“ 71’,7“ ?i,n; ?j,n |Ws, Wj,

Xi.0,(1in—1)s X 4,U,(1:n—1)s ?i,(l:n—l), yj,(1:n—1)7 Xi (1) Xj,(l:n))]
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N
—n (Y, W)+ >
—h (7]',71) —h (71,71) - h(?i,ny ?j,n|Wi7 Wja Xi,C,(l:nfl)v Xj,U (1:in—1)» ?i,(lznfl)a

?j,(l:n—l)y Xi,(l:n)a Xj,(l:n)» ?j,na 71,n)]

h(Xi,C,n|Xi,n) + h<Xj,U,n|Xi,naXi,C,n) + h(?i,np(i,naXi,C,n7Xj,U,n)

—

W(Z il Xin) + (XiwalXion) + (Vi Xin Xi00) =0 (Z0)

n=1
— <~
i n) - h(21 ny Zj,n|Wi7 Wja Xi,C,(l:'n—l)7 Xj,U,(l:n—l)a ?i,(l:'rz—l), ?j,(l:n—l)a Xi,(l:'n)v

s

h(Xj,U,n|Xi,C,n> + h(?i,np(i,na Xj,U,n) —h (717,1) — h(?l)n>

n=1
fh(?jm)
N
—h (?j\Wj) + ) P (X unl Xiom) + b (?i,np(z,n, Xj,U,n) - glog (2@] ,
n=1
where

— —
(a) follows from the fact that Z; , and Z j,, are independent of W;, Wj, X; ¢ (1:n—1)» X j,v,(1:n-1)>

?i,(l:n—l)y ?j,(lzn—l)v X (1m), Xj,(1:m) 7]‘,7“ and 77n
This completes the proof of Lemma

C Proof of the Gap between the Converse Region and the
Achievable Region

This appendix presents a proof of the Theorem The gap, denoted by §, between the sets
Carc—nor and Care_nor (Def. [2) is approximated as follows

§= max <5R1,5R2, ‘%R 53;?'1 : 53’%) : (49)
where
dr,= min (K1,1(,0/)7 52,1(/7/)7 /i3,1(P/)) — min <a271(P),a6,1(P7 M1)+a3,2(Pa 1),
ai1+asz2(p, 1) +asa(p, Ml)), (50a)
0r,= min (fi1,2(,0')7 rk2,2(p"), /<J3,2(P/)) — min <a272(P),a3,1(P7 p2)+as2(p, p2),
a1 (p, p2)+as(p, M2)+a1,2), (50b)
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dor = min (54(/)’)7 k5(p'), HG(P’)) — min (a2,1(ﬂ) +a12,a1,1 + az2(p),
az1(p; p2) + ar1 + az2(p, p1) + az2(p, pa, p2),
az(p, p2) + as1(p, p2) + as2(p, p1) + as2(p, p1),

a3 (p, p2) + a7 (p, p1, po) + as2(p, p1) + a1,2>7 (50c)

03, = 57,1(/)/) — min (az,l(/)) +a11+ as,z(pa Ml) + a7,2(ﬂa M1, M2)7
az,1(p, p2) + ar1 + ar1(p, p1, p2) + 2a3.2(p, 1) + as2(p, pa),
a2:1(p) + a1+ as2(p, i) + as.2(p, ) ), (50d)

03Rr,= fi72(p") — min (a3,1(ﬂ7 p2) + as1(p, p2) + az2(p) + a2,
as,1(p, p2) + ar1(p, p1, p2) + az2(p) + a1 2,

2a3,1(p; p2) + a5 1(p, pi2) + az 2(p, p1) + a1,2 + az2(p, p, ,uz))7 (50e)
where, p’ € [0,1] and (p, p1, p12) € [0, (1 — max (ﬁ, ﬁ))w x [0,1] x [0,1].
Note that dr, and dg, represent the gap between the active achievable single-rate bound and the
active converse single-rate bound; dop represents the gap between the active achievable sum-rate
bound and the active converse sum-rate bound; and, dsg, and dsr, represent the gap between
the active achievable weighted sum-rate bound and the active converse weighted sum-rate bound.
It is important to highlight that, as suggested in [T} [3], and [5], the gap between Cqic_nop and
Caic—nor can be calculated more precisely. However, the choice in eases the calculations
at the expense of less precision. Note also that the active (achievable or converse) bounds in
either of the equalities in depend on the exact values of Sﬁl, Sﬁg, INR 2, INRo, %1,

and SNRy. Hence a key point in order to find the gap between the achievable region and the
converse region is to choose a convenient power allocation for the achievable region, i.e., the
values of p, p1, and ug, according to the definitions in (50) for all ¢ € {1,2}. This particular
power allocation is chosen such that the expressions in (50]) become simpler to upper bound at
the expense of a looser outer bound. Such a power allocation is different in each interference
regime. The following describes all the key cases and the corresponding power allocations.
Case 1: INRjs > Sﬁl and INRs; > SNR,. This case corresponds to the scenario in which
both transmitter-receiver pairs are in high interference regime (HIR). Three subcases follow
considering the SNR in the feedback links.
Case 1.1: SNR, < SNR; and SNR; < SNR,. In this case the power allocation is: p = 0,
w1 =0 and ps = 0.
Case 1.2: SNRQ > SNHl and SNR1 > SNRQ. In this case the power allocation is: p = 0,
w1 =1, and ps = 1.
Case 1.3: SNRQ < SNRl and SNRl > SNRQ. In this case the power allocation is: p = 0,
p1 =0, and po = 1.
Case 2: INR;o < Sﬁl and INRg; < Sﬁg. This case corresponds to the scenario in which both
transmitter-receiver pairs are in low interference regime (LIR). There are twelve subcases that
must be studied separately.
In the following four subcases, the achievability scheme presented above is used considering the
following power allocation: p =0, u1 = 0, and e = 0.
Case 2.1: SNR; < INRa;, SNRs < INRys, INR;»INRy; > SNR; and INRyoINRy; > SNR,.
Case 2.2: SNR; < INRy;, SNRoINRy; < SNE,, INR1pINRy; > SNE; and INR1pINRy; <
SNRs.
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Case 2.3: §NR11NR12 < SNﬁl, §NR2 S INng, INngINRgl < SNﬁl and INngINRgl >
SNEQ.

Case 2.4: §NR11NR12 g SNﬁh §NR21NR21 < SNﬁg, INnglNRgl < SNﬁl and INR12INR21 <
SNEQ.

In the following four subcases, the achievability scheme presented above is used considering
INRZ, §NR,

the following power allocation: p =0, uyy = (INR21—1)(INR21m2+Sﬁ2)’ and Lty =
INR2,8NR;

(INR12—1)(INR12%1+WI)
Case 2.5: §NR1 > INRgq, §NR2 > INR;j2, INR{2INRo; > SNﬁl and INR{2INRg; > SNﬁQ
Case 2.6: §NR1 > INRgyy, §NRQINR21 > SNﬁQ, INR2INRo; > SNﬁl and INR2INRs; <

SNEg.

Case 2.7: §NR11NR12 > SNﬁl, §NR2 > INR12, INnglNRgl < SNﬁl and INngINRgl >
SNEg.

Case 2.8: §NR11NR12 > Sl\Iﬁl7 §NR21NR21 > SNﬁQ, INR2INRo; < SNﬁl and INR{2INRy; <
SNRo.

In the following four subcases, the achievability scheme presented above is used considering the
INR2,8NR;
(INR12—1)<INR12m1+Sﬁ€1)
Case 2.9: §NR1 > INRgq, §NR2 < INR;2, INR{2INRg; > SNﬁl and INR2INRg; > SNﬁQ
Case 2.10: §NR1 > INRgq, E;NRQINRgl < SNRy, INR12INRo; > SNﬁl and INR;2INRy; <

SNEg.

Case 2.11: §NR11NR12 > SNﬁl, §NR2 < INRj2, INR12INRy; < SNﬁl and INR;2INRy; >
SNﬁg.

Case 2.12: §NR11NR12 > SNﬁl, §NRQINR21 < SNﬁg, INR12INRg; < SNﬁl and INR{2INRy; <
SN?Z.

Case 3: INR13 > SNﬁl and INRo; < SNﬁg. This case corresponds to the scenario in which

transmitter-receiver pair 1 is in HIR and transmitter-receiver pair 2 is in LIR. There are four

subcases that must be studied separately.

In the following two subcases, the achievability scheme presented above is used considering the

following power allocation: p =0, u1 = 0, and e = 0.

Case 3.1: NR,Q < INR12 and INngINRgl > SNﬁQ

Case 3.2: gNR,QINRgl < SNﬁQ and INnglNRgl < SNﬁQ
In the following two subcases, the achievability scheme presented above is used considering the
following power allocation: p =0, yg3 =1, and ps = 0.

Case 3.3: SNRy > INR;> and INR13INRs; > SNR».

Case 3.4: §NRQINR21 > SNﬁQ and INR5INRs; < SNﬁQ
The following is the calculation of the gap ¢ in Case 1.1.

following power allocation: p =0, u1 =0, and 2 =

1. Calculation of dg,. From (50a)) and considering the corresponding power allocation for the
achievable region (p =0, 1 = 0 and po = 0), it follows that:

o, <min (11(0), 521 () K3.1(p) ) = min (a61(0,0), 011 +a12(0,0)), (51)

where the exact value of p is chosen to provide at least an outer bound for (5IJ).
Note that in this case:
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1
K1,1( 5 log (b )

(‘1) 1
log (S 1+2 \/ 1INR 15 +INR12+1>

log 2SNK, + 2INRys + 1)

(52a)

(25N
log (ﬁl + INR12 + 1) + 5
(

ko1 (p") = log (14 baa(p') + bs2(p"))

log (SN, + INRy, + 1), (52b)
e (141

1 ﬁg b41 +b52( )+1) )
g( (o ()+1) Gar(P)+1) T

531

[\:J\ Hm\r—\wm—nm\»—t

_|_

lo
2
(2% log (Sﬁl + 1)
1 %2 (Sﬁil + INRo; + 1)

o (SNR2+INR21+1)(SNR1+1)

1 m{ﬂs ﬁ +INR21+1)+W i
1 )

=—log
2 SNERs + INRg; + 1

(52c)

where

(a) follows from the fact that 0 < p’ < 1;

2
(b) follows from the fact that (\/ SNK, — \/INRH) > 0; and

(c) follows from the fact that k3 1(p’) is a monotonically decreasing function of p'.

Note also that the achievable bound a1, + a42(0,0) can be lower bounded as follows

SNﬁ 1
ay,1+a4,2(0,0)= log R211 )+21og (INR21+1)

5 1
1 “log (INRy;) —
Og(INR21 )+2°g< Ray)

log

WV

1+ 21NR21> -

WV
M\F—‘I\J\HMM—‘ DN |~

(st
log (ﬁh + INRo; + INR21>
(

log (SNR, + INRo; + 1) -1 (53)
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From (51)), and (53), assuming that a1,; 4 a4,2(0,0) < ae,1(0,0), it follows that:

ORr, <min (/‘51,1(/7/), k2,1(p"), /<63,1(PI)) - (01,1 +aq2(0, 0))
<k2,1(p") — (al,l + a472(0,0))
<l. (54)

Now, assuming that ag 1(0,0) < a1,1 + a4,2(0,0), the following holds

0 g, <min (51,1(p/)> wo,1(0), H3,1(PI)> —a6,1(0,0). (55)

To calculate an upper bound for , the following cases are considered:
Case 1.1.1: SNR, > INRy; A SNR, < INRy:

Case 1.1.2: SNR, < INRg; A SNR, > INRy,; and

Case 1.1.3: SNE; < INRy; A SNE, < INRy,.

In Case 1.1.1, from and , it follows that:

Or, <k2,1(p") — a6,1(0,0)

g% log (SNE; + INRgy + 1) - %log (SNE. +2) + %
<%1og(sﬁ1 +Sﬁ1 +1) — %log<m1 +2> —|—%
<l. (56)

In Case 1.1.2, from and , it follows that:

Or,<ks1(p") — as1(0,0)
SNR, (Sﬁ1+INRgl+1)

SNRQ +INRo; +1
tog (SNR, + SNR, + 1) — | log (SNI, +2) +
10g<8ﬁ1+Sﬁi1 +1> — %log<8ﬁ1+2) +

N

PN RN = N

—
o
0Q

+SNR +1 | — %log (Sﬁl +2) +%

VAN
N — N —

NN

In Case 1.1.3 two additional cases are considered:
Case 1.1.3.1: SNﬁl > SNﬁg; and

Case 1.1.3.2: Sﬁl < Sﬁg.
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In Case 1.1.3.1, from and , it follows that:

Or, <rs1(p) —as1(0,0)

SNR; (SNE, +INRy +1)

SNRs + INRs; + 1

< log

DN | =

m1+1 *%10g<ml+2)+f
SNRj (SNE, + INRy; + 1)

(SNRQ +INRo; +1) (SNRl + ].) *

:% log (Sﬁ1 + 1) + %log
—%log (Sﬁl + 2) + %

log (SNﬁl (INRg; + INRg; + INRg;) i 1) 4 1

< —
INR2; SNR;

| W N =

In Case 1.1.3.2, from and , it follows that:

Or, <kz,1(p") — a6,1(0,0)
ﬁig ﬁl +INR21+1)

SNR, + INRo; + 1

<ﬁ2+8ﬁ1+1>—§log<ml+2)+
log<ﬁ1+m1+l>félog(8ﬁl+2)+

N

+Sﬁ1+1 — %log (Sﬁl +2> + -

N

log

ol =N L\:)M—l
N RN -

NN

Then, from , , , , and , it follows that in Case 1.1:

5R1<; (60)

The same procedure holds to calculate dgr, and it yields

5R2<g. (61)

2. Calculation of dyr. From (50c) and considering the corresponding power allocation for the
achievable region (p =0, p1 = 0 and po = 0), it follows that:

d2p<min (M(P/), ks (p'), /‘66(P/)) — min (612,1(0) + a1,2,a1,1 + az2,2(0),a5,1(0,0) + as,2(0, 0))

<min (m(p’), /<;5(p’)) — min ((1211(0) +a12,a11 + a22(0),a51(0,0) + a572(0,0)). (62)

Note that
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ra(p') = % log (1 + 1 _?_41)15(5/(;,)) + 5 log (bl 2(p') + 1)
< % log (1 + Z‘;;EZ:;) + %1 g (61,2(p/) + 1)
= % log (1 + Isl\lr\I—RRzll) + %log (bl,Q(p’) + 1)
(2% log (1 + Isl\lj—ill) + %log (2Sﬁi2 +2INRy; + 1)
g%log (1+ S\??;i) +%log(m2+INR21+l) Jr%
< % log (2 ¥ 181\11\1—;”211) ¥ % g (SNH; + INRy, +1) + % (63a)
and
55(0/)_% log (1 + 1 —?—41925(f/()p’)) + %bg (b1 1(p") + 1)
g%log (1 + Z‘;?EZ:%) + %log (51,1(0/) + 1)
:% log (1 + E?EZ) + %log (bl,l(p') + 1>
gélog (1 + ISNﬁlg2> + %log( ﬁl + 2INR2 + 1>
sélog (1+ Sﬁﬁi) +%log (S—Pi +INR12+1> %
g%log (2 n Isl\ll\ﬁR;) % g (SNR, + INR;z + 1) + % (63b)
where

2
(h) follows from the fact that (\/ SN@ — \/INRgl) > 0; and
2
(i) follows from the fact that (\/ SNﬁ — \/INR12>

From and (63)), assuming that as 1(0)+a1,2 < min (al,l +a2,2(0),as,1(0,0)+as (0, O)),
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it follows that:
d2p<min (54( ) (a2,1 +ax 2)

<ks(p') — (az 1(0) + a4 2)

1 SNK.,\ 1 11
<3 log (2 + INR12> + 5 log (SNﬁ1 +INRi2 + 1) + L (SNﬁ1 +INRyz +1)
Lo (NB2 o) 1y
2 %%\ INR.,
3
=, 64
5 (64)

From and (63)), assuming that a1 1 +a22(0) < min (a271(0)+a1,2, as,1(0,0)+as 2(0, 0)),
it follows that:

dop<min (H4 (") )

( 1+ az2(0 )
<n4(p’)—(a11+a22 )

1

2

1 SNE, 1
<3 log (2 T INR21> log (S NR, + INRyy + 1) 575 log (S NRy + INRyy + 1)
1 SNL,
—3 log <INR21 + 2) +1
3

Now, assume that as,1(0,0) + a5,2(0,0) < min(az1(0) + a1,2,a1,1 + a2,2(0)). In this case,
the following holds

Jop<min (/14(p’), K5 (p')) — <a571(0, 0)+as 2(0, 0)) (66)
To calculate an upper bound for , the cases 1.1.1 - 1.1.3 defined above are analyzed
hereunder.
In Case 1.1.1, a51(0,0) 4 as5,2(0,0) can be lower bounded as follows
1 SNﬁl 1 SNﬁg
0,0 0,0)==lo —1 INR. 1])-—
as,1(0,0) + as,2(0,0)= 5 (INRzl >+20g(INR12+ 21+
1
25 log (INRy2 +1) — 1. (67)

From (63), (66)), and (67), it follows that:
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dor<amin (k4 (p’), Hs(ﬂ/)) - <a5,1(07 0)+as2(0, 0))
<rs(p) = (5,1(0,0) + a52(0,0))
1 SNﬁQ 1 1 1
<z - - _Z
<glog <2+INR12) +5 log (SNﬁ1+1NR12+1) 5~ 5 log (INRiz +1) +1
1 1 1 3
<§ log(2+1)+ B log (INRy2 + INRy2 + 1) — A log (INRy2 + 1) + 3
1
<z log(3) +2 (68)
In Case 1.1.2, a51(0,0) 4 as5,2(0,0) can be lower bounded as follows
1. [SNR, 1. [SNR,
51(0,0 0,0)==1 INRyg+1)+=1 INRgy+1 | —1
a5.1(0,0)+5,2(0,0)=3 Og(INR21+ 12 >+2 Og(INR12+ 2t
1
25 log (INRg; +1) — 1. (69)
From , , and , it follows that:
dap<min (k4 (p’), fﬁs(p’)) - (a5,1(0, 0)+as,2(0, 0))
<ralp') = (051(0,0) + a5,2(0,0) )
1 SNﬁl 1 1 1
<=1 2 —log(SN INR. 1 — — —log (INR 1 1
2 °g< +INR21>+2 O8(SNEs +INRy1 +1) + 5 — 5 log (INRyy +1) +
1 1 1 3
<§ log (2 + 1) + 5 log (INR21 + INRoy; + 1) — 5 log (INR21 + 1) + 5
1
<§ log (3) + 2. (70)
In Case 1.1.3, from , , and , it follows that:
ananin (s (), 15 (0)) = (5,1(0, 0) +5.(0,0))
<ws(p') = (a5.1(0,0) + a5 5(0,0) )
1 SNR, \ 1 11
<= - Z_Z
\2log<2+INR12> +5 log (SNﬁ1+INR12+1) + 5~ 5 log (INRiz +1) +1
1 1 1 3
<§ log(2+1)+ 3 log (INRj2 + INRjo + 1) — B log (INR12 + 1) + 3
1
<§ log (3) + 2.
Then, from , , , , and , it follows that in Case 1.1:
1
62R<2 + 5 log (3) . (71)
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Calculation of d3gr,. From (50d)) and considering the corresponding power allocation for
the achievable region (p = 0, u; = 0 and g = 0), it follows that:

dsr, <k71(p") — (a1,1 + a7,1(0,0,0) + a5 .2(0, 0)> (72)

The sum a1 + a7,1(0,0,0) + a52(0,0) can be lower bounded as follows

1 SNE 1
a1 +ar1(0,0,0) + a5,2(070)=§ log (INR;l + 2) + 3 log (SNﬁ1 + INRy2 + 1)
1 SNR, 3
-1 INRy; +1 ) — 2
—|—2 Og(INR12+ 21 + ) 5
1. (SNR, 1
> —
>3 log (INR21 +2) +3 log (SNﬁ1 +INRy2+1)
1 3
+5 log (INRg +1) - 7. (73)

If the term k7 1(p") is active in the converse region, this can be upper bounded by the
sum k1,1(p") + ka(p’), which corresponds to the sum of the single rate and sum-rate outer
bounds respectively, and this can be upper bounded as follows

rra(p )<k (p') + ra(p’)

1 1 SNﬁl 1
<2log(SNﬁl+INR12+1)+2log<2 +INR21) + 5 log (SNﬁ2 +INRg; +1) +1
1 1 SNﬁl 1
<§log(SN§1+INR12+1) +§log (2 + INRgl) + 3 log (INRg; + INRg; + 1) + 1
1 1 SNﬁl
<z ﬁ -
< 2log(SN 1+INR12+1) + 2log (2 + INRgl)
1 3
+§ log (INRg; + 1) + 3 (74)
From , and , it follows that in Case 1.1:
1 1 SNﬁl 1 3
O3p, <=1 SNﬁ INRi2+1)+=log| 2 —log (INRg1+1)+ =
3R, 2og 1+ 12+ )+2og< +INR21>+2 og ( 21+ )+2
1 SN?{l 1 1 3
3 log (INR21 +2) — ilog(SN§1+1NR12+1> filog(INRglJrl) + B
=3. (75)
The same procedure holds to calculate dsr, and it yields
3R, <3. (76)

Therefore, in Case 1.1, from , , , , and it follows that:
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dor O03r, O3R, 3
5:max<531,5R27%7 3; ,%) <§. (77)

This completes the calculation of the gap in Casel.1l. The same procedure can be applied to all
the other cases and it follows that § < 4.4 bits per channel use.
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