
Incremental hierarchical indexing and
visualisation of large image collections

Frédéric Rayar1, Sabine Barrat1, Fatma Bouali1,2 and Gilles Venturini1

1- Université François-Rabelais de Tours, LI EA 6300,
64, avenue Jean Portalis, 37200 Tours, France

2- Université de Lille 2, IUT, Dpt STID
25-27, rue du Maréchal Foch, 59100 Roubaix, france

Abstract. Ever-growing image collections are common in several fields
such as health, digital humanities or social networks. Nowadays, there
is a lack of visualisation tools to browse such large image collection. In
this work, the incremental indexing and the visualisation of large image
collections is done jointly. The BIRCH algorithm is improved to incre-
mentally yield a hierarchical indexing structure. A custom web platform
is presented to visualise the structure that is built. The proposed method
is tested with two large image collections, up to one million images.

1 Introduction

The last decade has witnessed the cost reduction of capturing devices such as
cameras and scanners, but also storage media. This has resulted in a sharp
increase of the amount of captured images. These images can be generated
in a private setting, a commercial framework or in the context of digitisation
projects. Moreover, the advent of the Internet has emphasised the fact that the
number of images that are uploaded online grows exponentially, especially with
social networks [1]. Thus, to address these growing image collections, paradigms
to visualise them are needed.

Several studies have been proposed to visualise image collection [2]. Among
the proposed paradigms, the graph-based approach is a straightforward solution
that can be leveraged to build ergonomic and intuitive visualisation interfaces.
However, some limitations appear regarding the scalability, in terms of nodes
and edges number. First, the ones related to the visualisation itself: hairball [3]
phenomenon, nodes overlapping or edges drawing. Second the ones related to
the interaction: long response time, difficulty to display nodes as images, etc.

In this paper, we study the indexing and the visualisation jointly for browsing
large image collections. We leverage a graph and clustering hybrid approach. To
do so, the BIRCH [5] algorithm is improved to incrementally yield a hierarchical
structure where a proximity graph organise elements at each level. This structure
allows a smooth visualisation in a web platform, while highlighting the topology
of the image collection.



CF 
1 

CF 
2 

CF 
3 

CF 
1 

CF 
2 

CF 
3 

Root node 

Internal node 

CF1 

Leaf 

CF1 

CF2 

CF3 

Leaf 

CF1 

Leaf 

(a) (b)

Fig. 1: (a) Illustration of a CF-tree output by the BIRCH algorithm; (b) Rep-
resentation of the proposed structure: for each node, its entries are organised in
a proximity graph; likewise, the data points contained in a leaf cluster are also
organised in a proximity graph, allowing to highlight the topology of the data.

2 Incremental hierarchical indexing

2.1 BIRCH

BIRCH is a clustering algorithm that aims at partitioning large data set that
cannot fit entirely in the memory. The key idea is to go through the data set
only once and organise the data points in a Cluster Feature tree (CF-tree).

A Cluster Feature (CF) is a numeric vector that sums up a set of n data
points {x1, ..., xn}. It is defined by a triple CF = (n,LS, SS) where LS and SS
are the linear sum and the square sum, respectively. For a given cluster C and its
CF, one can easily deduce the centroid x0, the radius R (average distance from
member points to the centroid), and the diameter D (average pairwise distance
between member points) of C. Thus, a cluster is well described by its CF.

The CF-tree is a height-balanced tree with three parameters B, L and T : (i)
each internal node contains at most B entries [CFi, childi], where CFi describe
the cluster pointed by childi; (ii) each leaf contains at most L entries [CFi] and
(iii) each leaf entry CFi must have a radius smaller than the threshold T .

More details on the BIRCH algorithm can be found in the original article [5].
Figure 1a presents an illustration of a CF-tree.

The choice of the BIRCH algorithm is motivated by several reasons. First, it
produces a tree structure which is desirable for a multilevel visualisation. Second,
as one can see in the Figure 1a, the internal nodes contain only the CF entries
and not the data points. This reduces drastically the memory usage and allows
to process large data sets that cannot fit in the memory. Last, the algorithm
processes the data points in a single pass scheme, thus it could be implemented
in an incremental way, allowing to handle growing data sets or data streams.

However, the BIRCH algorithm has a few limitations with regards to our



objective of image collection visualisation. Indeed, it has been designed to study
only the leaves content and the tree structure is not leveraged. Moreover, as
mentioned previously, the internal nodes contains only CF entries, which are
difficult to interpret by the user during a visual exploration of the tree.

2.2 Proposed improvements

2.2.1 Representatives assignment

In order to allow the user to easily interpret the CF entries, a set of k relevant
images are assigned to each entry as representatives. A bottom-up approach is
used: relevant images are pulled up from the leaves to the root of the tree.

At the leaf level, the prototype of each CF entry is computed. For a given
CF, the prototype corresponds to the nearest image to the centroid of CF. Then,
the k nearest neighbours of the prototype are defined as the representatives of
the CF.

For a given internal node CF entry CF , the ki representatives of each of
its child entries CFi are pulled up. The values ki are automatically computed
with regards to the number of images contained in entryi. In addition, we have∑

i ki = k. Thus, we assign k relevant images to CF , those images being found
in the lower levels of CF child sub-tree.

This representatives assignment has been implemented in a incremental way.
Thus, when a new image is inserted in the proposed tree structure, an update
operation is performed. The representatives of the entries that belong to the
insertion path are updated to take into account the newly inserted image.

2.2.2 Proximity graph structuring

In order to structure the tree elements at different levels, proximity graphs have
been used. Figure 1b illustrates the proposed enhanced tree structure. For each
internal node, a proximity graph is computed between its CF entries. Further-
more, given a leaf node CF entry, a proximity graph is computed between all the
images that belong to the CF entry. In this work, the relative neighbourhood
graph (RNG) has been chosen as the proximity graph. We first define the RNG
and then justify this choice.

The relative neighbourhood graph has been introduced in the work of Tous-
saint [4]. The construction of this graph is based on the notion of relatively close
neighbours, that defines two vertices as relative neighbours if they are at least
as close to each other as they are to any other points. From this definition, we
can define RNG = (V,E) as the graph built from the points of D where distinct
points p and q of D are connected by an edge pq if and only if they are relative
neighbours. Thus,

E(RNG) = {pq | p, q ∈ D, p 6= q,

δ(p, q) ≤ max(δ(p, r), δ(q, r)),∀r ∈ D\{p, q}.



where δ : D ×D → R is a distance function.

The choice of the RNG is justified as follows: on one hand, the main drawback
of the RNG is its construction. The classic and brute-force construction has a
complexity of O(n3). This is a major limitation to handle large image collection.
However this issue has been addressed in [6], where an incremental paradigm
is proposed to build the RNG for large data sets. On the other hand, the
RNG is a sparse graph that highlights the topology of the data and embeds
local information about vertices neighbourhood. Furthermore, its connectivity
property is desirable for most graph drawing algorithms. Moreover, it guarantees
that each images can be reachable during a content-based exploration of the
image collection.

In [6], a study has shown that the incremental construction paradigm is
relevant only when the number of data points is high. Otherwise, it is more
interesting to recompute the whole graph in a parallel way. Indeed, the brute-
force algorithm is an embarrassingly parallel problem for small data sets.

In the CF-tree that is computed by the BIRCH algorithm, the number of
children of an internal node is limited by the page size, thus this number is
small (less than 100). Hence, when a new image is inserted in our tree structure,
the RNG of each internal node that lays in the insertion path is recomputed.
Nevertheless, a leaf entry can contain an unlimited number of images. Thus, at
this level, the incremental RNG construction algorithm is leveraged.

3 Visualisation

The proposed visual analysis system allows to visualise and interact with graphs
of images. Figures 2 show the platform interface and succinctly describe some of
the platform interactions. It has been realised using web technologies, namely
HTML5, CSS3 and Javascript. This choice is explained by two reasons. First,
the platform target is experts from various fields such as health or digital human-
ities. Nowadays, a majority of users that are not experts in computer science
can still manage well web navigation. Thus, such users are familiar with web
browsers. We think that presenting the system as a light web platform, would
make users more disposed to exploit it. Second, the choice of discarding a server
can be justified by two arguments: (i) there is no upload of the images to a
server, operation that may cost time and (ii) as the images are not sent nor
stored in an external server, we respect the potential confidentiality or license
issues that are related to the images.

4 Experiments

The Wang [7] image data set has been used to assess the relevance of the index-
ing structure. Wang contains 1,000 images which form 10 classes of 100 images.
Machine learning techniques, such as BIRCH, applied on images rely a lot on
the images description. The features that are used in this work are visual de-



(a)

(b)

Fig. 2: (a) At an internal level of the tree: internal nodes are represented by
the its first representative and organised by the RNG. When the user fly over
an internal node, seven of its representatives are displayed. When the user click
on an internal node, its subtree is displayed; (b) at a leaf entry: images are also
organised with the RNG. Details of the selected node and its relative neighbours
are displayed.

scriptors (e.g. color, contour), that do not match perfectly the semantic aspect
of the images. Thus, we do not obtain the exact classes in the leaves clusters.
Nevertheless, the partitioning that is performed is relevant with regards to the
visual descriptors. In addition, the graph that is described in the previous sec-
tion highlights the topology of the studied data set. Thus, in our case, one can
observe that similar images may be linked by an edge (see Figure 2b). On the
contrary, dissimilar images should not be linked, or at least by a long edge. This
last phenomenon may occur because of the connectivity property of the selected
proximity graph.

In order to test the scalability of the proposed incremental hierarchical index-



ing, two public larger data sets have been used, namely the MIRFLICKR-25000
and MIRFLICKR-1M image collections. For the latter data set, publicly avail-
able visual descriptors 1 have been used. Experiments have been done on an
Intel Xeon E5-2620 v2 at 2.10Ghz. Table 1 presents the computation times
(in seconds) of the proposed incremental hierarchical indexing method, with
T = 0.0. We have tractable computation time for the larger image collection
of one million image (less than 10 hours). Thus, the proposed modifications do
not conflict with the scalability of the original BIRCH method. Furthermore, as
a hierarchical structure is built, the proposed visualisation is smooth thanks to
the reduction of nodes to display.

Data set n d Computation time
Wang 1,000 192 3

MIRFLICKR-25000 25,000 192 100
MIRFLICKR-1M 1,000,000 80 33.782

Table 1: Datasets description: n is the number of images and d is the dimension
of the descriptors. The computation times are given in seconds.

5 Conclusion

In this work, we have presented a study to index and visualise jointly large image
collection. Experiments show that the proposed method is relevant regarding the
visualisation and have good performance in terms of computation time. Further
work includes improvement on the platform and user evaluation on real world
cases.

References

[1] Domo, Data Never Sleeps 3.0, https://www.domo.com/learn/data-never-sleeps-3-0,
2015.

[2] W. Plant and G. Schaefer, Visualisation and Browsing of Image Databases, Multimedia
Analysis, Processing and Communications, 346:3-57, 2011.

[3] Robert Kosara, Graphs beyond the hairball, https://eagereyes.org/techniques/

graphs-hairball, 2012.

[4] G. T. Toussaint, The Relative Neighbourhood Graph of a Finite Planar Set, Pattern Recog-
nition, 12:261-268, 1980.

[5] T. Zhang, R. Ramakrishnan and M. Livny, BIRCH: An Efficient Data Clustering Method
for Very Large Databases. In proceedings of the 1996 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD 1996), pages 103-114, 1996.

[6] F. Rayar, S. Barrat, F. Bouali and G. Venturini, An Approximate Proximity Graph Incre-
mental Construction for Large Image Collections Indexing. In proceedings of Foundations
of Intelligent System 22nd International Symposium (ISMIS 2015), 2015.

[7] Li, Jia and Wang, James Z., Automatic Linguistic Indexing of Pictures by a Statistical
Modeling Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25:1075–1088, 2003.

1http://press.liacs.nl/mirflickr/mirdownload.html


