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Abstract

We study the Lp-integrated risk of some classical estimators of the density, when the ob-
servations are drawn from a strictly stationary sequence. The results apply to a large class of
sequences, which can be non-mixing in the sense of Rosenblatt and long-range dependent. The
main probabilistic tool is a new Rosenthal-type inequality for partial sums of BV functions of
the variables. As an application, we give the rates of convergence of regular Histograms, when
estimating the invariant density of a class of expanding maps of the unit interval with a neutral
fixed point at zero. These Histograms are plotted in the section devoted to the simulations.
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1 Introduction
In this paper, we have four goals:

1. We wish to extend some of the results of Viennet [16] for stationary β-mixing se-
quences to the much larger class of β-dependent sequences, as introduced in [7],
[8]. Viennet proved that, if the β-mixing coefficients β(n) of a stationary sequence
(Yi)i∈Z are such that

∞∑
k=0

kp−2β(k) <∞ , for some p ≥ 2, (1.1)

then the Lp-integrated risk of the usual estimators of the density of Yi behaves as
in the independent and identically distributed (iid) case (as described in the paper
by Bretagnolle and Huber [4]).
For Kernel estimators, we shall obtain a complete extension of Viennet’s result (as-
suming only as an extra hypothesis that the Kernel has bounded variation). For
projection estimators, the situation is more delicate, because our dependency coeffi-
cients cannot always give a good upper bound for the variance of the estimator (this
was already pointed out in [7]). However, for estimators based on piecewise polyno-
mials (including Histograms), the result of Viennet can again be fully extended.

1



2. We shall consider the Lp-integrated risk for any p ∈ [1,∞), and not only for p ≥ 2
(which was the range considered in [16]). Two main reasons for this: first the case
p = 1 is of particular interest, because it gives some information on the total variation
between the (possibly signed) measure with density fn (the estimated density) and
the distribution of Yi. The variation distance is a true distance between measures,
contrary to the Lp-distance between densities, which depends on the dominating
measure. Secondly, we have in mind applications to some classes of dynamical
systems (see point 4 below), for which it is known either that the density has bounded
variation over [0, 1] or that it is non-decreasing on (0, 1] (and blows up as x → 0).
In such cases, it turns out that the bias of our estimators is well controlled in
L1([0, 1], dx).

3. We want to know what happens if (1.1) is not satisfied, or if
∑

k≥0 β(k) =∞ in the
case where p ∈ [1, 2]. Such results are not given in the paper [16], although Viennet
could have done it by refining some computations. For β-dependent sequences and
p = 2, the situation is clear (see [7]): the rate of convergence of the estimator
depends on the regularity of f and of the behavior of

∑n
k=0 β1,Y (k) (the coefficients

β1,Y (k) will be defined in the next section, and are weaker than the corresponding
β-mixing coefficients). Hence, in that case, the consistency holds as soon as β1,Y (n)
tends to zero as n tends to infinity, and one can compute the rates of convergence
as soon as one knows the asymptotic behavior of β1,Y (n). This is the kind of result
we want to extend to any p ∈ [1,∞). Once again, we have precise motivations for
this, coming from dynamical systems that can exhibit long-range dependence (see
point 4 below).

4. As already mentioned, our first motivation was to study the robustness of the usual
estimators of the density, showing that they apply to a larger class of dependent
processes than in [16]. But our second main objective was to be able to visualize
the invariant density of the iterates of expanding maps of the unit interval. For
uniformly expanding maps the invariant density has bounded variation, and one can
estimate it in L1([0, 1], dx) at the usual rate n−1/3 by using an appropriate Histogram
(see Subsection 5.1). The case of the intermittent map Tγ (as defined in (5.6) for
γ ∈ (0, 1)) is even more interesting. In that case, one knows that the invariant
density hγ is equivalent to the density x → (1− γ)x−γ on (0, 1) (see the inequality
(6.1)). Such a map exhibits long-range dependence as soon as γ ∈ (1/2, 1), but we
can use our upper bound for the random part + bias of a regular Histogram, to
compute the appropriate number of breaks of the Histogram (more precisely we give
the order of the number of breaks as a function of n, up to an unknown constant).
In Figure 5 of Section 6, we plot the Histograms of the invariant density hγ, when
γ = 1/4 (short-range dependent case), γ = 1/2 (the boundary case), and γ = 3/4
(long-range dependent case).

One word about the main probabilistic tool. As shown in [16], to control the Lp-
integrated risks for p > 2, the appropriate tool is a precise Rosenthal-type inequality.
Such an inequality is not easy to prove in the β-mixing case, and the β-dependent case
is even harder to handle because we cannot use Berbee’s coupling (see [1]) as in [16]. A
major step to get a good Rosenthal bound has been made by Merlevède and Peligrad
[12]: they proved a very general inequality involving only conditional expectations of
the random variables with respect to the past σ-algebra, which can be applied to many
situations. However, it does not fit completely to our context, and leads to small losses
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when applied to kernel estimators (see Section 5 in [12]). In Section 2, we shall prove
a taylor-made inequality, in the spirit of that of Viennet but expressed in terms of our
weaker coefficients. This inequality will give the complete extension of Viennet’s results
for Kernel estimators and estimators based on piecewise polynomials, when p > 2.

2 A Rosenthal inequality for β-dependent sequences
From now, (Yi)i∈Z is a strictly stationary sequence of real-valued random variables. We
define the β-dependence coefficients of (Yi)i∈Z as in [8]:

Definition 2.1. Let P be the law of Y0 and P(Yi,Yj) be the law of (Yi, Yj). Let F` =
σ(Yi, i ≤ `), let PYk|F` be the conditional distribution of Yk given F`, and let P(Yi,Yj)|F` be
the conditional distribution of (Yi, Yj) given F`. Define the functions

ft = 1]−∞,t] and f
(0)
t = ft − P (ft) ,

and the the random variables

b`(k) = sup
t∈R

∣∣PYk|F`(ft)− P (ft)∣∣ ,
b`(i, j) = sup

(s,t)∈R2

∣∣∣P(Yi,Yj)|F`

(
f
(0)
t ⊗ f (0)

s

)
− P(Yi,Yj)

(
f
(0)
t ⊗ f (0)

s

)∣∣∣ .
Define now the coefficients

β1,Y (k) = E(b0(k)) and β2,Y (k) = max

{
β1(k), sup

i>j≥k
E((b0(i, j)))

}
.

These coefficients are weaker than the usual β-mixing coefficients of (Yi)i∈Z. Many
examples of non-mixing process for which β2,Y (k) can be computed are given in [8]. Some
of these examples will be studied in Sections 5 and 6.

Let us now give the main probabilistic tool of the paper. It is a Rosenthal-type
inequality for partial sums of BV functions of Yi (as usual, BV means “of bounded
variation”). We shall use it to control the random part of the Lp integrated risk of the
estimators of the density of Yi when p > 2. The proof of this inequality is given in
Subsection 8.2. Is is quite delicate, and relies on two intermediate results (see Subsection
8.1).

In all the paper, we shall use the notation an � bn, which means that there exists a
positive constant C not depending on n such that an ≤ Cbn, for all positive integers n.

Proposition 2.1. Let (Yi)i∈Z be a strictly stationary sequence of real-valued random
variables. For any p > 2 and any positive integer n, there exists a non-negative F0-
measurable random variable A0(n, p) satisfying E(A0(n, p)) ≤

∑n
k=1 k

p−2β2,Y (k) and such
that: for any BV function h from R to R, letting Xi = h(Yi) − E(h(Yi)) and Sn =∑n

k=1Xk, we have

E
(

sup
1≤k≤n

|Sk|p
)
� np/2

(
n−1∑
i=0

|Cov(X0, Xi)|

)p/2

+ n‖dh‖p−1E (|h(Y0)|A0(n, p))

+ n‖dh‖p−1E (|h(Y0)|)
n∑
k=0

(k + 1)p−2β2,Y (k) , (2.1)

where ‖dh‖ is the total variation norm of the measure dh.
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Remark 2.1. For p = 2, using Proposition 1 in [9], the inequality can be simplified as
follows. There exists a non-negative F0-measurable random variable A0(n, 2) satisfying
E(A0(n, 2)) ≤

∑n
k=1 β1,Y (k) and such that: for any BV function h from R to R, letting

Xi = h(Yi)− E(h(Yi)) and Sn =
∑n

k=1Xk, we have

E
(

sup
1≤k≤n

S2
k

)
� n‖dh‖E (|h(Y0)|(1 + A0(n, 2))) . (2.2)

3 Lp-integrated risk for Kernel estimators
Let (Yi)i∈Z be a stationary sequence with unknown marginal density f . In this section,
we wish to build an estimator of f based on the variables Y1, . . . , Yn.

Let K be a bounded-variation function in L1(R, λ), where λ is the Lebesgue measure.
Let ‖dK‖ be the variation norm of the measure dK, and ‖K‖1,λ be the L1-norm of K
with respect to λ.

Define then

Xk,n(x) = K(h−1n (x− Yk)) and fn(x) =
1

nhn

n∑
k=1

Xk,n(x) ,

where (hn)n≥1 is a sequence of positive real numbers.
The following proposition gives an upper bound of the term

E
(∫

R
|fn(x)− E(fn(x))|pdx

)
(3.1)

when p > 2 and f ∈ Lp(R, λ).

Proposition 3.1. Let p > 2, and assume that f belongs to Lp(R, λ). Let

V1,p,Y (n) =
n∑
k=0

(k + 1)p−2β1,Y (k) and V2,p,Y (n) =
n∑
k=0

(k + 1)p−2β2,Y (k) . (3.2)

The following upper bounds holds

E
(∫

R
|fn(x)− E(fn(x))|pdx

)
�

‖dK‖‖K‖1,λ‖f‖ (p−2)
(p−1)

p,λ (V1,p,Y (n))
1

(p−1)

nhn


p
2

+
1

(nhn)p−1
‖dK‖p−1‖K‖1,λV2,p,Y (n) . (3.3)

Remark 3.1. Note that, if nhn →∞ as n→∞ and
∑∞

k=0(k + 1)p−2β2,Y (k) <∞, then
it follows from Proposition 3.1 that

lim sup
n→∞

(nhn)
p/2E

(∫
R
|fn(x)− E(fn(x))|pdx

)
≤ C‖dK‖

p
2‖K‖

p
2
1,λ‖f‖

p(p−2)
2(p−1)

p,λ , (3.4)

for some positive constant C. Note that (3.4) is comparable to the upper bound obtained
by Viennet [16], with two differences: firstly our condition is written in terms of the
coefficients β2,Y (n) (while Viennet used the usual β-mixing coefficients), and secondly we
only require that f belongs to Lp(R, λ) (while Viennet assumed that f is bounded). When
p ≥ 4, an upper bound similar to (3.4) is given in [12], Proposition 33 Item (2), under
the slightly stronger condition β2,Y (n) = O(n−(p−1+ε)) for some ε > 0.
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Remark 3.2. The first term in the upper bound of Proposition 3.1 has been obtained by
assuming only that f belongs to Lp(R, λ). As will be clear from the proof, a better upper
bound can be obtained by assuming that f belongs to Lq(R, λ) for q > p. For instance, if
f is bounded, the first term of the upper bound can be replaced by

‖f‖
p
2
−1
∞

(
‖dK‖‖K‖1,λ

nhn

) p
2

n∑
k=0

(k + 1)
p
2
−1β1,Y (k) .

This can lead to a substantial improvement of the upper bound of (3.1), for instance in
the cases where

∑∞
k=0(k + 1)p−2β2,Y (k) =∞ but

∑∞
k=0(k + 1)p/2−1β1,Y (k) <∞.

We now give an upper bound of the same quantity when 1 ≤ p ≤ 2. Note that the
case p = 1 is of special interest, since it enables to get the rate of convergence to the
unknow probability µ (with density f) for the total variation distance.

Proposition 3.2. As in (3.2), let V1,2,Y (n) =
∑n

k=0 β1,Y (k). The following upper bounds
hold

1. For p = 2, E
(∫

R
|fn(x)− E(fn(x))|2dx

)
� 1

nhn
‖dK‖‖K‖1,λV1,2,Y (n) .

2. Let 1 ≤ p < 2 and α > 1, q > 1. Let also U1,q,Y (n) =
∑n

k=0(k + 1)
1
q−1β1,Y (k). If

Mαq,p(f) :=

∫
|x|

αq(2−p)
p f(x)dx <∞ and Mα,p(K) :=

∫
|x|

α(2−p)
p |K(x)|dx <∞ ,

then

E
(∫

R
|fn(x)− E(fn(x))|pdx

)
�

(
‖dK‖‖K‖1,λ(Mαq,p(f))

1
q (U1,q,Y (n))

q−1
q

nhn

) p
2

+

‖dK‖
(
‖K‖1,λ + h

α(2−p)
p

n Mα,p(K)

)
V1,2,Y (n)

nhn


p
2

.

Remark 3.3. Note first that Item 1 of Proposition 3.2 is due to Dedecker and Prieur
[7]. For p ∈ [1, 2), It follows from Item 2 that if E(|Y0|αq(2−p)/p) < ∞ for α > 1, q > 1
and if

∑∞
k=0(k + 1)1/(q−1)β1,Y (k) <∞, then

lim sup
n→∞

(nhn)
p
2E
(∫

R
|fn(x)− E(fn(x))|pdx

)
≤ C‖dK‖

p
2‖K‖

p
2
1,λ

(
1 + (Mαq,p(f))

p
2q

)
for some positive constant C, provided nhn →∞ and hn → 0 as n→∞. As will be clear
from the proof, this upper bound remains true when q =∞, that is when ‖Y0‖∞ <∞ and∑∞

k=0 β1,Y (k) <∞.

With these two propositions, one can get the rates of convergence of fn to f , when
f belongs to the generalized Lipschitz spaces Lip∗(s,Lp(R, λ)) with s > 0, as defined in
[10], Chapter 2, Paragraph 9. Recall that Lip∗(s,Lp(R, λ)) is a particular case of Besov
spaces (precisely Lip∗(s,Lp(R, λ)) = Bs,p,∞(R)). Moreover, if s is a positive integer,
Lip∗(s,Lp(R, λ)) contains the Sobolev space W s(Lp(R, λ)) if p > 1 and W s−1(BV ) if
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p = 1 (see again [10], Chapter 2, paragraph 9). Recall that, if s is a positive integer the
spaceW s(Lp(R, λ)) (resp. W s(BV )) is the space of functions for which f (s−1) is absolutely
continuous, with almost everywhere derivative f (s) belonging to Lp(R, λ) (resp. f (s) has
bounded variation).

Let Kh(·) = h−1K(·/h), and r be a positive integer, and assume that, for any g in
W r(Lp(R, λ)), ∫

R
|g(x)− g ∗Kh(x)|pdx ≤ C1h

pr‖g(r)‖pp,λ , (3.5)

for some constant C1 depending only on r. For instance, (3.5) is satisfied for any Parzen
kernel of order r (see Section 4 in [4]).

From (3.5) and Theorem 5.2 in [10], we infer that, for any g ∈ Lp(R, λ),∫
R
|g(x)− g ∗Kh(x)|pdx ≤ C2(ωr(g, h)p)

p ,

for some constant C2 depending only on r, where ωr(g, ·)p is the r-th modulus of regularity
of g in Lp(R, λ) as defined in [10], Chapter 2, Paragraph 7. This last inequality implies
that, if g belongs to Lip∗(s,Lp(R, λ)) for any s ∈ [r − 1, r), then∫

R
|g(x)− g ∗Kh(x)|pdx ≤ C2h

ps‖g‖pLip∗(s,Lp(R,λ)) . (3.6)

Combining Proposition 3.1 or 3.2 with the control of the bias given in (3.6), we obtain
the following upper bounds for the Lp-integrated risk of the kernel estimator.

Let K be a bounded variation function in L1(R, λ), and assume that K satisfies (3.5)
for some positive integer r.

• Let p ≥ 2 and assume that
∑n

k=0(k + 1)p−2β2,Y (k) = O(nδ(p−1)) for some δ ∈ [0, 1).
Assume that f belongs to Lip∗(s,Lp(R, λ)) for s ∈ [r − 1, r) or to W s(Lp(R, λ)) for
s = r. Then, taking hn = Cn−(1−δ)/(2s+1),

E
(∫

R
|fn(x)− f(x)|pdx

)
= O

(
n

−ps(1−δ)
2s+1

)
.

Hence, if
∑∞

k=0(k + 1)p−2β2,Y (k) < ∞ (case δ = 0), we obtain the same rate as in
the iid situation. This result generalizes the result of Viennet [16], who obtained the
same rates under the condition

∑∞
k=0(k + 1)p−2β(k) <∞, where the β(k)’s are the

usual β-mixing coefficients.
• Let 1 ≤ p < 2. Assume that Y0 has a moment of order q(p− 2)/p+ ε for some q > 1

and ε > 0, and that
∑n

k=0(k + 1)1/(q−1)β1,Y (k) = O(nδq/(q−1)) for some δ ∈ [0, 1).
Assume that f belongs to Lip∗(s,Lp(R, λ)) for s ∈ [r − 1, r) or to W s(Lp(R, λ)) for
s = r. Then, taking hn = Cn−(1−δ)/(2s+1),

E
(∫

R
|fn(x)− f(x)|pdx

)
= O

(
n

−ps(1−δ)
2s+1

)
.

Hence, if
∑∞

k=0(k + 1)1/(q−1)β1,Y (k) < ∞ (case δ = 0), we obtain the same rate as
in the iid situation.
Let us consider the particular case where p = 1. Let µ be the probability measure
with density f , and let µ̂n be the random (signed) measure with density fn. We
have just proved that

E‖µ̂n − µ‖ = O
(
n

−s(1−δ)
2s+1

)
6



(recall that ‖ · ‖ is the variation norm). It is an easy exercice to modify µ̂n in order
to get a random probability measure µ∗n that converges to µ at the same rate (take
the positive part of fn and renormalize).

4 Lp-integrated risk for estimators based on piecewise
polynomials

Let (Yi)i∈Z be a stationary sequence with unknown marginal density f . In this section,
we wish to estimate f on a compact interval I with the help of the variables Y1, . . . , Yn.
Without loss of generality, we shall assume here that I = [0, 1].

We shall consider the piecewise polynomial basis on a a regular partition of [0, 1],
defined as follows. Let (Qi)1≤i≤r+1 be an orthonormal basis of the space of polynomials
of order r on [0, 1], and define the function Ri on R by: Ri(x) = Qi(x) if x belongs
to ]0, 1] and 0 otherwise. Consider now the regular partition of ]0, 1] into mn intervals
(](j−1)/mn, j/mn])1≤j≤mn . Define the functions ϕi,j(x) =

√
mnRi(mnx−(j−1)). Clearly

the family (ϕi,j)1≤i≤r+1 is an orthonormal basis of the space of polynomials of order r on
the interval [(j− 1)/mn, j/mn]. Since the supports of ϕi,j and ϕk,` are disjoints for ` 6= j,
the family (ϕi,j)1≤i≤r+1,1≤j≤m is then an orthonormal system of L2([0, 1], λ). The case of
regular Histograms corresponds to r = 0.

Define then

Xi,j,n =
1

n

n∑
k=1

ϕi,j(Yk) and fn =
r+1∑
i=1

mn∑
j=1

Xi,j,nϕi,j .

The following proposition gives an upper bound of

E
(∫ 1

0

|fn(x)− E(fn(x))|pdx
)

when p > 2 and f1[0,1] ∈ Lp([0, 1], λ).

Proposition 4.1. Let p > 2, and assume that f1[0,1] belongs to Lp([0, 1], λ). Let

C1,p =
r+1∑
i=1

‖Ri‖
3p
2∞ ‖dRi‖

p
2 and C2,p =

r+1∑
i=1

‖Ri‖p+1
∞ ‖dRi‖p−1 .

and recall that V1,p,Y (n) and V2,p,Y (n) have been defined in (3.2). The following upper
bounds holds

E
(∫ 1

0

|fn(x)− E(fn(x))|pdx
)
�
(mn

n

) p
2
C1,p

(
‖f1[0,1]‖

(p−2)
(p−1)

p,λ (V1,p,Y (n))
1

(p−1)

) p
2

+
(mn

n

)p−1
C2,pV2,p,Y (n) .

Remark 4.1. Note that, if n/mn → ∞ as n → ∞ and
∑∞

k=0(k + 1)p−2β2,Y (k) < ∞,
then it follows from Proposition 4.1 that

lim sup
n→∞

(
n

mn

) p
2

E
(∫ 1

0

|fn(x)− E(fn(x))|pdx
)
≤ C · C1,p‖f1[0,1]‖

p(p−2)
2(p−1)

p,λ , (4.1)
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for some positive constant C. This bound is comparable to the upper bound obtained by
Viennet ([16], Theorem 3.2) for the usual β-mixing coefficients. Note however that Vien-
net’s results is valid for a much broader class of projection estimators. As a comparison,
it seems very difficult to deal with the trigonometric basis in our setting.

We now give an upper bound of the same quantity when 1 ≤ p ≤ 2.

Proposition 4.2. Let 1 ≤ p ≤ 2. The following upper bounds holds

E
(∫ 1

0

|fn(x)− E(fn(x))|pdx
)
�
(mn

n

) p
2
C

p
2
1,2 (V1,2,Y (n))

p
2 .

Remark 4.2. Note first that the upper bounf for p = 2 is due to Dedecker and Prieur
[7]. Note also that, if n/mn →∞ as n→∞ and

∑∞
k=0 β1,Y (k) <∞, then it follows from

Proposition 4.2 that

lim sup
n→∞

(
n

mn

) p
2

E
(∫ 1

0

|fn(x)− E(fn(x))|pdx
)
≤ C · C

p
2
1,2 , (4.2)

for some positive constant C.

With these two propositions, one can get the rates of convergence of fn to f1[0,1] when
f1[0,1] belongs to to the generalized Lipschitz spaces Lip∗(s,Lp([0, 1], λ)) with s > 0.

Applying the Bramble-Hilbert lemma (see [3]), we know that, for any f such that
f1[0,1] belongs to W r+1(Lp([0, 1], λ))∫ 1

0

|f(x)− E(fn(x))|pdx ≤ C1m
−p(r+1)
n

∥∥f (r)1[0,1]

∥∥
p,λ

,

for some constant C1 depending only on r. From [10], page 359, we know that, if f1[0,1]

belongs to Lip∗(s,Lp([0, 1], λ)) and if the degree r is such that r > s− 1,∫ 1

0

|f(x)− E(fn(x))|pdx ≤ C2m
−ps
n ‖f1[0,1]‖Lip∗(s,Lp([0,1],λ)) , (4.3)

for some constant C2 depending only on r. Combining Proposition 4.1 or 4.2 with the
control of the bias given in (4.3), we obtain the following upper bounds for the Lp-
integrated risk.

• Let p > 2 and assume that
∑n

k=0(k + 1)p−2β2,Y (k) = O(nδ(p−1)) for some δ ∈ [0, 1).
Assume that f1[0,1] belongs to Lip∗(s,Lp([0, 1], λ)) for s < r+1 or to W s(Lp([0, 1]))
for s = r + 1. Then, taking mn = [Cn(1−δ)/(2s+1)],

E
(∫ 1

0

|fn(x)− f(x)|pdx
)

= O
(
n

−ps(1−δ)
2s+1

)
.

Hence, if
∑∞

k=0(k + 1)p−2β2,Y (k) < ∞ (case δ = 0), we obtain the same rate as in
the iid situation. This result generalizes the result of Viennet [16], who obtained the
same rates under the condition

∑∞
k=0(k + 1)p−2β(k) <∞, where the β(k)’s are the

usual β-mixing coefficients.
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• Let 1 ≤ p ≤ 2 and assume that
∑n

k=0 β1,Y (k) = O(nδ) for some δ ∈ [0, 1). Assume
that f1[0,1] belongs to Lip∗(s,Lp([0, 1], λ)) for s < r + 1 or to W s(Lp([0, 1], λ)) for
s = r + 1. Then, taking mn = [Cn(1−δ)/(2s+1)],

E
(∫ 1

0

|fn(x)− f(x)|pdx
)

= O
(
n

−ps(1−δ)
2s+1

)
.

Hence, if
∑∞

k=0 β1,Y (k) < ∞ (case δ = 0), we obtain the same rate as in the iid
situation.
Let us consider the particular case where p = 1 and f is supported on [0, 1]. Let µ
be the probability measure with density f , and let µ̂n be the random measure with
density fn. We have just proved that

E‖µ̂n − µ‖ = O
(
n

−s(1−δ)
2s+1

)
(recall that ‖ · ‖ is the variation norm).

5 Application to density estimation of expanding maps

5.1 Uniformly expanding maps

Several classes of uniformly expanding maps of the interval are considered in the literature.
We recall here the definition given in [6] (see the references therein for more informations).

Definition 5.1. A map T : [0, 1]→ [0, 1] is uniformly expanding, mixing and with density
bounded from below if it satisfies the following properties:

1. There is a (finite or countable) partition of T into subintervals In on which T is
strictly monotonic, with a C2 extension to its closure In, satisfying Adler’s condition
|T ′′|/|T ′|2 ≤ C, and with |T ′| ≥ λ (where C > 0 and λ > 1 do not depend on In).

2. The length of T (In) is bounded from below.

3. In this case, T has finitely many absolutely continuous invariant measures, and each
of them is mixing up to a finite cycle. We assume that T has a single absolutely
continuous invariant probability measure ν, and that it is mixing.

4. Finally, we require that the density h of ν is bounded from below on its support.

From this point on, we will simply refer to such maps as uniformly expanding. It is
well known, that, for such classes, the density h has bounded variation.

We wish to estimates h with the help of the first iterates T, T 2, . . . , T n. Since the bias
term of a density having bounded variation is well controlled in L1([0, 1], λ), we shall give
the rates in terms of the L1-integrated risk. We shall use an Histogram, as defined in
Section 4. More precisely, our estimator hn of h is given by

hn(x, y) =
mn∑
i=1

αi,n(y)ϕi(x) , (5.1)

where

ϕi =
√
mn1](i−1)/mn,i/mn] and αi,n(y) =

1

n

n∑
k=1

ϕi
(
T k(y)

)
.

9



As usual, the bias term is of order∫ 1

0

|h(x)− ν(hn(x, ·))| dx = O

(
1

mn

)
. (5.2)

On another hand, one can apply Proposition 4.2 to get∫ 1

0

∫ 1

0

|hn(x, y)− ν(hn(x, ·))|ν(dy) dx = O

(√
mn

n

)
. (5.3)

Choosing mn = [Cn1/3] for some C > 0, it follows from (5.2) and (5.3) that∫ 1

0

∫ 1

0

|hn(x, y)− h(x)|ν(dy) dx = O
(
n−1/3

)
.

Now, if νn(y) is the probability measure with density hn(·, y), we have just proved that∫ 1

0

‖νn(y)− ν‖ ν(dy) = O
(
n−1/3

)
.

Let us briefly explain how to derive (5.3) from Proposition 4.2. To do this, we go
back to the Markov chain associated with T , as we describe now. Let first K be the
Perron-Frobenius operator of T with respect to ν, defined as follows: for any functions
u, v in L2([0, 1], ν)

ν(u · v ◦ T ) = ν(K(u) · v) . (5.4)

The relation (5.4) states that K is the adjoint operator of the isometry U : u 7→ u ◦ T
acting on L2([0, 1], ν). It is easy to see that the operator K is a transition kernel, and
that ν is invariant by K. Let now (Yi)i≥0 be a stationary Markov chain with invariant
measure ν and transition kernel K. It is well known that on the probability space
([0, 1], ν), the random vector (T, T 2, . . . , T n) is distributed as (Yn, Yn−1, . . . , Y1). Hence
(5.3) is equivalent to

E
(∫ 1

0

∣∣∣h̃n(x)− E
(
h̃n(x)

)∣∣∣ dx) = O

(√
mn

n

)
(5.5)

where

h̃n(x) =
mn∑
i=1

Xi,nϕi(x) , with Xi,n =
1

n

n∑
k=1

ϕi (Yk) .

Now (5.5) follows easily from Proposition 4.2 ans the fact the β1,Y (n) = O(an) for some
a ∈ (0, 1) (see Section 6.3 in [8]).

5.2 Intermittent maps

For γ in (0, 1), we consider the intermittent map Tγ (or simply T ) from [0, 1] to [0, 1],
introduced by Liverani, Saussol and Vaienti [11]:

Tγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1].
(5.6)

It follows from [15] that there exists a unique absolutely continuous Tγ-invariant proba-
bility measure νγ (or simply ν), with density hγ (or simply h). From [15], Theorem 1, we
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infer that the function x 7→ xγhγ(x) is bounded from above and below. From Lemma 2.3
in [11], we know that h is non-increasing with hγ(1) > 0, and that it is Lipshitz on any
interval [a, 1] with a > 0.

We wish to estimate h with the help of the first iterates T, T 2, . . . , T n. To do this, we
shall use the Histogram hn defined in (5.1).

Using the properties of h, it is easy to see that∫ 1

0

|h(x)− ν(hn(x, ·))| dx = O

(
1

m1−γ
n

)
. (5.7)

On another hand, one can apply Proposition 4.2 to get

∫ 1

0

∫ 1

0

|hn(x, y)− ν(hn(x, ·))|ν(dy) dx =


O
(√

mn/n
)

if γ < 1/2

O
(√

mn log(n)/n
)

if γ = 1/2

O
(√

mn/n(1−γ)/γ
)

if γ > 1/2 .

(5.8)

Starting from (5.7) and (5.8), the appropriate choices of mn lead to the rates

∫ 1

0

∫ 1

0

|hn(x, y)− h(x)|ν(dy) dx =


O
(
n−(1−γ)/(3−2γ)

)
if γ < 1/2

O
(
(n/ log(n))−1/4

)
if γ = 1/2

O
(
n−(1−γ)

2/γ(3−2γ)
)

if γ > 1/2 .

(5.9)

Keeping the same notations as in Section 5.1, the bound (5.8) follows from Proposition
4.2 by noting that the coefficients β1,Y (n) of the chain (Yi)i≥0 associated with T satisfy
β1,Y (n) = O(n−(1−γ)/γ) (see [5]).

6 Simulations

6.1 Functions of an AR(1) process

In this subsection, we first simulate the simple AR(1) process

Xn+1 =
1

2
(Xn + εn+1) ,

where X0 is uniformly distributed over [0, 1], and (εi)i≥1 is a sequence of iid random
variables with distribution B(1/2), independent of X0.

One can check that the transition Kernel of this chain is

K(f)(x) =
1

2
(f(x) + f(x+ 1)) ,

and that the uniform distribution on [0, 1] is the unique invariant distribution by K.
Hence, the chain (Xi)i≥0 is strictly stationary.

It is well known that this chain is not α-mixing in the sense of Rosenblatt [14] (see
for instance [2]). In fact, the kernel K is the Perron-Frobenius operator of the uniformly
expanding map T0 defined in (5.6), which is another way to see that this non-irreducible
chain cannot be mixing in the sense of Rosenblatt.
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However, one can prove that the coefficients β2,X of the chain (Xi)i≥0 are such that

β2,X(k) ≤ 2−k

(see for instance Section 6.1 in [8]).
Let now Qµ,σ2 be the inverse of the cumulative distribution function of the law

N (µ, σ2). Let then
Yi = Qµ,σ2(Xi) .

The sequence (Yi)i≥0 is also a stationary Markov chain (as an invertible function of a sta-
tionary Markov chain), and one can easily check that β2,Y (k) = β2,X(k). By construction,
Yi is N (µ, σ2)-distributed, but the sequence (Yi)i≥0 is not a Gaussian process (otherwise
it would be mixing in the sense of Rosenblatt).

Figure 1 shows two graphs of the kernel estimator of the density of Yi, for µ = 10 and
σ2 = 2, based on the simulated sample Y1, . . . , Yn. The kernel K is the Epanechnikov
kernel (which is a Parzen kernel of order 2, thus providing theoretically a good estimation
when the density belongs to the the Sobolev space of order 2). Here we do not interfer,
and let the software R choose an appropriate bandwidth, to see that the default procedure
delivers a correct estimation of the density, even in this non-mixing framework.

6 8 10 12 14 16
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15

0.
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Figure 1: Estimation of the density of Yi (µ = 10 and σ2 = 2) via the Epanechnikov
kernel: n = 1000 (left) and n = 5000 (right)

We continue with another example. Let Q : [0, 1] 7→ [0, 1] be the inverse of the
cumulative distribution function of the density f over [0, 1] defined by: f ≡ 1/2 on
[0, 1/4] ∪ [3/4, 1] and f ≡ 3/2 on (1/4, 3/4). Let then

Yi = Q(Xi) .

The same reasoning as before shows that (Yi)i≥0 is a stationary Markov chain satisfying
β2,Y (k) = β2,X(k). By construction, the density of the distribution of the Xi’s is the
density f . Since f belongs to the class of bounded variation functions over [0, 1], the bias
of the Histogram will be well controlled in L1([0, 1], λ), and the computations of Section
4 show that a reasonable choice for mn is mn = [n1/3].
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Figure 2: Estimation of the density f by an Histogram: n = 1000 (left) and n = 5000
(right)

Figure 2 shows two Histograms based on the simulated sample Y1, . . . , Yn, with mn =
[n1/3] and two different values of n. We shall now study this example from a numerical
point of view, by giving an estimation of the L1-integrated risk of the Histogram. To
see the asymptotic behavior, we let n run from 5000 to 110000, with an increment of
size 5000. The L1-integrated risk is estimated via a classical Monte-Carlo procedure, by
averaging the variation distance between the true density and the estimated density over
N = 300 independent trials. The results are given in the table below:

n L1-integ. risk n L1-integ. risk
5000 0.0477 60000 0.0227
10000 0.0381 65000 0.0177
15000 0.0265 70000 0.0217
20000 0.0316 75000 0.0231
25000 0.0293 80000 0.0209
30000 0.0292 85000 0.0202
35000 0.0207 90000 0.0156
40000 0.0277 95000 0.0197
45000 0.0245 100000 0.0209
50000 0.0191 105000 0.0193
55000 0.0251 110000 0.0189

Figure 3 (left) shows the value of the L1-integrated risk as n increases. One can see
that the L1-integrated risk is smaller for some particular sizes of n. This is due to the
fact that for such n, two of the breaks of the Histogram are located precisely at 1/4 and
3/4, that is at the two discontinuity points of the density. In that case the variation
distance between the Histogram and the true density is particularly small, as illustrated
by Figure 3 (right). But of course, we are not supposed to know where the discontinuity
are located.
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Figure 3: Left: Graph of the L1-integrated risk as a function of n. The red curve is
the theoretical rate for estimating BV functions : n → n−1/3. Right: Estimation of the
density f by an Histogram: n = 15000

6.2 Intermittent maps

In this section, our goal is to visualize the invariant density hγ of the intermittent maps
Tγ defined in (5.6). Hence, we shall consider very large n in order to get a good picture.
As indicated in Subsection 5.2, we choose mn = [n1/(3−2γ)] if γ ∈ (0, 1/2], and mn =
[n(1−γ)/(γ(3−2γ))] if γ ∈ (1/2, 1). We shall consider three cases: γ = 1/4, γ = 1/2 and
γ = 3/4. Recall that γ < 1/2 corresponds to the short-range dependent case, γ > 1/2 to
the long-range dependent case, and γ = 1/2 is the boundary case (see for instance [5]).

As one can see from Figure 4, due to the behavior of Tγ around zero, the process
(T iγ)i≥0 spends much more time in the neighborhood of 0 when γ = 3/4 than when
γ = 1/4.

We do not have an explicit expression of the invariant density hγ, but, as already
mentioned in Subsection 5.2, we know the qualitative behavior of hγ in the neighborhood
of 0. More precisely, one can introduce an equivalent density fγ such that fγ(x) =
(1−γ)x−γ if x ∈ (0, 1] and fγ(x) = 0 elsewhere. By equivalent, we mean that there exists
two positive constants a, b, such that, on (0, 1],

0 < a ≤ hγ/fγ ≤ b <∞ . (6.1)

Figure 5 shows three Histograms based on (T γi )1≤i≤n for γ = 1/4, γ = 1/2, γ = 3/4,
and very large values of n. Since the rates are very slow if γ is much larger than 1/2
(see (5.9)), we have chosen n = 107 for the estimation of h3/4. In each cases, we plotted
the equivalent density on the same graph, to see that the behavior of hγ around 0 is as
expected.
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Figure 4: Graphs of 500 iterations of the map Tγ for γ = 1/4 (left) and γ = 3/4 (right)

7 Proof of the results of Sections 3 and 4

7.1 Proof of Proposition 3.1

Setting Yi,n(x) = K((x− Yi)/hn) and Xi,n(x) = Yi,n(x)− E(Yi,n(x)), we have that

E
(∫

R
|fn(x)− E(fn(x))|pdx

)
≤ (nhn)

−p
∫
R
E

(∣∣∣∣∣
n∑
i=1

Xi,n(x)

∣∣∣∣∣
p)

dx . (7.1)

Starting from (7.1) and applying Proposition 2.1, we get

E
(∫

R
|fn(x)− E(fn(x))|pdx

)
� (nh2n)

−p/2
∫ (n−1∑

i=0

|Cov(X0,n(x), Xi,n(x))|

)p/2

dx

+ n(nhn)
−p‖dK‖p−1

∫
E (|Y0,n(x)|A0(n, p)) dx

+ n(nhn)
−p‖dK‖p−1

(∫
E (|Y0,n(x)|) dx

) n∑
k=0

(k + 1)p−2β2,Y (k) . (7.2)

Since ∫
|Y0,n(x)|dx ≤ hn‖K‖1,λ and E(A0(n, p)) ≤

n∑
k=1

kp−2β2,Y (k) ,

the two last terms on the right hand side of (7.2) are bounded by the second term on the
right hand side of (3.3).

To complete the proof, it remains to handle the first term on the right hand side
of (7.2). By Item 1 of Lemma 8.1 (see Subsection 8.2) applied to Z = X0,n(x) and
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Figure 5: Topleft: Estimation of the density h1/4, n = 60000. Topright: Estimation of
the density h1/2, n = 40000. Bottom: Estimation of the density h3/4, n = 107. The
equivalent density is plotted in red

F0 = σ(Y0),

∫ (n−1∑
i=0

|Cov(X0,n(x), Xi,n(x))|

)p/2

dx

≤ ‖dK‖p/2
∫ (∫

B(y, n)|K((x− y)/hn)|f(y)dy
)p/2

dx , (7.3)

where B(y, n) = b(y, 0) + · · · + b(y, n − 1) and b(Y0, n) = supt∈R |PYn|Y0(ft) − P (ft)|
(keeping the same notations as in Definition 2.1 for the conditional probabilities). By
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Jensen’s inequality(∫
B(y, n)|K((x− y)/hn)|f(y)dy

)p/2
≤ hp/2n ‖K‖

p/2−1
1,λ

∫
B(y, n)p/2f(y)p/2h−1n |K((x− y)/hn)|dy .

Integrating with respect to x, we get∫ (∫
B(y, n)|K((x− y)/hn)|f(y)dy

)p/2
dx ≤ hp/2n ‖K‖

p/2
1,λ

∫
B(y, n)p/2f(y)p/2dy .

Together with (7.3), this gives

(nh2n)
−p/2

∫ (n−1∑
i=0

|Cov(X0,n(x), Xi,n(x))|

)p/2

dx

≤ (nhn)
−p/2‖dK‖p/2‖K‖p/21,λ

∫
B(y, n)p/2f(y)p/2dy . (7.4)

Applying Hölder’s inequality,∫
B(y, n)p/2f(y)p/2dy ≤ ‖f‖p(p−2)/2(p−1)p,λ

(∫
B(y, n)p−1f(y)dy

)p/2(p−1)
. (7.5)

Now(∫
B(y, n)p−1f(y)dy

)1/(p−1)

=
(
E
(
B(Y0, n)

p−1))1/(p−1) = E (Zn(Y0)B(Y0, n)) ,

where
Zn(Y0) =

B(Y0, n)
p−2

(E (B(Y0, n)p−1))
(p−2)/(p−1) .

Note that ‖Zn(Y0)‖(p−1)/(p−2) = 1. Arguing as in [13] (applying Remark 1.6 with g2(x) =
Zn(x) and Inequality C.5), we infer that(∫

B(y, n)p−1f(y)dy

)p/2(p−1)
� (V1,p,Y (n))

p/2(p−1) . (7.6)

Combining (7.4), (7.5) and (7.6), the proof of Proposition 3.1 is complete.

7.2 Proof of Proposition 3.2

We keep the same notations as in Subsection 7.1. The case p = 2 (Item 1 of Proposition
3.2) has been treated in [7].

For p ∈ [1, 2), we start from the elementary inequality

E
(∫

R
|fn(x)− E(fn(x))|pdx

)
≤
∫ (

E
(
|fn(x)− E(fn(x))|2

))p/2
dx .
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Let α > 1. Applying Hölder’s inequality,

E
(∫

R
|fn(x)− E(fn(x))|pdx

)
�
(∫ (

|x|α(2−p)/p + 1
)
E
(
|fn(x)− E(fn(x))|2

)
dx

)p/2
.

As in (7.3), we infer that

E
(∫

R
|fn(x)− E(fn(x))|pdx

)
� (nhn)

−p/2‖dK‖p/2
(∫

E
((
|x|α(2−p)/p + 1

)
B(Y0, n)h

−1
n |K((x− Y0)/hn)|

)
dx

)p/2
.

(7.7)

Now |x|α(2−p)/p ≤ Ch
α(2−p)/p
n |(x−Y0)/hn|α(2−p)/p+C|Y0|α(2−p)/p for some positive constant

C. Plugging this upper bound in (7.7) and integrating with respect to x we get

E
(∫

R
|fn(x)− E(fn(x))|pdx

)
� (nhn)

−p/2‖dK‖p/2‖K‖p/21,λ

(
E
(
|Y0|α(2−p)/pB(Y0, n)

))p/2
+ (nhn)

−p/2‖dK‖p/2
((
hα(2−p)/pn Mα,p(K) + ‖K‖1,λ

)
V1,2,Y (n)

)p/2
. (7.8)

To complete the proof, it remains to handle the first term in the right hand side of (7.8).
We use once more Hölder’s inequality: for any q > 1,

E
(
|Y0|α(2−p)/pB(Y0, n)

)
≤ (Mαq,p(f))

1/q (E (B(Y0, n)
q/(q−1)))(q−1)/q

� (Mαq,p(f))
1/q (U1,q,Y (n))

(q−1)/q , (7.9)

where the last upper bound is proved as in (7.6). Combining (7.8) and (7.9), the proof
of Proposition 3.2 is complete.

7.3 Proof of Proposition 4.1

We shall use the following notation

νn(g) =
1

n

n∑
k=1

(g(Yk)− E(g(Y0))) .

With this notation, we have∫ 1

0

|fn(x)− E(fn(x))|pdx =

∫ 1

0

mn∑
j=1

∣∣∣∣∣
r+1∑
i=1

νn(ϕi,j)ϕi,j(x)

∣∣∣∣∣
p

dx

≤ (r + 1)p−1
mn∑
j=1

r+1∑
i=1

(∫ 1

0

|ϕi,j(x)|pdx
)
|νn(ϕi,j)|p . (7.10)

Now, by definition of ϕi,j, ∫ 1

0

|ϕi,j(x)|pdx ≤ ‖Ri‖p∞mp/2−1
n .
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Consequently

E
(∫ 1

0

|fn(x)− E(fn(x))|pdx
)
� mp/2−1

n

r+1∑
i=1

‖Ri‖p∞
mn∑
j=1

E (|νn(ϕi,j)|p) . (7.11)

Applying Proposition 2.1, we get

E (|νn(ϕi,j)|p)�
1

np/2

(
n−1∑
k=0

|Cov(ϕi,j(Y0), ϕi,j(Yk))|

)p/2

+
1

np−1
‖dϕi,j‖p−1E(ϕi,j(Y0)A0(n, p))

+
1

np−1
‖dϕi,j‖p−1E(ϕi,j(Y0))

n∑
k=0

(k + 1)p−2β2,Y (k) . (7.12)

Since

‖dϕi,j‖ =
√
mn‖dRi‖ ,

mn∑
j=1

|ϕi,j| ≤
√
mn‖Ri‖∞ and E(A0(n)) ≤

n∑
k=1

kp−2β2,Y (k) ,

(7.13)
the two last terms of the right hand side can be easily bounded, and we obtain

mn∑
j=1

E (|νn(ϕi,j)|p)�
1

np/2

mn∑
j=1

(
n−1∑
k=0

|Cov(ϕi,j(Y0), ϕi,j(Yk))|

)p/2

+
mn

p/2

np−1
‖dRi‖p−1‖Ri‖∞

n∑
k=0

(k + 1)p−2β2,Y (k) . (7.14)

It remains to control the first term on the right hand side of (7.14). Applying Lemma
8.1 as in (7.3), we get(

n−1∑
k=0

|Cov(ϕi,j(Y0), ϕi,j(Yk))|

)p/2

≤ mp/4
n ‖dRi‖p/2 (E (B(Y0, n)ϕi,j(Y0)))

p/2 , (7.15)

where B(y, n) has been defined right after (7.3). Now, by Jensen’s inequality,

(E (B(Y0, n)ϕi,j(Y0)))
p/2 ≤

(∫
|ϕi,j(x)|dx

)p/2−1 ∫ 1

0

B(x, n)p/2f(x)p/2|ϕi,j(x)|dx ,

and consequently, using the first part of (7.13),

mp/4
n

mn∑
j=1

(E (B(Y0, n)ϕi,j(Y0)))
p/2 ≤ ‖Ri‖p/2∞ mn

∫ 1

0

B(x, n)p/2f(x)p/2dx . (7.16)

From (7.14), (7.15), (7.16) and arguing as in (7.5)-(7.6), we get that
mn∑
j=1

E (|νn(ϕi,j)|p)�
mn

np/2
‖dRi‖p/2‖Ri‖p/2∞ ‖f1[0,1]‖p(p−2)/2(p−1)p,λ (V1,p,Y (n))

p/2(p−1)

+
mn

p/2

np−1
‖dRi‖p−1‖Ri‖∞

n∑
k=0

(k + 1)p−2β2,Y (k) . (7.17)

Combining (7.11) and (7.17), the result follows.
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7.4 Proof of Proposition 4.2

If p ∈ [1, 2], the following inequality holds:

E
(∫ 1

0

|fn(x)− E(fn(x))|pdx
)
≤
(
E
(∫ 1

0

|fn(x)− E(fn(x))|2dx
))p/2

. (7.18)

To control the right hand term of (7.18), we apply (7.11) with p = 2. For p = 2, the
upper bound (7.12) becomes simply

E
(
|νn(ϕi,j)|2

)
� 1

n

n−1∑
k=0

|Cov(ϕi,j(Y0), ϕi,j(Yk))| ,

and, following the computations of Subsection 7.3, we get

mn∑
j=1

E
(
|νn(ϕi,j)|2

)
� mn

n
‖dRi‖‖Ri‖∞V1,2,Y (n) . (7.19)

The result follows from (7.18), (7.11) with p = 2, and (7.19).

8 Deviation and Rosenthal bounds for partial sums of
bounded random variables

Before proving Proposition 2.1 in Subsection 8.2, we shall state and prove two intermedi-
ate results in Subsection 8.1: a deviation inequality for stationary sequences of bounded
random variables (see Proposition 8.1) and a Rosenthal-type inequality in the same con-
text (see Corollary 8.1).

8.1 A deviation inequality and a Rosenthal inequality

In this subsection, (Xi)i∈Z is a strictly stationary sequence of real-valued random variables
such that |X0| ≤ M almost surely and E(X0) = 0. We denote by Fi the σ-algebra
Fi = σ(Xk, k ≤ i), and by Ei(·) the conditional expectation with respect to Fi.

Proposition 8.1. Let Sn =
∑n

k=1Xk. For any x ≥ M , r > 2, β ∈]r − 2, r[ and any
integer q ∈ [1, n] such that qM ≤ x, one has for any x ≥M ,

P
(

sup
1≤k≤n

|Sk| ≥ 5x

)
� nr/2

xr

(
q−1∑
i=0

|Cov(X0, Xi)|

)r/2

+
n

xr
‖X1‖rr

+
n

x2q

2q∑
k=q+1

n+q∑
`=q+1

‖E0(Xk)E0(X`)‖1

+
n

xr
qr/2−1

q∑
i=1

ir/2−2

{
i‖X0E0(Xi)‖r/2r/2 +

i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2

}

+
n

xr
qr−2−β/2

q−1∑
`=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2 . (8.1)
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As a consequence we obtain the following Rosenthal-type inequality:

Corollary 8.1. Let Sn =
∑n

k=1Xk. For any p > 2, any r ∈]2p − 2, 2p[ and any β ∈
]r − 2, 2p− 2[, one has

E
(

sup
1≤k≤n

|Sk|p
)
� np/2

(
n−1∑
i=0

|Cov(X0, Xi)|

)p/2

+ nMp−2
n∑
`=0

∑̀
k=0

(k + 1)p−3 ‖E0(Xk)E0(X`)‖1

+ nMp−2
n∑
k=1

kp−2 ‖E0(Xk)‖22 + nMp−r
n∑
i=1

ip−2‖X0E0(Xi)‖r/2r/2

+ nMp−r
n∑
j=1

jβ/2−1
j−1∑
`=0

(`+ 1)p−2−β/2 ‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2 . (8.2)

Remark 8.1. Note that the constants that are implicitely involved in Proposition 8.1 and
Corollary 8.1 depend only on r and β.

Proof of Proposition 8.1. Let q ∈ [1, n] be an integer such that qM ≤ x. For any
integer i, define the random variables

Ui =

iq∑
k=(i−1)q+1

Xk .

Consider now the σ-algebras Gi = Fiq and define the variables Ũi as follows: Ũ2i−1 =
U2i−1−E(U2i−1|G2(i−1)−1) and Ũ2i = U2i−E(U2i|G2(i−1)). The following inequality is then
valid

max
1≤k≤n

|Sk| ≤ 2qM + max
2≤2j≤[n/q]

∣∣∣∣∣
j∑
i=1

Ũ2i

∣∣∣∣∣+ max
1≤2j−1≤[n/q]

∣∣∣∣∣
j∑
i=1

Ũ2i−1

∣∣∣∣∣+ max
1≤j≤[n/q]

∣∣∣∣∣
j∑
i=1

(Ui − Ũi)

∣∣∣∣∣ .
It follows that

P
(
max
1≤k≤n

|Sk| ≥ 5x

)
≤ P

(
max

2≤2j≤[n/q]

∣∣∣∣∣
j∑
i=1

Ũ2i

∣∣∣∣∣ ≥ x

)
+ P

(
max

1≤2j−1≤[n/q]

∣∣∣∣∣
j∑
i=1

Ũ2i−1

∣∣∣∣∣ ≥ x

)

+ P

(
max

1≤j≤[n/q]

∣∣∣ j∑
i=1

(Ui − Ũi)
∣∣∣ ≥ x

)
. (8.3)

Note that the two first terms on the right hand side of (8.3) can be treated similarly, so
that we shall only prove an upper bound for the first one.

Let us first deal with the last term on the right hand side of (8.3). By Markov’s
inequality followed by Proposition 1 in [9], we have

P

(
max

1≤j≤[n/q]

∣∣∣∣∣
j∑
i=1

(Ui − Ũi)

∣∣∣∣∣ ≥ x

)
≤ 4

x2

[n/q]∑
i=1

‖E(Ui|Gi−2)‖22

+
8

x2

[n/q]−1∑
i=1

∥∥∥∥∥∥E(Ui|Gi−2)E
 [n/q]∑
j=i+1

Uj|Gi−2

∥∥∥∥∥∥
1

.
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Therefore, by stationarity,

P

(
max

1≤j≤[n/q]

∣∣∣ j∑
i=1

(Ui − Ũi)
∣∣∣ ≥ x

)

≤ 8

x2

[n/q]∑
i=1

iq∑
k=(i−1)q+1

[n/q]∑
j=i

jq∑
`=(j−1)q+1

∥∥E(i−2)q(Xk)E(i−2)q(X`)
∥∥
1

≤ 8

x2

[n/q]∑
i=1

2q∑
k=q+1

[n/q]∑
j=i

(j−i+2)q∑
`=(j−i)q+q+1

‖E0(Xk)E0(X`)‖1

≤ 8

x2

[n/q]−1∑
i=0

2q∑
k=q+1

i∑
j=0

(j+2)q∑
`=(j+1)q+1

‖E0(Xk)E0(X`)‖1 .

So, overall,

P

(
max

1≤j≤[n/q]

∣∣∣∣∣
j∑
i=1

(Ui − Ũi)

∣∣∣∣∣ ≥ x

)
≤ 8n

qx2

2q∑
k=q+1

n+q∑
`=q+1

‖E0(Xk)E0(X`)‖1 . (8.4)

Now, we handle the first term on the right hand side of (8.3). Using Markov’s in-
equality, we obtain

P

(
max

2≤2j≤[n/q]

∣∣∣∣∣
j∑
i=1

Ũ2i

∣∣∣∣∣ ≥ x

)
≤ x−r

∥∥∥∥∥ max
2≤2j≤[n/q]

∣∣∣∣∣
j∑
i=1

Ũ2i

∣∣∣∣∣
∥∥∥∥∥
r

r

. (8.5)

Note that (Ũ2i)i∈Z (resp. (Ũ2i−1)i∈Z) is a stationary sequence of martingale differences
with respect to the filtration (G2i)i∈Z (resp. (G2i−1)i∈Z). Applying Theorem 6 in [12], we
get∥∥∥∥∥ max

2≤2j≤[n/q]

∣∣∣∣∣
j∑
i=1

Ũ2i

∣∣∣∣∣
∥∥∥∥∥
r

� (n/q)1/r‖Ũ2‖r + (n/q)1/r

[n/(2q)]∑
k=1

1

k1+2δ/r

∥∥∥∥∥∥E0

( k∑
i=1

Ũ2i

)2
∥∥∥∥∥∥

δ

r/2


1/(2δ)

, (8.6)

where δ = min(1, 1/(r − 2)). Since (Ũ2i)i∈Z is a stationary sequence of martingale differ-
ences with respect to the filtration (G2i)i∈Z,

E0

( k∑
i=1

Ũ2i

)2
 =

k∑
i=1

E0

(
Ũ2
2i

)
.

Moreover, E0(Ũ
2
2i) ≤ E0(U

2
2i). Therefore∥∥∥∥∥∥E0

( k∑
i=1

Ũ2i

)2
∥∥∥∥∥∥

r/2

≤
k∑
i=1

∥∥E0

(
U2
2i

)
− E

(
U2
2i

)∥∥
r/2

+
k∑
i=1

E
(
U2
2i

)
.
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By stationarity
k∑
i=1

E
(
U2
2i

)
= k‖Sq‖22 .

Moreover ‖Ũ2‖r ≤ 2‖Sq‖r. From (8.6) and the computations we have made, it follows
that∥∥∥∥∥ max

2≤2j≤[n/q]

∣∣∣∣∣
j∑
i=1

Ũ2i

∣∣∣∣∣
∥∥∥∥∥
r

r

� n

q
‖Sq‖rr +

(
n

q

)r/2
‖Sq‖r2 +

n

q

[n/(2q)]∑
k=1

1

k1+2δ/r
Dδ
k,q

r/(2δ)

,

where

Dk,q =
k∑
i=1

∥∥E0

(
U2
2i

)
− E

(
U2
2i

)∥∥
r/2

.

Hence,∥∥∥∥∥ max
2≤2j≤[n/q]

∣∣∣∣∣
j∑
i=1

Ũ2i

∣∣∣∣∣
∥∥∥∥∥
r

r

� n

q
‖Sq‖rr + nr/2

(
q−1∑
i=0

|Cov(X0, Xi)|

)r/2

+
n

q

[n/(2q)]∑
k=1

1

k1+2δ/r
Dδ
k,q

r/(2δ)

. (8.7)

Notice that

Dk,q ≤
k∑
i=1

2iq∑
j,k=(2i−1)q+1

‖E0(XjXk)− E(XjXk)‖r/2

≤ 2
k∑
i=1

2iq∑
j=(2i−1)q+1

2iq−j∑
`=0

‖E0(XjXj+`)− E(XjXj+`)‖r/2 .

Let η = (β− 2)/r and recall that r > 2 and r− 2 < β < r. Since η < (r− 2)/r, applying
Hölder’s inequality, we then get that

Dk,q � k−η+(r−2)/r

 k∑
i=1

iβ/2−1

 2iq∑
j=(2i−1)q+1

q−1∑
`=0

‖E0(XjXj+`)− E(XjXj+`)‖r/2

 r
2


2
r

� q2−4/rk−η+(r−2)/r

 k∑
i=1

iβ/2−1
2iq∑

j=(2i−1)q+1

q−1∑
`=0

‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2

 2
r

.

Since 2δ/r > −δη + δ(r − 2)/r (indeed −η + (r − 2)/r = (r − β)/r and r − β < 2), it

23



follows that[n/(2q)]∑
k=1

1

k1+2δ/r
Dδ
k,q

r/(2δ)

� qr−2
q−1∑
`=0

[n/(2q)]∑
i=1

iβ/2−1
2iq∑

j=(2i−1)q+1

‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2

� qr−β/2−1
q−1∑
`=0

[n/(2q)]∑
i=1

2iq∑
j=(2i−1)q+1

jβ/2−1‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2 .

So, overall,

n

q

[n/(2q)]∑
k=1

1

k1+2δ/r
Dδ
k,q

r/(2δ)

� nqr−β/2−2
q−1∑
`=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2 .

(8.8)
Combining (8.3), (8.4), (8.7) and (8.8), Proposition 8.1 will be proved if we show that

n

q
‖Sq‖rr � n‖X1‖rr + nqr/2−1

(
q−1∑
i=0

|E(X0Xi)|

)r/2

+ nqr/2−1
q∑
i=1

ir/2−2

{
i‖X0E0(Xi)‖r/2r/2 +

i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2

}
. (8.9)

By Theorem 6 in [12] again, and taking into account their Comment 7 (Item 4) together
with the fact that ‖E0(Sk)‖r ≤ ‖E0(S

2
k)‖

1/2
r/2, we have

‖Sq‖rr � q‖X1‖rr + q

(
q∑

k=1

1

k1+2δ/r
‖E0(S

2
k)‖δr/2

)r/(2δ)

,

where δ = min(1/2, 1/(p− 2)). Now,

E(S2
k) ≤ 2k

k−1∑
i=0

|E(X0Xi)| .

Hence, since r > 2,

‖Sq‖rr � q‖X1‖rr + qr/2

(
q−1∑
i=0

|E(X0Xi)|

)r/2

+ q

(
q∑

k=1

1

k1+2δ/r
‖E0(S

2
k)− E(S2

k)‖δr/2

)r/(2δ)

.

(8.10)
Now

‖E0(S
2
k)− E(S2

k)‖r/2 ≤ 2
k∑
i=1

k−i∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2

≤ 2
k∑
i=1

i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2 + 2
k∑
i=1

k∑
j=i

‖E0(XiXi+j)− E(XiXi+j)‖r/2 .
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Note that, by stationarity,

‖E0(XiXi+j)− E(XiXi+j)‖r/2 ≤ 2‖XiEi(Xi+j)‖r/2 = 2‖X0E0(Xj)‖r/2 .

Therefore∥∥E0(S
2
k)− E(S2

k)
∥∥
r/2
≤ 2

k∑
i=1

i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2 + 4
k∑
j=1

j‖X0E0(Xj)‖r/2 .

Applying Hölder’s inequality,

k∑
j=1

j‖X0E0(Xj)‖r/2 ≤ k

(
k∑
j=1

jr/2−1‖X0E0(Xj)‖r/2r/2

)2/r

,

and
k∑
i=1

i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2

≤ k1−2/r

 k∑
i=1

(
i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2

)r/2
2/r

≤ k1−2/r

(
k∑
i=1

ir/2−1
i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2

)2/r

≤ k

(
k∑
i=1

ir/2−2
i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2

)2/r

.

So, overall,

q

(
q∑

k=1

1

k1+2δ/r
‖E0(S

2
k)− E(S2

k)‖δr/2

)r/(2δ)

� qr/2

{
q∑
j=1

jr/2−1‖X0E0(Xj)‖r/2r/2 +

q∑
i=1

ir/2−2
i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2

}
.

Taking into account this last upper bound in (8.10), we obtain (8.9). The proof of
Proposition 8.1 is complete.
Proof of Corollary 8.1. Setting

s2n = max

(
n

n−1∑
i=0

|Cov(X0, Xi)|,M2

)
, (8.11)

we have

E
(

sup
1≤k≤n

|Sk|p
)

= p

∫ nM

0

xp−1P
(

sup
1≤k≤n

|Sk| ≥ x

)
dx

= 5pp

∫ nM/5

0

xp−1P
(

sup
1≤k≤n

|Sk| ≥ 5x

)
dx

≤ 5pp

∫ sn

0

xp−1P
(

sup
1≤k≤n

|Sk| ≥ 5x

)
dx+ 5pp

∫ nM

sn

xp−1P
(

sup
1≤k≤n

|Sk| ≥ 5x

)
dx . (8.12)
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To handle the first term on the right hand side of (8.12), we first note that

5pp

∫ sn

0

xp−1P
(

sup
1≤k≤n

|Sk| ≥ 5x

)
dx ≤ 5pp

∫ M

0

xp−1P
(

sup
1≤k≤n

|Sk| ≥ 5x

)
dx

+ 5pnp/2

(
n−1∑
i=0

|Cov(X0, Xi)|

)p/2

.

Now by Markov inequality followed by Proposition 1 in [9], we have

5p
∫ M

0

xp−1P
(

sup
1≤k≤n

|Sk| ≥ 5x

)
dx

≤ 4× 5p−2(p− 2)−1Mp−2


n∑
i=1

E(X2
i ) + 2

n−1∑
i=1

∥∥∥∥∥XiEi

(
n∑

j=i+1

Xj

)∥∥∥∥∥
1

 .

Hence by stationarity

5p
∫ M

0

xp−1P
(

sup
1≤k≤n

|Sk| ≥ 5x

)
dx ≤ 8× 5p−2(p− 2)−1Mp−2n

n−1∑
j=0

‖X0E0(Xj)‖1 .

So, overall,

p5p
∫ sn

0

xp−1P
(

sup
1≤k≤n

|Sk| ≥ x

)
dx

≤ 8p× 5p−2n(p− 2)−1Mp−2
n−1∑
j=0

‖X0E0(Xj)‖1 + 5pnp/2

(
n−1∑
i=0

|Cov(X0, Xi)|

)p/2

. (8.13)

We handle now the last term on the right hand side of (8.12). With this aim, we use
Proposition 8.1 with q = [x/M ], r ∈]2p− 2, 2p[ and β ∈]r − 2, 2p− 2[.

For the first term on the right hand side of Proposition 8.1, we have

nr/2
∫ nM

sn

xp−1−r

(
q−1∑
i=0

|Cov(X0, Xi)|

)r/2

dx� np/2

(
n−1∑
i=0

|Cov(X0, Xi)|

)p/2

, (8.14)

since s2n ≥ n
∑n−1

i=0 |Cov(X0, Xi)| and r > p.
For the second term on the right hand side of Proposition 8.1, since r > p and sn ≥M ,

n‖X1‖rr
∫ nM

sn

xp−1−rdx� n‖X1‖rrsp−rn � n‖X1‖ppM r−psp−rn � n‖X1‖pp � nMp−2‖X1‖22 .

(8.15)
For the third term on the right hand side of Proposition 8.1, we have to give an upper

bound for

n

∫ nM

sn

xp−1
1

x2q

2q∑
k=q+1

n+q∑
`=q+1

‖E0(Xk)E0(X`)‖1 dx .
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Write

2q∑
k=q+1

n+q∑
`=q+1

‖E0(Xk)E0(X`)‖1 =
2q∑

k=q+1

n∑
`=q+1

‖E0(Xk)E0(X`)‖1

+

2q∑
k=q+1

n+q∑
`=n+1

‖E0(Xk)E0(X`)‖1 .

Here, note that
2q∑

k=q+1

n+q∑
`=n+1

‖E0(Xk)E0(X`)‖1 ≤
q

2

2q∑
k=q+1

‖E0(Xk)‖22 +
q

2

n+q∑
`=n+1

‖E0(X`)‖22 .

Therefore

n

∫ nM

sn

xp−1
1

x2q

2q∑
k=q+1

n+q∑
`=n+1

‖E0(Xk)E0(X`)‖1 dx ≤
n

2

∫ nM

sn

xp−3
2q∑

k=q+1

‖E0(Xk)‖22 dx

+
n

2

∫ nM

sn

xp−3
n+q∑
`=n+1

‖E0(X`)‖22 dx .

Now

n

∫ nM

sn

xp−3
2q∑

k=q+1

‖E0(Xk)‖22 dx = n

∫ nM

sn

xp−3
2q∑

k=q+1

‖E0(Xk)‖22 1q≤[n/2]dx

+ n

∫ nM

sn

xp−3
2q∑

k=q+1

‖E0(Xk)‖22 1q>[n/2]dx

≤ 2n

∫ nM

sn

xp−3
2q∑

k=q+1

‖E0(Xk)‖22 1q≤[n/2]dx+ n2

∫ nM

sn

xp−3
∥∥E0(X[n/2]+1)

∥∥2
2
dx ,

where we have used the fact that q ≤ n. Hence

n

∫ nM

sn

xp−3
2q∑

k=q+1

‖E0(Xk)‖22 dx ≤ 2n

∫ nM

sn

xp−3
n∑

k=q+1

‖E0(Xk)‖22 1x≤kMdx

+ n2

∫ nM

sn

xp−3
∥∥E0(X[n/2]+1)

∥∥2
2
dx

≤ 2n

p− 2
Mp−2

n∑
k=1

kp−2 ‖E0(Xk)‖22 +
np

p− 2
Mp−2 ∥∥E0(X[n/2]+1)

∥∥2
2
.

Now

np−1 ≤ 2p−1([n/2] + 1)p−1 ≤ 2p−1(p− 1)

[n/2]+1∑
k=1

kp−2 ,

and therefore,

np
∥∥E0(X[n/2]+1)

∥∥2
2
≤ 2p−1(p− 1)n

n∑
k=1

kp−2 ‖E0(Xk)‖22 .
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Consequently

n

∫ nM

sn

xp−3
2q∑

k=q+1

‖E0(Xk)‖22 dx� nMp−2
n∑
k=1

kp−2 ‖E0(Xk)‖22 .

On another hand, since q ≤ n,

n

∫ nM

sn

xp−3
n+q∑
`=n+1

‖E0(X`)‖22 dx ≤
npMp−2

p− 2
‖E0(Xn+1)‖22 .

Proceeding as before, we get

n

∫ nM

sn

xp−3
n+q∑
`=n+1

‖E0(X`)‖22 dx� nMp−2
n∑
k=1

kp−2 ‖E0(Xk)‖22 .

So, overall,

n

∫ nM

sn

xp−1
1

x2q

2q∑
k=q+1

n+q∑
`=n+1

∥∥E0(Xk)E0(X`)
∥∥
1
dx� nMp−2

n∑
k=1

kp−2
∥∥E0(Xk)

∥∥2
2
.

We handle now the quantity

n

∫ nM

sn

xp−1
1

x2q

2q∑
k=q+1

n∑
`=q+1

‖E0(Xk)E0(X`)‖1 dx .

We note first that

n

∫ nM

sn

xp−1
1

x2q

2q∑
k=q+1

n∑
`=q+1

‖E0(Xk)E0(X`)‖1 dx

≤ 2n

∫ nM

sn

xp−3
2q∑

k=q+1

k−1
n∑

`=q+1

‖E0(Xk)E0(X`)‖1 dx .

Now
2q∑

k=q+1

k−1
n∑

`=q+1

‖E0(Xk)E0(X`)‖1

=

2q∑
k=q+1

k−1
k∑

`=q+1

‖E0(Xk)E0(X`)‖1 +
2q∑

k=q+1

k−1
n∑

`=k+1

‖E0(Xk)E0(X`)‖1

≤
2q∑

k=q+1

k∑
`=q+1

`−1 ‖E0(Xk)E0(X`)‖1 +
n∑

`=q+2

`−1∑
k=q+1

k−1 ‖E0(Xk)E0(X`)‖1 .

Note that

n

∫ nM

sn

xp−3
n∑

`=q+2

`−1∑
k=q+1

k−1 ‖E0(Xk)E0(X`)‖1 dx

≤ n
n∑
`=1

∑̀
k=1

k−1 ‖E0(Xk)E0(X`)‖1
∫ nM

sn

xp−31x≤kMdx

� nMp−2

p− 2

n∑
`=1

∑̀
k=1

kp−3 ‖E0(Xk)E0(X`)‖1 .
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On the other hand

n

∫ nM

sn

xp−3
2q∑

k=q+1

k∑
`=q+1

`−1 ‖E0(Xk)E0(X`)‖1 dx

= n

∫ nM

sn

xp−3
2q∑

k=q+1

k∑
`=q+1

`−1 ‖E0(Xk)E0(X`)‖1 1q≤[n/2]dx

+ n

∫ nM

sn

xp−3
2q∑

k=q+1

k∑
`=q+1

`−1 ‖E0(Xk)E0(X`)‖1 1q>[n/2]dx

≤ n

∫ nM

sn

xp−3
n∑

k=q+1

k∑
`=q+1

`−1 ‖E0(Xk)E0(X`)‖1 1x≤`Mdx

+ n

∫ nM

sn

xp−3
2q∑

k=q+1

k∑
`=q+1

`−1 ‖E0(Xk)E0(X`)‖1 1[n/2]<q≤ndx .

Proceeding as before

n

∫ nM

sn

xp−3
n∑

k=q+1

k∑
`=q+1

`−1 ‖E0(Xk)E0(X`)‖1 1x≤`Mdx

� nMp−2
n∑
`=1

∑̀
k=1

kp−3 ‖E0(Xk)E0(X`)‖1

and

n

∫ nM

sn

xp−3
2q∑

k=q+1

k∑
`=q+1

`−1 ‖E0(Xk)E0(X`)‖1 1[n/2]<q≤ndx

� npMp−2 ∥∥E0(X[n/2]+1)
∥∥2
2
� nMp−2

n∑
k=1

kp−2 ‖E0(Xk)‖22 .

So, overall, we obtain the following upper bound

n

∫ nM

sn

xp−1
1

x2q

2q∑
k=q+1

n+q∑
`=q+1

∥∥E0(Xk)E0(X`)
∥∥
1
dx

� nMp−2
n∑
`=1

∑̀
k=1

kp−3
∥∥E0(Xk)E0(X`)

∥∥
1
+ nMp−2

n∑
k=1

kp−2
∥∥E0(Xk)

∥∥2
2
. (8.16)

For the fourth term on the right hand side of Proposition 8.1, setting

a(i) = i‖X0E0(Xi)‖r/2r/2 +
i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2 ,

we have

n

∫ nM

sn

xp−1−rqr/2−1
q∑
i=1

ir/2−2a(i)dx ≤ nM1−r/2
n∑
i=1

ir/2−2a(i)

∫ nM

sn

xp−2−r/21x≥iMdx .
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Since r > 2p− 2 and sn ≥M , it follows that

n

∫ nM

sn

xp−1−rqr/2−1
q∑
i=1

ir/2−2a(i)dx� nMp−r
n∑
i=1

ip−3a(i) .

We note also that β/2 > r/2− 1 > p− 2. Therefore

n∑
i=1

ip−3
i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2

=
n∑
i=1

iβ/2−1+p−2−β/2
i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2

≤
n∑
i=1

iβ/2−1
i−1∑
j=0

(j + 1)p−2−β/2‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2 ,

so that

n

∫ nM

sn

xp−1−rqr/2−1
q∑
i=1

ir/2−2a(i)dx� nMp−r
n∑
i=1

ip−2‖X0E0(Xi)‖r/2r/2

+ nMp−r
n∑
i=1

iβ/2−1
i−1∑
j=0

(j + 1)p−2−β/2‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2 . (8.17)

Finally, for the fifth term on the right hand side of of Proposition 8.1,

n

∫ nM

sn

xp−1−rqr−2−β/2
q−1∑
`=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2dx

≤ nMp−1−r
∫ nM

sn

qp−3−β/2
q−1∑
`=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2dx ,

since r > p− 1 and q < x/M . Now, since p− 3− β/2 < −1 (indeed β/2 > r/2− 1 and
r/2 > p− 1), we get

n

∫ nM

sn

xp−1−rqr−2−β/2
q−1∑
`=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2dx

≤ n(2M)β/2+3−pMp−1−r

×
∫ nM

sn

xp−3−β/2
q−1∑
`=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2dx

≤ n(2M)β/2+3−pMp−1−r

×
n−1∑
`=0

n∑
j=`+1

jβ/2−1‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2

∫ nM

sn

xp−3−β/21x≥(`+1)Mdx .

30



Hence, since sn ≥M ,

n

∫ nM

sn

xp−1−rqr−2−β/2
q−1∑
`=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2dx

� nMp−r
n−1∑
`=0

(`+ 1)p−2−β/2
n∑

j=`+1

jβ/2−1‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2

� nMp−r
n∑
j=1

jβ/2−1
j−1∑
`=0

(`+ 1)p−2−β/2‖E0(XjXj+`)− E(XjXj+`)‖r/2r/2 . (8.18)

Corollary 8.1 follows from (8.12), (8.13), and Proposition 8.1 combined with the
bounds (8.14), (8.15), (8.16), (8.17) and (8.18).

8.2 Proof of Proposition 2.1

The next lemma gives covariance-type inequalities in terms of the variables b`(i) and
b`(i, j) of Definition 2.1. It is almost the same as Lemma 35 in [12], the only difference is
that in [12], the authors used a slightly different definition of the variables b`(i, j). The
proof of the version we give here can be done by following the proof of Lemma 35 in [12],
and is therefore omitted.

Lemma 8.1. Let Z be a F`-measurable real-valued random variable and let h and g
be two BV functions (recall that ‖dh‖ is the variation norm of the measure dh). Let
Z(0) = Z −E(Z), h(0)(Yi) = h(Yi)−E(h(Yi)) and g(0)(Yj) = g(Yj)−E(g(Yj)). Define the
random variables b`(i) and b`(i, j) as in Definition 2.1. Then

1.
∣∣E (Z(0)h(0)(Yi)

)∣∣ = |Cov(Z, h(Yi))| ≤ ‖dh‖E (|Z|b`(i)) .

2.
∣∣E (Z(0)h(0)(Yi)g

(0)(Yj)
)∣∣ ≤ ‖dh‖‖dg‖E (|Z|b`(i, j)) .

We now begin the proof of Proposition 2.1. Note first that if Xi = h(Yi) − E(h(Yi))
for some BV function h, then |Xi| ≤ ‖dh‖ almost surely. To prove Proposition 2.1, we
apply Corollary 8.1 with M = ‖dh‖, r ∈] max(2p − 2, 4), 2p[ and β ∈]r − 2, 2p − 2[. We
have to bound up the second, third, fourth and fifth terms on the right hand side of (8.2).
Let us do this in that order.

To control the second term, we note that, by stationarity,

E |E0(Xk)E0(X`)| = E |E−k(X`−k)E−k(X0)|
= E (E−k(X`−k)E−k(X0) sign {E−k(X`−k)E−k(X0)})

= E (X`−kE−k(X0) sign {E−k(X`−k)E−k(X0)}) .

Hence, applying Lemma 8.1, we get that, for any ` ≥ k ≥ 0,

E |E0(Xk)E0(X`)| ≤ ‖dh‖E (|E−k(X0)| b−k(`− k)) ≤ ‖dh‖E (|X0|b−k(`− k)) .

Let then

T0(n) =
n∑
`=1

∑̀
k=0

(k + 1)p−3b−k(`− k) ,
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and note that T0(n) is a positive random variable which is F0-measurable and such that

E(T0(n)) ≤
n∑
`=1

∑̀
k=0

(k + 1)p−3β1,Y (`) ≤ C
n∑
`=1

`p−2β1,Y (`) ,

for some positive constant C. Moreover

n‖dh‖p−2
n∑
`=0

∑̀
k=0

(k + 1)p−3 ‖E0(Xk)E0(X`)‖1 � n‖dh‖p−1E (|X0| (1 + T0(n))) . (8.19)

To control the third term, we note that

‖E0(Xk)‖22 = E (E−k(X0)X0) .

Hence, applying Lemma 8.1, we get that

‖E0(Xk)‖22 ≤ ‖dh‖E (|X0|b−k(0)) .

Let then

U0(n) =
n∑
k=1

kp−2b−k(0) ,

and note that U0(n) is a positive random variable which is F0-measurable and such that

E(U0(n)) ≤
n∑
k=1

kp−2β1,Y (k) .

Moreover

n‖dh‖p−2
n∑
k=1

kp−2 ‖E0(Xk)‖22 ≤ n‖dh‖p−1E (|X0|U0(n)) . (8.20)

To control the fourth term, let first Z = |X0|r/2|E0(Xi)|r/2−1 sign{E0(Xi)}. Then

‖X0E0(Xi)‖r/2r/2 = E (ZXi) = E ((Z − E(Z))Xi) .

Applying Lemma 8.1, it follows that

‖X0E0(Xi)‖r/2r/2 ≤ ‖dh‖E(|Z|b0(i)) ≤ ‖dh‖
r−1E(|X0|b0(i)) .

Let then

V0(n) =
n∑
i=1

ip−2b0(i) ,

and note that V0(n) is a positive random variable which is F0-measurable and such that
E(V0(n)) ≤

∑n
i=1 i

p−2β2,Y (i). Moreover

n‖dh‖p−r
n∑
i=1

ip−2‖X0E0(Xi)‖r/2r/2 ≤ n‖dh‖p−1E (|X0|V0(n)) . (8.21)
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To control the fifth term, note that, since r/2− 1 ≥ 1,

‖E0(XiXj+i)− E(XiXj+i)‖r/2r/2

= E
(
|E0(XiXj+i)− E(XiXj+i)|r/2−1 |E0(XiXj+i)− E(XiXj+i)|

)
≤ 2r/2−2E

(
|XiXj+i|r/2−1 |E0(XiXj+i)− E(XiXj+i)|

)
+ 2r/2−2 |E(XiXj+i)|r/2−1 E (|E0(XiXj+i)− E(XiXj+i)|) .

Now

E
(
|XiXj+i|r/2−1 |E0(XiXj+i)− E(XiXj+i)|

)
≤ E

(
|Xi|r−2 |E0(XiXj+i)− E(XiXj+i)|

)
+ E

(
|Xj+i|r−2 |E0(XiXj+i)− E(XiXj+i)|

)
.

Let Z = E−i(|X0|r−2) sign{E−i(X0Xj)− E(X0Xj)}. Notice that

E
(
|Xi|r−2 |E0(XiXj+i)− E(XiXj+i)|

)
= E

(
|X0|r−2 |E−i(X0Xj)− E(X0Xj)|

)
= E

(
E−i(|X0|r−2) |E−i(X0Xj)− E(X0Xj)|

)
= E ((Z − E(Z))X0Xj)) .

Applying Lemma 8.1, it follows that

E
(
|Xi|r−2 |E0(XiXj+i)− E(XiXj+i)|

)
≤ ‖dh‖2E (|Z|b−i(0, j))

≤ ‖dh‖2E
(
|X0|r−2b−i(0, j)

)
≤ ‖dh‖r−1E (|X0|b−i(0, j)) .

Similarly we get

E
(
|Xi+j|r−2 |E0(XiXj+i)− E(XiXj+i)|

)
≤ ‖dh‖r−1E (|X0|b−i−j(−j, 0)) .

Let then

W0(n) =
n∑
i=1

iβ/2−1
i−1∑
j=0

(j + 1)p−2−β/2 (b−i(0, j) + b−i−j(−j, 0)) ,

and note that W0(n) is a positive random variable which is F0-measurable and such that

E(W0(n)) =
n∑
i=1

iβ/2−1
i−1∑
j=0

(j + 1)p−2−β/2 (E(b−i(0, j)) + E(b−i−j(−j, 0)))

≤ 2
n∑
i=1

iβ/2−1β2,Y (i)
i−1∑
j=0

(j + 1)p−2−β/2 ≤ C

n∑
i=1

ip−2β2,Y (i) ,

for some positive constant C. Moreover

n‖dh‖p−r
n∑
i=1

iβ/2−1
i−1∑
j=0

(j + 1)p−2−β/2‖E0(XiXj+i)− E(XiXj+i)‖r/2r/2

� n‖dh‖p−1E (|X0|W0(n)) + n‖dh‖p−1E (|X0|)E (W0(n)) . (8.22)

To conclude the proof, let B0(n, p) = T0(n) + U0(n) + V0(n) +W0(n), and note that
W0(n) is a positive random variable which is F0-measurable and such that E (B0(n, p)) ≤
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κ
∑n

k=1 k
p−2β2,Y (k), for some positive constant κ. From (8.2), (8.19), (8.20), (8.21) and

(8.22), and since X0 = h(Y0)− E(h(Y0)), we infer that

E
(

sup
1≤k≤n

|Sk|p
)
� np/2

(
n−1∑
i=0

|Cov(X0, Xi)|

)p/2

+ n‖dh‖p−1E (|h(Y0)|B0(n, p))

+ n‖dh‖p−1E (|h(Y0)|)
n∑
k=0

(k + 1)p−2β2,Y (k) .

Let then A0(n, p) = κ−1B0(n, p), in such a way that E (A0(n, p)) ≤
∑n

k=1 k
p−2β2,Y (k).

The random variable A0(n, p) satisfies the statement of Proposition 2.1, and the proof is
complete.
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