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Impact on floating membranes

Nicolas Vandenberghe∗ and Laurent Duchemin†

Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, F-13384, Marseille, France

When impacted by a rigid object, a thin elastic membrane with negligible bending rigidity floating
on a liquid pool deforms. Two axisymmetric waves radiating from the impact point propagate. In
the first place, a longitudinal wave front – associated with in-plane deformation of the membrane
and traveling at constant speed – separates an outward stress free domain with a stretched but flat
domain. Then, in the stretched domain a dispersive transverse wave travels at a wave speed that
depends on the local stretching rate. We study the dynamics of this fluid-body system and we show
that the wave dynamics is similar to the capillary waves that propagate at a liquid-gas interface
but with a surface tension coefficient that depends on impact speed. We emphasize the role of
the stretching in the membrane in the wave dynamics but also in the development of a buckling
instability that give rise to radial wrinkles.

I. INTRODUCTION

The impact of a solid sphere on a liquid surface is a
scientific problem that has attracted a considerable in-
terest since the early observations of Worthington [1] of
the dynamics of the cavity formed in the wake of the
sphere. This problem has recently attracted a renewed
interest and the cavity dynamics has been studied in
detail by various authors [2, 3]. Water entry is indeed
an important problem for various applications, including
aerospace science [4] where plane impacts have served as
an early motivation [5, 6], naval engineering [7] or more
recently animal locomotion [8].

In most of the applications cited above, the force ex-
erted on the impacting body by the fluid results mainly
from an inertial response. This means that other types
of effects such as surface tension, gravity or viscosity are
negligible. For an object of characteristic size ri, im-
pacting on a liquid surface (density ρ, kinematic viscos-
ity ν, surface tension σ) with a velocity V , the Weber
number that measures the ratio between inertia and sur-
face tension We = ρriV

2/σ and the Reynolds number
Re = V ri/ν are very large in the context of these appli-
cations.

The case of small Weber numbers – i.e. surface tension
dominated impacts – has also been studied in the con-
text of the locomotion of small organisms [8, 9]. Small
Weber numbers are obtained for small objects or when
the surface tension is large. The latter situation is en-
countered in particular when an elastic membrane is at
the interface between the liquid and the gas as for a liq-
uid filled rubber balloon [10]. In this case, the tension
in the thin rubber membrane results from the internal
pressure in the balloon and it can be several orders of
magnitude larger than the typical value for the water/air
interface. Provided that the initial tension is large and
the amplitude of the motion of the surface of the bal-
loon is small, the analogy with a liquid-gas interface is
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straightforward. However, in the general case, the ten-
sion in the membrane varies with its local strain typically
through Hooke’s law. Therefore the surface tension coef-
ficient is in general not uniform: it is a dynamical variable
that changes with the longitudinal (or tangential) motion
of the membrane. Similar situations are encountered in
the case of liquid-gas interfaces in the presence of sur-
factants, where longitudinal motion at the interface may
change the local concentration of surfactants and thus
the surface tension [11–14].

In the present paper, we investigate a situation in
which a floating membrane acts locally like a liquid-gas
interface with a very large surface tension coefficient com-
pared to a liquid-gas interface, such that, for our ex-
periments, the Weber number is smaller than 1. The
Reynolds number is still very large, which allows us to
neglect viscous effects. Gravity can also be neglected.
The membrane is initially flat and tension-free (the small
background stress imposed by the liquid-air surface ten-
sion at the side of the membrane can be neglected). In
this case the surface tension coefficient is not known a
priori, and it results from a coupling between the trans-
verse motion (throughout the text, transverse refers to
the direction normal to the initially flat interface) result-
ing from the impact and the stretching of the membrane
that builds up following the impact. Because of this cou-
pling and because the background stress is negligible, the
problem is considerably more difficult than the classical
problem of wave propagation on stretched membranes
[15]. In the absence of a liquid substrate, the dynamics
has been investigated by various authors in the context of
ballistic impacts [16–18]. These studies have shown that
the displacement in the plane of the membrane and the
transverse displacement are strongly coupled and need to
be determined concomitantly. Furthermore the analysis
has shown that the axisymmetric wave propagation can
be unstable and that wrinkles resulting from a buckling
instability appear.

In a recent paper, we have investigated the two-
dimensional problem [19] of a thin floating membrane,
made of natural rubber, being impacted by a horizontal
metal rod. In this context, the stretching response of
the membrane is of the same nature as liquid-gas surface
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FIG. 1. (a) Sketch of the experiment. (b) Successive snapshots of a floating membrane (thickness h = 0.2 mm) made of
natural rubber impacted by a solid sphere. The extension of a cavity delimited by a transverse wavefront is accompanied by
the development of a wrinkling instability both inside and outside the cavity. (c) A spatiotemporal diagram of the motion
of the material points along a radius of a membrane impacted at V = 31.2 m/s obtained by recording the movie from below
the surface. Marks drawn on the membrane reveal the motion of the material points. Two waves can be seen: a longitudinal
wave separates a domain where material points are at rest from a domain where they move towards the impact point. The
longitudinal wavefront travels at the speed c = 60 m/s (solid line). The dark shadow highlighted by the dashed white line
corresponds to the positions marked by the arrow in (b). This transverse wave front travels at non constant speed. The dashed

line is the line a′t2/3 with a′ = 13.2 mm ms−2/3.

tension, but shows a surface tension coefficient increasing
linearly with the impact velocity. This two-dimensional
coupled dynamics between the membrane and the liquid
(water) on which it floats, exhibits self-similar solutions
like the ones observed for a liquid-gas interface [20]. This
surprising fact results from the uniform state of strain
in the membrane, allowing for a straightforward analogy
between an impacted membrane and a fluid interface.
In the present paper, we investigate axisymmetric situa-
tions, for which the simplification of a uniform membrane
stress does not hold. Indeed, when a metal ball or a ver-
tical cylinder impacts the membrane, the resulting strain
in the membrane, and therefore the related stresses, are
highly non-uniform, as we shall see.

The paper is organized as follows: in section II we de-
scribe the experiments and the phenomenology of the im-
pacted membrane: in particular we emphasize the prop-
agation of two distinct waves, a wave associated with the
in-plane motion of material points of the membrane, that
is decoupled from the hydrodynamics, and a transverse
wave that is accompanied by fluid motion. The wave
dynamics is addressed in details in section III, then the
static membrane equations are solved numerically in sec-
tion IV in order to understand the scaling for the strain
observed in the experiments. Section V discusses the
wrinkling instability of the membrane that develops as
the waves propagate and section VI discusses the decel-
eration of the impactor.

II. EXPERIMENTS

A. Setup

A steel impactor with a hemispherical head of radius
ri = 0.75 or 1.5 or 2.5 mm, impacts transversally a thin
rubber membrane (thickness H in the range 0.15 to 0.30
mm) floating at the surface of a water tank of dimen-
sions 40 × 40 × 40 cm3. Impactors are accelerated by
gravity or by a gas gun and they impact the membrane
at speeds in the range 0.3 to 30 m/s. Experiments ad-
dressing the wave dynamics (in particular at low impact
speeds) are conducted with impacting cylinders, that are
sufficiently heavy to ensure that the impactor does not
decelerate during the experiment. The membrane is a
circular or square sheet of typical dimension (diameter
or side length) of 15 cm. The shape of the membrane is
not relevant since we focus on short-time dynamics, be-
fore waves have had time to interact with the boundary.
The typical duration of an experiment is less than 10 ms
and the dynamics is recorded with a high-speed camera
at typical frame rates of 10000 frames per second.

The membrane is characterized by a stretching modu-
lus Y = E′H with E′ = E/(1 − ν2) where E is Young’s
modulus, ν = 1/2 is the Poisson ratio and H the thick-
ness of the membrane in the reference state. The natural
rubber used in the experiments has a Young modulus
E = 2.6 MPa, and a stretching rate of 500% or more can
be reached. For simplicity and since most of the dynam-
ics occurs at low stretching (below 10% except in a small
area near the impactor), we will assume that the material
response can be accurately described by Hooke’s law (see
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[21] for references to more complex models in the context
of impacts). A typical value of the stretching modulus
is 720 N/m. Thus, even for low strains ε of the order of
10−3, the stresses induced by strains Y ε are well above
the stress resulting from surface tension at the liquid-air
interface and the latter will be neglected throughout this
work.

B. Phenomenology

After impact, two waves propagate on the membrane
(figure 1). They are clearly seen on a spatiotemporal di-
agram showing the position of material points as a func-
tion of time. A material point located at a distance R
from the impact point is first reached by a longitudinal
wave front. Behind this wavefront, the material point
moves in the plane of the membrane towards the im-
pact point. The displacement is radial and is denoted
u(R, t). At later times, the material points move in
the transverse direction, the transverse displacement be-
ing denoted w(R, t), experiencing first an oscillation of
growing amplitude and later a strong transverse motion
first upward and then downward towards the liquid. The
wavefront associated with the longitudinal motion trav-
els at constant speed (figure 1b). Behind this longitu-
dinal wavefront, the membrane is stretched in a non-
uniform manner: the stretching increases towards the
impact point. The transverse wavefront travels in the
stretched domain. This out-of-plane displacement occurs
in an area well delimited by a hump, which we use to de-
fine rf (t) (see figure 2). The transverse wavefront travels
at a speed that decreases with time and its position is well
approximated by the law rf (t) ∼ at2/3 (figure 1b). This
scaling is typical of surface tension driven flows and it
has been observed for two dimensional impacts on mem-
branes [9, 19, 20]. The coefficient a changes with the
impact speed. This wave dynamics will be discussed in
the next section.

During its extension, the axisymmetric wave pattern
presents an instability and radial wrinkles appear, as seen
in figure 1a. Such patterns appear frequently on elastic
membranes which are not able to withstand compressive
in-plane stresses [22, 23]. Inside the cavity, wrinkles de-
velop on the curved membrane. The number of wrinkles
does not change as the cavity extends and the wrinkles
extend from the vicinity of the contact with the indenter
to the ridge of the cavity. Outside of the cavity, radial
wrinkles are also present. The number of wrinkles out-
side the cavity is different from the number of wrinkles
inside the cavity. We note that there is a transition area
between the cavity and the outer domain on which wrin-
kles are not observed.
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FIG. 2. (a) Sketch of the impacted membrane and definition
of the length rf . (b) Notations for the model.

III. WAVE DYNAMICS

A. The response of a membrane to transverse
impact

We make the usual assumptions of wave theory (invis-
cid and irrotational flow of an incompressible fluid) for
which we can use the velocity potential φ(r, z, t). We
assume that the membrane plays the role of an inter-
face and that it can be described as an infinitely thin
sheet whose position is denoted w(r, t) (figure 2). At this
stage of the problem we assume that the problem is ax-
isymmetric. The velocity potential verifies the continuity
equation ∆φ = 0 in the fluid domain. At the interface,
z = w(r, t), the kinematic boundary condition reads

∂tw + ∂rw ∂rφ = ∂zφ. (1)

The dynamic boundary condition (gravity is neglected)
reads

∂tφ+
1

2
|∇φ|2 +

p

ρ
= 0, (2)

where p is the pressure difference across the membrane.
In the reference (undeformed) configuration, the mem-

brane is flat and a material point has coordinates (R, θ, 0)
in cylindrical coordinates (black dot in figure 2a). After
deformation, the position is denoted by (r, θ, z) (white
dot in figure 2a). The displacements are u = r − R and
w = z. The equation of motion for an element hrdsdθ
of a membrane of mass ρshrdsdθ experiencing a pressure
difference p across its normal and forces per unit length
Ns and Nθ in the radial and orthoradial directions, along
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the radial and vertical directions read

ρshr
∂2u

∂t2
= −pr sin γ +

∂

∂s
(Nsr cos γ)−Nθ, (3)

ρshr
∂2w

∂t2
= pr cos γ +

∂

∂s
(Nsr sin γ) , (4)

where s is the curvilinear coordinate along a meridian
line, and the angle γ is given by

cos γ =
∂r

∂s
, sin γ =

∂w

∂s
. (5)

The strains in the radial and orthoradial directions are

εs =
∂s

∂R
− 1, εθ =

r

R
− 1. (6)

From the relation r = R(1 + εθ), one obtains after some
algebra a compatibility equation

r

1 + εθ

dεθ
dr

+
1 + εθ
1 + εs

1

cos γ
= 1 (7)

To describe the longitudinal wave that propagates
ahead of the transverse perturbation, we first consider
the case of in-plane displacement, with w = 0, for which
the motion of the membrane is not coupled to the fluid
(because viscous effects are neglected). Then γ = 0 and
assuming a Hookean behaviour of the membrane,

Ns = Y (εs + νεθ), Nθ = Y (εθ + νεs), (8)

equation (3) reads, in the limit of small strains, i.e. for
|εθ| = |u/R| � 1,

1

c2
∂2u

∂t2
=

1

R

∂

∂R

(
R
∂u

∂R

)
− u

R2
(9)

with c2 = (E′/ρs). This equation describes the propa-
gation of a longitudinal (i.e., in-plane) perturbation at
speed c, which is a material constant, observed in the
experiment (figure 1b).

The full set of equations coupling the membrane and
fluid equations cannot be solved analytically. To gain in-
sight into the physics of the waves we make the following
simplifications: (i) we neglect the left hand side in equa-
tion (3), i.e., we consider that the in-plane stresses are at
equilibrium up to r = ct, (ii) we also neglect the left hand
side in equation (4) in comparaison with the fluid inertia
(an hypothesis that is valid for waves with a wavelength
larger than the thickness of the membrane). We obtain
the following set of equations for the membrane

p+
1

r

∂

∂r
(Nsr sin γ) = 0 (10)

d

dr
[rNs]−Nθ = 0 (11)

100
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 r f (
m

m
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FIG. 3. Positions of the transverse front for different impact
speeds for a membrane of thickness h = 0.21 mm struck by an
impactor of radius ri = 2.5 mm. The scaling law rf = at2/3 is
robust with a coefficient a increasing with the impact speed.

Equations (10) and (11) are the normal and tangential
equilibrium equations for the membrane element respec-
tively. Equation (10) is also a dynamic boundary condi-
tion for the fluid motion, coupled with Bernoulli equation
(2) through the pressure p. We note that the assumption
(ii) cannot be made in the absence of fluid. This case
of the impact on a free membrane has been addressed
before [16–18].

It is instructive to consider the case of a constant and
uniform tension Ns. The fluid pressure is related to the
shape of the membrane through

p+Ns

(
dγ

ds
+

sin γ

r

)
= 0 (12)

which is precisely Laplace’s law. Therefore the analogy
with surface-tension driven flows [20] is straightforward.
In particular, dimensional analysis, reveals that at time
t after impact the characteristic lengthscale associated
with the propagation of the transverse wave reads at2/3 ∼(
Nst

2/ρ
)1/3

.
Before further discussing the model, we present quan-

titative experimental results on the propagation of waves
and on the strain field in the membrane.

B. Experimental observations

The transverse wave front travels with a well-defined
law rf (t) = at2/3, where the constant a depends on the
impact velocity (figure 3). Therefore, in analogy with
surface-tension-driven flows, we write for rf

rf (t) = at2/3 =

(
α
Y εf
ρ

)1/3

t2/3 (13)
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FIG. 4. The strain εf ≡ εs(rf ) as a function of Weber
number We = ρriV

2/Y . The red crosses correspond to direct
measurements of the strain at rf obtained by tracking the
position of material points. The circles and disks correspond
to the strain inferred from the prefactor a obtained from the
fit rf = at2/3. The strain is εf = (1/α)ρa3/Y where the
coefficient α = 6.1 is chosen to match the direct measurements
of εf . Red disks correspond to impacts on a membrane of
thickness h = 0.14 mm with an impactor of radius ri = 0.75
mm (the same conditions as the red crosses). The black circles
correspond to impacts on a membrane of thickness h = 0.21
mm struck by an impactor of radius ri = 2.5 mm (the data
of figure 3). The dashed line is a fit of the experimental data

εf = δWe1/3, with δ = 0.22. The inset shows the direct
measurements of the strain in rf for different times (and thus
different rf ) at different impact speeds (black squares V = 1.9
m/s, red disks V = 4.3 m/s, blue diamonds V = 9.0 m/s).
The strain εf is constant.

where εf = εs|rf is the radial strain in r = rf (t) and α is
a number. Y εf is the local tension in the membrane: it
plays the role of the surface tension. Measurements of the
position of the transverse wavefront (figure 3) reveal that
the prefactor a is, to a good approximation, constant in
time, or at least exhibits a very slow variation compared
to t2/3. Therefore εf should be constant in time. Direct
measurement of the strain εs = (`−`0)/`0 were performed
by tracking two neighboring material points drawn on
the membrane and measuring the current distance ` (`0
is the distance in the undeformed state). The strain εs
measured in rf is roughly constant (inset of figure 4).
From these observations, we conclude that the membrane
behaves locally, i.e. in r = rf (t), as a liquid-gas interface,
with a surface tension coefficient Y εf .

We observe in the experiments that both the coefficient
a3 obtained by measuring the position of the wavefront
and the strain in r = rf measured by tracking material

points εf scale like We1/3 (figure 4) where

We =
ρriV

2

Y
, (14)

is the Weber number. As in the two-dimensional case

z/
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t = 3.5 mst = 0.5 ms 5 mm

FIG. 5. (a) Shape (profile) of the membrane for an impactor
of radius ri = 0.5 mm impacting at V = 5.6 m/s a mem-
brane of thickness h = 0.2 mm. (b) Experimental profiles for

which r and z coordinates have been rescaled by at2/3 with
a = 7.3 mm/ms2/3 show a self similar behaviour. Inset: The
self-similar profiles shown in log-log scales. The matching of
the self-similar profile with the boundary condition in r = ri
imposes the shape of the profile w ∼ r−1/2 for r � 1.

[19], the local strain εf depends on the impact velocity
and we shall study this dependence in section IV.

The experiments also show that, for sufficient impact
speeds, or for long times, the transverse displacement
w(r, t) is a self-similar profile of the form

w(r, t) = ηrf (t)W

(
r

rf (t)

)
(15)

where η depends on impact speed V . This scaling is
also characteristic of surface tension driven flows [20].
Figure 5 shows experimental profiles of one experiment,
rescaled according to at2/3 (with a determined on the
experiment) in both directions r and z. A unique curve
is obtained away from the impactor. In the impactor re-
gion, the scaling of equation (15) does not hold, since the
vertical displacement is V t, neglecting the deceleration of
the impactor. The matching condition at the impactor
−V t = w(ri, t) imposes the behaviour of the function W
for small r. To obtain linearity with time, it follows that

W (x) ∼ −x−1/2 and choosing η = V r
1/2
i /a3/2, we find
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thickness of the elastic sheet is h = 0.2 mm, and the impact
velocity is V = 6.6 m/s corresponding to We = 9.1 × 10−2.
(b) Variations of the stretching εs with r for the pictures of
panel (a). Time increases from bottom to top.

for ri/rf → 0

w(ri, t) ' −
V r

1/2
i

a3/2
rf

(ri/rf )1/2
= −V t (16)

Despite these observations, the complete analogy with
surface-tension-driven flows is not straighforward be-
cause the strain εs in the membrane is not uniform, as
seen in figure 6. Indeed, the stretching εs is large near
the impactor and decreases rapidly as r increases. Thus
a detailed description of the full dynamics, including the
fluid and the membrane must be sought for to obtain a
description of the wave dynamics and in particular to ad-
dress the variation of the coefficient a with impact speed.

IV. SCALING FOR THE STRAIN

We first remark that the the full system of equations (1,
2, 10 – 7), together with mass conservation in the fluid
bulk ∆φ = 0, can be written using self-similar ansatz
for which all the terms balance in the equations, appart
from the boundary condition in r = ri. The ansatz for

the transverse displacement and the two strains are

w(r, t) = ηrfW (ξ), εs = Es(ξ), εθ = Eθ(ξ), (17)

where ξ = r/rf and rf = at2/3. The use of the same
self-similar ansatz for all the fields is dictated by the fact
that the strain εs has to be a constant in the region of
rf in order for a to be a constant. Using the fact that
tan γ = ∂w/∂r = ηW ′(ξ), the full system of self-similar
equations is written in appendix A.

This reduction to a self-similar system provides a clue
as to why a scaling rf = at2/3 is observed. However there
are a few difficulties associated with this approach. First,
the boundary conditions at r = ri and r = ct are not
self-similar. This means that a self-similar solution with
the scalings (17) will not verify the boundary conditions,
and in particular the boundary condition w(ri, t) = −V t
which is fundamental in the present problem. Another
difficulty associated with the self-similar approach is that
it does not provide a scaling for the strain. In particular,
the dependence of the strain in r = rf with the impact
speed cannot be determined without computing the full
solution of the problem, which remains a formidable task.
We propose in this section, a simplified analysis.

In order to explore the main features of the wave dy-
namics – the constant character of the strain in rf and
its scaling with the impact speed – we have solved the
quasi-static membrane equations (7) and (11), using a
profile w compatible with the observed self-similar shape
(15). We choose the form

w(r, t) = −ηrf
sin(Ar/rf )

A(r/rf )3/2
, (18)

where A = 4.38 such that the first maximum is located
in r = rf . Apart from the self-similarity, this shape,

and especially the behavior w(r, t) ∼ r−1/2 for small r,
was chosen such that the boundary condition in ri (equa-
tion 16) is satisfied. Our simplified approach consists in
replacing the highly complex coupling between the mem-
brane and the fluid motion with the feature of the flow –
built in equation (18) – that the transverse wave propa-
gates according to rf (t) = at2/3.

Equations (7) and (11) were solved with a shooting
technique, imposing the boundary conditions εs(ri) =
εθ(ri) and εθ(ct) = 0. The solution is shown in figure
7. The same physical parameters as the experiment pre-
sented in figure 5 have been used, and the equations were
solved for the same seven times. Figure 7(a) shows the
values of εs in ri, rf and ct as a function of the rescaled
time V t/ri. To a good approximation, the strain εs(ri) is
linear in time and εs(rf ) is constant. Moreover rescaling
the strain εs by V t/ri leads to the collapse of curves for
different times, as seen in figure 8. In the light of these
results and seeking an ansatz with constant εs in r = rf ,
compatible with equation (17), we choose the following
representation for the strain field:

εs(r, t) = β
V t

ri

(
r

ri

)−3/2
, (19)
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tions (11) and (7), as a function of the dimensionless time
V t/ri. The crosses correspond to the hoop strain εθ in rf .
The parameters used in the simulation are similar to those of
figure 5. Note that the strain εs in rf varies slowly with time
and its value shows quantitative agreement with the value
9.0 × 10−2 expected from the experiment. (b) Longitudinal
strain along the membrane as a function of r/ri for times
corresponding to figure 5.

where β is a numerical constant, εθ admitting a sim-
ilar form (with a different prefactor). The scaling in
(r/ri)

−3/2 agrees with the results in figure 7(b) and 8
and with the measurements presented in figure 6. It is
also compatible with the self-similar scaling of equation
(17): taking t = (rf/a)3/2 in equation (19) yields

εs(r, t) = β
V r

1/2
i

a3/2

(
r

rf

)−3/2
, (20)

which agrees with the form (17).
Moreover, we can use equation (20) together with

equation (13) to obtain

εf =

(
β2

α

)1/3

We1/3, (21)

which is not only compatible with the experimental fit
εf = δWe1/3 as a scaling law – as seen in figure 4 – but
also in a quantitative manner through the prefactor. This
fact is clearly confirmed in figure 8, where the prefactor
β has been determined as β =

√
δ3α, where α = 6.1 and

δ = 0.22 are inferred from the experiments (see figure 4).
Equation (19) with this value for β fits well the numerical
values of the strain as a function of r/ri in a wide region
including rf .

The form (19) is valid on a large domain includ-
ing rf but not near the impactor (r >∼ ri) as seen
in figure 8. Looking for a generalization of equation
(19), we postulate that the strains behave like εs(r, t) =
(V t/ri)Es (r/ri) and εθ(r, t) = (V t/ri)Eθ (r/ri). We re-
call that these time and space dependancies are com-
patible with the self-similarity observed experimentally,
provided the function Es and Eθ scale like equation (19)

ε s(r
i / 

Vt
)

r/ri 

10-1

100 101 102 103

10-2

10-3

10-4

10-5

FIG. 8. Longitudinal strain along the membrane, rescaled
according to V t/ri, as a function of r/ri, when solving equa-
tions (11) and (7). The dashed line corresponds to the func-

tion β(r/ri)
−3/2, where β has been deduced from experimen-

tal measurements.

in a region enclosing rf . These observations are consis-
tent with the fact that the strain is constant in time in
the vicinity of rf .

To conclude this section, we recall the main results.
The transverse wave front observed in the experiments
travels with a well-defined law rf (t) = (αY εf t

2/ρ)1/3,
where α is a constant and the strain εf ≡ εs(rf ) de-
pends on the impact velocity through the scaling law
εf = δWe1/3. The prefactor δ and the power 1/3 are
experimental observations, but are also consistant with
a quasistatic membrane solution. This solution of the
simplified problem is obtained by imposing a vertical dis-
placement of the impactor −V t and a self-similar profile
(18) compatible with the experiments. Using this anal-
ysis of the strain field, we now investigate the wrinkles
observed in the experiments.

V. WRINKLING OF THE MEMBRANE

As seen in figure 1, as the waves extend, the mem-
brane presents an instability and wrinkles appear in two
distinct domains, for r < rf where the membrane is out
of its plane and is curved and for r > rf where the mem-
brane is roughly flat (in its nominal state i.e. before the
instability) but streched. We treat these domains inde-
pendently.

A. Wrinkling instability in the flat domain r > rf

The wrinkles that appear outside the cone are also ob-
served in the absence of a liquid substrate [18]. They
result from a buckling instability that is caused by the
motion of material points towards the impactor in the
domain delimited by the longitudinal wavefront located
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FIG. 9. (a,b) Dynamics of waves and wrinkling of an impacted membrane. The experimental parameters are ri = 2.38 mm
and (a) V = 26.4 m/s, h = 0.15 mm ; (b) V = 30 m/s, h = 0.30 mm. Pictures were taken at times: (a) t = 0, t = 0.6,
t = 1.4 and t = 2.2 ms (b) t = 0, t = 0.6, t = 1.2 t = 1.8 ms. Radial wrinkles can be seen in the cavity and outside the cavity
with different wavenumbers. The wrinkles outside the cavity have a well defined wavelength and as the wave propagates new
wrinkles appear (see arrow). (c) The wavelength of wrinkles outside the cavity agrees decreases impact speed according to
equation (23). (d) The number of wrinkles inside the cavity is different from the number of wrinkles outside the cavity. It does
not exhibit a clear variation with the sheet thickness. (e) The radius rf that has been reached by the transverse wavefront
when wrinkles appear in the cavity is proportional to the sheet thickness.

in ct and the transverse wave front located in rf . As
a result of the radial motion of the material points, a
compressive hoop stress εθ develops. This instability
has been described by Vermorel et al. [18] in the ab-
sence of the liquid substrate and we adapt the analysis
to describe the present case. As discussed in section IV
the strain near rf is roughly constant with the scaling

εθ ∼ εs ∼ We1/3 (figure 4). We consider the simple
problem of a beam of unit lateral length submitted to the
hoop stress σθ = E′εθ < 0: the beam here represents the
unfolded (i.e. uncurved) annulus near the radius r >∼ rf .
The dispersion relation for a transverse perturbation on
the beam [24] (not accounting for added mass) is

ρhω2 = σθhk
2 +

E′h3

12
k4 (22)

and the critical wavenumber is thus given by hkc ∼
(|σθ|/E′)1/2, leading to a wavenumber of the instability

λ

h
∼We−1/6 (23)

This result agrees with our observations as seen in figure
9c. We note also that, as in the absence of substrate, the
wrinkling instability selects a wavelength, rather than a
number of wrinkles. Thus as the waves propagate, new
wrinkles appear (figures 1 and 9).

B. Wrinkling instability in the cavity r < rf

Wrinkles are also observed inside the cavity unlike in
the absence of a liquid substrate where they are not ob-
served at least for moderate impact speed (compared to
the speed of sound waves in the material) [18, 21]. During
an experiment the number of wrinkles n observed in the
cavity tends to decrease as waves propagate. The num-
ber of wrinkles is smaller inside the cavity than outside
the cavity: in the last frame of figure 9 a, the estimated
number of wrinkles is 24 inside the cavity and 42 out-
side (near rf ). Moreover, the variations of n with the
Weber number and with the thickness h do not agree
with the scaling law (23). In particular, the variation
of the wavelength with the thickness of the membrane
shows a much weaker variation with the thickness h if
any. Such behaviour, and in particular the weak de-
pendence of wavelength with thickness, are observed for
patterns selected far above the threshold of buckling in
stressed membranes [25]. We propose here an analysis
of the pattern for a finite amplitude of the modulation
of the transverse displacement. We write the transverse
displacement (at a given time)

w(r, θ) = w0(r) + f(r) cos(nθ) (24)
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We consider that the transverse displacement relaxes the
orthoradial strain and thus that the length of a perimeter
2πR is equal to

∫
[(rdθ)2 + (dw)2] thus yielding

|εθ| ≈
n2f2(r)

4r2
(25)

This is a geometrical relation between the amplitude of
the pattern f and its wavenumber n. After having expe-
rienced a buckling instability, the membrane is bent. The
change of elastic energies associated with the wrinkling
take the form of a bending energy for which the strain is
(hκθ) where κθ ∼ (1/r2)∂2w/∂θ2 is the curvature

Ub ∼
∫∫

Y

(
h2

1

r2
∂2w

∂θ2

)2

rdrdθ, (26)

and a stretching energy, where the excess strain in the
radial direction resulting from the non-axisymmetric mo-
tion is proportional to (∂w/∂r)2 and thus

Us ∼
∫∫

(Y εs) [f ′(r) cos(nθ)]
2
rdrdθ. (27)

Noting F the scale for the amplitude f we have Ub ∼
Y h2F 2n4/r2f and Us ∼ Y εsF

2 where we have assumed
that the radial variations occur with a scale rf . Using
the relation F 2 ∼ r2f |εθ|/n2, it appears that Ub scales like

n2 and Us like n−2. Thus the elastic energy Ub + Us is
minimal when

n4 ∼
(rf
h

)2
εs (28)

The wavenumber that is observed in the experiment
results from the pattern that develops after the onset of
wrinkling. Wrinkling with a wavenumber n occurs when
the stretching energy associated with compression in the
orthoradial direction

Uθ ∼
∫∫

(Y εθ)
[n
r
f(r) sin(nθ)

]2
rdrdθ. (29)

is of the same order of magnitude as the bending energy
(26). With the scaling Uθ ∼ Y |εθ|n2F 2 one obtains an
instability when r2f = r? 2f ∼ h2n2/|εθ|. This estimation
of the characteristic time at which the pattern is selected
assumes that the instability growth time is comparable
with the time to reach the threshold of instability. Using
r?f in the scaling (28) yields

n ∼
(
εs
|εθ|

)1/4

and r?f ∼ h
ε
1/2
s

εθ
(30)

The selected number of wrinkles observed in the exper-
iment actually shows no clear variation with the thick-
ness h, whereas the radius at which wrinkles are observed
scales linearly with the thickness in agreement with the
present analysis (figure 9). We note however that the
model does not capture the weak dependance of the num-
ber of wrinkles with the Weber number: n increases with

the Weber number and r?f shows a variation weaker than

the expected We−1/6. This discrepancy between the sim-
plified model and the experimental results may be the
consequence of higher order corrections in ratio εs/εθ.
The quasistatic analysis used in section IV indicates that
the ratio εs/|εθ| increases weakly with the Weber number
(εs/|εθ| ≈ (1 + sWe1/3) where s <∼ 1 is a number).

VI. DECELERATION OF THE IMPACTOR

The propagation of waves on the membrane and in the
fluid is associated with a transfer of momentum from the
impacting object. As a result, the impactor decelerates.
The dynamics of the membrane as the sphere decelerates
is shown in figure 10. For the three impact speeds pre-
sented in the figure, the shapes of the membrane exhibit
significant differences: at low impact speed the angle γ
remains moderate, while at intermediate and high im-
pact speeds the angle at the contact with the impactor
(r = ri) reaches π/2. At high impact speeds (figure 10c)
the shape of the cavity is similar to the case of a non-
wetting sphere impacting a water surface (except for the
absence of pinch-off) [2]. This behaviour is characteristic
of high Weber numbers (here We = 3.4). After impact,
the sphere decelerates until it stops and then rebounds.
Figure 10d shows that the maximal penetration grows
linearly with the impact speed. For moderate and high
speeds, the time at which the maximal penetration oc-
curs does not change significantly with impact speed as
seen in the inset of figure 10e where the vertical position
of the impactor has been plotted as a function of time,
for different values of the impact speed.

In order to make a simplified analysis of the motion of
the sphere, we write the equation for the position z of
the impactor

m
d2z

dt2
+ Fi = 0 (31)

where m is the mass of the impactor and Fi the force
exerted by the impactor on the membrane. The simplest
form for the force is to assume a quasistatic behavior of
the membrane and to write the force

Fi = 2πriY εi sin γ(ri, t) ≈ 2πY kz(t) (32)

where we have used the result of section IV, εs(ri, t) =
kV t/ri with V t = z(t) and k = Es(1). We have also
made the approximation sin γ(ri, t) = 1 which is valid if
the impact speed is not too small. Most importantly, we
have assumed that the pressure impulse occurring just
after impact could be neglected in comparaison with the
tension in the membrane. This hypothesis comes from
the fact that the impact force scales like r2i , whereas the
tension scales like ri. As a consequence, we expect Fi to
be much larger than the impact force, as soon as εi is
non-negligeable.
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FIG. 10. Deceleration of the impactor. (a-c) Images of a
membrane of thickness h = 0.2 mm as a sphere of radius
2.38 mm and mass m = 0.44 g impacts and decelerates. The
interval between each frame is 1.07 ms. The impact speeds
are (a) V = 6.5 m/s, (b) V = 19.3 m/s, (c) V = 32.0 m/s.
(d) Maximal penetration of spheres of radius 2.25 mm and
mass m = 0.37 g (D1, disks), m = 0.72 g (D2, up-pointing
triangles) and m = 0.18 g (D3, down-pointing triangles) for
a membrane of thickness h = 0.19 mm and a sphere of mass
m = 0.37 g for a membrane of thickness h = 0.29 mm (D4,
crosses). The solid line is a linear fit for the data D1, and
the dashed lines are deduced from the theory (see text) for
data (D2,D3,D4). (e) When rescaled the raw trajectories of
the impactor (shown in the inset from bottom to top data
D1, with V = 4.19, 7.80, 15.0, 21.0, 25.4, 33.0 m/s) follow
approximately the same dynamics. The dashed line shows
the solution (33).

This simplified model with a Hookean restoring force
yields a solution, with initial conditions z(0) = 0 and
dz/dt(0) = V

z(t) = V τ sin

(
t

τ

)
, with τ =

( m

2πY k

)1/2
. (33)

The time scale obtained from the experiments, as the
slope of the curves in figure 10d is in fair agreement with
the time scale deduced from the quasi-static model: for
the data set D1, we find τ ≈ 1.11 ms from the experi-
ments (solid line in figure 10d), which yields k ≈ 0.070 in
fair agreement with k = εs(ri, t)ri/V t = Es(1) ≈ 0.05,
as seen in figure 8. With k ≈ 0.070 the other data
sets are well approximated by the lines zmax = V τ
(shown as dashed lines in figure 10d) where τ is com-
puted from equation (33) with the corresponding values
of the mass m and thickness h. Solution (33) is in qual-
itative agreement with the rescaled experimental curves
(figure 10e), apart from the position of the maximum.
We also note that a discrepancy is observed for the lower
speeds, caused by the variations of γ not accounted for
in the simplified model. It is also worth mentioning that
after its deceleration, the sphere is accelerated by the
membrane and finally ejected. Therefore we can mea-
sure a coefficient of restitution. The deceleration and re-
bound dynamics is presented in figure 11. The coefficient
of restitution increases with impact speed and seems to
have an asymptotic finite value as V → 0. These features
are also observed in the case of impact of non-wetting
spheres on a water surface [26].

It is interesting to compare the dynamics of the float-
ing membrane to the case of an impacted plate. In the
present case, the stretching at the contact with the im-
pactor, that will ultimately (for high speeds) be respon-
sible for the puncturing of the membrane, increases pro-
gressively with time with a time scale ri/V while the de-
celeration occurs at a time scale ∼ (m/Y )1/2. This is dif-
ferent from the case of an impacted plate of thickness h,
characterized by its bending rigidity, where the nominal
curvature V/(ch) is reached very rapidly, within the short
time necessary to establish the Hertzian response of the
plate: this time is typically tH ∼ (h/c)(c/V )1/3(h/ri)

1/3

[27].

VII. CONCLUSIONS

We have studied the behaviour of a membrane floating
on a liquid pool impacted by a rigid object. The mem-
brane is initially stress free. Tension in the membrane
develops as a result of the impact and the dynamics of
the transverse wave is coupled with the tension wave. We
have shown that the strain distribution – and therefore
the stress distribution – observed in the experiments on
the membrane is fully consistent with a simplified the-
oretical model. This model consists in the assumptions
that the transverse wave front travels in the radial direc-
tion with a t2/3 law and that the membrane is, at each
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FIG. 11. (a-c) z-t diagrams showing the entry at velocity
V , deceleration and exits at velocity Vexit of a sphere corre-
sponding to the images of figure 10. (d) The coefficient of
restitution varies with the impact speed.

instant, in internal equilibrium. This model allowed us
to describe the shape of the membrane in the region of
the transverse wave as a self-similar function, analog to
surface-tension-dominated free-surface flows. The equiv-
alent local surface tension coefficient, derived from the
theory, is constant in time and increases like the Weber
number to the power 1/3 as observed in the experiments.
Moreover, the theoretical expression for the strain in the
transverse wave region gives a scaling for the wavelength
of the wrinkles observed at long-time, which is in agree-
ment with the experiments. Finally, the model allows
us to understand the deceleration of the impactor : the
agreement between the theory and the experiments is

fairly good in this purpose.
We leave here, as a perspective of this work, a deeper

experimental study of the deceleration of the impactor
and the wrinkles growth. In order to conclude on this
aspect, we shall need to change the material proper-
ties (thickness of the membrane and Young’s modulus,
though the domain of variations is limited by the bending
response that will unavoidably affects the wave dynamics
for thick or rigid membranes) and the liquid properties
(density, kinematic viscosity) in order to disentangle this
complex long-time dynamics. One remaining open ques-
tion that this future work should address is the amount
of energy transfer during the impact. Indeed, quantify-
ing the energy transferred into kinetic energy (inside the
fluid) and elastic energy (in the membrane) should have
many applications.
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Appendix A: Self similar system of equations

The self-similar ansatz for the velocity potential, the
pressure jump across the membrane, the vertical dis-
placement and the two strains are

φ(r, z, t) = a2t1/3Φ(ξ, ζ), p(r, z, t) = ρa2t−2/3P (ξ, ζ),

w(r, t) = ηat2/3W (ξ) (A1)

εs = Es(ξ), εθ = Eθ(ξ),

where ξ = r/rf , ζ = z/rf , a = (Y εf/ρ)1/3. Plugging
these expressions into mass conservation and equations
(1, 2, 10 – 7), we obtain the following set of equations :

∆Φ = 0 (A2)

for ζ ≤W (ξ) and

2

3
ηW (ξ)− 2

3
ηξW ′(ξ) = Φζ − ηW ′(ξ)Φξ

1

3
Φ− 2

3
(ξΦξ + ηW (ξ)Φζ) +

1

2
∇Φ2 + P = 0

d

dξ

[
ξ

(
Es +

Eθ
2

)]
−
(
Eθ +

Es
2

)
= 0

ξ

1 + Eθ

dEθ
dξ

+
1 + Eθ
1 + Es

√
1 + η2W ′2(ξ) = 1(

Es +
Eθ
2

)
dγ

dξ
+

(
Eθ +

Es
2

)
W ′(ξ)

ξ

+ P
√

1 + η2W ′2(ξ) = 0

for ζ = W (ξ)
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