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The nonlinear normal mode methodology is generalized
to the study of a rotating shaft supported by two short jour-
nal bearings. For rotating shafts, nonlinearities are gener-
ated by forces arising from the supporting hydraulic bear-
ings. In this study, the rotating shaft is represented by a linear
beam, while a simplified bearing model is employed so that
the nonlinear supporting forces can be expressed analyti-
cally. The equations of motion of the coupled shaft-bearings
system are constructed using the Craig–Bampton method of
component mode synthesis, producing a model with as few
as six degrees of freedom (d.o.f.). Using an invariant man-
ifold approach, the individual nonlinear normal modes of
the shaft-bearings system are then constructed, yielding a
single-d.o.f. reduced-order model for each nonlinear mode.
This requires a generalized formulation for the manifolds,
since the system features damping as well as gyroscopic and
nonconservative circulatory terms. The nonlinear modes are
calculated numerically using a nonlinear Galerkin method
that is able to capture large amplitude motions. The shaft
response from the nonlinear mode model is shown to match
extremely well the simulations from the reference Craig–
Bampton model.

Keywords Invariant manifold method, Nonlinear normal modes, Oil-
whip, Oil-whirl, Shaft-bearing system

Many rotating structures are supported by devices that are
inherently nonlinear, e.g., journal bearings. The dynamic anal-
ysis of nonlinear rotating systems has been the subject of a
number of studies, for example, those of Yamauchi (1983) or
Kim and Noah1 (1991a), who employed the method of har-
monic balance. Choi and Noah (1987) added discrete Fourier
transform procedures to the harmonic balance method and also
included subharmonic response components. Kim and Noah2

(1991b) used dynamic condensation techniques in conjunction
with the harmonic balance method, in order to reduce the size
of the system models. The objective of the present work is to
develop reduced-order models of nonlinear shaft-bearings sys-
tems using the invariant manifold-based nonlinear normal mode
methodology.

Nonlinear normal modes (NNM) provide a general frame-
work for the construction of reduced-order models for nonlinear
systems. The concept of NNM was first introduced by Rosenberg
(1966) with the study of conservative, symmetric, nonlinear sys-
tems. A NNM was defined in the configuration space so that its
application was strictly limited to systems without gyroscopic
effects and damping. Shaw and Pierre (1993) extended the defi-
nition of nonlinear normal modes using invariant manifold tech-
niques, wherein a NNM is defined as a two-dimensional invariant
surface in the phase space, which is tangent to the hyperplane
that represents the corresponding mode of the linearized model.
The NNM response is thus captured by a single-d.o.f nonlin-
ear oscillator. Using this more general definition, a systematic
construction method for NNM has been proposed by Boivin
(1995) and Pesheck (2000) for nonlinear systems with quadratic
and cubic nonlinearities, including systems with a large number
of d.o.f. and for large amplitude motions. Nayfeh and Nayfeh
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(1994) also used the invariant manifold approach to construct
NNM using perturbation methods for weakly nonlinear systems.

In this article, the NNM are constructed for an established
model of a nonlinear shaft-bearings system, which consists of a
linear rotating shaft supported by short nonlinear journal bear-
ings at its two ends. Since the linearized system is gyroscopic,
damped, and (nonconservative) circulatory—thus featuring a
non-symmetric stiffness matrix—an extension of the invariant
manifold approach is required in order to accommodate these
effects. The NNM are shown to provide very accurate reduced-
order models of the shaft-bearings system.

The article is organized as follows. In the first section, the
mathematical model of the shaft-bearings system is derived us-
ing component mode synthesis (CMS). Then, in the second
section, the vibration modes of the linearized system are in-
vestigated. Finally, in the third section, the theory of NNM is
extended to systems whose linearized counterpart is gyroscopic,
nonconservative, and circulatory, and the individual NNM in-
variant manifolds of the nonlinear shaft-bearings system are
calculated.

THE ROTATING SHAFT-BEARINGS SYSTEM
A diagram of the system of interest, a rotating shaft supported

by short journal bearings at its two ends, is shown in Figure 1.
A Rayleigh beam with uniform cross-section properties is used
to model the shaft, which is assumed to be perfectly balanced.
The forces created by the oil film in the bearings are nonlinear
and can be represented as nonlinear boundary conditions for the
beam.

In Figure 1, the inertial frame, RXYZ, is fixed in space and
the Y-axis passes through the centers of the bearings at the two
ends. The shaft is defined by its length L = 1 m, outer diameter
D2 = 0.0592 m, and inner diameter D1 = 0.02 m. The nominal
clearance between the bearing and the shaft is set as c = (D3 −
D2)/2 = 5.1·10−5 m, where D3 is the inner diameter for both
bearings. The length of the bearing is Lb = 0.0285 m, and the
dynamic viscosity of the oil film is chosen as µ= 0.0068 N·s/m2.

FIGURE 1
Schematic of the shaft-bearings system.

The Shaft Model
From the Rayleigh beam theory, the kinetic energy, T, and

strain energy, U, of the rotating shaft are given by, respectively:

T = ρA

2

∫ L

0
(u̇2 + ẇ2)dy + ρI

2

∫ L

0

((
∂ u̇

∂y

)2

+
(

∂ẇ

∂y

)2)
dy

+ ρIL�2 − 2ρI�
∫ L

0

∂ u̇

∂y

∂w

∂y
dy [1]

U = EI

2

∫ L

0

((
∂2u

∂y2

)2

+
(

∂2w

∂y2

)2)
dy [2]

where u(y, t) and w(y, t) are the displacements of the points on the
neutral axis of the shaft in the X and Z directions, respectively,
� is the constant angular velocity of the shaft, A is the shaft’s
cross-sectional area, and I is the second area moment of inertia
of the cross section. The material parameters for the shaft are
its Young’s modulus E = 2.1·1011Pa and mass density ρ =
7800 kg/m3.

In order to obtain an efficient discretized model for the rotat-
ing shaft, the method of component mode synthesis developed
by Craig and Bampton (1968) is applied, where the shaft is
the linear substructure constrained at its ends by the nonlinear
bearings. This allows for the nonlinear effects of the supporting
bearings to be captured solely by the d.o.f. corresponding to the
static constraint modes. The shaft displacements u and w are
thus each expanded as a linear combination of the modes of free
vibration of the shaft pinned at both ends and two constraint
modes, each corresponding to a rigid body motion of the shaft
induced by a unit displacement at one of its ends:

u(y, t) =
m∑

i=1

�i(y)ai(t)

w(y, t) =
m∑

i=1

�i(y)bi(t) [3]

where

�i (y) =




sin
( iπy

L

)
i = 1, . . . , m − 2

y/L i = m − 1

1 − y/L i = m

The first (m − 2) expansion functions are the mode shapes of the
simply supported shaft and the final two are the static constraint
modes. We substitute the expansion functions for u and w into
Hamilton’s principle,∫ t2

t1

(δT − δU + δW)dt = 0 ∀(t1, t2) [4]

where δW is the virtual work done by the gravity force and the
nonlinear supporting forces of the two bearings. The resulting
discretized model is given as:

[M1]{ẍ} + [G1]{ẋ} + [K1]{x} = {F} [5]
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FIGURE 2
Schematic of the journal bearing model.

where

{x} =
{ {a}

{b}
}
, [M1] =

(
ρS

[
[A] [0]

[0] [A]

]
+ ρI

[
[B] [0]

[0] [B]

])
,

[G1] = 2ρI�

[
[0] [B]

− [B] [0]

]
, [K1] = EI

[
[C] [0]

[0] [C]

]

Here {a} and {b} are m-vectors of the generalized coordinates
generated by the CMS formulation, ai and bi, respectively. The
matrices [A], [B], and [C] are listed as follows:

[A] =
∫ L

0
[�(y)]T[�(y)]dy

[B] =
∫ L

0
[�,y(y)]T[�,y(y)]dy

[C] =
∫ L

0
[�,yy(y)]T[�,yy(y)]dy

The matrices [M1], [G1], and [K1], are the inertia, gyroscopic,
and stiffness matrices, respectively. Note that {x} is defined with
respect to the inertial frame RXYZ. The force vector {F} has the
form:

{F} = −ρgA
∫ L

0
{�(y)}dy + {F2(x, ẋ)} = {F1} + {F2(x, ẋ)}

[6]

where the first term is the gravitational load, and the second
term {F2} is the supporting force at the journal bearing, which
is considered next.

The Bearing Forces
In Figure 2, RXYZ is the inertial frame and � is the angular

velocity, defined in Figure 1. The nominal thickness of the oil
film is h, e is the eccentricity between the bearing axis and the
shaft axis, and φ is the attitude angle of the line connecting
the bearing and shaft centers with respect to the Z-axis. The
horizontal and vertical displacements of the center of the shaft
(the journal) in the bearing are denoted as xj and zj, respectively
(j for journal). The thickness of the oil film, h, can be expressed
as:

h = c − zj cos (θ + φ) + xj sin (θ + φ) [7]

where c is the nominal clearance between the shaft and the bear-
ing. Based on Reynolds’ equation, the pressure of the oil film
can be modeled as :

∂

∂y

(
h3

6µ

∂p

∂y

)
+ 1

R2

∂

∂θ

(
h3

6µ

∂p

∂θ

)
= �

∂h

∂θ
+ 2

∂h

∂t
[8]

In Equation (8), µ is the fluid viscosity, R is the outer radius
of the beam, and p is the fluid film pressure. The short bearing
assumption implies that R2 is preponderant in Equation (8), so
that the second term on the left-hand side in Reynolds’ equation
can be neglected. This yields:

h3

6µ

∂2p

∂y2
= �(zj sin(θ + φ) + xj cos(θ + φ))

− 2(żj cos(θ + φ) − ẋj sin(θ + φ)) [9]

The boundary conditions over y are p(θ , 0) = p(θ , Lb) = 0, where
Lb is the length of the bearing and θ is integrated over [0, π ]
instead of [0, 2π ] due to cavitation effects described by Vance
(1988). Then the two forces created by the pressure field are
the integrals of the pressure over the fluid-film surface contact.
A dimensionless analysis of the problem leads to the following
definitions:

Zj = zj

c
, Xj = xj

c
, Żj = żj

� c
, Ẋj = ẋj

� c [10]
H = 1 − Zj cos(θ + φ) + Xj sin(θ + φ)

where H is the dimensionless fluid-film thickness. Then, the
resultant forces FX and FZ in the X and Z directions can be
obtained as (see Lee, 1993):

FX = −µRL3�

2c2

∫ π

0

(
Zj sin(θ + φ) + Xj cos(θ + φ) − 2(Żj cos(θ + φ) − Ẋj sin(θ + φ))

H3

)
sin(θ + φ)dθ [11a]

FZ = µRL3�

2c2

∫ π

0

(
Zj sin(θ + φ) + Xj cos(θ + φ) − 2(Żj cos(θ + φ) − Ẋj sin(θ + φ))

H3

)
cos(θ + φ)dθ [11b]

Both forces are nonlinear in the displacements and velocities
of the shaft’s ends, involving complicated integrals that can be
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obtained analytically using commercial mathematical software
such as Maple

©R .

THE LINEARIZED MODEL
Complex modal analysis is applied to the system linearized

about its equilibrium position to determine the natural modes of
vibration and the shaft’s first critical speed.

The Equilibrium Position
The dimensionless equilibrium position of the shaft center is

given by Ocvirck (1952) as:{
Ze = −εe cos φe

Xe = εe sin φe
where φe = arctan

(
π

√
1 − ε2

e

4εe

)
[12]

and the dimensionless eccentricity εe = ee/c is the solution
of:

µN

f

R

2c2
L3

b = (1 − ε2)2

πε
√

π2(1 − ε2) + 16ε2
[13]

where N (with � = 2πN) is the angular frequency and f is the
load, which in this study is given by the weight of the beam. [The
locus of the equilibrium position versus � is shown on Fig. 3].
By linearizing the bearing forces with respect to this equilibrium

FIGURE 3
Locus of the equilibrium position versus �.

position, the stiffness matrix (K2) (which is not symmetric) and
the damping matrix (D2) can be obtained as:

K2IJ = ∂FI

∂J

∣∣∣∣ and D2IJ = ∂FI

∂ J̇

∣∣∣∣
with I = (X, Z) and J = (X, Z)

where Z = Zj − Ze and X = Xj − Xe. The eight dimension-
less coefficients for these matrices are given by Lee (1993) as
follows:

KZZ = −4(π2 + (32 + π2)ε2 + 2(16 − π2)ε4)

1 − ε2
.Q(ε)

KZX = π (π2 + (32 + π2)ε2 + 2(16 − π2)ε4)

ε
√

1 − ε2
.Q(ε)

KXZ = −π (π2 − 2π2ε2 − (16 − π2)ε4)

ε
√

1 − ε2
.Q(ε)

KXX = −4(2π2 + (16 − π2)ε2).Q(ε)

CZZ = −2π (π2 + 2(24 − π2)ε2 + π2ε4)

ε
√

1 − ε2
.Q(ε)

CZX = 8(π2 − 2(8 − π2)ε2).Q(ε)

CXZ = CZX
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CXX = −2π
√

1 − ε2(π2 − 2(8 − π2)ε2)

ε
.Q(ε)

Q(ε) = 1

(π2(1 − ε2) + 16ε2)3/2

The relationships between the dimensionless and the dimen-
sional coefficients are:

KIJ = kij·c
f

and CIJ = cij·c·�
f

The Linear Modes
In order to study the modes of free vibration of this system,

Equation (5) is linearized with respect to the equilibrium posi-
tion. The linear system can be written in the following general
form:

[M]{ẍ} + [C]{ẋ} + [K]{x} = {0} [14]

where [M] = [M1], [C] = [G1] − [D2], [K] = [K1] − [K2], and
{x} is defined relative to the equilibrium position.

Complex modal analysis can be applied to the state space
formulation of the system. Defining the velocity vector as {y} =
{ẋ}, Equation (14) can be written in first-order form as:

{ż} = [D]{z} [15]

where

{z} =
{{x}
{y}

}
and [D] =

[
[O] [I]

−[M]−1[K] −[M]−1[C]

]

Since the matrix [D] is real, those eigensolutions that are com-
plex must occur in conjugate pairs. Since the NNM are to be de-
fined in terms of real modal coordinates, a traditional complex
mode transformation matrix would lead to difficulties in con-
structing the corresponding invariant manifolds. Thus, herein
a real modal transformation is chosen that renders the matrix
[D] block diagonal. More details on this procedure are given
by Hirsch and Smale (1974). This is achieved by constructing
the matrix [Z′], whose columns are the real eigenvectors and
the real and the imaginary parts of the complex eigenvectors, as
follows:

[Z′] = [�z1, �z1, . . . , �zp, �zp, z2p+1, . . . , z2N] [16]

where N is the total number of d.o.f. for the rotating shaft system
described by Equation (5), and is equal to 2 m.

Letting {z(t)} = [Z′]{η(t)}, Equation (15) is transformed into:

{η̇(t)} = [�′]{η(t)}, [17]

with

[�′] =




�λ1 �λ1

−�λ1 �λ1 0

. . .

�λp �λp

−�λp �λp

λ2p+1

0
. . .

λ2N




The resulting first-order equations are at worst pairwise coupled.
Those equations that are uncoupled are associated with the real
eigenvalues and correspond to overdamped modes, whose dy-
namics occur in a one-dimensional linear subspace. Motions
in these modes are decaying and non-oscillatory. The modes
associated with the complex conjugate pairs of eigenvalues cor-
respond to the 2 × 2 diagonal blocks of [�′] and are for under-
damped, oscillatory modes. The dynamics of these modes oc-
cur in two-dimensional subspaces. Motions in the underdamped
modes consist of decaying oscillations, which are described by
pairs of first-order differential equations:




ṡi = −ζiωisi + ωi

√
1 − ζ 2

i ti

ṫi = −ωi

√
1 − ζ 2

i si − ζiωiti
i = 1, . . . , p [18]

where ωi is the undamped natural frequency of the mode and ζi

its modal damping ratio, both of which are defined from �λi =
−ζiωi and �λi = ωi

√
1 − ζ 2

i . Also, si = η2i−1 and ti = η2i

are the components of {η} associated with the ith underdamped
mode.

Stability of The Linear Model
In the Lyapunov sense, the system is unstable if the real part

of any eigenvalue is positive. The linear motion associated with
such an instability becomes infinitely large with time and thus
linear theory breaks down. The eight coefficients of the linear
model given by Lee (1993) are strongly linked to the stability
of the system, especially the cross-coupled stiffness terms. In
this study we have examined the stability of the shaft-bearings
system using two, four, and six normal modes of vibration to
describe the shaft motion, corresponding, respectively, to shaft-
bearings models with six, eight, and ten d.o.f.s. The results for
these three models have been found to be in close agreement,
indicating that a single normal mode in each direction is suf-
ficient to represent the shaft’s motion. This makes sense since
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FIGURE 4
Stability of the linear model: largest real part of the eigenvalues versus �.

the shaft is balanced and thus the first beam mode is domi-
nant. Therefore, the six-d.o.f. model is employed in the remain-
der of the paper. Figure 4 shows that the linearized system is
unstable when the angular velocity of the shaft is larger than
375 rad/s.

Linear Mode Motions
As the convergence study indicated, a six-d.o.f. model is

sufficient to capture accurately the lower oscillating modes of
the system. Recall that this model includes one free vibration
normal mode and two static constraint modes for the shaft in
each of the X and Z directions. The eigenanalysis was car-
ried out in the state space in terms of the shaft angular
velocity.

It was found that up to approximately � = 550 rad/s, the
shaft-bearings system possesses four, one-dimensional over-
damped modes, corresponding to real eigenvalues, and four,
two-dimensional oscillatory modes, corresponding to complex
eigenvalues. Two of the four overdamped modes become a single
two-dimensional oscillatory mode as � grows beyond 550 rad/s,
and the last two overdamped modes turn into a sixth oscillatory
mode for � > 700 rad/s as shown in Figures 5a and 5b. In the
following, we focus on the oscillatory motions at the rotation
speed � = 100 rad/s. Since both real and imaginary parts are
very close together for the two first modes, their undamped nat-
ural frequency and modal damping ratio are very close too, as
depicted in Figures 6 and 7.

The physical nature of the modes can be depicted as follows.
In Figures 6–9, curves are drawn for each oscillating mode in the
X and Z coordinates that display the displacements of both ends
of the beam as they move in the bearings during a modal mo-
tion. The accompanying sketches of the shaft show it as straight,
whereas in reality it deflects in its first vibration mode (al-
though its amplitude is relatively small compared to the bearing
deflections).

Comparison Between Nonlinear and Linear Models
Using a very small disturbance from the equilibrium position

as initial conditions for both the linear and nonlinear models, the
time simulation results are seen to be very close in Figure 10.
For � = 100 rad/s, which lies in the stable range, after a short
time the beam settles back to its equilibrium position.

As seen in Figure 11, for a much larger shaft rotation speed,
� = 2550 rad/s, the linear model is unstable, as the angular
velocity is then greater than the critical speed, �c ≈ 375 rad/s,
whereas the nonlinear model reaches a limit cycle corresponding
to oil whirl detailed by Muszynska (1986). For a lightly loaded
shaft, the whirl occurs at a frequency that is exactly half the
shaft’s angular velocity, and here the whirl motion frequency
is 1225 rad/s. The thick black line in Figure 11 represents the
largest displacement of the center point of the shaft at the bearing
location that is kinematically allowed. As shown in Figure 11, the
oil whirl phenomenon cannot be predicted by linearized stability
theory.
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FIGURE 5a
The largest four real parts of the eigenvalues versus �.

FIGURE 5b
Imaginary part of the eigenvalues versus �.
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FIGURE 6
First linear mode shape at � = 100 rad/s: ω1 = 50.647, ζ1 = 0.1166.

NONLINEAR NORMAL MODES
For a linear system, an important property of a modal motion

is that if one knows the motion of a single generalized coor-
dinate, then the motions of all others coordinates are specified
by that mode’s eigenvector. The same property is used for the
nonlinear case, wherein a motion in a nonlinear normal mode is
defined such that all displacements and velocities are function-
ally related to a single displacement-velocity pair. In a NNM
the nonlinear system thus behaves essentially as a single-d.o.f.
oscillator. Even though NNM are defined using a linear nor-
mal mode concept, the similarities stop there. Many results ob-
tained by NNM have no counterparts in linear systems, such as
amplitude-dependant frequencies and internal resonances (see
Nayfeh and Mook [1979]), where two NNM exchange energy
during the motion.

Using the concept of invariant manifolds, Shaw and Pierre
(1993) defined a NNM as a motion that lies on a two-dimensional
invariant manifold in the system’s phase space. Here “invariant”
indicates that any motion initiated on the manifold will remain on
it for all times. A single displacement-velocity pair is chosen as
master coordinates, which characterize the individual nonlinear
mode motion. All the remaining “slave” coordinates are parame-
terized by these two master coordinates and give the constrained
conditions. Previous work on the invariant manifold method has
been restricted to systems with diagonal stiffness and damp-
ing matrices in the modal coordinates space. However, in order
to construct NNM for the rotating shaft system, a new formu-
lation had to be introduced for obtaining the PDE governing
the invariant manifold. This new formulation is more general
and can be applied to systems with nonproportional damping

8



FIGURE 7
Second linear mode shape at � = 100 rad/s: ω2 = 50.676, ζ2 = 0.1112.

forces, gyroscopic effects, and nonsymmetric circulatory stiff-
ness matrices.

NNM Formulation
In this section we use Equation (5) written with respect to the

equilibrium position. The equations of motion become:

[M]{ẍ} + [C]{ẋ} + [K]{x} = {FNL(x, ẋ)} [19]

and

{FNL(x, ẋ)} = {F2(x + xe, ẋ)} − [K2]{x} − [D2]{ẋ}
+ {F1}−[K1]{xe}

where {x} is defined with respect to the equilibrium position {xe}.
All the matrices and forces in this equation have been defined
in previous sections. Equation (19) are transformed following

the procedure of Equation (15) and the linear transformation of
Equation (17) is carried out. It is assumed that the real linear
transformation can be written as follows:

[�′] =




α1 β1

β2 α2

. . .

α2N−1 β2N−1

β2N α2N




[20]

{
αk = αk+1

βk = −βk+1
k = 1, 3, . . . , p − 1,

{
αk �= αk+1

βk = βk+1 = 0
k = p + 1, p + 3, . . . , 2N − 1

9



FIGURE 8
Third linear mode shape at � = 100 rad/s: ω3 = 775.495, ζ3 = 0.0457.

Then, the new equations of motion are:




ṡ1

ṫ1
...

ṡN

ṫN




=




α1 β1

β2 α2

. . .

α2N−1 β2N−1

β2N α2N




.




s1

t1
...

sN

tN




+




f1

f2

...

f2N−1

f2N




[21]

with nonlinear forces:

{f} = [Z′]−1

{ {O}
{FNL({x(η, η̇)}, {ẋ(η, η̇)})}

}

The new set of master coordinates is defined as:

{
sk = a cos φ

tk = a sin φ
[22]

where sk and tk are one pair of real linear coordinates defined in
Equation (18), chosen as one of the oscillating modes.

The equations of coherence are:




ṡk = ṡk ⇔ ȧ cos φ − aφ̇ sin φ

= α2k−1a cos φ + β2k−1a sin φ + f2k−1

ṫk = ṫk ⇔ ȧ sin φ + aφ̇ cos φ

= β2ka cos φ + α2ka sin φ + f2k

[23]

10



FIGURE 9
Fourth linear mode shape at � = 100 rad/s: ω4 = 775.684, ζ4 = 0.0561.

Equation (23) yields:




ȧ = α2k−1a cos2 φ + α2ka sin2 φ + f2k−1 cos φ + f2k sin φ

φ̇ = −β2k−1 + (α2k − α2k−1) sin φ cos φ − f2k−1 sin φ

a

+ f2k cos φ

a
[24]

Following the definition of the invariant manifold, all the other
d.o.f. are constrained in the (a,φ) coordinates:{

si = Pi(a, φ)

ti = Qi(a, φ)
i = 1, . . . , N i �= k [25]

The time-independent partial differential equations in Pi and Qi

governing the invariant manifold geometry can be written by
combining Equations (21) and (25):




ṡi = ∂Pi

∂a
ȧ + ∂Pi

∂φ
φ̇ = α2i−1si + β2i−1ti + f2i−1

i = 1, . . . , N
i �= k

ṫi = ∂Qi

∂a
ȧ + ∂Qi

∂φ
φ̇ = β2isi + α2iti + f2i

[26]

In those equations, ȧ and φ̇ have to be replaced by expressions
(24). A computation is necessary to approximate the manifold.
As Pi and Qi must be periodic in φ due to the transformed co-
ordinates, they are expanded as a double series in the amplitude
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FIGURE 10
Trajectory of one end of the shaft for a very small initial disturbance and � = 100 rad/s.

FIGURE 11
Trajectory of one end of the shaft for a very small initial disturbance and � = 2550 rad/s.
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FIGURE 12
Internal resonance between mode 1 and mode 2: imaginary and real parts of the eigenvalues with � as a parameter.

FIGURE 13
First nonlinear normal mode invariant manifold: P4 and Q4 versus amplitude a and phase φ.
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FIGURE 14
Motion on the first nonlinear normal mode: t4 versus s1 and t1 obtained using both the NNM reduced-order model and the

full system.

FIGURE 15
Sixth nonlinear normal mode invariant manifold: P4 and Q4 versus amplitude a and phase φ.
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and the phase:




Pi(a, φ) =
Na∑
l=1

Nφ∑
m=1

Cl,m
i Tl,m(a, φ)

Qi(a, φ) =
Na∑
l=1

Nφ∑
m=1

Dl,m
i Ul,m(a, φ)

i = 1, . . . , N i �= k

[27]

where Cl,m
i and Dl,m

i are the unknown expansion coefficients and
Tl,m and Ul,m are the known shape functions, typically prod-
ucts of functions of a over [0, amax] and φ over [0, 2π ]. These
functions are harmonic cosinus and sinus functions in φ and
piecewise first-degree polynomials in a. Na and Nφ are the num-
ber of expansion functions used in the a and φ directions, re-
spectively. The more of these functions that are used, the more
accurate the approximation is. Expansions (27) are substituted
into Equation (26) and a Galerkin projection (multiplication
by test function and integration over the chosen domain, i.e.,
[0, amax] × [0, 2π ]) is carried out. This yields a set of nonlin-
ear algebraic equations in the coefficients C and D which, when
solved, produces a solution that minimizes the error for the given
expansion in a least squares sense.

FIGURE 16
Motion on the sixth nonlinear normal mode: t4 versus time obtained using both the NNM reduced-order model and the full system.

Results and Discussion
The above single-NNM formulation cannot handle systems

with internal resonances, for which a multi-nonlinear manifold
formulation would be needed. Thus, it is necessary to determine
under what conditions an internal resonance can occur for the
system.

An internal resonance can occur if there exists positive or
negative integers m1, m2, . . . , mn such that m1ω1 +m2ω2 +· · ·+
mnωn = 0. In this case, strong nonlinear interactions between the
corresponding modes may take place. To check for the presence
of internal resonances in the shaft-bearings system, the loci of the
eigenvalues of the linearized system are plotted in the complex
plane, with the angular speed � as a parameter, as shown in
Figure 12.

Here � varies from 0 to 4000 rad/s, and four distinct branches
of complex conjugate pairs of oscillatory eigenvalues are ob-
served (the other modes fall outside the scale of the plot). In
order to avoid a one-to-one internal resonance, the eigenvalues
must not be close to one another. Note that such a resonance pre-
cisely takes place between mode 1 and 2 for � approximately
between 0 and 200 rad/s. It was found that in this region, the
single-mode manifolds could not be calculated, and a two-mode
manifold would be needed to capture the internal resonance.
Hence this region was avoided.
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In order to avoid the above internal resonance, nonlinear man-
ifolds were calculated for � = 300 rad/s. Figure 13 shows
components of the invariant manifold for the first nonlinear os-
cillating normal mode. Namely, the contributions P4 and Q4 of
the fourth linear mode are depicted in terms of the amplitude a
and phase φ. For a motion initiated on this invariant manifold,
Figure 14 shows the nearly perfect agreement between the time
histories calculated from the NNM single-d.o.f. reduced-order
model and the full shaft bearings modal, Equation (5). Note that
the latter is another possible view of a manifold, directly in the
(s,t)-space instead of the (a,φ)-space. It is important to notice that
using the new NNM formulation and the real linear transforma-
tion, nonlinear manifolds can be calculated for both overdamped
and oscillatory normal modes. In every computation, the nonlin-
ear manifolds have been constructed with Na = Nφ = 20, and
the dynamics on these manifolds are compared to the exact solu-
tion, using a fourth order Runge–Kutta method time-integration
of these first-order differential equations with the same initial
conditions.

Figures 15a and 15b depict the contributions P4 and Q4 of
the fourth linear mode to the sixth nonlinear overdamped mode.
Differences between the NNM reduced-order model and the
exact solution are negligeable as illustrated in Figure 16, for a
motion initiated on the sixth NNM manifold.

CONCLUSIONS
The nonlinear normal mode invariant manifold approach has

been successfully extended to describe the vibration behavior
of nonlinear mechanical systems with general damping, gyro-
scopic, and stiffness matrices. This new formulation is based on
a real linear transformation and a new set of coordinates in am-
plitude and phase. The nonlinear Galerkin method used to solve
for the invariant manifold geometry gives very good results and
is quite fast. The methodology has been applied successfully to
the construction of the NNM of a rotating shaft with nonlinear
bearings.

Although similar results could be obtained using classical
methods for nonlinear systems (e.g., harmonic balance, multi-
ple scales), the present approach produces systematically very
accurate and minimal NNM reduced-order models. It holds sig-
nificant promise for the study of realistic shaft models with mass
imbalance, physical phenomena such as oil whirl, and internal
resonances using multi-mode manifolds.

NOMENCLATURE
A area of the cross section of the shaft,

2.438·10−3 m2

D1 inner diameter of the shaft, 2.10−2 m
D2 outer diameter of the shaft, 5.92.10−2 m
D3 inner diameter of the bearing, 5.92.10−2 m
c nominal clearance, 51.10−6 m
e eccenticity
E young modulus, 2.1.1011 Pa

ε = e/c dimensionless eccentricity
{η} vector defined by {s1,t1, . . . ,sN,tN}
f load (weight of the shaft), 186.42 N
{f} vector of the bearing nonlinear forces in

the (s,t)-space
{FNL} vector of the bearing nonlinear forces
h oil film thickness
I second moment of inertia of the cross sec-

tion, 1.19.10−6 m4

L length of the shaft, 1 m
Lb length of the bearing, 2.86.10−2 m
N = �/2π rotational frequency of the shaft
� angular velocity of the shaft, rad/s
p pressure in the oil film
φ attitude angle
R = D2/2 outer radius of the shaft, 2.96.10−2 m
ρ mass density of the shaft, 7800 kg·m−3

µ viscosity, 6.8.10−3 N·s/m3

u, w displacement of the shaft in X and Z
direction, respectively

xj, zj coordinates of the center of the shaft in
the bearing

{x} generalized coordinates vector
[M1], [G1] and [K1] mass, gyroscopic, and stiffness matrices

of the shaft, respectively
[K2], [D2] stiffness and damping matrices obtained

by linearizing the nonlinear forces cre-
ated by the oil film, respectively
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