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Abstract. We show that the Volterra operator viewed from L1([0, 1])
to C([0, 1]) is finitely strictly singular. Actually we estimate the Bernstein
numbers and show that their value is 1/(2n − 1) in the case of real valued
functions. The same ideas apply to the summation operator.
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1 Introduction

In this paper, the spaces C([0, 1]) is the space of continuous functions on
[0, 1], equipped with the uniform norm. The spaces Lp([0, 1]) (where p ≥ 1)
are the usual Lebesgue spaces of integrable functions over [0, 1] relatively to
the Lebesgue measure. We shall work with real valued functions. Neverthe-
less, the conclusion of Theorem 2.1 remains valid in the complex case (see
remarks at the end of section 1).

We are interested in the Volterra operator V :

L1([0, 1]) −→ C([0, 1])
f 7−→ V (f)

with

V (f)(x) =

∫ x

0
f(t) dt.

The operator V is clearly well defined and bounded with norm 1.
As soon as the Volterra operator is viewed from Lp([0, 1]) to C([0, 1])

with p ∈ (1,+∞], it is very easy to see (with Ascoli’s theorem) that we have
a compact operator (the same from L1([0, 1]) to Lp([0, 1]) with any finite
p ≥ 1). This obviously implies that it is compact when it is viewed from
Lp([0, 1]) to itself, for any p ∈ [1,+∞]. There are many papers interested
in estimating different kind of approximation numbers, especially Bernstein
numbers (see the definition below) for the Volterra operator (or variants like
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Hardy type operators or Sobolev embeddings) viewed from Lp to Lq with
1 < p, q < +∞ (see for example [BMN], [BG], [EL1], [EL2]).

In our extreme case L1 − C, it is easy to see that V is not compact, not
even weakly compact: consider the normalized sequence {(n + 1)xn} (for
n ∈ N) in L1([0, 1]), its range (under V ) is the sequence {xn+1} and admits
no weakly convergent subsequence in C([0, 1]). Moreover, we point out that
V acts as an isometry on positive functions.

There is another notion weakening compactness for operators, namely
the notion of completely continuous operator: we recall that an operator
is completely continuous if it maps weakly convergent sequences to norm
convergent sequences. We can notice that

Proposition 1.1 The Volterra operator V is completely continuous.

Proof. Let (fn) be a sequence in the unit ball of L1([0, 1]), weakly
convergent to 0. It is uniformly integrable: given ε > 0, there exists

some positive α such that
∫
A
|fn| dt ≤ ε for every n ≥ 1, as soon as the

Lebesgue measure of A is less than α. There exists some xn ∈ [0, 1] such
that

∣∣V (fn)(xn)
∣∣ = ‖V (fn)‖∞.

For some ε0 > 0, there exists a subsequence of {fn} (again denoted
{fn}) such that ‖V (fn)‖∞ > ε0. By compactness of [0, 1], there exist some
x ∈ [0, 1] and a subsequence of {xn} (again denoted {xn}) converging to x.

Choosing ε < ε0/2 and n large enough so that |xn − x| < α, we get

ε0 ≤
∣∣V (fn)(xn)

∣∣ ≤ ∣∣∣ ∫ x

0
fn(t) dt

∣∣∣+

∫ xn

x
|fn(t)| dt ≤

∣∣∣ ∫ 1

0
fn(t)1I[0,x] dt

∣∣∣+ ε.

But, since (fn) weakly converges to 0, we have
∫ 1

0
fn(t)1I[0,x] dt −→ 0 and

we get a contradiction for n large enough.

Another weak form of compactness is the strict singularity, or even the
finite strict singularity: let us recall the definitions.

Definition 1.2 An operator T from a Banach space X to a Banach space
Y is strictly singular if it never induces an isomorphism on an infinite di-
mensional (closed) subspace of X: that is for every ε > 0 and every infinite
dimensional subspace E of X, there exists v in the unit sphere of E such that
‖T (v)‖ 6 ε.

This notion is now very classical and widely studied: see [LT] (p.75) or
[LiQ] for instance to know more on this notion.

Definition 1.3 An operator T from a Banach space X to a Banach space
Y is finitely strictly singular if: for every ε > 0, there exists Nε > 1 such
that for every subspace E of X with dimension greater than Nε, there exists
v in the unit sphere of E such that ‖T (v)‖ 6 ε.
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This property is sometimes also denoted as superstrict singularity in the
literature. This can be also reformulated in terms of Bernstein approximation
numbers (see [Pl] for instance). Recall that the nth Bernstein number of an
operator T is

bn(T ) = sup
E⊂X

dim(E)=n

inf
v∈E
‖v‖=1

‖T (v)‖.

Hence, with this terminology, the operator T is finitely strictly singular if
and only if

(
bn(T )

)
n>1

belongs to the space c0 of null sequences.

This notion appears in the late sixties. For instance, in a paper of V.
Milman [Mi], it is proved that the identity from `p to `q (p < q) is finitely
strictly singular. See [CFPTT], [Pl] , [FHR], [L], [LR] for recent results on
this notion. It is well known that

compactness =⇒ finite strict singularity =⇒ strict singularity

and that the reverse implications are not true. Moreover, complete con-
tinuity is not comparable to finite strict singularity in general.

We shall show in the next section (see Th.2.1) that the Volterra operator
V is finitely strictly singular (hence strictly singular). Actually, in the real

case, we can prove that its nth Bernstein number is exactly
1

2n− 1
(see

Th. 2.2). Of course the (usual) approximation numbers (the distance to the
operators with fixed finite rank) are bounded below since V is not compact.

In section 3, we state and prove the corresponding results in the discrete
framework, for the summation operator acting from `1 to c.

2 Bernstein numbers of V

The main theorem of this section is

Theorem 2.1 The Volterra operator V is finitely strictly singular.

The proof is an immediate consequence of the following key theorem.

Theorem 2.2 We have
bn(V ) =

1

2n− 1
·

The proof of this theorem relies on our Lemma 2.4 below, which makes
a crucial use of the so-called zigzag lemma:

Lemma 2.3 (zigzag lemma, see [CFPTT] Cor.2):
Let X be a subspace of c0 (or RN ), viewed as a real space, equipped with

the usual infinity norm. We assume that X has dimension d ≥ 1. Then
there exists a zigzag of length d, i.e. some v ∈ X, with norm 1 and indexes
j1 < · · · < jd such that vji = (−1)i for every i ∈ {1, . . . , d}.
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Lemma 2.4 Let ε0 > 0, d ≥ 1 and E a subspace of L1([0, 1]) with dimension
d verifying

∀f ∈ E , ‖V (f)‖∞ ≥ ε0‖f‖1
then

d ≤ 1

2

(
1 +

1

ε0

)
·

Proof. We fix d ≥ 1 and ε ∈ (0, 1).
The unit ball of E is compact hence equi-integrable: there exists some

δ > 0 such that, given any x < y in [0, 1] with |x− y| ≤ δ, we have

sup
f∈E
‖f‖1≤1

∫ y

x
|f(t)| dt ≤ ε ε0

Now, we consider a decreasing sequence
(
xn
)
n∈N in (0, 1] such that x0 =

1, xn − xn+1 ≤ δ and xn → 0. Point out that for every F ∈ V (E), we have
F (xn)→ F (0) = 0.

For every F ∈ V (E), there exists some f ∈ E and c ∈ (0, 1] such that
F = V (f) and |F (c)| = ‖F‖∞ = ‖V (f)‖∞. For some n ∈ N, we have
xn+1 < c ≤ xn so

‖F‖∞ − |F (xn)| = |F (c)| − |F (xn)| ≤
∫ xn

c
|f(t)| dt ≤ ε ε0‖f‖1 ≤ ε‖F‖∞.

Now we can define the map

Φ :

∣∣∣∣ V (E) −→ c0
F 7−→

(
F (xn)

)
n∈N

which satisfies for every F ∈ V (E):

(1− ε)‖F‖∞ ≤ sup
k∈N
|F (xk)| = ‖Φ(F )‖∞ ≤ ‖F‖∞ .

Applying the zigzag lemma to the subspace Φ(V (E)), we get some u ∈ c0
with norm 1 and integers j1 < · · · < jd such that ujk = (−1)k. There exists
f ∈ E with Φ(V (f)) = u. Moreover

ε0‖f‖1 ≤ ‖V (f)‖∞ ≤
1

1− ε
·

At last,

1 + 2(d− 1) =
∣∣F (0)− F (xjd)∣∣+

d−1∑
k=1

∣∣F (xjk+1

)
− F

(
xjk
)∣∣

≤
∫ xjd

0
|f(t)| dt+

d−1∑
k=1

∫ xjk

xjk+1

|f(t)| dt

≤
∫ 1

0
|f(t)| dt ≤ 1

ε0(1− ε)
·
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Since ε is arbitrary, we get the conclusion.

Now we finish the proof of the key theorem.
Proof of theorem 2.2. The upper estimate: from the definition of

Bernstein numbers, we know that, for every ε0 ∈
(
0, bn(V )

)
, there exists

some E ⊂ L1([0, 1]) with dimension n such that

∀f ∈ E , ‖V (f)‖∞ ≥ ε0‖f‖1 .

By Lemma 2.4, we get that ε0 ≤
1

2n− 1
·

For the lower estimate, consider the space E spanned by {ϕ1, . . . , ϕn},
where the ϕk’s are the normalized characteristic functions of the intervals(
ak−1, ak

)
with aj =

j

n
for 0 ≤ j ≤ n. Point out that E has dimension n

and is isometric to `1n as a subspace of L1([0, 1]):

∀α1, . . . , αn ∈ R ,
∥∥∥ n∑

j=1

αjϕj

∥∥∥
1

=
n∑

j=1

|αj |.

Now for every f ∈ E ⊂ L1([0, 1]), we can write f =
n∑

j=1

αjϕj .

We point out that α1 = V (f)
(
a1
)
and for every k ∈ {2 . . . , n}, we have

αk =

∫ ak

ak−1

f(t) dt = V (f)
(
ak
)
− V (f)

(
ak−1

)
.

We get
∣∣α1| ≤ ‖V (f)‖∞ and

∣∣αk| ≤ 2‖V (f)‖∞ when k ≥ 2. So that

‖f‖1 =

n∑
j=1

|αj | ≤ (2n− 1)‖V (f)‖∞.

Hence
bn(V ) ≥ 1

2n− 1
·

Remarks.

1. For the lower estimate, another natural idea is to consider the space E
spanned by {1, . . . , xn−1} and the Bernstein-Markov inequality stating
that for every polynomials Q of degree at most d and every t ∈ (−1, 1),
we have

|Q′(t)| ≤ d√
1− t2

sup
|t|≤1
|Q(t)|·

Obviously, E has dimension n. Now for every normalized f ∈ E,
we apply the Bernstein-Markov inequality to P = V (f) which is a
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polynomial with degree less than n, and we integrate over (0, 1) (after
a change of scale):

1 = ‖f‖1 = ‖P ′‖1 ≤ πn‖P‖∞ = πn‖V (f)‖∞

hence this gives bn(V ) ≥ 1

πn
, which is a slightly worst estimate than

the one of Th. 2.2.

2. We worked until now with real valued functions, because of the zigzag
lemma. Nevertheless, Th. 2.2 remains mainly true in the complex

case: bn(V ) ≈ 1

n
·

Clearly, the same lower estimate holds with the same proof. We are
going to show that a similar (a bit less sharp) upper estimate remains
true working with complex valued functions: we claim that b2n+1(V ) ≤√

2

2n+ 1
· Indeed, let us mention only the few changes in the previous

argument: in the definition of Φ, we could have replaced c0 by RN

where N is large enough (compared to 1/δ). Then, in the complex case,
just map F = f + ig to

(
f(x1), . . . , f(xN ), g(x1), . . . , g(xN )

)
∈ R2N .

The point is that we “loose” a
√

2 since∣∣F (xj)
∣∣ ≤ √2 max

{
|f(x1)|, . . . , |f(xN )|, |g(x1)|, . . . , |g(xN )|

}
.

The zigzag lemma applies and from a zigzag of length 2n+ 1, we can
extract a zigzag of length n+1 concerning either theN first coordinates
or the N last. The estimation follows. Hence Theorem 2.1 is also still
true in the complex case.

3. Let us mention that Lemma 2.4 gives an immediate answer to problem
11, raised by Mokobodzki and Rogalski in [MR]: for any K > 0,

sup
{
dim(E)

∣∣ E ⊂ C([0, 1]), closed ; ∀f ∈ E , ‖f ′‖1 ≤ K‖f‖∞
}
≤ K + 1

2
·

4. Actually, after this work was completed, G. Godefroy kindly informed
us that point 3. was already known and settled by Voigt in [V]. It
turns out too that the zigzag lemma was also already contained in [V].

Let us mention too that a vector valued version of this result is given
in [G].

3 The discrete version

The same ideas apply to the discrete Volterra operator acting from the
space `1 of absolutely convergent series to the space c of convergent se-
quences.
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`1 −→ c
u 7−→ σ(u)

with

σ(u)n =
n∑

k=0

uk.

This operator is obviously bounded with norm 1, completely continuous
(thanks to the Schur property for `1) and not compact. It is not even weakly
compact: take cm ∈ (0, 1) with cm → 1 and the sequence of vectors v(m)

defined by v(m)
n = (1−cm)cnm. We have ‖v(m)‖1 = 1 and σ

(
v(m)

)
n

= 1−cn+1
m

for every n ≥ 1. Hence if a subsequence weakly converge to some y ∈ c then
y = 0. Testing now the functional u→ lim(u) which belongs to c∗, we have
1 = lim

(
σ
(
v(m)

))
→ lim(y) = 0. The contradiction follows.

Nevertheless like in the continuous case, we have

Theorem 3.1 The discrete Volterra operator σ is finitely strictly singular.

This immediately follows from

Theorem 3.2 We have the following estimates for every n ≥ 1

• In the real case, we have bn(σ) =
1

2n− 1
·

• In the complex case, we have
1

2n− 1
≤ bn(σ) ≤

√
2

2ñ− 1

where ñ stands for the integer part of (n+ 1)/2.

Proof. Since the proof follows the lines of the ones in section 1, we do
not give all the details.

Considering the space `1n spanned by n first vectors of the canonical
basis (e0, . . . , en−1) of `1, we get the lower estimates (for both the real and
the complex case):

‖x‖1 =
∣∣σ(x)0

∣∣+
n−1∑
k=1

∣∣σ(x)k − σ(x)k−1
∣∣

so that ‖x‖1 ≤ (2n− 1)‖σ(x)‖∞ and bn(σ) ≥ 1

2n− 1
·

For the upper estimate. We fix ε ∈ (0, 1), take ε0 ∈
(
0, bn(σ)

)
, there

exists a subspace E ⊂ `1 with dimension n such that

∀x ∈ E , ‖σ(x)‖∞ ≥ ε0‖x‖1 .
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By compactness in finite dimension, there exists some r ≥ n such that,
for every x in the unit ball of E,∑

k≥r
|xk| ≤ ε. ε0

For every y ∈ σ(E), we easily check that (1− ε)‖y‖∞ ≤ max
k≤r

∣∣yk∣∣.
Now we specify the two cases

In the real case.
The map

Φ :

∣∣∣∣ σ(E) −→ Rr+1

y 7−→
(
yn
)
0≤n≤r

satisfies for every y ∈ σ(E): (1− ε)‖y‖∞ ≤ ‖Φ(y)‖∞ ≤ ‖y‖∞ .
Applying the zigzag lemma to the subspace Φ(σ(E)), we get some x ∈ E

with ε0‖x‖1 ≤ ‖σ(x)‖∞ ≤
1

1− ε
and integers j1 < · · · < jn such that

(σ(x))jk = (−1)k.
We can now estimate

1 + 2(n− 1) =
∣∣(σ(x))j1

∣∣+
n−1∑
k=1

∣∣(σ(x))jk+1
− (σ(x))jk

∣∣ ≤ ‖x‖1 ≤ 1

ε0(1− ε)
·

we get the conclusion.

In the complex case.
In the sequel, we write y = a + ib where a and b are real valued and

define

Ψ :

∣∣∣∣ σ(E) −→ R2(r+1)

y 7−→
(
a0, . . . , ar, b0, . . . , br

)
For every y ∈ σ(E): (1− ε)‖y‖∞ ≤ max

k≤r

∣∣yk∣∣ ≤ √2‖Ψ(y)‖∞ .

Applying the zigzag lemma to the subspace Ψ(σ(E)), we get some x ∈ E

with ε0‖x‖1 ≤ ‖σ(x)‖∞ ≤
√

2

1− ε
and integers j1 < · · · < jn such that(

Ψ(σ(x))
)
jk

= (−1)k. But among j1, . . . , jn, half of them at least are either
between 0 and r or between r+ 1 and 2r+ 1 (assume that it is the first case
for the computation below). Writing ñ for the integer part of (n+ 1)/2, we
obtain

1 + 2(ñ− 1) =
∣∣aj1∣∣+

ñ−1∑
k=1

∣∣ajk+1
− ajk

∣∣ ≤∑ |Re(x)k| ≤ ‖x‖1 ≤
√

2

ε0(1− ε)
·

We get bn(σ) ≤
√

2

n− 1
when n is even and bn(σ) ≤

√
2

n
when n is odd.
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