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Abstract

We study a 0-1 knapsack problem, in which the objective value is forbidden to take

some values. We call gaps related forbidden intervals. The problem is NP-hard and pseudo-

polynomially solvable independently on the measure of gaps. If the gaps are large, then the

problem is polynomially non-approximable. A non-trivial special case with respect to the

approximate solution appears when the gaps are small and polynomially close to zero. For

this case, two fully polynomial time approximation schemes are proposed. The results can

be extended for the constrained longest path problem and other combinatorial problems.

Keywords: knapsack problem; computational complexity; fully polynomial time approxi-

mation scheme; forbidden values

1 Introduction

There exist practical optimization problems, in which some of the objective function values

are forbidden. We study computational complexity and approximation issues of the following

0-1 knapsack type problem, which we denote K-Gaps. Let us consider non-negative integer

numbers aj, bj, j = 1, . . . , n, f
i
, f i, i = 1, . . . , k, and B, where f

1
≤ f 1 < f

2
≤ f 2 < · · · <

f
k
≤ fk ≤ A and A =

∑n
j=1 aj. Denote x = (x1, . . . , xn) and [f, f ] = {f, f + 1, . . . , f}.

Problem K-Gaps:

max F (x) =
n∑

j=1

ajxj, subject to
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G(x) =
n∑

j=1

bjxj ≤ B,

F (x) 6∈ {[f
1
, f 1], . . . , [f

k
, fk]},

xj ∈ {0, 1}, j = 1, . . . , n.

Denote optimal objective function value of this problem as F ∗. We call intervals [f
i
, f i],

i = 1, . . . , k, objective value gaps, or simply, gaps. We call intervals in [0, A] other than gaps

feasible intervals.

Problem K-Gaps is a generalization of the classic 0-1 knapsack problem which we denote

as Knapsack. We observed problem K-Gaps in the following two practical situations.

In the first situation, there is a logistics provider which consolidates orders of various

customers and delivers them by a fleet of vehicles of different weight capacities, for example,

by 3 vehicles of 1 tonne, 2 vehicles of 3 tonnes and 2 vehicles of 20 tonnes. Each vehicle must

be loaded to its full capacity and it can make at most one trip in the same day. The provider

can deliver at most 45 tonnes of all orders in a particular day, which is its loading capacity

bound in this day. There are n orders. If an order is accepted for delivery, then it must be

satisfied in full but it can be split between the vehicles. Each order j is associated with a

weight aj in tonnes and a value bj of a single non-renewable resource to be consumed. The

total resource consumption is limited by B. Define xj = 1 if order j is selected for delivery

and xj = 0, otherwise. The problem is to select a subset of orders such that the total weight

F (x) =
∑n

j=1 ajxj is maximized, subject to
∑n

j=1 bjxj ≤ B, F (x) 6∈ {[10, 19], [30, 39]} and

xj ∈ {0, 1}, j = 1, . . . , n. The gaps contain total weights that cannot be realized by the

available vehicles if they are loaded to their full capacities.

In the second situation, a company can select a subset of n orders to be processed in a

specific day. Each selected order j is associated with a profit aj and a capacity consump-

tion bj, both are positive integer numbers. The total capacity is bounded by B. If the total

profit is less than a given value V > 0, then it is not worth doing something in this day and it

is better to make this day the day off. Define xj = 1 if order j is accepted for processing and

xj = 0 otherwise. The problem is to select a subset of orders such that F (x) =
∑n

j=1 ajxj is

maximized, provided that
∑n

j=1 bjxj ≤ B, F (x) 6∈ [0, V − 1], and xj ∈ {0, 1}, j = 1, . . . , n.

If an optimal solution of this problem cannot be found within the required time or memory

limit and an approximate solution is the goal, then avoiding profit values smaller than V is

an issue.
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Good sources of information on knapsack type problems can be found in monographs of

Martello and Toth [11] and Kellerer, Pferschy and Pisinger [8]. We are not aware of any

results on the knapsack problems or any other optimization problems with the objective

values gaps. In the next section, we comment on the computational complexity of the exact

and approximate solutions of the problem K-Gaps and its special cases. Section 3 studies

the case with gaps close to zero. The paper concludes with a short summary of the results

and a discussion of their extension for other optimization problems.

2 Computational complexity

Let PL be a polynomial function of the input length L of the problem K-Gaps in binary

encoding, L = O
(

log2

(
B+

∑n
j=1(aj + bj) +

∑k
i=1(f i + f

i
)
))

. We denote by K-Small-Gaps

and K-Large-Gaps special cases of the problem K-Gaps, in which the total measure of

gaps does not exceed PL and the total measure of feasible intervals does not exceed PL,

respectively. The following propositions can be easily proved.

Proposition 1 Any of the problems K-Small-Gaps and K-Large-Gaps is NP-hard.

An idea of the proof of this proposition for the problem K-Small-Gaps is that introducing

small gaps, for example, one gap [1, 1], to the classic problem Knapsack does not make

it easier. An idea of the proof for the problem K-Large-Gaps is that a special case of

this problem with aj = bj, j = 1, . . . , n, and two gaps [0, B − 1] and [B + 1, 2B], where∑n
j=1 bj = 2B, is the well known NP-complete problem Partition.

Let us comment on the approximability of the problem K-Gaps. An approximation

algorithm for the problem K-Gaps is called to have a performance guarantee ∆, 0 ≤ ∆ ≤ 1,

if, for any instance of this problem, it finds a feasible solution with the objective function

value F 0 ≥ ∆F ∗ in the case when a feasible solution exists. Such an algorithm is called a

∆-approximation algorithm and the solution it delivers is called a ∆-approximate solution.

A Fully Polynomial Time Approximation Scheme (FPTAS) for the problem K-Gaps is a

collection of algorithms, {Hε}, such that, for any given ε, 0 < ε ≤ 1, and any instance of

the problem K-Gaps, algorithm Hε finds a feasible solution with objective function value

F 0 ≥ (1− ε)F ∗, if a feasible solution exists, and it does it in time polynomially bounded by

the instance length in binary encoding and 1/ε. FPTASes are a popular solution tool for

NP-hard problems, see, e.g., recent papers of Schemeleva et al. [18], Li and Li [10], Halman

et al. [3], Nguyen et al. [13] and Samanta et al. [17].
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Note that the classic problem Knapsack, while NP-hard, admits very efficient approx-

imation algorithms such as the folkloric O(n log n) time greedy algorithm that guarantees

∆ = 1/2 and several FPTASes (cf. Martello and Toth [11] and Kellerer and Pferschy [7]).

However, problem K-Gaps is hard to approximate.

Proposition 2 No polynomial time approximation algorithm with any performance guaran-

tee, including FPTAS, exists for the problem K-Large-Gaps, unless P = NP.

An idea of the proof of this proposition is that a polynomial time approximation algorithm

with any performance guarantee for the problem K-Large-Gaps with aj = bj, j = 1, . . . , n,

and two gaps [0, B− 1] and [B + 1, 2B],
∑n

j=1 bj = 2B, would be a polynomial algorithm for

the NP-complete problem Partition, which is impossible, unless P = NP .

Note that the existence of an FPTAS or a polynomial time approximation algorithm for

the problem K-Small-Gaps is an open question.

Recall that A =
∑n

j=1 aj. Problem K-Gaps can be solved in O(nA) time by a modi-

fication of the well known profit based dynamic programming algorithm (cf. Kellerer and

Pferschy [7]) for the classic problem Knapsack. The modification is to exclude forbidden

profit values from the last table of state variables. Thus, problem K-Gaps is NP-hard and

pseudo-polynomially solvable.

3 Problem with gaps polynomially close to zero

Consider a special case of the problem K-Gaps, in which the largest gap value is polynomi-

ally bounded: fk ≤ PL. We denote this special case as K-Left-Small-Gaps. Note that

the problem K-Left-Small-Gaps is NP-hard.

3.1 Reduction to a series of classic 0-1 knapsack problems

Consider the problem K-Left-Small-Gaps. Let a1 ≤ · · · ≤ an. There are three cases

to analyze: (1) fk < a1, (2) an ≤ fk, and (3) a1 ≤ · · · ≤ at ≤ fk < at+1 ≤ · · · ≤ an,

1 ≤ t ≤ n− 1.

Case (1) has two sub-cases. Sub-case (1.1): zero does not belong to a gap, that is,

f
1
> 0, and sub-case (1.2): zero belongs to a gap, that is, f

1
= 0. Let DK and DG denote

feasible domains of the problems Knapsack and K-Left-Small-Gaps, respectively. In

the sub-case (1.1), DG = DK . Therefore, the two problems are equivalent in this sub-case.
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Denote n-dimensional vector e0 = (0, . . . , 0). In the sub-case (1.2), DG = DK \ {e0}.

Therefore, any algorithm for the problem Knapsack, which delivers a non-zero solution of

the required quality, is the algorithm for the problem K-Left-Small-Gaps of the same

quality. Many algorithms for the problem Knapsack, including dynamic programming

algorithms, greedy 1/2-approximation algorithm and FPTASes described in Martello and

Toth [11] and Kellerer, Pferschy and Pisinger [8], satisfy this property. Therefore, they can

be employed to solve the sub-case (1.2).

In the case (2), all profit coefficients are bounded from above by fk ≤ PL. Therefore,

the standard profit based dynamic programming algorithm with the running time O(nA) ≤

O(n2PL) can be used to find a feasible solution, x(f), for each possible objective function

value f ∈ {0, 1, . . . , nPL} in the problem Knapsack such that F (x(f)) = f . We can set

F (x(f)) = −∞ if a feasible solution with value f does not exist. Solution of the problem

K-Left-Small-Gaps in the case (2), x∗, can be found from

F (x∗) = max
{
F (x(f)) | f ∈ {0, 1, . . . , nPL}, f 6∈ [f

1
, f 1] ∪ · · · ∪ [f

k
, fk]

}
.

Thus, the problem K-Left-Small-Gaps is solvable in O(n2PL) time in the case (2).

Consider case (3). Observe that only selection of the numbers from a1, . . . , at can lead

to an objective value gap and, if at least one number from at+1, . . . , an is selected, then

the objective function value does not fall into a gap. Let us solve problem Knapsack to

optimality. Denote by x0 an optimal solution of this problem. If x0
j = 1 for j ≥ t + 1,

then x0 is also optimal for the problem K-Left-Small-Gaps in the case (3). If x0
j = 0

for j = t + 1, t + 2, . . . , n, then we know that
∑t

j=1 aj ≤ tPL is an upper bound on the

optimal objective function value in both problems Knapsack and K-Left-Small-Gaps.

In the latter case, both problems can be solved in O(t2PL) time by the standard profit based

dynamic programming algorithm. Thus, the problem K-Left-Small-Gaps can be solved

to optimality in O(T + t2PL) time in the case (3), where O(T ) is the time of solving the

problem Knapsack to optimality.

Assume that an optimal algorithm for the problem Knapsack is not appropriate because

of its time or space requirements. Then the following approach for the problem K-Left-

Small-Gaps in the case (3) can be applied. Consider a reduced problem Knapsack, in

which variables are limited to x1, . . . , xt. Apply the standard profit based dynamic program-

ming algorithm to this problem and find a feasible solution, x(f) = (x
(f)
1 , x

(f)
2 , . . . , x

(f)
t ), for

each possible objective function value f ∈ {0, 1, . . . , tPL} such that F (x(f)) = f and G(x)
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is minimized on the set of solutions satisfying F (x) = f . Set F (x(f)) = −∞ if a feasible

solution with value f does not exist. The run time of this algorithm will be O(t2PL) in this

case. Define Ff = F (x(f)) and Gf = G(x(f)), f = 0, 1, . . . , tPL. For each pair (Ff , Gf ),

Ff 6= −∞, formulate the following problem denoted as f -Knapsack.

Problem f-Knapsack:

max
n∑

j=t+1

ajxj, subject to

n∑
j=1

bjxj ≤ B −Gf ,

xj ∈ {0, 1}, j = t+ 1, t+ 2, . . . , n.

Apply a ∆-approximation algorithm to solve problems f -Knapsack for f = 0, 1, . . . , tPL.

Let x̄(f) denote the ∆-approximate solution obtained. It can be easily verified that a so-

lution (x(f), x̄(f)) = (x
(f)
1 , . . . , x

(f)
t , x̄

(f)
t+1, . . . , x̄

(f)
n ) such that F (x(f), x̄(f)) =

∑t
j=1 ajx

(f)
j +∑n

j=t+1 ajx̄
(f)
j is maximized, provided that F (x(f), x̄(f)) 6∈ [f

1
, f 1] ∪ · · · ∪ [f

k
, fk], over val-

ues f such that f = 0, 1, . . . , tPL, Ff 6= −∞, is the ∆-approximate solution for the problem

K-Left-Small-Gaps in the case (3). It can be found in O(t2PL + tPLT
(∆)
n−t) time, where

O(T
(∆)
n−t) is the running time of a ∆-approximation algorithm for the problem Knapsack

with n− t variables.

The results of this sub-section are summarized in the following statement.

Statement 1 An optimal solution of the problem K-Left-Small-Gaps can be found in

O(T + t2PL) time and a ∆-approximate solution of this problem can be found in O(t2PL +

tPLT
(∆)
n−t) time.

3.2 Two FPTASes for the problem K-Left-Small-Gaps

There exist FPTASes for the problem Knapsack, for example, an FPTAS which runs

in O(n2/ε) time, see Sahni and Horowitz [16]. With this FPTAS, our ∆-approximation

approach in the previous sub-section provides FPTAS for the problem K-Left-Small-

Gaps with O(t2PL+ tPL(n− t)2/ε) running time. Below we will describe a different FPTAS,

denoted as {Hε}, for this problem.

Algorithm Hε is a modification of the interval partitioning technique of Sahni [15] and it

differs from this technique in that the measure of closeness of partial solutions with respect

to the objective function value is different in the intervals [0, fk] and [fk +1, F (j)], where F (j)
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is the maximum objective function value in iteration j. The measure of closeness is equal

to zero in the former interval and it is equal to a certain value δj > 0 in the latter interval.

Denote n-dimensional vector ej = (0, . . . , 0, 1, 0, . . . , 0), where the unit is in the position j,

j = 1, . . . , n.

Algorithm Hε (FPTAS for the problem K-Left-Small-Gaps)

Step 1 (Initialization) Set X0 = {e0}, F (e0) = G(e0) = 0 and j = 1.

Step 2 (Recursion) Calculate set Yj = {x, x + ej | x ∈ Xj−1}. Compute F (x) and G(x)

for each x ∈ Yj. Calculate set Zj = {x ∈ Yj | G(x) ≤ B}. If j = n, then perform

Step 3. Otherwise, perform procedure Partition(Zj) given below to partition set

Zj into disjoint subsets Zj1, Zj2, . . . , Zjkj . In each subset Zji, select vector x(ji) which

minimizes G(x), i = 1, . . . , kj. Calculate Xj = {x(j1), x(j2), . . . , x(jkj)}. Re-set j := j+1

and repeat Step 2.

Step 3 (Approximate solution) Select an approximate solution x(ε) such that

F (x(ε)) = max{F (x) | x ∈ Zn, F (x) 6∈ [f
1
, f 1] ∪ · · · ∪ [f

k
, fk]}.

Procedure Partition(Zj)

Step 1 Re-number vectors of the set Zj such that F (x(1)) ≤ F (x(2)) ≤ · · · ≤ F (x(rj)) ≤

fk < F (x(rj+1)) ≤ · · · ≤ F (x(hj)). Let there be r∗j distinct values among

F (x(1)), F (x(2)), . . . , F (x(rj)). It is clear that r∗j ≤ PL.

Step 2 Assign vectors x(1), x(2), . . . , x(rj) with the same value F (x) to the same subset Zji,

i = 1, . . . , r∗j .

Step 3 Compute δj = εF (x(hj))/n. Assign vectors x(rj+1), x(rj+2), . . . , x(hj) with the same

value bF (x)/δjc to the same subset Zji, i = r∗j + 1, r∗j + 2, . . . , kj. It can be easily seen

that kj ≤ PL + F (x(hj))/δj = PL + n/ε.

The time and space requirements of the algorithm Hε can be evaluated as O(nPL+n2/ε).

Theorem 1 The family of algorithms {Hε} constitutes an FPTAS for the problem K-Left-

Small-Gaps.
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Proof. Since the running time of the algorithm Hε satisfies the definition of an FPTAS, we

only need to prove that relation F (x(ε)) ≥ (1−ε)F ∗ is satisfied. Consider an optimal solution

x∗ = (v∗, u∗) = (v∗1, . . . , v
∗
j , u

∗
j+1, . . . , u

∗
n), 1 ≤ j ≤ n − 1. Denote x(v∗) = (v∗, 0, . . . , 0) and

assume without loss of generality that x(v∗) ∈ Zji, 1 ≤ i ≤ kj. If i ≤ r∗j , then, for the only

partial solution x(ji) selected from the set Zji, we have F (x(ji)) = F (x(v∗)). If i > r∗j , then

F (x(v∗)) > fk, F (x(ji)) > fk and |F (x(ji))−F (x(v∗))| ≤ δj ≤ εF ∗/n. In both cases, G(x(ji)) ≤

G(x(v∗)). Hence, complete solution x′ = x(ji) + (0, . . . , 0, u∗), extended from the partial

solution x(ji) in the same way as the optimal solution x∗ is extended from x(v∗), is feasible

and |F (x′) − F (x∗)| ≤ εF ∗/n. Now let x′ = (v′, u′), where x(v′) := (v′, 0, . . . , 0) ∈ Zj′i′ ,

j < j′ ≤ n− 1, 1 ≤ i′ ≤ kj′ . Similarly, we can show that x′′ = x(j′i′) + (0, . . . , 0, u′) is feasible

and |F (x′′)−F (x′)| ≤ εF ∗/n. From |F (x′)−F (x∗)| ≤ εF ∗/n and |F (x′′)−F (x′)| ≤ εF ∗/n,

we deduce that |F (x′′) − F (x∗)| ≤ 2εF ∗/n. Continuing in the same fashion, we can show

that there exists vector x(ε) ∈ Zn which is feasible and satisfies |F (x(ε))−F (x∗)| ≤ εF ∗. The

latter relation implies F (x(ε)) ≥ (1− ε)F ∗, as it is required.

The results of this sub-section are summarized in the following statement.

Statement 2 There exist FPTASes for the problem K-Left-Small-Gaps with the run-

ning times O(t2PL + tPL(n− t)2/ε) and O(nPL + n2/ε).

Note that the FPTASes and other algorithms in this section can be employed for fast

solution of the second practical problem in Section 1 if V − 1 ≤ PL, that is, if the threshold

on the lowest profit is polynomially bounded.

4 Conclusions and extensions

The problems K-Small-Gaps and K-Large-Gaps are NP-hard and pseudo-polynomially

solvable, and the problem K-Large-Gaps cannot be approximated in polynomial time

with any performance guarantee, unless P = NP . The problem K-Left-Small-Gaps is

NP-hard, and FPTAS for the classic knapsack problem cannot be directly used for it. We

suggested two FPTASes for this problem. Existence of an FPTAS or a polynomial time

approximation algorithm for the more general problem K-Small-Gaps in which gaps are

not necessarily close to zero, is an interesting open question.

The obtained results can be easily adapted for the constrained longest path problem, in

which a simple path between two specified vertices of a directed graph has to be found such
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that its total length is maximized, provided that the total value of the second parameter

associated with the edges does not exceed a given threshold and the path length does not

fall into the given gaps. The computational complexity propositions in Section 2 translate

one-to-one for the constrained longest path problem with the objective value gaps. The ex-

act algorithm and the FPTASes in Section 3 can be easily modified to solve this problem by

addressing the specificity of this problem in a way similar to the dynamic programming algo-

rithm and the FPTAS for the constrained shortest path problem with no gap, see Joksch [5]

and Hassin [4], respectively.

There exist results for the exact combinatorial problems, which ask for the existence

of a combinatorial structure of a given cost. Papadimitriou and Yannakakis [14] proved

that the exact assignment problem is NP-complete in the ordinary sense, and Karzanov [6]

developed polynomial time algorithm for the case of assignment costs limited to 0 and 1.

Computational complexity of the exact assignment problem in unary encoding is an open

question. Leclerc [9] and Barahona and Pulleyblank [2] suggested pseudo-polynomial time

algorithms for the exact spanning tree problem, the exact perfect matching problem on pla-

nar graph, the exact cycle sum problem on planar directed graph and the exact cut problem

on planar or toroidal graph. Milanic and Monnot [12] proved that the exact weighted inde-

pendent set problem and the exact weighted maximum independent set problem are strongly

NP-complete for cubic bipartite graphs and that these problems are pseudo-polynomial solv-

able for mK2-free graphs, k-thin graphs (including interval graphs), chordal graphs, AT-free

graphs, (claw,net)-free graphs, distance-hereditary graphs, circle graphs, graphs of bounded

treewidth, graphs of bounded clique-width, and certain sub-classes of P5-free and fork-free

graphs. The results of Milanic and Monnot [12] imply that the exact perfect matching

problem is pseudo-polynomially solvable for graphs with treewidth bounded by a constant.

Vassilevska and Williams [19] and Abboud and Lewi [1] describe computational complexity

results for exact weight subgraph problems, in which the number of nodes of the subgraph

is a constant.

Observe that an exact discrete problem with value V and its counterpart with two gaps

[L, V −1] and [V +1, U ], where interval [L,U ] includes objective function values of all feasible

solutions, are actually the same problem. Furthermore, the problem with gaps reduces to

solving U −L+ 1 respective exact problems with value V = L,L+ 1, . . . , U . Therefore, the

NP-completeness results for exact problems mentioned in the previous paragraph apply for
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their counterparts with two gaps, the algorithm of Karzanov [6] can be employed to solve the

assignment problem with gaps in polynomial time in the case of 0-1 costs, and the algorithms

of Leclerc [9], Barahona and Pulleyblank [2] and Milanic and Monnot [12] can be employed

to solve the relevant graph problems with gaps in pseudo-polynomial time. Computational

complexity of the assignment problem with two gaps in unary encoding is an open question.
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