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Planktonic copepods are small crustaceans that have the ability to swim by quick powerful jumps. Such an
aptness is used to escape from high shear regions, which may be caused either by flow perturbations, produced by
a large predator (i.e., fish larvae), or by the inherent highly turbulent dynamics of the ocean. Through a combined
experimental and numerical study, we investigate the impact of jumping behavior on the small-scale patchiness
of copepods in a turbulent environment. Recorded velocity tracks of copepods displaying escape response jumps
in still water are here used to define and tune a Lagrangian copepod (LC) model. The model is further employed
to simulate the behavior of thousands of copepods in a fully developed hydrodynamic turbulent flow obtained by
direct numerical simulation of the Navier-Stokes equations. First, we show that the LC velocity statistics is in
qualitative agreement with available experimental observations of copepods in turbulence. Second, we quantify
the clustering of LC, via the fractal dimension D2. We show that D2 can be as low as ∼2.3 and that it critically
depends on the shear-rate sensitivity of the proposed LC model, in particular it exhibits a minimum in a narrow
range of shear-rate values. We further investigate the effect of jump intensity, jump orientation, and geometrical
aspect ratio of the copepods on the small-scale spatial distribution. At last, possible ecological implications of
the observed clustering on encounter rates and mating success are discussed.

DOI: 10.1103/PhysRevE.93.043117

I. INTRODUCTION

The study of swimming microorganisms and their interac-
tion with fluid flows has attracted enormous attention in the
past decade. A line of research has focused on characterizing
individual swimming strategies by means of experiments [1–3]
as well as by theoretical and numerical modeling [4,5]. A
second direction of study devoted to the consequences of
swimming on population dynamics, e.g., by focusing on
encounter rates and other collective behaviors [6–10]. A third
direction focused on the mutual interactions of microorgan-
isms with the fluid-flow environment, in particular bioinduced
flow fluctuations, sometimes dubbed as bacterial turbulence
[11–13], or, vice-versa, on active matter clustering induced
by nonhomogeneous flows or fluid turbulence [14–22].
The present study will focus on this latter aspect, in particular
on copepod’s dynamics in turbulent flow.

Copepods are the most diversified crustaceans in the aquatic
environment whose length ranges from 0.1 mm to a few
millimeters. They are important to global ecology and to the
carbon cycle [23] (see also Refs. [24] and [25]). Although
copepods are not at the top of the food web, they have a major
role in the marine ecosystem because they are the secondary
producers in the ecological food web linking phytoplankton
cells (the primary producers) to fish larvae and even to
large mammals such as whales. Copepods also consume the
mosquito larvae, acting as control mechanism for malaria [26].
They are of great importance in fishery industry. A central issue
in breeding fish species is the external food supply. Most fishes
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prefer copepods to other zooplankton species (i.e., rotifers) and
they grow bigger in shorter time when eating copepods [27,28].

Living in a fluid environment characterized by body-scale
Reynolds number up to 1000, they are subjected to the
physics of the flow field both in viscous and inertial regime
[29]. Copepods typically have a short, cylindrical body with
antennas, few pairs of swimming legs, and tales. Using their
antennas, copepods can sense the disturbance, which is caused
either by the presence of predators or by high turbulent
regions in the flow. Kiørboe et al. [30,31] performed series
of experiments, investigating the effect of nonuniform flow
motion on copepods. In order to find the component of the
flow that copepods react the most to, the copepods were put
into a time-dependent siphon flow (which ideally generates a
pure longitudinal deformation rate), in an oscillating chamber
where copepods experience only acceleration, in a couette
device producing shear deformation, and finally in a rotating
cylinder where acceleration and vorticity are both present.
The conclusion of this study was that these small crustaceans
react to the flow deformation rate. Kiørboe also reported [32]
that there are two threshold values of the deformation rate:
the upper one, around 10 s−1, which corresponds to either
the presence of predators or to a region where turbulence
intensity is high, and the lower one, 1 s−1, which corresponds
to regions in the flow where turbulence intensity is lower
or food abundance is not enough for copepods. These tiny
crustaceans find themselves at ease in regions in between these
two thresholds. To avoid uncomfortable regions, copepods
exhibit a rapid escape in the flow that is often dubbed a
jump. Buskey et al. [33,34] showed that copepod’s velocity
can reach the rate of 500 body length per second (0.5 m/s)
while jumping. The mechanical energy produced during their
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escape is reported to be very high (8 × 10−5 J/s) [35], which
makes copepods, relative to their size, among the fastest and
the strongest animals in the world.

Buskey [33,34] also reported that males and females
respond differently to hydrodynamic stimulus in terms of
response latency, jump speed, number of thrusts, distance
jumped, and many other parameters. According to their
investigations, copepods jump in an unpredictable direction,
but rarely in the backward direction of their motion. Other
studies have considered the mating behavior of copepods [36]
and the effect of salinity on copepod’s dynamics and copepod’s
encounter rate [37,38]. Copepods are also sensitive to light
stimuli, being attracted by natural light sources [39].

In the past two decades many studies have been conducted
to quantify the dynamics of copepods. Most of them focused
on their behavior in still water [36–38], while less studies
have studied the dynamics in their natural living environment
because of the difficulties of such experimental investigations.
Few works have been devoted to the dynamics of copepods in
turbulent flows [40–44]. However, the densities of copepods
used in these studies are often lower than the maximum
densities that can be encountered in the field.

The numerical simulation can provide a tool that integrates
our current knowledge on copepod dynamics and uses a
high number of individuals. The objective of the present
study is to simulate copepods numerically in turbulence to
characterize their dynamics induced by a behavior model. To
achieve this goal, our strategy is twofold: on one hand, new
experimental measurements and observations available in the
literature [45–51], along with the aforementioned copepods
properties, should be considered in detail in order to introduce
a realistic and physical model. On the other hand, fundamental
knowledge on simulation of particles in turbulent flows,
available in numerical and experimental studies on particles
in turbulence [52–56], is needed to couple the physics and
biology in the numerical model.

The paper is organized as follows: Sec. II describes the
experimental framework used to stimulate copepods. We then
analyze copepods’ trajectories to introduce a model equation
describing copepods’ behavior. Furthermore, similarity anal-
ysis is performed to tune the LC model and its numerical
implementation is explained at the end of this section. Section
III details the single-point statistics, fractal dimension, and
orientation dynamics of copepods. The paper ends with
conclusion and outlook on future works.

II. METHODS

A. Experimental jump data analysis

We begin by presenting an analysis of a new experimental
trajectory data set of the estuarine copepod, Eurytemora
affinis, recorded at LOG Laboratory between May and June
2015. Copepods that originated from the Seine river estuary
(France) are maintained in the laboratory under optimal
conditions for several generations. The experimental setup
is a shallow-depth aquarium, 63 × 53 × 6 mm3 in length,
height, and depth, respectively, with two light sources on the
lateral side (53 × 6 mm2). The water is kept still and at a
temperature of (18 ± 1)◦C and salinity of 15 psu. Copepods
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FIG. 1. (a) The copepod velocity relative to temporal sequence
with multiple jumps occurring in response to stimulus. (b) Several
jumps superposed by a shift, taking as reference time that are
associated with their peak position. Almost all of the jumps decay
exponentially. (Inset) The probability density function (PDF) of the
jump intensity.

were introduced one at a time into the aquarium and their
dynamics were filmed. A total of 14 individuals were analyzed
(7 males and 7 females). A copepod in the aquarium is lead to
jump preferentially along the horizontal direction by switching
on just one of the light sources. The copepod dynamics in
a vertical plane is recorded by a high-speed camera (1000
frames/s) and the single trajectory is extracted by means
of particle-tracking velocimetry software (TEMA Motion by
Image Systems). In such a way hundreds of trajectories are
recorded, each with an average time length of 19 s. A typical
copepod velocity signal as a function of time is shown in
Fig. 1(a). We see extremely abrupt spikes (jumps) alternating
to calm, nearly immobile, phases.

In order to see if the velocity signal of the jump events
share some common features, we zoom in on the signal
and superpose several jumps by a shift taking as reference
their peak position. In Fig. 1(b) we can appreciate that
almost all of the jumps, after a steep rise, display a similar
decay. We associate such a decay to a purely hydrodynamical
effect. It can be interpreted as a drag-induced decay of an
instantaneous acceleration. The inset panel in Fig. 1 shows that
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FIG. 2. Average shape of copepod velocity (over about 730
jumps): mean value (red line) and standard deviation (shaded area).
Note that an error along the horizontal direction due to the uncertainty
in the identification of jump peaks may be present but has been omitted
here. Green line: Fitted exponential function uJ e−t/τJ where uJ is the
jump intensity and τJ is the decaying time of the jump. Blue line:
Same fit with the addition of a noise velocity offset.

the probability density function (PDF) of the jump intensity
has a maximum value around ∼0.07 m/s. Note that spikes are
identified based on a threshold on the time-averaged velocity
of the copepods in each copepod’s trajectory.

We then average the data set of jumps in order to obtain an
averaged shape of jump. This is shown in Fig. 2, from which
we can deduce the average jump velocity amplitude uJ =
0.0939 m/s and the mean decaying time τJ = 8.87 ms. We also
see that for a long time the velocity reaches a very low plateau
at 5 × 10−3 m/s ∼ 1/20 uJ , which we are tempted to associate
to a weak random wandering behavior of the copepod.

The distribution of jumps in time in the experimental
data set seems to deviate from an exponential distribution,
suggesting the existence of a memory effect. This may,
however, be dependent on the type of stimulus (the light
source), which is continuous in time, very different from the
one due to the presence of a variable-flow shear rate. This
aspect will, therefore, not be taken into account in the model
presented in the next section. We plan to investigate interjump
statistics more carefully in the future, when experiments with
mechanically induced stimulus may be available.

B. Model equation for copepods dynamics

In this section we introduce a simple model system of
copepods’ dynamics. This representation is based on the idea
that the copepods’ trajectories in a fluid can be mimicked by
properly defined active particles. Similar models have been
successfully employed for the description of the behavior
of phytoplankton, such as chlamydomonas [16,57,58], both
in laminar and, more recently, in turbulent flows [14,15,22].
Copepods, and zooplankton in general, display higher com-
plexity compared, e.g., to algae species because of their
higher motility. The model relies both on biological and
hydrodynamical assumptions. First, we assume that copepods
respond always in the same way to external flow disturbances.

Their jump reaction is embedded in their neural system. Fur-
thermore, the stimulus triggering the jump is highly stylized;
we only take into account a mechanical signal with a single
threshold, to be specified later on, and ignore any other activity
induced by light, food, or chemistry (e.g., pheromones). On the
mechanical side, we assume that copepods are small enough
that their center of mass can be considered a perfect fluid tracer
in a flow, except for the time when a jump event takes place.
In hydrodynamic terms, this means that copepods are assumed
to be rigid, homogeneous, neutrally buoyant particles with a
size that is of the order of the dissipative scale of the flow.
Gravity force has no role in producing acceleration or torque.
Only the drag force effect is taken into account during the
jumps. Finally, copepods are coupled to the fluid in a one-way
fashion, they react and are carried by it, but they do not modify
the surrounding flow; copepods-copepods interactions are also
neglected. Adding all together the above hypothesis, the LC
equation of motion is as follows:

ẋ(t) = u(x(t),t) + J(t,ti ,te,γ̇ ,p), (1)

where u(x(t),t) is the velocity of the carrying fluid at time
t and position x(t) and where J is an added velocity term
that describes the active behavior (jump) of the copepod.
J(t,ti ,te,γ̇ ,p) is a function of time t ; it depends also on an
initial and a final time ti and te, on flow shear rate value γ̇ , and
on orientation vector p. If copepods are taken to be spherical
in shape, their orientation dynamics is given by

ṗ(t) = � · p(t), (2)

where � is the fluid rotation rate antisymmetric tensor, defined
as �ij = 1/2(∂iuj − ∂jui). A more general form of Eq. (2),
valid for axisymmetric ellipsoidal particles, is as follows:

ṗ(t) =
{
� + α2 − 1

α2 + 1
[S − pT (t) · S · p(t)]

}
· p(t), (3)

where α ≡ l/d is the aspect ratio of the ellipsoids given by the
ratio of length (l) to diameter (d), which is typically around
3 for E. affinis. The above equation was first proposed by
Jeffery, and its full derivation is detailed in Ref. [59]. Its
phenomenology in turbulent flows has been investigated more
recently in Ref. [54]. Notice that here we designate by S the
fluid deformation rate symmetric tensor as Sij = 1/2(∂iuj +
∂jui) and the shear rate is then defined as γ̇ = √

2S : S. We
note that the fact that the jump term is assumed to depend on
γ̇ represents a generalization to the 3D geometry of Kiørboe’s
empirical findings [32]. For the jump term we propose the
following functional form:

J(t,ti ,te,γ̇ ,p) = H [γ̇ (ti) − γ̇T ] H [te − t]uJ e
ti−t

τJ p(ti), (4)

where H [x] denotes the Heaviside step function, γ̇T is
a threshold value of the shear rate, uJ and τJ are two
characteristic parameters characterizing the jump shape, its
velocity amplitude (uJ ), and duration τJ , respectively. The
first H step function models the fact that a jump can begin
only when the shear rate is above the given threshold value,
while the second step function accounts for the fact that the
jump time span is finite. The initial and final time of a jump
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are defined as:

ti = t if (γ̇ (t) > γ̇T ) ∩ (t > te), (5)

te = ti + c τJ = ti + log(102) τJ . (6)

In other words, we assume that a jump cannot begin if
a previous jump has not finished (t > te) and that a jump
terminates when its amplitude has decreased to a negligible
level, here taken as one percent of the initial amplitude, i.e.,
|J(te)| = 10−2|J(ti)|.

C. Model tuning for turbulent flows

We now take into account the presence of the oceanic
flow environment surrounding the copepods. The properties of
oceanic turbulence relevant for our work have been studied by,
among others, MacKenzie et al. [60] and Jimenez [61]. In these
surveys it was observed that the mean value of the turbulent
kinetic energy dissipation rate, ε = 2νS : S, varies from about
10−8 m2s−3 in open ocean to 10−4 m2s−3 in coastal zones
(although it is also sensitive to the wind speed conditions and
on the depth). The value of ε along with the kinematic viscosity
of sea water, ν, allows us to estimate the Kolmogorov scales
of ocean turbulence: The dissipative length η = (ν3/ε)1/4,
time τη = (ν/ε)1/2, and velocity uη = (νε)1/4. The order of
magnitude estimate as from Ref. [61] for these quantities are
reported in Table I. According to the same authors the typical
Taylor-scale Reynolds number Reλ in the ocean can reach
values up to O(102).

Given that the typical size of copepods is of the order of
millimeters, it is clear that the relevant flow scales for their
dynamics are close to the Kolmogorov scale or below in tur-
bulence [29]. When the LC model is recast in a dimensionless
form in terms of these scales, we get three dimensionless
groups of parameters: τJ /τη, uJ /uη, and τηγ̇T . These param-
eters, together with the flow Reλ, fully specify the working
conditions (or tuning) of the copepods-in-turbulence model.

In this study we take as reference for the energy dissipation
rate the value ε = 10−6 m2s−3, and by taking into account the
dimensional values estimated for the copepods jump intensity
uJ and jump decaying time τJ , the ratios uJ /uη = 93.9
and τJ /τη = 0.00887 can be deduced from the similarity
analysis. This tells us that in ordinary turbulence conditions

TABLE I. Reference properties of the ocean turbulent flow as
from Ref. [61]. ε is the mean turbulent energy dissipation rate, and
η, τη, and uη are the turbulence space, time, and velocity dissipative
scales, respectively. Reλ is the Taylor-scale-based Reynolds number.
Their approximate range of variability is given together with the
reference values chosen for the similarity analysis in the present
study.

Parameter Unit Range This study

ν m2s−1 ∼10−6 10−6

ε m2s−3 10−8 10−4 10−6

η m 3 × 10−3 3 × 10−4 10−3

τη s 10 0.1 1
uη m s−1 3 × 10−4 3 × 10−3 10−3

Reλ — O(102) 80

the copepods possess an almost instantaneous reaction, since
their response time is about one-hundredth of the smallest scale
of turbulence. On the opposite the velocity reached during a
jump is of a magnitude that is comparable if not higher to the
one of turbulent velocity fluctuations. Finally, we note that we
do not have any experimental guess for the magnitude of γ̇T ,
therefore the value τηγ̇T is a free parameter of our model.

D. Numerical implementation of the LC model and
of the turbulent flow simulation

The copepods-in-turbulence model system is conveniently
implemented via an Eulerian-Lagrangian approach, meaning
that the trajectory x(t) of each individual copepod is computed
by means of Lagrangian tracking method applied to Eq. (1)
[62,63], while the fluid flow is obtained by solving the
field equations of incompressible fluid-dynamics, i.e., Navier-
Stokes equations, in turbulent conditions. All the particles are
advanced in time using Adams-Bashforth method with a time
step equal to δt = 1.4 × 10−3τη, the same time step as for the
integration of the Navier-Stokes equations. Such a choice of
time step shall also satisfy the constraint δt � τJ .

A direct numerical simulation (DNS) approach was used to
solve the Navier-Stokes equations for homogeneous isotropic
turbulence by means of a pseudospectral method:

∂tu + u · ∇u = −∇p/ρ + νu + f , (7)

where u(x(t),t) is the incompressible (∇ · u = 0) fluid velocity
field, p is the pressure, ν is the kinematic viscosity, and ρ is
the fluid density. The f is the forcing that is applied on large
scales to sustain the statistically stationary turbulence. The
solution domain is a cube of length L = 2π with N3 = 1283

grid points, subject to periodic boundary condition. Aliasing
error is controlled by omitting the wave number larger than k =
2/3 × (2πN/L), to reach the Taylor-Reynolds number of the
flow Reλ = √

15u2
rms/(νε)1/2 ≈ 80, where urms is the single

component root mean square velocity fluctuation. kmaxη > 1.4,
in which kmax = N/3 and η is the Kolmogorov length scale,
assures that small scales structures are well resolved.

III. RESULTS AND DISCUSSION

As mentioned above, the LC model is characterized by three
control parameters: the jump intensity uJ , the decaying time
of the jump τJ , and the shear rate threshold value γ̇T , which
are conveniently presented in dimensionless form in terms of
turbulence dissipative scale units. Since the LC model is just
one-way coupled to the fluid, in the numerics we can perform
simultaneous simulations of several families of copepods in
the same turbulent flow, where each family is characterized by
the triplet [uJ /uη, τJ /τη, γ̇T τη].

In agreement with the experimental observation we always
keep fixed the decaying time of the jump to the value τJ /τη =
10−2, while the other parameters are varied independently
in the ranges uJ /uη ∈ [1,400] and τηγ̇T ∈ [0,4]. Note that if
γ̇T = 0, according to the model, all the particles will jump in a
synchronous way. In order to avoid such an unphysical feature,
the time te for each particle is initialized by a random variable
with homogeneous distribution in the interval [0,log(102) τJ ].
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We perform a series of simulations with multiple families, with
about 2.56 × 105 particles per family.1 The simulation was
started and particles were let displace for about 2 eddy turnover
times, after that during the following ∼2 eddy turnover times
about 10 instantaneous distributions of LC particles were saved
for analysis. Copepods are modeled as solid sphere particles,
and orientation vector affected by fluid rotation rate [Eq. (2)],
unless otherwise noted. For comparison a set of passive fluid
tracers are also included in all our simulations.

A. Single-point statistics

In order to see how the LC dynamics in turbulence differ
from that of a fluid tracer, we first address the velocity
single-point statistics. The PDF of the absolute value of
single-component velocity for the copepods, i.e., |ẋi |, is shown
in Fig. 3. Tracers, the particles that move along the streamlines,
agree with a Gaussian distribution, while for copepods a
slower decaying tail is found. This deviation becomes more
pronounced at increasing the jump intensity for a given
threshold value of the shear rate, as shown in Fig. 3(a). It also
appears that low jump intensities uJ < 10 uη are not strong
enough to make effective changes on the copepods PDF. On
the other hand, increasing the threshold value of the shear rate
leads to fewer jumps; therefore, in this case copepods behave
almost like tracers. Their deviation in velocity distribution
from the Gaussian indeed increases by decreasing the shear
rate threshold value as can be seen in Fig. 3(b).

The general trend of the observed deviation from Gaussian-
ity can be predicted by means of the following probabilistic
model. We suppose that the instantaneous single cartesian
component velocity of LC particles can be approximated by the
sum of three statistical independent random variables. The first
variable accounts for the turbulent velocity field contribution;
therefore, it is a Gaussian with zero mean and the same
standard deviation as the one measured in the DNS. The second
and third variable mimic, respectively, the jump direction and
its intensity: we assume that the orientation is random uniform
in the solid angle and that the jumps happen uniformly in time.
One can obtain the resulting PDF for the LC particle velocity
from the convolution of the three elementary PDFs associated
to the three described random variables. The resulting density
distribution function when compared to the LC measurements
at low threshold value τηγ̇T = 0.21 (i.e., when copepods jump
very frequently), shows an overall qualitative agreement with
a slight deviation in the tails [see Fig. 3(b)].

Such a discrepancy comes from the fact that in reality the
jump directions develop some correlations with the underlying
flow, via Eq. (2), while the probabilistic model neglects it.
One can make use of the approximate probabilistic model
to estimate the average fraction of particle performing jumps
as a function of the shear-rate threshold value. This is done
by introducing an adjustable parameter accounting for the
probability that a given particle is actually jumping and by
fitting the model to the PDF curves. Figure 4 shows the fitted

1In physical dimension this corresponds to a number density of
O(1) LC particles per cm3, a density comparable to the one found for
real copepods estuarine water.
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ẋ |(F
DP

i/u
η|

)
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FIG. 3. Probability density function of absolute value of single
component velocity |ẋi/uη| for the copepods (a) at constant threshold
value τηγ̇T = 0.7 and different jump intensities. Gaussian distribution
is a statistic distribution here with the measured root mean square
velocity of the Eulerian field as the standard deviation (b) at constant
jump intensity uJ /uη = 100 for different shear rate threshold values.
Random jumps correspond to the expected velocity distribution when
randomly oriented jumps occur uniformly in time on top of the
turbulent velocity field.

predictions obtained with such a procedure (which confirm
the validity of the probabilistic model), while the inset of the
same figure displays the inferred jump percentage as a function
of the shear rate threshold value. We observe an exponential
decrease as γ̇T is raised. For the value τηγ̇T = 0.5, the jumping
particle fraction is around 50%.

We finally observe that the shape of the PDF displayed by
the LC model is also in qualitative agreement with a recently
published experimental study [43], despite the fact that the
experiment has been performed in low Reynolds number
conditions (up to Reλ 
 30). What has not been reported
yet in experimental studies is a quantification of the three-
dimensional spatial distribution of copepods in turbulence.
We do this in the next section by means of a fractal dimension
characterization.

B. Correlation dimension analysis

The distribution of the LC particles is illustrated by Fig. 5,
where we show the instantaneous particle positions in two-
dimensional slices of thickness ∼η, visualizing at the same
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intensity uJ /uη = 100 for different shear rate threshold values. Fitted
PDF curves correspond to the percentage of jump of copepods. (Inset)
Deduced percentage of jump as a function of the shear rate threshold
value τηγ̇T .

time the values of shear-rate of the carrying flow. Contrary to
fluid tracers, LC particles are nonhomogeneously dispersed in
regions where turbulence intensity is below the given shear-
rate threshold, according to the model. In the panels of Fig. 5,
we also highlight the γ̇T values by contour lines, we name,
respectively, comfort and alert regions the locations which
are below or above these fixed γ̇T values. In Fig. 5(a), which
corresponds to γ̇T = 0.35 τ−1

η , the alert region is the dominant
one. In this situation the great majority of LC particles are
jumping but they manifestly fail to reach the few available
comfort islands. This may be due both to the fact that islands
are small and that they are short lived: one shall bear in mind the
interplay between space and time in this problem. Figure 5(b)
shows a condition where comfort and alert regions are equally
probable. We notice a pronounced aggregation of particles
in the alert areas surrounding the comfort regions, while the
latter are efficiently evacuated. Finally, Fig. 5(c) illustrates
what happens when the alert behavior is triggered only by a
few extreme shear-rate filamentary regions. The LC particles
manage to avoid them quite efficiently but in the overall
picture they seems to be mostly homogeneously distributed.
(See Supplemental Material [64] for the 2D visualization of
copepods’ motion in turbulent flow at τηγ̇T = 0.92.)

In order to better quantify the patchiness of the LC particles
we compute their correlation dimension (D2), which is a
measure of the dimensionality of a set of points. According
to the Grassberger and Procaccia algorithm [65], the D2 is
defined as the scaling exponent of the probability of finding
a pair of particles with a separation distance less than r :
P2(|X2 − X1| < r) ∝ rD2 as r → 0. In other words, if

C(r) = 2

N (N − 1)

∑
i<j

H (r − |Xi − Xj |) (8)

decreases like a power law, then D2 = lim
r→0

log C(r)
log r

. Figure 6

shows the D2 value in the two-dimensional parameter space

(a) τη γ̇T = 0.35
 0
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 2

 2.5

 3

 3.5

 4

 4.5

τ η
 γ̇

(b) τη γ̇T = 0.92
 0
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 4.5
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 γ̇

(c) τη γ̇T = 1.77
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τ η
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FIG. 5. Patchiness of the copepods from the simulations. Shading
shows the instantaneous field of the absolute value of the shear rate of
the Eulerian field (a) distribution of the copepods with uJ /uη = 250
and τηγ̇T = 0.35, (b) distribution of the copepods with uJ /uη = 250
and τηγ̇T = 0.92, and (c) distribution of the copepods with uJ /uη =
250 and τηγ̇T = 1.77. Contour lines are traced at the corresponding
value of γ̇T on each panel.

composed by the intensity of the jump and the shear rate
threshold value. The clustering (D2 < 3) is discernible when
the prescribed shear rate threshold value is less than 2.8 τ−1

η ,
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jump intensity uJ /uη and threshold value τηγ̇T .

and it is maximal, D2 
 2.3, at around 0.5 τ−1
η . On the

other hand, we observe a saturation of clustering as uJ is
increased. In order to better appreciate these two features, i.e.,
the minimum with respect to τηγ̇T and a saturation as a function
of uJ /uη, two two-dimensional cuts of the D2(γ̇T ,uJ ) surface
are shown in Fig. 7.
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FIG. 7. Lateral view of correlation dimension of the copepods
as a function of the jump intensity uJ /uη and threshold value τηγ̇T .
Error bars indicate the range of variability of the measurements from
10 independent particle snapshots.

One may wonder why there is an optimum and what is its
physical meaning. Copepods are prone to jump in order to
escape from regions of alert (γ̇ > γ̇T ), to reach regions where
γ̇ < γ̇T ; therefore, the chance for a jump to be successful
(assuming it to be randomly oriented) depends on the size
of the comfort region, in other words to the volume, Vγ̇ <γ̇T

.
On the other hand, clustering would be maximum if we have
numerous successful jumps, and obviously the number of
jumps depends onVγ̇ >γ̇T

. This implies that copepods clustering
is expected to be proportional to Vγ̇ <γ̇T

· Vγ̇ >γ̇T
. Now, substi-

tuting the volume of comfortable regions with Vtot − Vγ̇ >γ̇T

leads to Vγ̇ >γ̇T
· (Vtot − Vγ̇ >γ̇T

). One direct consequence is that
the clustering would be maximum when Vγ̇ >γ̇T

= Vtot/2. This
can explain the existence of the optimum of D2 as a function
of τηγ̇T as shown in Fig. 7(a) as well as its trend as a function
of γ̇T . Note, however, that this argument is based on the
simplifying assumption that there is no correlation between
the orientation of a LC particle at jump and its position respect
to the comfort area, and also it neglects the spatial structure of
the shear rate field.

How can we determine the value of γ̇ for which the
condition of Vγ̇ >γ̇T

= Vtot/2 occurs? One possibility is to
perform an Eulerian measurement of the γ̇ (x,t) field over
space and time. Another option is to look at the fraction of
time spent by tracers in alert regions, Tγ̇>γ̇T

/Ttot (with Ttot the
total time of the measurement). Since tracers explore evenly all
the region of the flow this is equivalent to measure the volume
ratioVγ̇ >γ̇T

/Vtot. In particular, in order to increase the statistical
sampling we look at the global mean value 〈Tγ̇>γ̇T

〉/Ttot where
the average is over the total number of particles (Ntot):

〈Tγ̇>γ̇T
〉 = 1

Ntot

Ntot∑
i=1

∫ Ttot

0
H (γ̇i(t) − γ̇T ) dt. (9)

The plot in Fig. 8 shows the trend of 〈Tγ̇>γ̇T
〉/Ttot as function of

γ̇T both for tracers and LC particles. It confirms that copepods
reside less in alert regions compared to tracers. Moreover, the
difference among the two time fractions can be used as an
alternative clustering indicator. It has, in fact, a similar trend
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FIG. 8. Time fraction spent in alert regions by tracer and
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time fraction between tracers and LC particles and prediction based
on Vγ̇ >γ̇T

/Vtot measurement.
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as the D2(γ̇T ) function and shows a peak for the same value
of γ̇T (inset of Fig. 8). The prediction that clustering varies
as Vγ̇ >γ̇T

· (Vtot − Vγ̇ >γ̇T
) is in qualitative agreement with the

observed trend, it is in quite good agreement in the large
γ̇T regime; however, it fails to capture the correct value at
which the maximum appears, giving τηγ̇T = 0.85 instead of
0.5. Finally, we note that the case of maximal clustering at
D2 
 2.3 corresponds to a condition where the LC particles
concentrate in nearly two-dimensional sheets, which envelop
the alert regions [as can be also inferred from the visualisation
in Fig. 5(b)].

We can offer a qualitative physical explanation for the
observed D2 saturation for high values of uJ at fixed γ̇T

[Fig. 7(b)]. The argument is as follow: one may expect that
there is clustering if the time to escape from an alert region
is less than the lifetime of such a region: τescape < τγ̇T

. The
former time can be estimated as τescape = lγ̇T

/uJ , where lγ̇T
is

the typical size of the alert region characterized by a shear-rate
γ̇ > γ̇T . This implies that LC particles form clusters and the D2

measure is lead to saturate to a constant value if uJ > lγ̇T
/τγ̇T

.
This latter ratio can be thought as a threshold-dependent
escape velocity uγ̇T

= lγ̇T
/τγ̇T

. From the correlation dimension
measurement this escape velocity is estimated to be of the order
of 100 uη, i.e., of the order of the large scale velocity, with a
weak decreasing trend at increasing γ̇T .

We finally observe that when the flow field associated to the
Lagrangian particles, v = ẋ, displays a weak compressibility,
it can be shown [15,66] that D2 depends on the flow divergence
by the relation D2 = 3 − c〈∇ · v〉2 with c a proportionality
constant and angular brackets denoting time and space average.
If this argument is applied to the LC model we observe that
the divergence can be different form zero only at the interface
between comfort and alert regions. This is because in comfort
regions (∇ · v = ∇ · u = 0) and in alert regions (∇ · v = ∇ ·
u + ∇ · J = 0, as we can safely assume the jump term to be
spatially constant). At the interface, however, the change from
the fluid velocity intensity u to u + uJ has a spatial transition
scale roughly proportional to uJ · log (102)τJ , which leads to
a non-null divergence. This explains the LC accumulation
that we observe in correspondence of the alert and comfort
interfaces, which effectively acts as sink or source term of the
LC velocity field (see in particular the central panel of Fig. 5).
By following this line of reasoning, one can guess that the
minimum value of D2 will correspond to the case where the
surface of alert and comfort interface is maximum (and not
of volumes, as stated above). This has clearly a dependence
on the threshold γ̇T and much less, if any, on uJ . Despite the
qualitative agreement of this observation with our numerical
results, we have not been able yet to confirm it quantitatively
in the weakly compressible limit of the LC model.

C. Particle orientational dynamics

What is the importance of particle orientation for the
nonhomogenous distribution of particles? The effect of
the geometrical aspect ratio of the particles, together with
the direction of their jump on the fractal dimension are
addressed here. The fluid deformation rate symmetric tensor
Sij comes into play by modeling copepods as elongated
particles with aspect ratio equal to 3 (e.g., the relevant aspect
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FIG. 9. (a) Effect of the aspect ratio and direction of the jump on
the fractal dimension; (red) copepod as solid sphere particles, their
direction of the jump is random in the solid angle; (blue) copepod as
solid sphere particles with an orientation; and (green) as elongated
particles. Both jump in a direction following the Jeffery’s equation.
(b) PDF of the absolute value of the single component velocity for
(red) random direction case and (green) Jeffery’s case with aspect
ratio of 3. All cases are computed at uJ /uη = 250.

ratio for E. affinis copepod). Its effect on the jump direction
selection leads to enhanced clustering of the particles for jump
intensity uJ /uη = 250. Copepods can also jump in random
direction in the solid angle independently from the rotation rate
and deformation rate of the Eulerian field. Less clustering in
this case is logical since the jumping direction has no relation
with the fluid flow. These behaviors can be found in more
details in Fig. 9, where we address the influence of jump
direction on the PDF of the copepods velocity.

IV. CONCLUSIONS AND PERSPECTIVES

In this study we have considered a Lagrangian model
for active particles. The model is trimmed in a way to
reproduce some dynamical features experimentally observed
in the motion of copepods in still water. Its main characteristics
is the possibility to locally acquire an extra-velocity (jump) in
response to a variation of the fluid-flow conditions surrounding
the particle. The direction of the jump is ruled by the
hydrodynamics of small neutrally buoyant particles. The
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Lagrangian model has been coupled to a turbulent developed
flow described by the incompressible Navier-Stokes equations.

We have shown that jump escape reaction from spa-
tiotemporal events characterized by high shear-rate leads
to nonhomogeneous spatial distributions of active particles.
This clustering mechanisms, however, is effective only when
the reaction threshold is close to values of the order of
τ−1
η in a very narrow range. The fact that the range is

narrow is ultimately linked to the intermittent distribution
of the turbulence dissipation rate [67]. We have shown that
clustering approaches its maximum when the threshold rate
value γ̇T roughly divide the shear-rate (γ̇ ) spatial field in equal-
volume regions. Since this mechanism mainly depends on the
average value of small-turbulence scales rather than on their
fluctuations, we expect it to have a weak dependence on the
Reynolds number of the turbulent flow. A second implication
of the model is that for any given shear-rate reaction value
γ̇T there is a maximal intensity jump velocity beyond which
clustering cannot be further increased. Finally, the analysis
of the correlation dimension suggests the formation of local
quasibidimensional clusters enclosing the nonpermitted flow
regions. From a physical point of view, we remark that the
clustering mechanism at work in turbulence for the LC model
is different from the one shown in other model systems of
particulate active matter. For instance, the clustering observed
for motile algal cells in turbulence is given by the gyrotactic
effect, which is a nonisotropic effect induced by the presence
of the the external gravity field [22]. On the opposite, the LC
model discussed here is isotropic but it is nonhomogeneous
in space (it depends on the local value of the shear rate).
We have tested the fact that clustering also appears when LC
particles are made sensitive to other flow quantities such as
enstrophy or fluid acceleration. The minimal fractal dimension
we observed is always above the value of 2, confirming the
fact that particles in this case aggregate in order to cover the
surface of the forbidden regions. Based on these observations
we do not expect that such clustering processes could lead
to filamentary like clusters, D2 
 1, as the ones observed for
microbubbles in turbulent flows. Another notable result is the
negligible impact of the particle orientational dynamics on the
clustering. This is likely to be linked to the limited duration of
jumps (note that here τJ � τη), but might become important
for longer jumps, particularly in the modeling of larger motile
plankton. The negligible impact of orientation for the case
examined here suggests the possibility to formulate accurate
eulerian mean-field particle models based on the introduction
of a space-dependent effective diffusivity (κ) whose amplitude
may be linked directly to jump shape parameters, via a
dimensional relation of the type κ ∝ u2

J τJ .
From a more biological perspective, although behavioral

mechanisms leading to clustering had been already suggested
in the past, such as the formation of patches through swimming

against the flow [68], the possibility of cluster formation by
escape jumps in a no-mean flow situation was never reported
before. As discussed in Ref. [38], clustering of copepods
has an ecological importance: an effect may be to strongly
increase the contact rate with mates, and hence improve the
reproduction. Indeed, several models have been proposed to
express copepod contact rates in turbulence [69–71], reviewed
in Ref. [72]. In case of clustering, the contact rate is strongly
increased [38,73–75]. The clustering that would result from
a behavior of predator avoidance (a reaction to turbulent
shears similar to predators’ signals) would have as side effect
a positive consequence with a strong enhancement of the
mating contact rate. Of course, such copepod concentration
could also attract predators. Due to different tradeoffs, each
copepod species may have an optimal jump behavior in
response to turbulence. For example, the copepod E. affinis
used in our experimental section is an estuarine species
adapted to maintain the bulk of its population in a salinity
gradient in highly turbulent conditions [76,77]. By using
high-frequency sampling data of all life stages of E. affinis,
Schmitt et al. [77] confirmed that the late developmental stages
(mainly adults) exhibited active vertical migration during the
flood. Consequently, the population was not homogeneously
distributed in the water column, as dense patches are observed
during short time window and near the bottom [76].

Our model can be improved in the future to test such
situations with tidally induced turbulence in shallow estuaries
where copepods can use their jump abilities to simply avoid to
be flushed out of their optimal habitat. This could lead to the
identification of some optimal clustering strategy that may be
in relation with the dome-shapes proposed earlier, on purely
speculative intuitions [78,79]. The presented LC model can
also be improved by refining the jumping protocol in order to
take into account the fact that the temporal sequence of jumps
in copepods occurs in fast sequences (bursts) interposed to
inactive moments. Another possible direction of research con-
cerns the investigation of the impact of a spatial radius of per-
ception for copepods to react to turbulent shear. This may pro-
duce a smoothing or a delay in the perceived turbulent signal.
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