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1. Introduction

Shear localization is a common phenomenon in ductile
materials undergoing high strain rate loading. An adiabatic
shear band (ASB) is a relatively narrow band, typically a
few tens of micrometers in width, presenting large defor-
mation and high temperature, occurring in various ductile
materials (metals, polymers, . . .) where thermal softening
is significant (Zener and Hollomon, 1944). The adjective
adiabatic can actually be considered as a misnomer, since
heat conduction plays a key role in their formation
(Merzer, 1982; Wright, 2002). Although an ASB can appear
as a strong displacement or velocity discontinuity at the
macroscopic scale, it is actually a weak discontinuity
(Oliver and Huespe, 2004), whose width and intensity are
controlled by the balance between heat production from
mechanical dissipation and heat diffusion by thermal con-
duction. One of the objectives of this work is to bridge the
two descriptions, which are each relevant to different
scales. Note also that other softening mechanisms than
temperature can be at play: in particular, recent work
(Rittel et al., 2008; Dolinski et al., 2010) has shown the
important role of micro-mechanisms such as dynamic
recrystallization, which could also be at the origin of ASB
formation. In the present paper, we will nonetheless
restrict ourselves to thermal softening.

Since first observed by Tresca in the 19th century, the
problem of initiation, formation and propagation of adia-
batic shear bands has drawn a great attention in the research
community. ASBs play an important role in many manufac-
turing processes (forming, cutting) and in the resistance of



structures under impact loading. The numerical treatment
of these problems has been persistently hampered by diffi-
culties in correctly representing the very strong localization
of deformation (and temperature) associated to ASBs. When
limiting the analysis to its mechanical aspects (e.g. using a
locally adiabatic constitutive model), it is nowadays well-
established that spurious mesh-dependence may appear,
leading to a wide variety of regularization approaches on
which we will not dwell here. But even when accounting
for the complete coupled thermo-mechanical setting, in
which framework the problem is well posed, the typically
very small width of ASBs (of the order of the lm) can cause
serious difficulties. On the one hand, the mesh size required
to resolve such characteristic length is often limiting in
terms of modeling actual industrial problems, and on the
other hand the very large deformations occurring in the
localized shear zone typically lead to strong mesh distortion
and associated numerical problems. Various approaches
have been suggested in order to circumvent these mesh-
related difficulties, among which: the use of mesh-free
methods, or the introduction of discontinuities to represent
shear bands. Mesh-free methods (see for example Li et al.,
2002; Medyanik et al., 2007) may alleviate mesh distortion
problem, but still require some level of adaptivity in order to
capture characteristic shear band widths. Comparatively,
the incorporation of discontinuities in the numerical model
avoids the need to resolve such small length. Among this
type of approach, we can note embedded discontinuities
(Ortiz et al., 1987; Oliver et al., 1999), interface elements
(Ortiz and Pandolfi, 1999; Yang et al., 2005), or the use of
XFEM enrichment (Areias and Belytschko, 2007). Alterna-
tively, discontinuities can be embedded directly into the
constitutive model (Longère et al., 2003; Longère et al.,
2005; Longère et al., 2009). Each of these discontinuous
approaches has its advantages and inconveniences in terms
of how they deal with mesh related problems and are able to
accurately represent shear bands, but they share the com-
mon characteristic of relying on the choice of a shear band
width parameter. Results of numerical simulations can vary
significantly with this choice.

In this paper, we propose a novel energy-based varia-
tional approach for modeling ASB structure, including elas-
ticity, work hardening, and heat conduction, yet avoiding
the use of a mesh. Conservation laws are formulated as a
mathematical optimization problem with respect to a lim-
ited set of scalars. Consequently, by means of canonical
expressions of displacement and temperature (taken from
Leroy and Molinari, 1992), the bandwidth and the central
temperature can be accurately computed as internal
parameters/variables. This variational approach has been
successfully applied to steady-state ASBs (Su et al., 2014).
In this paper, we consider the transient problem of evolu-
tion of ASB structure, from onset to steady-state, at least
when the latter does exist. In our model, the evolving shear
band width is thus dynamically computed, avoiding the
delicate choice imposed on alternative methods listed
above. Based on this thermo-mechanical coupled varia-
tional framework, we can verify the generality of the pro-
posed analytical approach with respect to constitutive
models, as illustrated through various thermal softening
laws such as power laws or the popular Johnson–Cook
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model. In addition, accounting for work hardening and
elasticity, we propose an effective (or macroscopic)
thermo-elasto-viscoplastic model of the shear localization
zone. A new loading/unloading condition, stemming as a
Kuhn-Tucker relation, is introduced for this variational
model. The stress evolution and the capacity of the
approach to handle cyclic loading are analyzed, presenting
a very good correspondence with ASB simulations by finite
element method (FEM). Yet, the proposed variational
approach, which can be seen as a Ritz–Galerkin method,
involves only four scalar unknowns to describe the full
shear band structure (strain and temperature), while FEM
models typically involve at least hundreds of degrees of
freedom, leading to a lesser computational cost for the
Ritz–Galerkin approach. Finally, it provides in the end a
macroscopic strong discontinuity model, with physically-
motivated rate-dependent laws relating shear stress and
heat production to tangential displacement discontinuity,
opening the way to further improvement of discontinu-
ity-based approaches discussed above.

The paper is organized as follows. In Section 2, we
briefly review the variational framework for thermo-
mechanical boundary-value problems which was recently
proposed by Yang et al. (2006). In Section 3, we describe
the proposed approach in the context of non-hardening
thermo-elasto-visco-plasticity. We first lay down the
assumptions underlying the unidimensional shear band
model used here, and the associated variational formula-
tion. We then introduce the Ritz–Galerkin approach, based
on canonical functions established by Leroy and Molinari
(1992), and detail some algorithmic issues critical to the
numerical model, introducing a predictor–corrector
scheme, leading to an original average shear band yield cri-
terion. This model is then validated by comparison with
FEM solutions, and we then show that it can naturally be
extended to arbitrary thermo-visco-plasticity models. In
Section 4, we reformulate the variational model in order
to account for hardening, taking as a practical example
the classical Johnson and Cook (1983) model. This modi-
fied variational model is again validated against FEM
results, and we then show that it can be used for arbitrary
non-monotonous loading paths. We also discuss a couple
of algorithmic aspects, such as the influence of an algorith-
mic parameter and the evaluation of the error associated to
the average yield criterion. We finally draw some conclu-
sions and perspectives.
2. Variational constitutive updates

In this section, we briefly review the variational frame-
work for thermo-mechanical boundary-value problems
which was recently proposed by Yang et al. (2006). For a
broader overview of this incremental variational frame-
work, the reader is also referred to Stainier (2013).
2.1. Thermodynamic framework

For the sake of clarity, the variational framework is pre-
sented here under the assumption of small strains and
small displacements (linearized kinematics), although it



can easily be extended to finite strains (Stainier, 2013). The
thermodynamic state of a material point is then described
by the engineering strain tensor e, the absolute tempera-
ture T, and suitable internal variables. Considering elasto-
(visco-) plastic behavior, the total strain is decomposed
into elastic and plastic parts:

e ¼ ee þ ep: ð1Þ

The rate of plastic strain can be rewritten in terms of
amplitude and direction as follows:

_ep ¼ _�ep M; ð2Þ

where M is a traceless normalized symmetric tensor:

tr M ¼ 0; M �M ¼ 3
2

; MT ¼M: ð3Þ

The cumulated, or equivalent, plastic strain is then defined
by

_�ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_ep � _ep

r
: ð4Þ

In the case of classical von Mises (J2) plasticity, internal
variables are then defined as the set fep; �epg.

Let us now assume the existence of a Helmholtz free
energy density, a state function of the material state. For
metals, it is commonly admitted that such an energy is
the sum of elastic, plastic and thermal energies:

Wðe; T; ep; �epÞ ¼Weðe� ep; TÞ þWpðep; �ep; TÞ þWtðTÞ: ð5Þ

In the following, we will consider isotropic materials, with

Weðee; TÞ ¼ 1
2
jðTÞðtr½ee�Þ2 þ lðTÞkdev ee½ �k2

; ð6Þ

where j and l are the bulk and shear modulus, respec-
tively. Note that we will not actually consider a tempera-
ture-dependence of elastic moduli in the following. The
(Cauchy) stress tensor is obtained as the thermodynamic
force conjugate to strain:

r ¼ @W
@e
¼ @We

@ee
¼ j tr½ee�dþ 2ldev½ee�; ð7Þ

where d denotes the second-order identity tensor. The
form of the stored plastic energy will be discussed below.
Note at this point that an explicit dependence on the plas-
tic strain tensor ep corresponds to kinematic hardening,
with a backstress tensor given by

v ¼ @Wp

@ep
ðep; �ep; TÞ; ð8Þ

while dependence on the scalar cumulated plastic strain can
be associated to isotropic hardening, with the yield stress

g ¼ @Wp

@�ep
ðep; �ep; TÞ: ð9Þ

A possible expression (see Miehe, 1995) for the stored
thermal energy (heat storage capacity) is given by

WtðTÞ ¼ q0C0 T � T0 � T log
T
T0

� �� �
; ð10Þ

where C0 is the specific heat capacity, q0 the mass density,
and T0 a reference temperature. The entropy density is
3

obtained from the free energy as the thermodynamic force
conjugate to temperature:

q0g ¼�
@W
@T
ðe; T; ep; �epÞ ¼ � @We

@T
ðee; TÞ � @Wp

@T
ðep; �ep; TÞ

þ q0C0 log
T
T0

� �
; ð11Þ

where g is the specific entropy. Accounting for the flow
rule (2), the rate of the free energy can then be written as

_W ¼ r � _e� ðr� vÞ �M � g½ � _�ep � q0g _T ð12Þ

and we thus see that we can consider that the effective
quantity

y ¼ ðr� vÞ �M � g ð13Þ

is thermodynamically conjugate to �ep.
In order to complete the framework, we introduce a dis-

sipation (pseudo-)potential wðyÞ, from which evolution
laws for internal variables are derived (Generalized Stan-
dard Material framework of Halphen and Nguyen, 1975):

_�ep ¼ @w
@y
ðy; �ep; TÞ; ð14Þ

where arguments of w after the semicolon describe a
potential parametric dependence on the material state.
The inverse relation can be obtained through a Legendre–
Fenchel transform:

w�ð _�ep; �ep; TÞ ¼ sup
y

y _�ep � wðy; �ep; TÞ
h i

ð15Þ

and

y ¼ @w
�

@ _�ep
ð _�ep; �ep; TÞ: ð16Þ

Convexity of w (and subsequently of w�) ensure non-
negativeness of dissipation D ¼ y _�ep. Specific expressions
for w� will be discussed in the following sections. Evolution
Eq. (16) can be rewritten as

@

@ _�ep
_W þ w�

h i
¼ 0 ð17Þ

or, given the convexity of w�

_�ep ¼ arg inf
_�ep

_W þ w�
h i

: ð18Þ

Similarly, we can write

M ¼ arg inf
M

_W þ w�
h i

; ð19Þ

which corresponds to the principle of maximum
dissipation

M ¼ arg sup
M

y _�ep: ð20Þ

Constraints (3) must of course be taken into account in
optimization problem (19), yielding (Ortiz and Stainier,
1999)

M ¼
ffiffiffi
3
2

r
dev½r� v�
kdev½r� v�k : ð21Þ



Fig. 1. Simplified 1D shear band problem (Leroy and Molinari, 1992).
2.2. Incremental variational principle

The variational principle defined by (18) and (19) can be
expressed in a time-incremental framework as follows
(Yang et al., 2006):

Wnðenþ1;Tnþ1;en;Tn;ep
n;�e

p
nÞ¼ inf

�ep
nþ1 ;M

�
Wðenþ1;Tnþ1;e

p
nþ1;�e

p
nþ1Þ

�Wðen;Tn;ep
n;�e

p
nÞ�q0gnðTnþ1�TnÞ

þ
Z tnþ1

tn

w�
Tnþ1

Tn

D�ep

Dt
;�epðt0Þ;Tðt0Þ

� �
dt0
�
; ð22Þ

where subscripts n and nþ 1 refer to instants tn and tnþ1,
respectively, and Dt ¼ tnþ1 � tn; D�ep ¼ �ep

nþ1 � �ep
n. In the

above expression, the updated plastic strain tensor is given
by the incremental flow rule:

ep
nþ1 ¼ ep

n þ D�epM: ð23Þ

In addition a consistent approximation to the integral of
the dual dissipation potential w� must be provided, for
example following the specific expression proposed in
Stainier (2011):

Z tnþ1

tn

w�
Tnþ1

Tn

D�ep

Dt
; �epðt0Þ; Tðt0Þ

� �
dt0

� Dt
Tn

Tnþ1
w�

Tnþ1

Tn

D�ep

Dt
; �ep

nþa; Tn

� ��

þ DT
Tnþ1

w�
Tnþ1

Tn

D�ep

Dt
; �ep

nþa; Tnþa

� ��
; ð24Þ

where f�ep; Tgnþa ¼ ð1� aÞf�ep; Tgn þ af�ep; Tgnþ1, with the
algorithmic parameter a 2 ½0;1�. The incremental energy
defined in (22) can then be seen as an effective thermo-
elastic potential, in the sense that

@Wn

@enþ1
¼ rnþ1; ð25Þ

@Wn

@Tnþ1
¼ �q0Dgþ Dt

�D
Tnþ1

; ð26Þ

where Dt �D � ynþ1D�ep is a consistent approximation of the
energy dissipated by visco-plasticity over the time
increment.

We can then define the following functional of displace-
ment (denoted by u) and temperature fields (Yang et al.,
2006):

Unðunþ1; Tnþ1Þ ¼
Z

X
Wnð$unþ1; Tnþ1Þ � DtX �$Tnþ1

Tnþ1

� �� �
dV ;

ð27Þ

where we have dropped the dependence on the external
and internal variable fields at tn, for conciseness. In this
expression, X is a Fourier potential such that the heat flux
is given by

q ¼ @X
@G
ðGÞ where G ¼ �$T

T
ð28Þ

(in the spirit of Biot, 1958). For example, in the case of an
isotropic material with a heat conduction coefficient k,
we can write
4

XðGnþ1; TnÞ ¼
1
2

kTn Gnþ1 � Gnþ1: ð29Þ

Under the assumption of pure Dirichlet boundary condi-
tions (extension to Neumann, or even mixed, boundary
conditions is quite trivial, see Stainier, 2013), the incre-
mental coupled thermo-mechanical boundary-value prob-
lem can then be stated as a variational principle:

funþ1; Tnþ1g ¼ arg inf
unþ1

sup
Tnþ1

Unðunþ1; Tnþ1Þ: ð30Þ

Indeed, Euler–Lagrange equations for this variational prob-
lem correspond to consistent incremental approximations
of (quasistatic) mechanical balance equation and heat
equation.

This variational formulation of coupled thermo-
mechanical problems presents several advantages. First,
it inherits the symmetry associated to all variational for-
mulations, a property which is generally missing in con-
ventional formulations of thermo-mechanical problems.
The variational nature of the problem also allows to use
tools from optimization theory and mathematical pro-
gramming. In particular, we will use in the following sec-
tions a Ritz–Galerkin approach to derive an approximate
solution to the thermo-mechanical problem of an adiabatic
shear band.
3. Variational modeling for shear bands without
hardening

3.1. Variational shear band model

In the sequel, following Leroy and Molinari (1992), we
simplify the problem of a localized shear band by consider-
ing a layer of infinite length (x-direction) and thickness 2H
(y-direction), subject to a shearing velocity �V0 at y ¼ �H,
as described in Fig. 1. We consider a plane-strain assump-
tion, and isothermal boundary conditions: T ¼ T0 at
y ¼ �H. The displacement and temperature fields then
reduce to u ¼ uðy; tÞex and Tðy; tÞ. The strain tensor reduces
to eðy; tÞ ¼ 1

2 u;yðy; tÞðex � ey þ ey � exÞ, and the temperature
gradient reduces to $T ¼ T ;yðy; tÞey. The incremental varia-
tional principle then takes the form

funþ1ðyÞ; Tnþ1ðyÞg ¼ arg inf
unþ1

sup
Tnþ1

Z H

�H

�
Wnðenþ1; Tnþ1Þ

�DtX � T ;yðy; tnþ1Þ
Tnþ1ðyÞ

� ��
dy; ð31Þ

where unþ1ðyÞ ¼ uðy; tnþ1Þ and Tnþ1ðyÞ ¼ Tðy; tnþ1Þ.



We will consider that the material in the shear band
behaves according to an elasto-visco-plastic model, with-
out hardening in a first approach. The strain rate is thus
decomposed into an elastic and a (visco-)plastic part:

_e ¼ ð _ee þ _epÞ ex � ey þ ey � ex
� �

: ð32Þ

The elastic strain rate is assumed to be uniform over the
thickness, with

_ee ¼ 1
2

V0
e

H
; ð33Þ

where Ve
0 ¼ V0 � Vp

0 is the elastic part of the shearing
velocity V0. We can also define an elastic shearing dis-
placement at the boundary

Ue
0 ¼

Z t

0
ðV0 � Vp

0Þds ð34Þ

and the associated elastic strain

ee ¼ 1
2

U0
e

H
: ð35Þ

The elastic free energy is then given by

WeðU0
eÞ ¼ l

2
U0

e

H

� �2

: ð36Þ

In the absence of hardening, we will consider that the plas-
tic free energy is identically null, while the thermal part is
given by (10). Following Leroy and Molinari (1992), we
consider a thermo-visco-plastic yield stress ry exhibiting
exponential thermal softening, combined with a power-
law strain-rate sensitivity:

ry ¼ r0 exp �b
T
T0
� 1

� �� �
1þ

_�cp

_c0

 !m" #
; ð37Þ

where _�cp is the (cumulated) plastic shear strain-rate, _c0 a
reference strain-rate, m a rate-dependency exponent, b a
thermal softening coefficient, and r0 the plastic yield stress
(i.e. in the absence of viscous effects) at reference temper-
ature. In the case of our simplified shear band model, we
have

_�cpðy; tÞ ¼ _cpðy; tÞj j ¼
ffiffiffi
3
p

_�epðy; tÞ with

_cpðy; tÞ ¼ 2 _epðy; tÞ ¼ _u;yðy; tÞ �
V0

eðtÞ
H

: ð38Þ

Expression (37) can be recovered from the following dissi-
pation pseudo-potential:

w�ð _�ep; �ep; TÞ ¼ r0 exp �b
T
T0
� 1

� �� �
_�ep

þ r0 _e0

mþ 1
exp �b

T
T0
� 1

� �� � _�ep

_e0

 !mþ1

; ð39Þ

where _e0 ¼ _c0=
ffiffiffi
3
p

(we will also use s0 ¼ r0=
ffiffiffi
3
p

), and

ryð _�ep; �ep; TÞ ¼ @w
�

@ _�ep
ð _�ep; �ep; TÞ: ð40Þ

Given the previous assumptions, the displacement pro-
file across the shear band at time tnþ1 is given by

unþ1ðyÞ ¼ unðyÞ þ vðyÞDt; ð41Þ
5

where vð�HÞ ¼ �V0 is known (imposed value, see above).
The velocity profile can be split into an elastic and a plastic
part:

vðyÞ ¼ Ve
0

y
H
þ vpðyÞ ð42Þ

with vpð�HÞ ¼ �Vp
0 and Ve

0 ¼ V0 � Vp
0. Inspired by the work

of Leroy and Molinari (1992), see also Wright and
Ravichandran (1997), we will use the following canonical
expressions for the plastic velocity and temperature
profiles:

vpðyÞ ¼ Vp
0

tanhðy=hVnþ1 Þ
tanhðH=hVnþ1 Þ

; ð43Þ

Tnþ1ðyÞ ¼ Tmaxnþ1 � Tmaxnþ1 � T0
� � lnðcoshðy=hTnþ1 ÞÞ

lnðcoshðH=hTnþ1 ÞÞ
; ð44Þ

where Vp
0; hVnþ1 ; Tmaxnþ1 and hTnþ1 are parameters to be

determined. Note that the plastic shear rate is then given by

_cpðyÞ ¼ Vp
0

hVnþ1

1� tanhðy=hVnþ1 Þ
tanhðH=hVnþ1 Þ

: ð45Þ

As illustrated in Fig. 2, hV and hT can respectively be inter-
preted as a kinematic and a thermal band width, while Tmax

represents the temperature at the center of the band.
The variational principle now becomes

inf
Vp

0 ;hVnþ1

sup
Tmaxnþ1 ;hTnþ1

Un unþ1ðVp
0;hVnþ1 Þ; Tnþ1ðTmaxnþ1 ;hTnþ1 Þ

� �
;

ð46Þ

where we emphasized that the displacement and temper-
ature profiles are described by four scalar parameters. In
practice, it appears useful to perform this optimization in
two steps. First, we can compute the derivative of the func-
tional Un with respect to Vp

0, and evaluate it at Vp
0 ¼ 0�

(which is a point of non-regularity of the functional, linked
to the absolute value in the expression of w�). The deriva-
tion is detailed in Appendix A, and yields:

@Un

@Vp
0

ðVp
0 ¼ 0�Þ ¼ 2Dt �str � �s0n½ �; ð47Þ

where the trial shear stress str is given by

str ¼ lUe
n þ V0Dt

H
ð48Þ

and the average yield stress �s0n by

�s0n ¼
s0

2

Z H

�H

1� tanhðy=hVnþ1 Þ
hVnþ1 tanhðH=hVnþ1 Þ

exp �b
TnðyÞ

T0
� 1

� �� �
dy:

ð49Þ

Considering the convexity of Un with respect to Vp
0, if

strj j 6 �s0n , then the optimum with respect to Vp
0 will clearly

be at Vp
0 ¼ 0 and the increment is elastic. If str > �s0n , then

the optimum will correspond to a positive value of Vp
0,

while if str < ��s0n , it will correspond to a negative value
of Vp

0. This is illustrated at Fig. 3, where Vp
0 ¼ Vp

0

		 		 with
Vp

0 ¼ signðstrÞVp
0.

In the case of an elastic increment ( strj j 6 �s0n ), optimi-
zation with respect to hVnþ1 is meaningless, since Vp

0

appears as a factor in expression (43). Thermal quantities



Fig. 2. Canonical profiles of shear strain rate and temperature (H ¼ 1:25 mm).

Fig. 3. Optimization of incremental functional with respect to plastic
velocity amplitude.

Table 1
Material properties for HY-100 steel.

E (GPa) m q0 (kg/m3) C0 (J/kg/K) k (W/m/K)

217.5 0.3 7800 500 54
must still be determined, since conduction will lead to
some heat diffusion. The problem thus takes the form

if strj j6 �s0n : Vp
0 ¼0; hVnþ1 ¼hVn ;

fTmaxnþ1 ;hTnþ1g¼ arg sup
Tmax ;hT

Un unþ1ðVp
0;hVnþ1 Þ;Tnþ1ðTmax;hTÞ

� �
:

ð50Þ

Note that the solution to this problem will lead to a general
decrease of temperature within the band, and thus, assum-
ing that yield stress always decreases with temperature,
the condition snþ1j j 6 �s0nþ1 will remain verified. In the case
of a visco-plastic increment ( strj j > �s0n ), the general prob-
lem (46) must be solved. In practice, this optimization
problem is solved through an alternated directions
approach. The algorithm followed at each time increment
thus goes as follows:

1. Initialization (k ¼ 0): Vp
0;0 ¼ 0; hVnþ1;0 ¼ hVn ; Tmaxnþ1;0 ¼

Tmaxn ; hTnþ1;0 ¼ hTn .
2. If strj j 6 �s0n , solve problem (50), and then proceed to

next time increment (i.e. exit this algorithm). Other-
wise, proceed to step 3.

3. At fixed hVnþ1;k
; Tmaxnþ1;k

; hTnþ1;k
, solve
s0 (MPa) b _c0 (s�1) m T0 (K)

500 0.33 1000 0.012 300

Vp

0;kþ1 ¼ arg inf
Vp

0

Un unþ1ðVp
0;hVnþ1;k

Þ;Tnþ1ðTmaxnþ1;k
;hTnþ1;k

Þ

 �

:

6

4. At fixed Vp
0;kþ1, solve
fhVnþ1;kþ1
; Tmaxnþ1;kþ1

;hTnþ1;kþ1
g

¼ arg inf
hV

sup
Tmax ;hT

Un unþ1ðVp
0;kþ1; hV Þ; Tnþ1ðTmax; hTÞ


 �
:

5. Check convergence (e.g. jVp
0;kþ1 � Vp

0;kj < �jV
p
0;1j). If crite-

rion is not met, loop to step 3 (k kþ 1), otherwise
proceed to next time increment (i.e. exit this algorithm).

Note that in early loading stages, localization may not be
marked, and we thus enforce upper bounds to shear band
width parameters: hV 6 2:5H (and if the bound is reached,
hT ¼ hV ).

3.2. Numerical results

In order to numerically validate the proposed approach,
we consider the same material as in Leroy and Molinari
(1992), with a yield stress given by (37) and material
parameters given in Table 1. We start with a shear band
formed at V0 ¼ 0:011 m/s, with H ¼ 1:25	 10�3 m.
Although Leroy and Molinari found an analytical solution
for the steady-state problem, no such result exists for the
transient regime. Therefore, a Finite Element model is used
to establish a reference solution (see Appendix B for more
details about this variational FE formulation). Fig. 4 pre-
sents the evolution of velocity and temperature profiles
within the shear band, as obtained by the FE approach.
Each curve represents a profile at a given time, and is also
color-coded in function of magnitude. We can see that, as
time increases, the velocity profile changes from a linear
form (uniform shear strain rate) to a non-linear form
(localized shear strain rate), finally reaching a steady state
at time t ¼ 0:2 s. Simultaneously, temperature increases in
the shear band’s center, finally reaching a value
Tmax ¼ 496 K (plot shows temperature increase with



Fig. 4. Evolution of velocity and temperature profiles by FEM (V0 ¼ 0:011 m/s).

Fig. 5. Evolution of velocity and temperature profiles by Ritz–Galerkin method (V0 ¼ 0:011 m/s).

Fig. 6. Evolution of shear stress at V0 ¼ 0:011 m/s.
respect to T0) at steady state. Outside of the central zone
corresponding to the shear localization domain, the tem-
perature varies linearly (constant gradient) when steady-
state has been reached. We can already note that in the
early stages of the transient regime, the temperature pro-
file is more complex (coexistence of convex and concave
parts). Note also that, despite the uni-dimensional nature
of the problem, these FE simulations are costly in compu-
tation time, because they require a very fine mesh in the
localization zone and small time increments for ensuring
convergence.

Fig. 5 shows the evolution of profiles as obtained by the
proposed variational Ritz–Galerkin approach (constant
time increment Dt ¼ 10�4 s). These results are consistent
with those obtained by FE. The main difference occurs for
the temperature profile in early stages: the canonical func-
tion that we use is unable to represent mixed curvature
profiles observed in the FE response. Despite this limita-
tion, the variational method is able to provide a very good
estimation of stress, as shown in Fig. 6. This figure plots the
time evolution of shear stress within the band, for both FE
and variational approaches. A semi-logarithmic scale was
used to emphasize the existence of an elastic phase before
the visco-plastic phase.

The above numerical simulations can be repeated with
a faster loading rate imposed by a velocity jump
V0 ¼ 0:1 m/s. The resulting shear stress evolution is shown
in Fig. 7, comparing both FE and Ritz–Galerkin approaches.
The difference between the two approaches is more
7

marked (this can be traced to a stronger difference in the
transient temperature profile at early stages), but both
methods converge towards the same steady-state solution.

Aside of stress, we can also look at the evolution of the
four scalar unknowns parameterizing the solution in the
variational Ritz–Galerkin approach. For example, Fig. 8
shows the evolution of the ratio Vp

0

		 		= V0j j, which measures
the global amplitude of plastic strain rate in the band.
We can see that the transition from elastic (Vp

0 ¼ 0) to



Fig. 7. Evolution of shear stress at V0 ¼ 0:1 m/s.

Fig. 8. Evolution of global plastic strain rate (relative) amplitude
Vp

0

		 		= V0j j.

Fig. 9. Evolution of shear band widths (V0 ¼ 0:011 m/s)
predominantly (visco-)plastic (Vp
0 ’ V0) occurs in a few time

increments. Of course, the transition also occurs at a later
time for slow loading than for fast loading. In order to com-
pare band width unknowns hV and hT with FE results, we
must define a way to compute them from discrete profiles:

hVFE : VFEðhVFE Þ ¼ V0 tanhð1Þ;

hTFE : TFEðhTFE Þ ¼ Tmax � Tmax � T0ð Þ log½coshð1Þ�
H

hTFE
� logð2Þ

;
ð51Þ

where we have assumed a priori that hV 
 H and hT 
 H.
Since actual profiles obtained by the FE approach may be
quite different from canonical functions, these estimations
should not be considered as true measures of shear band
width, but seen as a way to qualitatively compare both
approaches. Regarding the parameter Tmax, it will simply
be taken as the temperature at the center of the band.
Fig. 9 shows the evolution of the kinematic and thermal
shear band widths with time, for both variational Ritz–
Galerkin and FE approaches. Keeping in mind the above
remarks on the computation of those width from FE
results, the agreement is reasonably good. The localization
8

phase is well captured, and all curves converge towards a
unique value (of 65 lm), in accordance with the analytical
solution of Leroy and Molinari (1992). Fig. 10 shows the
evolution of temperature at the center of the band, where
it is maximal. Again, the agreement is quite good, the main
differences occurring in the early stages as already pointed
out. These results show that the variational Ritz–Galerkin
approach proposed here does indeed offer a valid alterna-
tive to FE computations. For example, it can be used to pre-
dict the effect of shearing velocity on stress evolution, as
illustrated in Fig. 11.

The main motivation for including elasticity in our var-
iational model is to be able to account for elastic unloading
stages. We thus proceed to test the variational method on a
case of cyclic loading: V0 ¼ 0:1 m/s for 0 6 t 6 0:005 s, fol-
lowed by a reverse loading phase at V0 ¼ �0:1 m/s for
0:005 s 6 t 6 0:015 s, and back to V0 ¼ 0:1 m/s for
t > 0:015 m/s. The resulting stress evolution, both for FE
and variational Ritz–Galerkin approaches, is shown in
Fig. 12. Once more, small differences appear, especially in
the early transient stage, but the overall agreement is good,
keeping in mind that the Ritz–Galerkin approach involves
4 scalar unknowns (compared to hundreds of degrees of
freedom for the FE approach).

3.3. Extension to general constitutive models

The Ritz–Galerkin approach described above can be
applied to arbitrary thermo-visco-plasticity models.
Although they do not correspond anymore to analytical
solutions, canonical expressions (43) and (44) can still be
used. For example, let us consider a power-law thermal soft-
ening model:

ry ¼ r0
T
T0

� ��k

1þ
_�ep

_e0

 !m" #
ð52Þ

corresponding to the following dissipation pseudo-
potential:

w�ð _�ep; TÞ ¼ r0
T
T0

� ��k
_�ep þ r0 _e0

mþ 1
T
T0

� ��k _�ep

_e0

 !mþ1

: ð53Þ



Fig. 10. Evolution of central temperature (V0 ¼ 0:011 m/s).

Fig. 11. Shear stress evolution for various shearing velocities.

Fig. 12. Evolution of shear stress evolution under cyclic loading.

Fig. 13. Evolution of shear stress for a power-law thermal softening
model (V0 ¼ 0:1 m/s).

Table 2
Material properties for CRS 1018 steel (Clifton and Molinari, 1983).

E (GPa) m q0 (kg/m3) C0 (J/kg/K) k (W/m/K)

217.5 0.3 7800 500 54

r0 (MPa) k _e0 (s�1) m T0 (K)

866 0.38 577 0.012 300
The Ritz–Galerkin variational approach can then be used,
simply using the above expression in variational problem
(46). For example, Fig. 13 shows the evolution of stress
9

for such a model, with parameters taken from Clifton and
Molinari (1983) and listed in Table 2, in a band with a
shearing velocity V0 ¼ 0:1 m/s (H ¼ 1:25	 10�3 m). The
solution obtained by Ritz–Galerkin is compared to that
obtained by FE, and we observe that the agreement
between both remains good. The evolution of internal
parameters (Vp

0;hV ;hT ; Tmax), not shown here, follows the
same trends as for the exponential softening model
described above.

4. Variational modeling for shear bands with hardening

In most metallic materials, the formation of shear locali-
zation is the result of a competition between work harden-
ing and thermal softening. Localized shear bands will appear
when thermal softening takes over work hardening, and it is
thus critical to take the latter into account for obtaining reli-
able predictions for ASB. In the following, we will illustrate
how to include hardening in our variational approach, using
the widely popular Johnson–Cook (JC) model.

4.1. Johnson–Cook model

The thermo-visco-plastic flow stress model proposed by
Johnson and Cook (1983) is given by

ryð _�ep; �ep; TÞ ¼ Aþ Bð�epÞn
� �

1þ C log
_�ep

_e0

 !" #
1� h�q� �

;

ð54Þ



Table 3
Material properties for Ti–6Al–4V.

E (GPa) m q0 (kg/m3) C0 (J/kg/K) k (W/m/K)

114 0.3 4428 580 6.7

Ad (MPa) As (MPa) Bd (MPa) Bs (MPa) C

983 0 348 0 0.024

n q _e0 (s�1) T0 (K) Tm (K)

0.32 0.69 0.1 293 1943

Fig. 14. Evolution of shear stress for JC model (V0 = 0.03 m/s).
where the non-dimensional temperature h� is defined as

h� ¼
0 if T 6 T0;
T�T0

Tm�T0
if T0 < T 6 Tm;

1 if T > Tm:

8><
>: ð55Þ

Parameters A; B; C; n; q are material constants, _e0 is a ref-
erence effective strain rate, Tm is the melting temperature,
and T0 is the reference temperature.

This model can be described in terms of a plastic stored
energy potential and a dissipation potential. The plastic
stored energy potential is given by

Wpð�ep; TÞ ¼ As�ep þ Bs

nþ 1
ð�epÞnþ1

� �
1� h�q� �

: ð56Þ

The dissipation potential is given by

w�ð _�ep; �ep; TÞ ¼ Ad þ Bdð�epÞn
� �

_�ep þ C _e0 _e� logð _e�Þ � _e� þ 1ð Þ
h i

	 1� h�q� �
; ð57Þ

where _e� ¼ _�ep= _e0. Parameters As; Bs; Ad and Bd correspond
to stored and dissipative parts of parameters A and B of the
original Johnson–Cook model, with A ¼ As þ Ad and
B ¼ Bs þ Bd. Relative values of As; Bs and Ad; Bd control
the fraction of plastic work power actually transformed
into heat (so-called Taylor–Quinney coefficient).

4.2. Variational shear band model

In the variational model described in Section 3.1, we
parameterized the plastic strain rate profile through the
use of a canonical function. Since parameter hV varies with
time in an arbitrary fashion, it is not possible to obtain an
analytical expression of the (equivalent) plastic strain pro-
file, although this would be necessary to account for (iso-
tropic) hardening. Thus, in order to apply a Ritz–Galerkin
approach to models such as JC, we need to modify our
description of the shear band. We keep the uniform elastic
strain adopted before, see Eq. (35), but now parameterize
the equivalent plastic strain, instead of the plastic strain
rate:

�cpðyÞ ¼ Up
0

hV

1� tanh2ðy=hV Þ
tanhðH=hV Þ

; ð58Þ

where �Up
0 and hV are parameters which vary with time. The

equivalent plastic strain rate for a time increment ½tn; tnþ1�
is then given by

_�cpðyÞ ¼
�cp

nþ1ðyÞ � �cp
nðyÞ

Dt
: ð59Þ

The elastic strain is computed from an elastic displacement
jump:

Ue
0;nþ1 ¼ Ue

0;n þ V0Dt � að�Up
0;nþ1 � �Up

0;nÞ; ð60Þ

where a ¼ �1, and with �Up
0;nþ1 P �Up

0;n. In this incremental
setting, we could alternatively define our parameter as
DUp

0 ¼ að�Up
0;nþ1 � �Up

0;nÞ (without sign restriction on DUp
0),

with �Up
0;nþ1 ¼ �Up

0;n þ DUp
0

		 		.
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Regarding the temperature profile, we still use expres-
sion (44). The variational principle then takes the following
form

inf
DUp

0
;hVnþ1

sup
Tmaxnþ1 ;hTnþ1

Un DUp
0;hVnþ1 ; Tmaxnþ1 ; hTnþ1

� �
: ð61Þ

As before, this variational problem is better solved by an
alternate directions optimization method, with a starting
point at DUp

0 ¼ 0. Following the same line of reasoning as
before, we obtain

@Un

@DUp
0

ðDUp
0 ¼ 0�Þ ¼ 2 �str � �s0n½ � ð62Þ

and we recover the same predictor–corrector algorithm as
in the non-hardening case. The whole algorithmic
approach adopted in the non-hardening case can thus be
used here as well, simply replacing Vp

0 by DUp
0. The main

difference is that, because of variations of hV between tn

and tnþ1, it may happen that expression (59) lead to nega-
tive values of _�cp for some values of y. For these values of y,
we use _�cp ¼ 0 in evaluating Un and its derivatives. This is
nonetheless a minor side effect of our choice of parameter-
ization, necessary to account for hardening, and which
does not have any visible effect on results as illustrated
below.

4.3. Numerical results

In order to validate the above approach for ASB models
with hardening, we will apply the Ritz–Galerkin formula-



Fig. 15. Evolution of shear stress for JC model (V0 = 0.1 m/s).

Fig. 16. Shear stress evolution under cyclic loading for JC model
(V0 = 0.03 m/s and V0 = 0.1 m/s).

Fig. 17. Evolution of shear band widths under cyclic and

11
tion to a JC thermo-visco-plasticity model, with a set of
material parameters corresponding to a Ti–6Al–4V alloy,
listed in Table 3. Note that this choice of parameters
(A ¼ Ad; B ¼ Bd) corresponds to a model where the whole
plastic work is transformed int heat (Taylor–Quinney coef-
ficient equal to 100%). Other choices are possible, with
potential effects on shear band formation and evolution,
but this aspect will not be investigated here.

Fig. 14 shows the evolution of shear stress, as obtained
both by the Ritz–Galerkin formulation and by a FE
approach, for a shearing velocity V0 ¼ 0:03 m/s. Once
more, we have used a semi-logarithmic plot, in order to
emphasize the elastic loading part. Similarly, Fig. 15 shows
the evolution of shear stress for a shearing velocity
V0 ¼ 0:1 m/s. We can observe a good agreement between
the Ritz–Galerkin formulation and the FE approach. Note
that the latter is subject to oscillations in the final stages,
which can be associated to convergence difficulties (and
maybe an unsufficiently refined mesh in the localized
shear zone). Note also that, due to the presence of harden-
ing, no steady-state regime can be observed in this case.

In order to test the loading/unloading criterion obtained
for the whole shear band in the variational approach, we
consider the following cyclic loading:

U0;nþ1 ¼ U0;n þ DtV0 for 0 6 t 6 0:1 s; ð63Þ

except for

U0;nþ1 ¼ U0;n � DtV0 for
0:01 s < t 6 0:02 s;
0:03 s < t 6 0:04 s;
0:07 s < t 6 0:08 s:

8><
>: ð64Þ

The resulting shear stress evolution, for shearing velocities
V0 ¼ 0:03 m/s and V0 ¼ 0:1 m/s, are illustrated at Fig. 16. In
this figure, the stress is plotted versus the plastic part of
the displacement jump Up

0. Note that, as expected, soften-
ing occurs earlier under higher shear velocity. Fig. 17
shows the associated evolution of shear band width and
monotonous loading for JC model (V0 ¼ 0:03 m/s).



Fig. 18. Influence of � on stress evolution under cyclic loading for JC
model (V0 ¼ 0:03 m/s).

Fig. 19. Approximation error on average yield stress under cyclic loading
for JC model.

Fig. 20. Traction-separation (a) and heat production (b)
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central temperature parameters, with a comparison of cyc-
lic and equivalent monotonous loading. We can observe
short plateaux in the evolution of hV , corresponding to
elastic unloading phases. Regarding temperature, heat dif-
fusion dominates during these elastic unloading phases,
which corresponds to an increase of hT , accompanied by
a decrease of Tmax. This diffusion effect becomes more
marked as the shear band intensifies, since temperature
gradients become stronger.

In the algorithm discussed at the end of Section 3.1, we
introduced a tolerance � on the increment of Up

0 which con-
trols the convergence of the iterative loop. Fig. 18 shows
stress-displacement jump curves obtained with two values
of this parameter: � ¼ 0:01 and � ¼ 0:1. We can observe
very little difference between the two curves, indicating
that a value of � ¼ 0:1 is typically sufficient to ensure a
decent precision in our case. This loose tolerance may seem
surprising, but it is linked to the fact that we are lead to use
small time increments to ensure more global convergence.
A tighter tolerance � might be needed if we could use lar-
ger time steps (which is not the case for this specific model
and loading rate).

Finally, we can try to estimate the error resulting from
the use of the average yield criterion jsj 6 �sy stemming
from the variational formulation (see Appendix A):

�sy ¼
1

2
ffiffiffi
3
p

Z H

�H

1� tanhðy=hVnþ1 Þ
hVnþ1 tanhðH=hVnþ1 Þ

@Wp

@�ep
þ Tnþ1

Tn

@w�

@ _�ep

� �
dy:

ð65Þ

Given our approximations, the elastic shear stress is
constant across the band thickness:

s ¼ lUe
0

H
ð66Þ

and our global yield criterion is based on the comparison of
this stress with the average yield shear stress �sy. Locally (at
each y), the actual yield shear stress is given by
curves for exponential thermal softening model.



syðyÞ ¼
1ffiffiffi
3
p @Wp

@�ep
þ Tnþ1

Tn

@w�

@ _�ep

� �
dy: ð67Þ

We can then estimate the relative error on the yield crite-
rion at a given time by

e� ¼max
y

1� syðyÞ
�sy

				
				: ð68Þ

Fig. 19 plots the evolution of this error, for cyclic loading
with V0 ¼ 0:03 m/s and V0 ¼ 0:1 m/s. We can observe that
this error accumulates as the loading increases. Under
small shearing velocity (V0 ¼ 0:03 m/s), the error remains
bounded under 4%, while it is larger under faster shearing
velocity (V0 ¼ 0:1 m/s). Note that the weighting function
appearing in (65) gives more importance to values of the
effective yield stress in the localized shear zone. In prac-
tice, this error will also be affected by the precision of
the numerical integration required to evaluate (65) (a com-
promise must be adopted between precision and
efficiency).

5. Conclusion

Starting from the variational formulation of coupled
thermo-mechanical boundary-value problems of Yang
et al. (2006), and using canonical functions established
by Leroy and Molinari (1992), we have proposed a novel
variational Ritz–Galerkin approach for modeling adiabatic
shear band structure evolution, including elasticity, work
hardening, and heat conduction. We have first considered
the case of non-hardening thermo-visco-plasticity, and
then extended the approach to general hardening
thermo-visco-plasticity, illustrating our approach on the
popular Johnson–Cook model. This approach allows to
model the formation of adiabatic shear bands (ASB), with
a transition from a state of uniform plastic strain rate
and temperature to sharply localized profiles of these
quantities. The inclusion of elasticity allows for non-
monotonous loading, the variational formulation providing
a global plastic loading/elastic unloading criterion involv-
ing an average yield stress over the shear band width.
The proposed Ritz–Galerkin approach has been validated
by comparison with finite element simulations of the sim-
ple shear problem. Note that while such a finite element
model typically involves hundreds of degrees of freedom,
the Ritz–Galerkin approach only involves four scalar
unknowns, leading to a better numerical efficiency for
comparable results.

Adiabatic shear bands occurring in 2D or 3D forming
or impact problems have been modeled through inter-
face cohesive elements (e.g. Yang et al., 2005) or XFEM
enrichement (e.g. Areias and Belytschko, 2007). These
approaches are based on assumptions of a uniform plas-
tic strain-rate and a temperature profile directly param-
eterized by the layer (half-)width H. In these models,
the adiabatic shear band behavior is thus strongly
dependent on the choice of H. In our model, although
the dependency on H is not completely removed, the
width(s) hV ;T of the localization zone is (are) computed
at each time step. Note that some solutions aiming at
removing this dependence have been explored in Su
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et al. (2014) (see also Su, 2012). Thus, the proposed
model could be used to improve interface element, XFEM
enrichment, or embedded discontinuities approaches by
introducing a better model of the ASB. In other words,
it can be seen as a way to provide a physically-motivated
thermo-mechanical shear discontinuity model, with rate-
dependent traction and heat production laws in function
of the displacement jump, as illustrated in Fig. 20.
Finally, note that the intrinsically 1D nature of the fine
scale model used to derive this thermo-mechanical shear
discontinuity model prevents to describe precisely the
very early stages of ASB initiation and propagation (i.e.
the ASB tip). Modeling this transition zone would require
to include a 2D (at least) kinematics like in Gioia and
Ortiz (1996) or Mercier and Molinari (1998).
Appendix A. Derivation of average yield condition

In the absence of hardening (Section 3), and given the
assumptions adopted for the unidimensional shear band
model, the functional to be minimized in variational
principle (22) reduces to

JnðV0;V
p
0; hVnþ1 ; Tmaxnþ1 ;hTnþ1 Þ ¼

�
WeðUe

0nþ1
Þ �WeðUe

0n
Þ

þDtw�
Tnþ1ðyÞ
TnðyÞ

1ffiffiffi
3
p j _cpðyÞj

� ��
þWtðTnþ1ðyÞÞ �WtðTnðyÞÞ

ðA:1Þ

where we have adopted (for simplicity) the choice a ¼ 0 in
(24), with _cpðyÞ and TðyÞ respectively given by (45) and
(44), and with

Ue
0nþ1
¼ Ue

0n
þ ðV0 � Vp

0ÞDt: ðA:2Þ

The functional to optimize in the shear band Ritz–Galerkin
variational principle is then given by

UnðV0;V
p
0;hVnþ1 ;Tmaxnþ1 ;hTnþ1 Þ¼

Z H

�H
JnðV ;V

p
0;hVnþ1 ;Tmaxnþ1 ;hTnþ1 Þ

�
�DtX GðTmaxnþ1 ;hTnþ1 Þ

� �

dy; ðA:3Þ

where GðTmaxnþ1 ;hTnþ1 Þ is obtained by inserting (44) in the
definition (28). The derivative of this functional with
respect to Vp

0 is then given by

@Un

@Vp
0

¼ �2HDt
@We

@Ue
0
þ Dtffiffiffi

3
p

Z H

�H
signð _cpÞ Tnþ1ðyÞ

TnðyÞ
_cpðyÞ
Vp

0

@w�

@ _�ep

Tnþ1ðyÞ
TnðyÞ

1ffiffiffi
3
p j _cpðyÞj

� �
dy

¼ �2Dtl
Ue

0nþ1

H
þ Dtffiffiffi

3
p

Z H

�H
signð _cpÞ Tnþ1ðyÞ

TnðyÞ
_cpðyÞ
Vp

0

@w�

@ _�ep

Tnþ1ðyÞ
TnðyÞ

1ffiffiffi
3
p j _cpðyÞj

� �
dy

¼ �2Dt s� signðVp
0Þ�sy

� 

; ðA:4Þ

where

s ¼ l
Ue

0n
þ ðV0 � Vp

0ÞDt
H

ðA:5Þ



and

�sy ¼
1

2
ffiffiffi
3
p

Z H

�H

Tnþ1ðyÞ
TnðyÞ

1� tanhðy=hVnþ1 Þ
hVnþ1 tanhðH=hVnþ1 Þ

@w�

@ _�ep

Tnþ1ðyÞ
TnðyÞ

1ffiffiffi
3
p j _cpðyÞj

� �
dy: ðA:6Þ

When computing the elastic predictor, one has
Vp

0 ¼ 0; _cpðyÞ ¼ 0 and Tnþ1ðyÞ ¼ TnðyÞ, thus leading to

str ¼ l
Ue

0n
þ V0 Dt
H

and

�sy ¼
1

2
ffiffiffi
3
p

Z H

�H

1� tanhðy=hVnþ1 Þ
hVnþ1 tanhðH=hVnþ1 Þ

@w�

@ _�ep
ð0Þdy ðA:7Þ

the latter expression yielding (49) when w� is given by (39).
In the presence of hardening (Section 4), the same rea-

soning applies, with

@Jn

@DUp
0

¼ � @We

@Ue
0
þ signðDUp

0Þ
1ffiffiffi
3
p 1� tanhðy=hVnþ1 Þ

hVnþ1 tanhðH=hVnþ1 Þ
@Wp

@�ep
þ Tnþ1

Tn

@w�

@ _�ep

� �
ðA:8Þ

and we can thus define the average yield stress as

�sy ¼
1

2
ffiffiffi
3
p

Z H

�H

1� tanhðy=hVnþ1 Þ
hVnþ1 tanhðH=hVnþ1 Þ

@Wp

@�ep
þ Tnþ1

Tn

@w�

@ _�ep

� �
dy:

ðA:9Þ
Appendix B. Finite element formulation of the
unidimensional shear band problem

A detailed description of the incremental variational
formulation of general thermo-visco-plasticity can be
found in Stainier (2013), for example. If we particularize
to the case of the model shear band considered here, it
reduces to (31):

inf
unþ1

sup
Tnþ1

Z H

�H
Wnðcnþ1; Tnþ1Þ � Dtv � Tnþ1;y

Tnþ1

� �� �
dy; ðB:1Þ

where

Wnðcnþ1; Tnþ1Þ ¼ inf
cp

nþ1

�
Wðcnþ1; Tnþ1; cp

nþ1Þ �Wðcn; Tn; cp
nÞ

�q0gnðTnþ1 � TnÞ

þ
Z tnþ1

tn

w�
Tnþ1

Tn

Dcp

Dt
; TðtÞ

� �
dt
�

ðB:2Þ

with the shear strain cðyÞ ¼ u;yðyÞ. A time-discrete incre-
mental finite element formulation can then be derived in
a straightforward procedure.

Considering the symmetry of the sought solution, we
will define the numerical model on the unidimensional
domain y 2 ½0;H�, with boundary conditions

uð0; tÞ ¼ 0; T ;yð0; tÞ ¼ 0 and uðH; tÞ
¼ U0ðtnþ1Þ; TðH; tÞ ¼ T0; ðB:3Þ

where U0ðtÞ and T0 are imposed displacement and temper-
ature at the shear band boundary. We then introduce finite
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element type approximations of the displacement and
temperature fields:

uðy; tÞ ¼
XN

a¼1

UðaÞðtÞNaðyÞ; ðB:4Þ

Tðy; tÞ ¼
XN

a¼1

TðaÞðtÞNaðyÞ; ðB:5Þ

where UðaÞ and T ðaÞ are nodal displacements and tempera-
tures, and NaðyÞ interpolating shape functions (i.e. with
delta-Dirac properties). In practice, we have considered
piecewise linear interpolation. Note also that we have cho-
sen to use the same spatial discretization and shape func-
tions for both displacement and temperature fields.

The variational principle (B.1) then becomes a nonlinear
algebraic optimization problem:

inf
fUnþ1g

sup
fTnþ1g

UnðfUnþ1g; fTnþ1gÞ ðB:6Þ

where fUnþ1g ¼ fUð1Þðtnþ1Þ; . . . ;UðNÞðtnþ1Þg and fTnþ1g ¼
fTð1Þðtnþ1Þ; . . . ; T ðNÞðtnþ1Þg are arrays of nodal displacements
and temperatures. This optimization problem, which has
to be solved at each time step, can be solved by a standard
Newton–Raphson procedure, complemented with a line-
search to improve convergence.
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