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ABSTRACT

Conventional feature extraction methods cannot fully exploit
both the spectral and spatial information of hyperspectral
imagery. In this paper, we propose an ensemble method of
subspace independent component analysis (ICA) and edge-
preserving filtering (EPF) for the classification of hyper-
spectral data to achieve this task. First, several subsets are
randomly selected from the original feature space. Second,
ICA is used to extract spectral independent components fol-
lowed by a recent and effective EPF method, rolling guidance
filter (RGF), to produce spatial features. The spatial features
are treated as the input of a random forest (RF) classifier. Fi-
nally, the classification results from each subset are integrated
together to produce the final map. Experimental results on
real hyperspectral data demonstrate the effectiveness of the
proposed method. A sensitivity analysis of this new classifier
is also performed.

Index Terms— Classification, hyperspectral data, inde-
pendent component analysis, edge preserving filter

1. INTRODUCTION

Due to its ability to provide detailed spectral information of
different materials present in a given scene, hyperspectral data
has increasingly become preferred for remote sensing appli-
cations [1, 2]. However, classification of hyperspectral data is
a challenging problem largely due to the curse of dimension-
ality (Hughes phenomenon) [3]. Random Forest (RF) is one
of the most widely used pixel-wise classifier for hyperspec-
tral data, which is insensitive to the dimensionality of data
and also has provided good performance in terms of classi-
fication accuracy. In addition, the RF classifier offers two
main advantages, i.e. very low computational complexity and
having only few parameters to tune [4, 5]. Another common
strategy to overcome the Hughes phenomenon is to reduce the
dimensionality via feature extraction or feature selection tech-
niques [6]. In recent years, independent component analysis
(ICA) has received attention for feature extraction of hyper-
spectral remote sensing images [7, 8, 9, 10]. In particular,

ICA extracts source components that generate the mixed sig-
nal measured by the sensor and the independent components
refer to the different classes presented in the scene [7, 10].
Classically, when we apply ICA to hyperspectral data, prin-
cipal component analysis (PCA) is performed first, and then,
ICA is performed on a percentage of top, most important prin-
cipal components, while the remaining components are dis-
carded [10]. Although this method is effective for extracting
features of hyperspectral data, it might lead to a loss of useful
information in the discarded components. In order to alleviate
this problem, we propose a random subspace ensemble ap-
proach, in which several subsets are randomly selected from
the original spectral bands and then ICA is applied on each
subset.

For high spatial resolution hyperspectral data, the classifi-
cation performance is generally very low when only the spec-
tral information is considered [11, 12]. In order to improve
classification performance, spatial contextual information
(relationship between neighboring pixels) should be included
in the analysis [11, 12]. Previous approaches for including
such information include mathematical morphology (MM)
and Markov random fields (MRF). Li et al. [13] developed a
generalized composite kernel (GCK) framework by combin-
ing spectral information and the most effective MM features:
extend multi-attribute profiles (EMAPs). Recently, Xia et al.
proposed two powerful classifiers, namely RoF-MRF [14]
and RS-EMAPs [15]. The former combines the class pos-
terior probabilities produced by Rotation Forest (RoF) and
the spatial information represented by MRF-based multilevel
logistic (MLL) prior [14]. The latter uses random subspace
(RS) ensembles to classify EMAPs features [15].

Recently, edge-preserving filtering (EPF) has been suc-
cessfully applied in many fields such as denoising [16]. It is
used to remove noise, weak edges, and small details whereas
the overall structure of the image is preserved. In this pa-
per, the spatial contextual information is exploited by means
of an EPF. Hence, it helps reduce the intraclass uncertainty,
leading to high classification performance. Among the recent
effective EPF solutions, we promote the rolling guidance fil-
ter (RGF) for extraction of spatial features from hyperspectral



data.
The main contribution of the paper is to propose a

spectral-spatial classification method based on ensemble of
subspace ICA and EPF. This framework offers many advan-
tages.

1. ICA extracts discriminant features of each class in the
image;

2. RGF provides complementary spatial information of
the structures present in the scene;

3. Ensemble scheme can enhance the classification perfor-
mance when compared to the use of a single technique.

The rest of the paper is organized as follows. In Section 2,
ICA and EPF are introduced. The proposed method is de-
scribed in Section 3 and the experimental results are shown in
Section 4. The conclusion is given in Section 5.

2. BACKGROUND

Next, we briefly describe the ICA and RGF that play a critical
role in the performance of the proposed method.

2.1. Independent component analysis (ICA)

ICA is an attractive solution to the blind source separation
(BSS) problem, which decomposes an observed set of mix-
tures into a set of statistically independent components [7].
We consider the observed mixture x = [x1, ..., xD]

T
= As,

which can be viewed as a linear combination of D random
variables—or random processes when sample dependence is
taken into account—s = [s1, ..., sn]

T through a D ×D non-
singular mixing matrix A. The statistically independent com-
ponents (ICs) y = [y1, ..., yD]

T are estimated by forming y =
Wx, where W is the estimated demixing matrix that makes
use some form of diversity. The most widely used type of di-
versity is non-Gaussianity, i.e. higher-order-statistics (HOS).
Two popular ICA approaches used in the remote sensing com-
munity, FastICA [17] uses a fixed nonlinearity to maximize
non-Gaussianity and Joint Approximate Diagonalization of
Eigenmatrices (JADE) [18] extracts the demixing matrix W
by joint a diagonalization of the fourth-order cumulant matri-
ces.

A more attractive approach to making use of HOS is to
use a dynamic nonlinearity that is matched to each of the
estimated source densities, yd, for d = 1, . . . , D separately.
Entropy bound minimization (EBM) utilizes an efficient en-
tropy estimator to approximate the density of the sources by
maximizing the entropy bound and using a finite number of
prespecified measuring functions [19]. It provides robust per-
formance using the four measuring functions proposed in [19]
but also allows for selection of nonlinearities using prior in-
formation about the sources. Another important type of di-
versity, which is of particular interest here, is sample depen-

dence. The adjacent pixels in an image are highly correlated
and making use of this additional statistical property when
achieving ICA promises to further improve the performance
of ICA [20]. Entropy rate bound minimization (ERBM) [21]
effectively combines the dynamic nonlinearity selection of
EBM with an invertible filter model and hence achieves better
performance in terms of minimization of the entropy rate

Ir (y1; ...; yD) =
D∑
i=1

Hr (yi)− log |det(W)| −Hr (x) (1)

where, Hr (yi) is the entropy rate of the process yi andHr (x)
is a constant with respect to W.

2.2. Rolling Guidance Filter (RGF)

Rolling guidance filter, which has been proposed for non-
linear image decomposition based on a modification of the
bilateral filter, effectively removes noise and small details
while preserving large-scale structures automatically, which
the standard bilateral filter often fails to do [22].

Rolling guidance filter is composed of two steps, i.e.
small structure removal and edge recovery. Small structure
removal can be done by Gaussian filtering. Then, a joint bi-
lateral filter is used to recover the edge iteratively. If we let J1

initially set as the output of the Gaussian filtering stage and
then J t+1 is the output of the tth iteration of joint bilateral
filtering with the input image I and J t, and is written as

J t+1(i) =
1

Qi

∑
j∈Np

exp

(
−‖i− j‖

2

2σ2
s

− ‖J
t(i)− J t(j)‖2

2σ2
r

)
I(j)

(2)

where, Qi =
∑
j∈Np

exp

(
−‖i−j‖

2

2σ2
s
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t(i)−Jt(j)‖2
2σ2

r

)
. i

and j are the coordinates of pixels in the image, Np denotes
the set of neighbor pixels of i, σs and σr control the spatial
and range weights respectively.

In order to make RGF more effective, two main steps
can be combined into one by starting rolling guidance sim-
ply from a constant-value (C) image. In this case, the initial
step can be saved by starting rolling guidance from J0, where
∀i, J0(i) = C. Algorithm 1 depicts the final rolling guidance
filter implementation.

Algorithm 1 Rolling Guidance Filter
Input: I , σs, σr and niter

1: Initialize J0 as a constant image
2: For i = 1 : niter

3: J t ← JointBilateral(I, J t−1, σs, σr) . using (2)
4: Endfor

Output: The output image G← Jn
iter



Fig. 1. Schematic of the proposed ensemble classification method

3. ENSEMBLE OF SUBSPACE ICA WITH RGF FOR
CLASSIFICATION

As shown in Fig. 1, the proposed classification method con-
sists of five steps: 1) randomly select M features from the
original feature set of hyperspectral data; 2) perform ICA on
theM selected features; 3) apply RGF on each extracted com-
ponents; 4) perform classification on the filtered images in
each subset; 5) combine the results together to generate the
final classification map by a majority vote rule. Next, we de-
scribe the implementation for each step.

1) Random subspace: K subsets of spectral bands in hy-
perspectral data are randomly selected. Each subset contains
M features. In this case, there are different features in each
subset, resulting in generating different input features of RF
classifier by using ICA and RGF in the next two steps, which
could be beneficial for the decision fusion in the last step.

2) ICA: The aim of this step is to extract discriminant ICs
for the classes in each subset, to be used for classification.
Here, we propose to use ICA-EBM due to its superior sep-
aration performance and moderate computational complex-
ity [19].

3) RGF: RGF is performed on each extracted component
to obtain the mth feature in ith subset,

Gmk ← Algorithm 1
(
ICmk , σs, σr, n

iter
)

(3)

where, σs and σr are the spatial and range standard deviations
of the filter. ICmk is the mth (m = 1, ...,M ) component
derived from ICA in the kth (k = 1, ...,K) subset. Gmk is the
resulting feature obtained by RGF.

4) Classification: RF is used for the classification of the
filtered features [4]. In RF, two parameters, number of trees
and number of selected features are empirically selected. In
this paper, the number of trees is set to be 100 and the number
of selected features is set to be

√
M .

5) Decision fusion: Different classification results are
combined for the final class decision by a majority vote rule.

4. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the proposed approach is evaluated using
real hyperspectral data, which is recorded by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over
the Indian Pines in Northwestern Indiana, USA. This scene,
which comprises 220 spectral bands in the wavelength range
from 0.4 to 2.5 µm with spectral resolution 10 nm, is com-
posed of 145 × 145 pixels, and the spatial resolution is 20
m/pixel. This dataset has 16 classes of interest. We randomly
select 30 samples per class to form the training set and the
rest of the pixels are used for testing (for the minor classes
Grass/pasture-mowed and Oats, the training samples remain
constant). K and M are set to be 10 and 16, respectively.
σs and σr in RGF are set to be 7 and 0.1, respectively. The
results are obtained after 10 Monte Carlo runs.

In the first experiment, the performance of the proposed
method is compared with the following algorithms: 1) origi-
nal spectral information; 2) random subspace (RS): proposed
method without ICA and RGF; 3) random subspace with ICA
(RS-ICA): proposed method without RGF and 4) random sub-
space with RGF (RS-RGF): proposed method without ICA.
The classification results are shown in Table. 1. It can be seen
that RS method does not improve the performance. The main
reason is that we select a small number of features (M = 16)
in each subset. RS-ICA and RS-RGF produced the better
results than RS and original, indicating the effectiveness of
ICA and RGF techniques. The proposed method yields the
best performance, with 31.6, 31.6, 24.3 and 20.4 percentage
points over original, RS, RS-ICA and RS-RGF, respectively.
The proposed method achieves to the best classification re-
sults for all classes.

In the second experiment, we present comparisons with
the proposed approach with different ICA algorithms (e.g.
JADE and FastICA) (Table 2). For the ERBM, the filter length
is set to be 3. Increasing this value does not significantly influ-
ence the result. For the RS-ICA, ERBM gives the best result.



Table 1. Overall, average and class-specific accuracies achieved by the
classifiers.

Class Original RS RS-ICA RS-RGF Proposed
Alfalfa 81.25 85.00 90.00 96.67 98.75

Corn-no till 40.16 41.84 66.80 68.75 90.70
Corn-min till 48.54 50.19 58.69 64.83 89.47

Bldg-Grass-Tree-Drives 67.60 70.69 81.13 95.25 99.75
Grass/pasture 83.49 82.68 82.46 78.61 93.53
Grass/trees 79.61 80.85 95.54 83.53 98.84

Grass/pasture-mowed 87.69 89.23 86.92 94.62 99.23
Corn 86.54 84.47 96.56 96.12 99.80
Oats 77.00 76.00 81.00 83.00 100.00

Soybeans-no till 64.37 65.82 72.75 66.52 91.86
Soybeans-min till 52.25 50.96 40.14 59.62 88.24

Soybeans-clean till 48.99 48.46 72.24 69.14 94.67
Wheat 94.62 94.34 99.51 94.45 99.34
Woods 83.31 83.41 92.99 82.48 98.27

Hay-windrowed 48.83 41.31 56.54 93.57 98.23
Stone-steel towers 98.00 98.00 96.00 98.92 99.08

OA 61.60 61.53 68.82 72.75 93.15
AA 71.39 71.45 79.33 82.88 96.23

Table 2. Classification accuracies obtained from the proposed methods
using different ICA methods.

Classifier RS-ICA
EBM ERBM JADE FastICA

OA 68.82 72.61 65.36 65.29
AA 79.33 83.55 71.67 72.27

Classifier Proposed method
EBM ERBM JADE FastICA

OA 93.15 93.58 92.75 93.16
AA 96.23 96.63 96.14 95.82

Table 3. Classification accuracies obtained from the proposed methods in
comparisons of other spatial-spectral classifiers

Classifier RoF-MRF [14] GCK [13] RS-EMAPs [15] Proposed method
OA 86.24 88.35 92.14 93.15
AA 92.76 92.62 94.71 96.23

(a) (b)

(c) (d)

Fig. 2. Sensitivity of the proposed method. (a) influence of K (M=16,
σs = 7 and σr = 0.1), (b) influence of M (K = 10, σs = 7 and σr = 0.1),
(c) influence of σs (K=10, M = 16 and σr = 0.1) and (d) influence of σr
(K=10, M = 16 and σs = 7)

This is due to the fact that ERBM not only matches a wide
range of distributions but also considers sample dependence.
EBM achieves the second best classification performance due
to the use of an efficient entropy estimator and prior infor-
mation. When we apply RGF on the features extracted from
ICA techniques, the difference among the ICA techniques is
not significantly, indicating that RGF plays an important role
to improve the performance. Although ERBM is superior to
the other ICA techniques using both spectral and spatial in-
formation as input, it requires more computation time than
others. In this case, EBM is a good tradeoff between perfor-
mance and computational complexity.

In the third experiment, we present comparisons of the
proposed method against the aforementioned state-of-the-art
spectral-spatial classifiers, such as GCK [13], RoF-MRF [14]
and RS-EMAPs [15]. From Table 3, we can conclude that the
proposed method outperforms those methods in this dataset.

In the fourth experiment, we investigate the parameter
sensitivity of the proposed method to parameter choice. From
Fig. 2, we observe that: 1) There is no pattern of depen-
dence between K and the accuracy; 2) when M becomes
larger, the proposed method tends to give better performance
at the expense of increased computational complexity; 3) The
proposed method achieves the best classification performance
when σs = 7 but the performance is satisfactory over a wide
range of values as well. As observed in Fig. 2(d), the optimal
range of σr for this dataset is between 0.1 to 0.3.

Hence, selection of parameters is not very critical for the
proposed methodology, which is an important added advan-
tage. The only one that seems to provide better performance
in a small range is σr. In practice, the users might select a
small value of σr as in our case to better preserve the edges
of hyperspectral data in order to increase the discrimination
between the classes.

5. CONCLUSION

In this work, we developed a novel ensemble approach that
combines random subspace, ICA, and rolling guidance filter
for the classification of hyperspectral data. Experimental re-
sults confirmed improvements of the new approach over RS,
RS-ICA and RS-RGF. The proposed method is superior to
the recently proposed state-of-the-art spectral-spatial classi-
fiers as well.
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