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First of all, in this paper, we prove the convergence of the nabla hsum to the Riemann-Liouville integral in the space of continuous functions and in some weighted spaces of continuous functions. The connection with time scales convergence is discussed. Secondly, the efficiency of this approximation is shown through some Cauchy fractional problems with singularity at the initial value. The fractional Brusselator system is solved as a practical case.

Introduction

The numerous applications of fractional calculus in the mathematical modeling of physical, engineering, economic and chemical phenomena have contributed to the rapidly growing of this theory [START_REF] Hilfer | Applications of fractional calculus in physics[END_REF][START_REF] Ortigueira | Fractional calculus for scientists and engineers[END_REF][START_REF] Škovránek | Modeling of the national economies in state-space: A fractional calculus approach[END_REF][START_REF] Ongun | Nonstandard finite difference schemes for a fractional-order Brusselator[END_REF], despite the discrepancy on definitions of the fractional operators leading to nonequivalent results [START_REF] Capelas De Oliveira | A Review of Definitions for Fractional Derivatives and Integral[END_REF]. Each definition has its own advantages for applications. Tacking into account some developments of fractional calculus theory, we can refer to [START_REF] Samko | Fractional integrals and derivatives, Translated from the 1987 Russian original[END_REF][START_REF] Miller | An introduction to the fractional calculus and fractional differential equations[END_REF][START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF][START_REF] Podlubny | Fractional differential equations[END_REF] and the references therein.

On the other side, the discrete fractional calculus is considered as new attempt. The fractional operators are obtained using the forward operators delta [START_REF] Miller | Fractional difference calculus[END_REF][START_REF] Diaz | Differences of Fractional Order[END_REF] or backward operators nabla [START_REF] Gray | On a new definition of the fractional difference[END_REF][START_REF] Atıcı | Discrete fractional calculus with the nabla operator[END_REF] or combined delta and nabla fractional operators [START_REF] Bastos | A combined delta-nabla sum operator in discrete fractional calculus[END_REF].

Besides that, since Hilger's original concept of measure chain which provides a unifying framework to investigate both continuous and discrete time systems [START_REF] Hilger | Analysis on measure chains-a unified approach to continuous and discrete calculus[END_REF], many definitions of fractional integral/derivative in time scale arise to extend and unify results on the real line. Invoke that any time scale is a closed non-empty subset of R (for more details see [START_REF] Anastassiou | On right fractional calculus[END_REF][START_REF] Williams | Fractional calculus on time scales with Taylor's theorem[END_REF][START_REF] Bastos | Discrete-time fractional variational problems[END_REF][START_REF] Bastos | Fractional Derivatives and Integrals on Time Scales via the Inverse Generalized Laplace Transform[END_REF]).

In this context, the h-fractional operators, when the time scale is chosen to be the subset (hZ) of real numbers, was our source of inspiration to consider an approximation of Riemann-Liouville fractional integral. Especially, the fractional summation obtained by the backward differences. We prove the convergence of this h-sum to the Riemann-Liouville integral firstly in the space of continuous functions, and then in more general weighted spaces. Moreover, we propose a numerical solution to the weighted fractional differential Cauchy problem.

The paper is organized as the following. Section 2 deals with some preliminary notions and results in the purpose of making this paper self-contained. Section 3 is about the convergence results. Section 4 treats the connection with convergence over time scales. Section 5 is extremely devoted to the approximation application to some fractional differential equations. First we show the accuracy of this approach for the Riemann-Liouville initial value problem in weighted spaces of continuous functions. Then the numerical solution for the non-linear fractional Brusselator system is presented as a practical case. Some new research directions are suggested in section 6.

Preliminaries

In this section we present some definitions and results which will be used in the sequel. For β > 0 the weighted space of continuous function is defined by

C β [a, b] := f ∈ C (a, b] : lim t→a + (t -a) β f (t) exists .
endowed with the norm

f β := max t∈[a,b] (t -a) β |f (t)| C β [a, b] is a Banach space. Remark that C 0 [a, b] = C [a, b],
the Banach space of all real continuous functions. We recall the expression of the norm of a continuous linear operator

T from C β1 [a, b] to C β2 [a, b] : T β1,β2 = sup f =0 T (f ) β2 f β1
The following chain of inclusions holds

C [a, b] ⊂ C β1 [a, b] ⊂ C β2 [a, b] if 0 < β 1 < β 2 .

Definition 1 (Riemann-liouville operators)

Let f be a continuous function on [a, b], 0 < α < 1 and a ≤ x ≤ b. The fractional integral of order α is defined by

I α f (x) = 1 Γ(α) x a (x -t) α-1 f (t)dt
The Riemann-Liouville fractional derivative of order α is defined by

D α f (x) = 1 Γ(α) d dx x a (x -t) α-1 f (t)dt Definition 2 (Caputo fractional derivative) Let f ∈ C 1 [a, b], 0 < α < 1 and a ≤ x ≤ b.
The Caputo fractional derivative of order α is defined by

C D α f (x) = 1 Γ(α) x a (x -t) α-1 f (t)dt
In the sequel, we will take [a, b] = [0, 1]. Some useful properties of the Riemann-Liouville operator are listed bellow.

Proposition 2.1 Let β ∈ ]0, 1[ , α -β ≥ 0 and f ∈ C β [0, 1] then 1. I α f is continuous on [0, 1] . 2. I α β,0 ≤ Γ(1 -β) Γ(α + 1 -β) . Proof 1. Let 0 ≤ x < y ≤ 1 and ε > 0 I α f (y) -I α f (x) = 1 Γ(α) 1 0 (1 -t) α-1 (y α f (yt) -x α f (xt)) dt = 1 Γ(α) 1 0 (1 -t) α-1 y α-β -x α-β )y β f (yt) + x α-β (y β f (yt) -x β f (xt) dt Therefore, |I α f (y) -I α f (x)| ≤ 1 Γ(α) 1 0 (1 -t) α-1 t -β (y α-β -x α-β )y β t β f (yt) dt + x α-β Γ(α) 1 0 (1 -t) α-1 t -β (y β t β f (yt) -x β t β f (xt) dt As f ∈ C β [0, 1] , there exists δ 1 > 0, such that |x -y| < δ 1 ⇒ |tx -ty| < δ 1 , ∀t ∈ [0, 1] ⇒ |(yt) α f (yt) -(xt) α f (xt)| < ε
The continuity of the function x α-β , leads to the existence of δ 2 > 0, such that |x -y| < δ 2 ⇒ y α-β -x α-β < ε.

Thus, |x -y| < min(δ 1 , δ 2 ) implies |I α f (y) -I α f (x)| ≤ ε f β + 1 Γ(α) 1 0 (1-t) α-1 t -β dt ≤ ε f β + 1 Γ(1 -β) Γ(1 + α -β) 2. ∀f ∈ C β [0, 1], ∀x ∈ [0, 1] |I α f (x)| ≤ 1 Γ(α) x 0 (x -t) α-1 t -β t β |f (t)| dt ≤ 1 Γ(α) f β x 0 (x -t) α-1 t -β dt ≤ Γ(1 -β) Γ(α + 1 -β) f β
and hence the result.

In order to use de nabla h-sum of order α, we start by defining a uniform discretization of [0, 1] . Let 0 = t 0 < t 1 < • • • < t N = 1 be a mesh with step size h > 0. First we recall the definition of the fractional h-sum of order α at the point t n = nh by (see [15, formula (7)] )

∇ -α h f (t n ) = h α Γ(α) n i=1 Γ(n -i + α) Γ(n -i + 1) f (ih)
with, by convention, ∇ -α h f (t 0 ) = 0. This definition suggest to introduce the fractional h-sum operator by Definition 3 (Nabla h-sum operator) Let f be a continuous function, 0 ≤ x ≤ 1 and 1 ≤ n ≤ N, such that t n-1 < x ≤ t n . The fractional h-sum of order α is given by:

∇ -α h f (x) = 1 h (t n -x) ∇ -α h f (t n-1 ) + (x -t n-1 )∇ -α h f (t n )
Note that ∇ -α h f (.) is nothing but the broken continuous line joining the points (t n , ∇ -α h f (t n )). Hence ∇ -α h f (.) is a continuous function. The first property of the linear operator ∇ -α h is given by the following

Proposition 2.2 ∇ -α h : C [0, 1] → C [0, 1] is a continuous linear operator with ∇ -α h 0,0 ≤ 1 Γ(α + 1)
.

For the proof the following lemma is needed Proof (of the prop 2.2) Let f ∈ C [0, 1] and t n = nh, n ∈ {0, 1, . . . , N } , then

∇ -α h f (t n ) ≤ h α Γ(α) n i=1 Γ(n -i + α) Γ(n -i + 1) |f (ih)| ≤ h α Γ(α) f 0 n-1 i=0 Γ(i + α) Γ(i + 1) (1) 
From lemma 2.3, we get

n-1 i=0 Γ(i + α) Γ(i + 1) = 1 α Γ(n + α) Γ(n)
Inequality (1) can be written as

∇ -α h f (t n ) ≤ h α Γ(α + 1) f 0 Γ(n + α) Γ(n)
from Wendel's inequality (see [START_REF] Wendel | Note on the gamma function[END_REF])

Γ(x + β) Γ(x) ≤ x β , 0 < β < 1, x > 0 we get ∇ -α h f (t n ) ≤ h α Γ(α + 1) f 0 n α ≤ f 0 Γ(α + 1) ∀n ∈ N, 0 ≤ n ≤ N Furthermore, ∀x ∈ [0, 1] ∇ -α h f (x) = 1 h (t n -x)∇ -α h f (t n-1 ) + (x -t n-1 )∇ -α h f (t n ) ≤ f 0 Γ(α + 1) Thus, ∇ -α h f is a bounded operator on [0, 1] .
The following technical lemmas play a key role in the proofs of ours main results.

Lemma 2.4 There exists a function Φ, such that

∀m ≥ 1 Γ(m + α) Γ(m + 1) = m α-1 + α Γ(1 -α) Φ(m), with |Φ(m)| ≤ Γ(2 -α) 2 m α-2 .
Proof From the definition of the beta function we have

Γ(m + α) Γ(m + 1) = 1 Γ(1 -α) 1 0 t (m+α-1) (1 -t) -α dt (2) 
Let t = e -u then the equality (2) becomes

Γ(m + α) Γ(m + 1) = 1 Γ(1 -α) +∞ 0 e -mu (e u -1) -α du = 1 Γ(1 -α) +∞ 0 e -mu u -α ( u e u -1 ) α du
Using the generating function of the Bernoulli numbers

G(u) = u e u -1 = +∞ k=0 B k u k k! = 1 + ϕ(u) > 0 where ϕ : [0, +∞[ → ]-1, 0] is a continuous function. We have Γ(m + α) Γ(m + 1) = 1 Γ(1 -α) +∞ 0 e -mu u -α (1 + ϕ(u)) α du
Now, Taylor's formula with integral remainder applied to the function

(1 + ϕ(u)) α gives (1 + ϕ(u)) α = 1 + αϕ(u) 1 0 (1 + ξϕ(u)) α-1 dξ Therefore Γ(m + α) Γ(m + 1) = 1 Γ(1 -α) +∞ 0 e -mu u -α du+ α Γ(1 -α) +∞ 0 e -mu u -α ϕ(u) 1 0 (1+ξϕ(u)) α-1 dξdu and then Γ(m + α) Γ(m + 1) = m α-1 + α Γ(1 -α) +∞ 0 e -mu u -α ϕ(u) 1 0 (1 + ξϕ(u)) α-1 dξdu (3) Put Φ(m) = +∞ 0 e -mu u -α ϕ(u) 1 0 (1 + ξϕ(u)) α-1 dξdu From the identity 1 + ξϕ(u) = 1 + ξ -ξ(1 -ϕ(u)
) and the fact that 1 -ϕ(u) > 0 for every u ≥ 0, we have

1 + ξϕ(u) ≥ 1 + ξ and (1 + ξϕ(u)) α-1 ≤ (1 + ξ) α-1 Consequently 1 0 (1 + ξϕ(u)) α-1 dξ ≤ 1 0 (1 + ξ) α-1 dξ ≤ 1 Hence +∞ 0 e -mu u -α ϕ(u) 1 0 (1 + ξϕ(u)) α-1 dξdu ≤ +∞ 0 e -mu u -α |ϕ(u)| du (4)
The function ϕ(u) u is strictly increasing on [0, +∞], lim

u→0 + ϕ(u) u = - 1 2 and lim u→∞ ϕ(u) u = 0 . So, ϕ(u) u ≤ 1 2
, and the inequality (4) becomes

|Φ(m)| ≤ 1 2 +∞ 0 e -mu u 1-α du and |Φ(m)| ≤ Γ(2 -α)m α-2 2 (5) Lemma 2.5 Let 0 < α < 1, we have 1. For every m ≥ 1 m α-1 < 1 α ((m) α -(m -1) α ) < (m -1) α-1 2. The series ∞ k=0 1 α (k α -(k -1) α ) -k α-1 is convergent. Proof 1.
Let g(t) = t α-1 defined on ]0, +∞[, g is a positive, convex, decreasing and locally integrable function on ]0, +∞[ . Then

m α-1 < t α-1 < (m -1) α-1
which leads, after integration from m -1 to m, to the desired inequality.

Let

s n = n k=1 1 α (k α -(k -1) α ) -k α-1
In view of 1

s n+1 -s n = 1 α ((n + 1) α -(n) α ) -(n + 1) α-1 > 0
Then the sequence (s n ) n∈N is increasing and

s n = n k=2 1 α (k α -(k-1) α )-k α-1 + 1 α -1 = n k=2 k k-1 τ α-1 -k α-1 dτ + 1 α -1 Moreover, k -1 ≤ τ ≤ k implies k α-1 ≤ τ α-1 ≤ (k -1) α-1 and 0 ≤ τ α-1 -k α-1 ≤ (k -1) α-1 -k α-1 thus s n ≤ n k=2 (k -1) α-1 -k α-1 + 1 α -1 = 1 α -n α-1 < 1 α
Finally, the sequence (s n ) n∈N is convergent.

Main results

Now, our goal is to prove that ∇ -α h f (.) converges uniformly to I α f (.). In order to do so, we prove the following propositions.

Proposition 3.1 Let f ∈ C([0, 1]) and S α h f (t n ) = h α Γ(α + 1) n-1 i=0 [(n -i) α -(n -i -1) α ] f (t i )
Then, there exists C 1 > 0, such that

S α h f (t n ) -∇ -α h f (t n ) ≤ C 1 h α for all t n Proof S α h f (t n ) -∇ -α h f (t n ) = h α Γ(α + 1) (n α -(n -1) α )f (0) + h α Γ(α) n-1 i=1 1 α ((n -i) α -(n -i -1) α ) - Γ(n -i + α) Γ(n -i + 1) f (ih) -h α f (t n )
From equality (3) we deduce

S α h f (t n ) -∇ -α h f (t n ) = h α Γ(α + 1) (n α -(n -1) α )f (0) -h α f (t n )+ h α Γ(α) n-1 i=1 1 α ((n -i) α -(n -i -1) α ) -(n -i) α-1 f (ih)+ + αh α Γ(α)Γ(1 -α) n-1 i=1 [Φ(n -i)] f (ih) Denote S 1 = n-1 i=1 1 α ((n -i) α -(n -i -1) α ) -(n -i) α-1 f (ih)
and

S 2 = n-1 i=1 [Φ(n -i)] f (ih)
From the lemma 2.5 we can assert that

|S 1 | ≤ f 0 σ 0 where σ 0 = ∞ k=0 1 α (k α -(k -1) α ) -k α-1 < +∞.
For S 2 the inequality (5) gives

|S 2 | ≤ f 0 Γ(2 -α) 2 n-1 i=1 (n -i) α-2 ≤ f 0 Γ(2 -α) 2 σ 1 with σ 1 = ∞ i=1 i α-2 < +∞. Consequently S α h f (t n ) -∇ -α h f (t n ) ≤ h α Γ(α + 1) (n α -(n -1) α ) f 0 + h α f 0 + h α Γ(α) f 0 σ 0 + αh α 2Γ(α)Γ(1 -α) f 0 Γ(2 -α)σ 1
and then

S α h f (t n ) -∇ -α h f (t n ) ≤ 1 Γ(α + 1) + 1 + 1 Γ(α) σ 0 + α 2Γ(α)Γ(1 -α) Γ(2 -α)σ 1 f 0 h α ≤ C 1 h α Proposition 3.2 Assume that f ∈ C 2 [0, 1] , then there exists C 2 > 0 such that |I α f (t n ) -S α h f (t n )| ≤ C 2 h for all t n
Proof An integration by parts gives

I α f (x) = 1 Γ(α + 1) x α f (0) + 1 Γ(α + 1) x 0 (x -t) α f (t)dt Let R α h be the associated Riemann sum R α h f (t n ) = 1 Γ(α + 1) t α n f (0) + 1 Γ(α + 1) h n i=1 (t n -t i ) α f (t i )
We have

I α f (t n ) -R α h f (t n ) = 1 Γ(α + 1) tn 0 (t n -t) α f (t)dt -h n i=1 (t n -t i ) α f (t i ) = 1 Γ(α + 1) n i=1 ti ti-1 [(t n -t) α f (t) -(t n -t i ) α f (t i )] dt = 1 Γ(α + 1) n i=1 ti ti-1 ((t n -t) α -(t n -t i ) α ) f (t)dt + ti ti-1 (t n -t i ) α (f (t) -f (t i )) dt then |I α f (t n ) -R α h (t n )| ≤ 1 Γ(α + 1) n i=1 ti ti-1 ((t n -t) α -(t n -t i ) α ) |f (t)| dt + n i=1 ti ti-1 (t n -t i ) α (f (t) -f i )) dt ≤ 1 Γ(α + 1) f 0 n i=1 ti ti-1 ((t n -t) α -(t n -t i ) α ) dt + n i=1 (t n -t i ) α ti ti-1 f (t) -f (t i )dt
the Taylor formula with integral remainder allows us to write

|I α f (t n ) -R α h (t n )| ≤ 1 Γ(α + 1) f 0 n i=1 ti ti-1 ((t n -t i-1 ) α -(t n -t i ) α ) dt + n i=1 (t n -t i ) α ti ti-1 ti t f (θ)dθ dt
According to Fubini's theorem we have

|I α f (t n ) -R α h (t n )| ≤ 1 Γ(α + 1) f 0 h(t n -t 0 ) α + n i=1 ti ti-1 f (θ) θ ti-1 dt dθ ≤ 1 Γ(α + 1) f 0 h + h n i=1 |f (θ i ) (θ i -t i-1 )| , for some θ i ∈ ]t i-1 , t i [ ≤ 1 Γ(α + 1) ( f 0 + f 0 ) h Finally |I α f (t n ) -R α h f (t n )| ≤ C 3 h (6) 
with

C 3 = 1 Γ(α + 1) ( f 0 + f 0 )
On the other hand

R α h f (t n ) -S α h f (t n ) = 1 Γ(α + 1) n i=1 (t n -t i ) α [hf (t i ) -f (t i ) + f (t i-1 )]
From Taylor-Lagrange formula we have

R α h f (t n ) -S α h f (t n ) = h 2 2Γ(α + 1) n i=1 (t n -t i ) α f (θ i ), t i-1 < θ i < t i
In addition, the intermediate value theorem ensures the existence of θ

∈ [θ 1 , θ n ] such that R α h f (t n ) -S α h f (t n ) = h 2 2Γ(α + 1) f (θ) n i=1 (t n -t i ) α
That we can write

R α h f (t n ) -S α h f (t n ) = h 2+α 2Γ(α + 1) f (θ) n i=1 (n -i) α = h 2+α 2Γ(α + 1) f (θ) n-1 i=0 i α
We have then the inequality

|R α h f (t n ) -S α h f (t n )| ≤ h 2+α 2Γ(α + 1) |f (θ)| n α+1 ≤ h 2Γ(α + 1) |f (θ)| then |R α h f (t n ) -S α h f (t n )| ≤ f 0 2Γ(α + 1) h From |I α f (t n ) -S α h f (t n )| ≤ |I α f (t n ) -R α h f (t n )| + |R α h f (t n ) -S α h f (t n )|
we get the final result by the inequality (6) and

C 2 = C 3 + f 0 2Γ(α + 1)
.

Finally, an essential result is the following corollary Corollary 3.3 Under the assumption that f ∈ C 2 [0, 1], there exists C > 0 such that

I α f (t n ) -∇ -α h f (t n ) ≤ Ch α for all t n Proof As I α f (t n ) -∇ -α h f (t n ) ≤ |I α f (t n ) -S α h f (t n )| + S α h f (t n ) -∇ -α h f (t n )
The conclusion follows from Propositions 3.1 and 3.2.

Now, we are able to state and prove the following convergence result.

Corollary 3.4 For every function

f ∈ C 2 [0, 1] we have ∇ -α h f -I α f 0 tends to 0 when h tends to 0. Proof let t n-1 < x ≤ t n ∇ -α h f (x) -I α f (x) = 1 h (t n -x)∇ -α h f (t n-1 ) + (x -t n-1 )∇ -α h f (t n ) -I α f (x) ≤ 1 h (t n -x)∇ -α h f (t n-1 ) -(t n -x)I α f (t n-1 ) + 1 h (x -t n-1 )∇ -α h f (t n ) -(x -t n-1 )I α f (t n ) + 1 h [(t n -x)I α f (t n-1 ) + (x -t n-1 )I α f (t n )] -I α f (x)
First, estimate the interpolation error of I α f (x) expressed with the third term of the previous inequality

1 h [(t n -x)I α f (t n-1 ) + (x -t n-1 )I α f (t n )] -I α f (x) = = (t n -x)t α n-1 h 1 0 (1 -s) α-1 Γ(α) f (t n-1 s)ds + (x -t n-1 )t α n h 1 0 (1 -s) α-1 Γ(α) f (t n s)ds -x α 1 0 (1 -s) α-1 Γ(α) f (xs)ds = x α 1 0 (1 -s) α-1 Γ(α) 1 h (t n -x)f (t n-1 s) + 1 h (x -t n-1 )f (t n s) -f (xs) ds + 1 h (t n -x) t α n-1 -x α 1 0 (1 -s) α-1 Γ(α) f (t n-1 s)ds + 1 h (x -t n-1 ) (t α n -x α ) 1 0 (1 -s) α-1 Γ(α) f (t n s)ds
From the error involved in the interpolation of the function f , there exists ξ between t n and t n-1 such that

1 h (t n -x)f (t n-1 s) + 1 h (x -t n-1 )f (t n s) -f (xs) = f (ξs) 2 s 2 (t n -x)(x -t n-1 ) Therefore 1 0 (1 -s) α-1 Γ(α) 1 h (t n -x)f (t n-1 s) + 1 h (x -t n-1 )f (t n s) -f (xs) ds ≤ f 0 Γ(α + 3) h 2 Otherwise 1 h (t n -x) t α n-1 -x α 1 0 (1 -s) α-1 Γ(α) f (t n-1 s)ds + 1 h (x -t n-1 ) (t α n -x α ) 1 0 (1 -s) α-1 Γ(α) f (t n s)ds ≤ f 0 Γ(α) ( t α n -t α n-1 α )
Then from lemma 2.5, we have

1 h (t n -x) t α n-1 -x α 1 0 (1 -s) α-1 Γ(α) f (t n-1 s)ds + 1 h (x -t n-1 ) (t α n -x α ) 1 0 (1 -s) α-1 Γ(α) f (t n s)ds ≤ f 0 Γ(α) (n -1) α-1 h α
Consequently for all x between t n-1 and t n with n > 1 the following inequality holds

1 h [(t n -x)I α f (t n-1 ) + (t n-1 -x)I α f (t n )] -I α f (x) ≤ f 0 Γ(α + 3) + f 0 Γ(α) h α
As a result, and after using the corollary 3.3, for all x ≥ h

∇ -α h f (x) -I α f (x) ≤ 2C + f 0 Γ(α + 3) + f 0 Γ(α) h α
Now, for x between 0 and h

∇ -α h f (x) -I α f (x) = x h ∇ -α h f (h) -I α f (x) = xh α-1 f (h) - x 0 (x -t) α-1 Γ(α) f (t)dt Hence ∇ -α h f (x) -I α f (x) ≤ xh α-1 |f (h)| + x 0 (x -t) α-1 Γ(α) |f (t)| dt ≤ h α f 0 + x α Γ(α + 1) f 0 ≤ 1 + 1 Γ(α + 1) f 0 h α
This proves the corollary.

Our first main result is

Theorem 3.5 (Uniform convergence of ∇ -α h f to I α f ) For every f ∈ C [0, 1] , we have ∇ -α h f -I α f 0 tends to 0 when h goes to 0.
Proof For every ε > 0, Weiestrass approximation theorem, ensures the existence of a polynomial p such that, |f (x) -p(x)| ≤ ε, ∀x ∈ [0, 1] . As the previous corollary applies to p, the boundedness of operators ∇ -α h and I α implies

∇ -α h f (x) -I α f (x) ≤ |I α (f -p)(x)| + ∇ -α h p(x) -I α p(x) + ∇ -α h (f -p)(x) ≤ 2 ε Γ(α + 1) + Ch α
By taking ε = h α , we get

∇ -α h f (x) -I α f (x) ≤ Kh α
hence the conclusion. Now, we enunciate the convergence result in weighted spaces.

Theorem 3.6 (Convergence in weighted spaces) For every function

f in C β [0, 1] with 0 < β < 1 and α -β ≥ 0 we have ∇ -α h f -I α f β tends to 0 when h tends to 0. Proof Since t β f (t) is continuous on [0, 1] , then |f (t)| ≤ M t -β , where M = sup t∈[0,1] t β f (t) = f β . Let F (t) := f (t) h ≤ t ≤ 1 f (h) 0 ≤ t ≤ h . It is a continuous function on [0, 1] .
It is obvious that

∇ -α h F (x) = ∇ -α h f (x), for every x ≥ h If x < h, ∇ -α h f (x) = x h ∇ -α h f (h)
and

∇ -α h F (x) = x h ∇ -α h F (h) = x h ∇ -α h f (h) = ∇ -α h f (x)
Then, ∀x ∈ [0, 1] we have

|∇ -α h f (x) -I α f (x)| ≤ |∇ -α h F (x) -I α F (x)| + |I α F (x) -I α f (x)| Since for every t ∈ [0, h], |f (t) -f (h)| ≤ M t -β + M h -β ≤ 2M t -β , then when x ≥ h |I α F (x) -I α f (x)| = 1 Γ(α) h 0 (x -t) α-1 (f (h) -f (t))dt ≤ 2M Γ(α) h 0 (x-t) α-1 t -β dt It is easy to see that h 0 (x-t) α-1 t -β dt = x α-β h x 0 (1-t) α-1 t -β dt = x α-β 1 0 (1-t) α-1 t -β χ [0, h x ] (t)dt Let 1 < p < min( 1 1 -α , 1 β 
) and q the conjugate exponent i.e,

1 p + 1 q = 1. The Hölder inequality gives 1 0 (1 -t) α-1 t -β χ [0, h x ] (t)dt ≤ (B(1 -(1 -α)p, 1 -βp)) 1 p h x 1 q
where B(., .) is the Euler beta function. Consequently, ∀x ≥ h

x β |I α F (x) -I α f (x)| ≤ K 1 x α-1 q h 1 q ≤ K 1 h 1 q . Now if x < h |I α F (x) -I α f (x)| = 1 Γ(α) h 0 (x -t) α-1 (f (t) -f (h))dt ≤ 2M Γ(α) x 0 (x -t) α-1 t -β dt ≤ 2M Γ(1 -β) Γ(1 -β + α) x α-β
and then,

x β |I α F (x) -I α f (x)| ≤ 2M Γ(1 -β) Γ(1 -β + α) x α ≤ 2M Γ(1 -β) Γ(1 -β + α) h α Because α > 1 q
, we get

x α |I α F (x) -I α f (x)| ≤ K 2 h 1 q , ∀x ∈ [0, 1]
Since F is continuous on [0, 1], from the theorem 3.5 we can state that, there exists K > 0 such that,

∇ -α h F (x) -I α F (x) ≤ Kh α , ∀x ∈ [0, 1] (7) 
leading to

x β ∇ -α h F (x) -I α F (x) ≤ Kh α , ∀x ∈ [0, 1]
Therefore 

x β ∇ -α h f (x) -I α f (x) ≤ Kh α + K 2 h 1 q ≤ K 3 h 1 q , ∀x ∈ [0, 1] hence lim h→0 ∇ -α h f -I α f β = 0.
H d (T h , T) = h/2 and H d (T h , T h) = max h/2, h/2
We can reformulate the result in theorem 3.5 in term of convergence over time scales. Corollary 4.1 (Convergence on time scales) Let f be any continuous function on [0, 1], then there exists a constant K > 0, such that

∇ -α h f -I α f 0 ≤ K.H d (T h , T) α (8) 
It is interesting to see that the inequality (8) can be seen as continuity of an operator, mapping the space of time scales into the space of continuous function.

Indeed, let (τ, H d ) be the metric space of all time scales on [0, 1] endowed with the Hausdorff metric. Let f be a fixed continuous function. Assume that we can define a mapping from (τ, H d ) to (C [0, 1] , . 0 ) :

J f : (τ, H d ) → (C [0, 1] , . 0 ) S →J f (S)
which can be called integral with respect to S and such that J f (T) =I α f and J f (T h ) = ∇ -α h f. The corollary 4.1 says that lim

T h τ →T J f (T h ) =J f (T)
So will conjecture the following, Conjecture 4.2 Assume that J f is well defined. Then J f is continuous.

Note that in the subset {T h , h > 0} ∪ {T}, the time scales T h are isolated "points". We have then shown that the conjecture is true in the previous subset.

Applications

In this section, we use our proposed approximation and show how it is numerically efficient through some problems of fractional differential equations.

The proposed procedure for numerical solution of Cauchy fractional differential equations consists of two steps. First, initial conditions are used to reduce a given initial-value problem to an equivalent Volterra integral equation. Then a system of algebraic equations is obtained by replacing fractional integral by the nabla fractional h-sum.

In case of linear fractional differential equations the resulting algebraic system is a lower triangular. For the non linear ones, the corresponding algebraic systems is non linear too, and must be solved by adequate methods.

In the presence of singularity at the origin for the Riemann-Liouville initial value problem, it is important to note that this procedure is appropriate.

Example 1 Consider the linear fractional initial value problem

D α y(t) = λy(t) t ∈ (0, 1] lim t→0 + t 1-α y(t) = c (9) 
This problem has a known analytical solution [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF]:

y(t) = cΓ(α)t α-1 E α,α (λt α )
where E µ,ν (t) is a Mittag-Leffler type function [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF]. The problem ( 9) is reduced to the following Volterra integral equation

y(t) = ct α-1 + I α (λy(t))
In Figure 1, we show accuracy of the method with the next parameters, α = 0.75, c = 1, λ = 1.

For h = 0.002, we obtain max t 1-α i |y(t i ) -y i | , i = 1, . . . , 10 4 = 2.9 × 10 -2 , where y i is the approximation value of y(t i ) at the point t i = ih, derived from the recurrence formula Example 2 Consider the following nonhomogeneous differential equation with Riemann-Liouville fractional derivative (see [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF] (4.2.101) with our notation),

y i = 1 Γ(α)(1 -λh α )   λh α i-1 j=1 Γ(i -j + α) Γ(i -j + 1) y j + ct α-1 i   , i = 1, . . . , 10 4 
D α y(t) = λy(t) + ct µ , t ∈ (0, T ] D 1-α y(0 + ) = η (10) 
where λ, c, η ∈ R, 0 < α < 1, µ > -1.The solution of the problem is given by

y(t) = T ηt α-1 E α,α (λt α ) + Γ(µ + 1)ct α+µ E α,α+µ+1 (λt α )
Since lim t→0 + t 1-α y(t)exists then by [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF] lemma 3.2 the problem (10) can be written as D α y(t) = λy(t) + ct µ , t ∈ (0, T ] lim

t→0 + t 1-α y(t) = η Γ(α)
which is reduced to the following Volterra integral equation

y(t) = η Γ(α) t α-1 + I α (λy(t) + ct µ )
In figure 2, we show accuracy of the method with the next parameters,

α = 0.5, η = 1, c = 2, mu = 2, λ = 1, T = 1.
Example 3 Consider the fractional-order Brusselator system [START_REF] Zhou | Synchronization in fractional-order differential systems[END_REF], [START_REF] Ongun | Nonstandard finite difference schemes for a fractional-order Brusselator[END_REF]. It's an example of autocatalytic chemical reaction which is mathematically described as follows:

C D α x(t) = a -(µ + 1)x(t) + x 2 (t)y(t) C D α y(t) = µx(t) -x 2 (t)y(t)

with initial conditions x(0) = x0, y(0) = y0 We show efficiency of the numerical process by setting parameters given in the first simulation in [START_REF] Ongun | Nonstandard finite difference schemes for a fractional-order Brusselator[END_REF]. a = 1, µ = 3, α = 0.7, x0 = 1.1, y0 = 2.9, T = 80. with h = 0.001, we obtain the graphical representation of Brusselator dynamics below (see Figure 3). We have taken as reference the numerical solution obtained in [START_REF] Ongun | Nonstandard finite difference schemes for a fractional-order Brusselator[END_REF] using Adams-Bashford-Moulton method [START_REF] Diethelm | The analysis of fractional differential equations, an application-oriented exposition using differential operators of caputo type[END_REF]. The error between our approach and the reference is of the order of 10 -2 , when h = 0.005.

Conclusion

Using standard techniques from functional analysis we have proved the convergence of nabla h-sum operator to the Riemann-Liouville integral. It is a powerful tool of approximation which allowed us to obtain the numerical solution of some Cauchy fractional problems even with singularity at the initial point. Otherwise, the previous analysis can be the starting point to write an Euler-like formula extending the classical theory to the fractional case. Unfortunately we were not able to find a satisfactory such formula. This will be done in further work. Another interesting problem consist to investigate the convergence of the (q, h)-∇ -α operator to the Riemann-Liouville integral. This will be a new step toward the achievement of our conjecture.

Lemma 2 . 3 (

 23 See[START_REF] Elezović | Inequalities and asymptotic expansions of the Wallis sequence and the sum of the Wallis Ratio[END_REF] Theorem 5] ) Let n ≥ 1 be an integer, and a, b > 0 be two real numbers. then

4Remark 1

 1 Connection with time scale theory Let T = [0, 1] and T h = hZ ∩ [0, 1] be time scales for each h ∈ R * + . We consider H d (A, B) the Hausdorff distance between two sets defined by H d (A, B) = max sup a∈A d(a, B), sup b∈B d(b, A) where, as usual, d(a, B) = inf b∈B |a -b|. It is easy to see that

( a )

 a Exact solution in the continuous line, numerical one in dotted line.(b) Error with respect step size h.

Figure 1 :

 1 Figure 1: Comparison between analytical solution and numerical solution for the linear fractional initial value problem.

Figure 2 :

 2 Figure 2: Numerical solutions for the nonhomogeneous fractional initial value problem with α = 0.5. Exact solution in the continuous line, the numerical solutions: dotted line ( h = 10 -2 ), dashed line (h = 10 -3 ).

( a )

 a The components x(t) in the continuous line and y(t) in the dotted line.(b) The trajectories in phase plan.

Figure 3 :

 3 Figure 3: Numerical solution of the fractional order Brusselator system.
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