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HEAT KERNELS, SOLVABLE LIE GROUPS, AND THE MEAN

REVERTING SABR STOCHASTIC VOLATILITY MODEL

SIYAN ZHANG, ANNA L. MAZZUCATO, AND VICTOR NISTOR

Abstract. We use commutator techniques and calculations in solvable Lie
groups to investigate certain evolution Partial Differential Equations (PDEs
for short) that arise in the study of stochastic volatility models for pricing
contingent claims on risky assets. In particular, by restricting to domains of
bounded volatility, we establish the existence of the semi-groups generated by
the spatial part of the operators in these models, concentrating on those arising
in the so-called “SABR stochastic volatility model with mean reversion.” The
main goal of this work is to approximate the solutions of the Cauchy problem
for the SABR PDE with mean reversion, a parabolic problem the generator of
which is denoted by L. The fundamental solution for this problem is not known
in closed form. We obtain an approximate solution by performing an expansion
in the so-called volvol or volatility of the volatility, which leads us to study a
degenerate elliptic operator L0, corresponding the the zero-volvol case of the
SABR model with mean reversion, to which the classical results do not apply.
However, using Lie algebra techniques we are able to derive an exact formula
for the solution operator of the PDE ∂tu − L0u = 0. We then compare the
semi-group generated by L–the existence of which does follows from standard
arguments–to that generated by L0, thus establishing a perturbation result
that is useful for numerical methods for the SABR PDE with mean reversion.
In the process, we are led to study semigroups arising from both a strongly
parabolic and a hyperbolic problem.
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1. Introduction

We study certain parabolic partial differential equations (PDEs for short) that
arise in the study of stochastic volatility models for pricing contingent claims on
risky assets. More specifically, we consider the PDE

(1) ∂tu− Lu := ∂tu− κ(θ − σ)∂σu−
σ2

2

[

(∂2xu− ∂xu)− νρ∂x∂σu− ν2

2
∂2σu

]

= 0

for the function u(t, σ, x), where t ≥ 0, σ > 0 and x ∈ R. This equation is a
forward Kolmogorov equation for the probability density function associated to a
two-dimensional stochastic process for the variables σ and x. The parameter θ > 0
represents the mean of the σ process, κ > 0 is a parameter measuring the strength
of the mean reversion, ν > 0 is the variance of the σ process, and ρ measures the
correlation between the x and the σ processes. This PDE is often called the λSABR
PDE and has recently received attention in the literature due to its applications in
pricing options in mathematical finance and financial applications [24, 25], where
it is used as an alternative to the Black-Scholes PDE. In this context, the Green’s
function is called the pricing kernel of the economy, x represents the price of an
underlying risky asset such as a stock, and σ is its volatility. Thus σ itself follows
a stochastic process, hence the λSABR model is a stochastic volatility model in
which ν represents the volatility of the volatility or volvol. Stochastic volatility
models are known to perform better in practice than the Black-Scholes model (see
e.g. [24, 28, 31]).

Our method consists in the following decomposition of the operator L:

(2) L = A+
σ2

2
B + νL1 + ν2L2 ,

where

(3)
A := κ(θ − σ)∂σ , B := ∂2x − ∂x ,

L1 := ρσ2∂x∂σ , and L2 :=
1

2
σ2∂2σ ,

and then in studying separately these operators and their combinations, based on
the commutator identities that they satisfy. We thus establish that L, A, B, and

(4) L0 := A+
σ2

2
B

generate strongly continuous or c0 semi-groups, provided that we restrict to a do-
main of bounded volatility σ ∈ I := (α, β), where 0 < α < θ < β < ∞. We stress
that L0 is a degenerate operator, in the sense that the diffusion matrix associated
to L0 is not full rank. Therefore, the existence of the semigroup does not follows
from standard arguments.
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Throughout, if T is a linear operator that generates a semigroup, we shall denote
such semigroup by the usual notation etT , t ≥ 0.

We will obtain explicit formulas for the kernel of the semi-groups generated by
A, B, and L0. While we have no explicit formulas for the kernel of etL, the solution
operator of the PDE (1) of interest in applications, we are nonetheless able to
estimate the difference etLh − etL0h, provided h(σ, x) has enough regularity in σ.
The function h represents the initial data for the Cauchy problem associated to (1),
and in the specific applications we have in mind, it is actually an analytic, or even
constant, function in σ.

The semi-groups investigated in this paper will typically act on exponentially
weighted Sobolev spaces. The reason for considering exponentially weighted spaces
is that, in the applications of interest, the initial data h for (1) is of the form
h(σ, x) := |ex − K|+, where |y|+ = (y)+ := (y + |y|)/2 denotes the positive part
of the number y ∈ R. This particular type of initial data arises in pricing of so-
called European call options (we refer to [19, 48] for a more detailed discussion of
options). The practical meaning of the initial condition h is the payoff of the option
at maturity. Similar initial conditions are used for other types of options, such as
American and Asian options. From a mathematical point of view, the form of h
requires exponential weights and implies low regularity of the initial data in the
x direction, but provides analytic regularity in the σ direction, which we indeed
exploit in our estimate of etLh− etL0h (see Equation (5) below and the statement
of one of our main results, Theorem 5.14).

The semi-groups generated by the operators A and B, and L can be obtained
using classical methods, since the operator A gives rise to a transport evolution
equation, whereas B and L are uniformly strongly elliptic. In particular, we show
that B and L generate analytic semi-groups. However, as already mentioned, clas-
sical methods do not apply to L0, which is degenerate. We will employ a different
strategy, which allows us to establish the generation of c0 semigroup by L0 and
obtain an explicit formula for its kernel. The key observation is that the operators

A and σ2

2 B generate a solvable, finite-dimensional Lie algebra.
Having an explicit formula is important in obtaining an accurate, yet easily

computable, approximation of the solution operator etL, one of the main goals of
this work. To this end, we derive an error estimate of the form:

(5) ‖etLh− etL0h‖L2 ≤ Cν
(

‖∂σh‖L2 + ‖h‖L2

)

,

for ν ∈ (0, 1] and with a constant C, possibly dependent on L and κ, but not on h
and ν (see Theorem 5.14 for a complete statement). In the process, we also establish
several mapping properties for the semi-groups generated by L0 and L. The method
of proof is a perturbative argument based on heat kernels estimates, following the
method developed in [9, 10]. This method extends the work on Henry-Labordère on
heat kernel asymptotics [26, 27]. A similar method was developed by Pascucci and
his collaborators [44, 46]. Heat kernel asymptotics were employed in this context
also by Gatheral and his collaborators [20, 21]. See also [11, 32, 40, 43, 37, 16].
We also mention that fundamental solutions for degenerate equations related to
∂tu−L0u = F , but in the context of ultraparabolic equations satisfying Hörmader’s
conditions for hypoellipticity, which does not hold for ∂t−L0, have been studied by
many authors, starting with the seminal work of Kolmogorov [34] (see [14, 15, 45, 36]
for some recent, relevant works).
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The paper is organized as follows. In Section 2 we review a few needed facts on
evolution equations and semi-groups of operators. We also introduced the exponen-
tially weighted spaces used in this paper. In Section 3, we show that the operators
L and B, which are both strongly parabolic, generate analytic semi-groups on
weighted spaces, using the Lumer–Phillips theorem and the results of Section 2.
Section 4 deals with the semi-groups generated by A, which is of transport type,
and L0, which is degenerate parabolic. An explicit formula for etL0 is obtained by
combining the results for the operators A and B, more specifically by exploiting
the commutator identities that A and f(σ)B satisfy and Lie group ideas. The last
section, Section 5, contains some additional results: a more detailed discussion of
Lie group ideas in evolution equations and the proof of the error estimate (5).

Notation: We close this Introduction with some notation used throughout. By
‖ · ‖ we denote the functional norm in a Banach space, while the norm of finite-
dimensional vectors in Rn will be simply denoted by | · |. Lastly, by (, ) we mean
either the pairing between a Banach spaces and its dual, or the L2 inner product,
depending on the context.

Acknowledgments: The first and second authors were partially supported by the
US National Science Foundation grant DMS 1312727. The third author was sup-
ported by FranceAgence Nationale de la Rechérche ANR-14-CE25-0012-01 (SINGSTAR).

2. One parameter semi-groups

This section is devoted to survey general facts about abstract evolution equations
and semi-groups of operators. We also review needed facts about the function
spaces we employ, in particular exponentially weighted Sobolev spaces. As remarked
in the Introduction, these spaces are needed to handle initial conditions of the form
h(σ, x) := |ex − K|+, (σ, x) ∈ (0,∞) × R. Most of the results presented in this
section are known. We follow primarily,[2, 41, 47].

2.1. Unbounded operators and c0 semi-groups. We begin by recalling the
notion of a semi-group generated by a linear operator. Throughout, L(X) will
denote the space of bounded linear operators on a Banach space X , which is a
Banach algebra using the operator norm.

Definition 2.1. Let X be a Banach space. A strongly continuous or c0 semi-group
of operators on X is a family of bounded operators S(t) : X → X , t ≥ 0, satisfying:

(i) S(t1 + t2) = S(t1)S(t2), for all ti ≥ 0,
(ii) S(0) = I, where I represent the identity operator on X ,
(iii) limt→0 S(t)x = x, for all x ∈ X , where the limit is taken with respect to the

topology of X .

We recall that a function T : [a, b] → L(X) is strongly continuous if the map
[a, b] ∋ t→ T (t)ξ ∈ X is continuous for every ξ ∈ X . It follows from the definition
of a c0 semi-group and the Banach-Steinhaus theorem that, if S(t) is a c0 semi-
group of operators on X , then S(t) is strongly continuous in t, hence the name
strongly continuous semigroups.

We shall need also the notion of analytic semi-groups. To this end, for a given
δ > 0, we let

(6) ∆δ := { z = reıθ , −δ < θ < δ, r > 0 } .
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Definition 2.2. Let X be a Banach space. An analytic semi-group of operators
on X is a function S : ∆δ ∪ {0} → L(X), δ > 0, with the properties

(i) S is analytic in ∆δ;
(ii) S(z1 + z2) = S(z1)S(z2), if zi ∈ ∆δ ∪ {0};
(iii) S(0) = I, the identity operator on X ;
(iv) limz→0 S(z)x = x, for all x ∈ X .

The limit limz→0 S(z)x is computed for z ∈ ∆δ. An analytic semi-group is, in
particular, a c0 semi-group.

Definition 2.3. Let X be a normed space. A (possibly unbounded) linear operator
on X is a linear map T : D(T ) → X , where D(T ) ⊂ X is a linear subspace, called
the domain of T . We say that T is closed if its graph is closed.

Unbounded linear operators arise naturally as the generators of c0 semi-groups.

Definition 2.4. The generator T of a c0 semi-group S(t) on X is the operator
Tξ := limtց0 t

−1
(

S(t)ξ − ξ
)

, with domain the set of vectors ξ ∈ X for which the
limit exists.

It is known that the generator of a c0 semi-group is closed and densely defined.
We next review criteria for an unbounded operator T to generate a c0 semi-group
S(t). Then u(t) := S(t)h is a (suitable) solution of u′ − Tu = 0, u(0) = h. A
useful criterion for T to generate a c0 semi-group is provided by the Lumer-Phillips
theorem, which we discuss next. Since two c0 semi-groups with the same generator
coincide [2, 47], we shall write S(t) = etT for the semi-group generated by T , if
such a semi-group exists.

2.2. Dissipativity. In the following, ℜ(z) = ℜz will denote the real part of z ∈ C.
Let X be a Banach space and let X∗ denote its dual. If x ∈ X , the Hahn-Banach
theorem implies, in particular, that the set

F(x) := {f ∈ X∗, f(x) = ‖x‖2 = ‖f‖2}
is not empty.

Definition 2.5. A (possibly unbounded) operator T on a Banach space X is called
quasi-dissipative if there exists µ ≥ 0 such that, for every x ∈ D(T ), there exists an
f ∈ F(x) ⊂ X∗ with the property that and ℜ

(

f(Tx− µx)
)

≤ 0.

This definition is simply saying that for some µ > 0, the operator Tx − µx is
dissipative.

The numerical range of T , denoted N(T ), is the set

(7) N(T ) := { f(Tx), ‖x‖ = 1, f ∈ F(x) } .
A quasi-dissipative operator T is thus one that has the property that

(8) N(T ) ⊂ { z ∈ C, ℜ(z) ≤ µ } = µ+∆c
π/2

with ∆δ defined in Equation (6) and ∆c
δ := Cr∆δ its complement.

Quasi-dissipativity, together with some mild conditions on the operator T stated
below, is sufficient for the generation of a c0 semigroup, by the celebrated Lumer-
Phillips theorem, which we now recall for the benefit of the reader [2, 47].
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Theorem 2.6 (Lumer-Phillips). Let X be a Banach space and let T be a densely
defined, quasi-dissipative operator on X such that T − λ is invertible for λ large.
Then T generates a c0 semi-group on X.

By strengthening the condition (8), we obtain the following similar theorem that
yields generators of analytic semi-groups. The proof of this theorem is contained
in the proof of Theorem 7.2.7 in [47].

Theorem 2.7. Let X be a Banach space and let T be a densely defined operator
on X such that N(T ) ⊂ µ +∆c

ϑ for some µ ∈ R and some ϑ > π/2. Assume also
that T − λ is invertible for λ large. Then T generates an analytic semi-group.

We note that the assumption that T − λ be invertible in Theorem 2.7 implies
that T is closed. The theorem is especially useful when T is a uniformly strongly
elliptic operator (see Definition 2.22) in view of the following Lemma, the proof of
which is again contained in the proof of Theorem 7.2.7 in [47]. See also [7, 38, 33].

Lemma 2.8. Let P be an order 2m differential operator on some domain Ω ⊂ R
n,

regarded as an unbounded operator on L2(Ω) with domain D(P ) ⊂ H2m(Ω). We
assume that there exists C > 0 such that

ℜ(Pv, v) ≤ −C−1‖v‖Hm(Ω) and |(Pv, v)| ≤ C‖v‖Hm(Ω) , (∀) v ∈ D(P ) .

Then N(P ) ⊂ ∆c
ϑ for some ϑ > π/2.

From Theorem 2.7 and Lemma 2.8, we get the following corollary.

Corollary 2.9. Let P be as in Lemma 2.8 and assume that D(P ) is dense in L2(Ω)
and that P − λ is invertible for λ large. Then P generates an analytic semi-group
on X.

2.3. Classical and other types of solutions. Let us consider the initial-value
problem for abstract parabolic equations of the form

(9) ∂tu− Pu = F , u(0) = h ∈ X ,

where P is a (usually unbounded) operator on a Banach space X and with domain
D(P ). In our applications, X will be a space of functions on Ω, but first we consider
this equation abstractly, from the point of view of semi-groups of operators.

Definition 2.10. We shall say that a function u : [0, T ] → X is a strong solution
of the initial value problem (9) for F ∈ C([0, T ];X) if

(i) u is continuous for the norm topology on X and u(0) = h;
(ii) ∂tu = u′ is defined and continuous as a function (0, T ] → X ;
(iii) u(t) ∈ D(P ) for t ∈ (0, T ]; and
(iv) u satisfies the equation ∂tu(t)− Pu(t) = F (t) ∈ X , for t ∈ (0, T ].

We shall need also the following weaker form of a solution.

Definition 2.11. A function u : [0, T ] → X is called a mild solution of the initial-
value problem (9) if h ∈ X , F ∈ L1([0, T ], X), and

u(t) = etPh+

∫ t

0

e(t−τ)P F (τ) dτ,

with equality as elements of X pointwise in time t ∈ (0, T ).
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The following remark recalls the connection between semi-groups and the various
types of solutions of the Initial Value Problem (9).

Remark 2.12. For the applications of interest in this work, we can reduce to ho-
mogeneous equations, that is F (0) = 0, as we assume now. We also assume that
the operator P generates a c0 semi-group etP on X . Then u(t) := etPh is a mild
solution for any h ∈ X . If, moreover, h ∈ D(P ) or if P generates an analytic semi-
group, then u(t) := etPh is also a strong solution of Equation (9) (see [2, 41, 47],
for instance).

We are interested in the case when P is a m-th order partial differential operator
defined on a domain Ω ⊂ Rd:

(10) P :=
∑

|α|≤m

aα∂
α ,

with coefficients aα ∈ C∞(Ω). We shall occasionally use the convenient notation:

u(t)(q) := u(t, q) , t ≥ 0 and q ∈ Ω ,

which is in agreement with (9). When P = L, acting on L2(Ω), Ω = (0,∞) × R,
F = 0, and h(σ, x) := |ex −K|+, we recover the initial-value problem (1). In that
case, we are interested in classical and weak solutions. We assume that X is a space
of functions on X , that is, X ⊂ L1

loc(Ω). We also assume that the domain of P
contains the space of smooth functions with compact support in Ω, and hence the
same is satisfied by its adjoint.

Definition 2.13. We shall say that a function u : [0, T ] × Ω → C is a classical
solution of the initial value problem (9) if

(i) u is continuous on [0, T ]× Ω and u(0, q) = h(q), for all q ∈ Ω;
(ii) ∂tu = u′ and ∂αu, |α| ≤ m, are defined and continuous on (0, T ]× Ω; and
(iii) u satisfies the equation ∂tu− Pu = F pointwise in (0, T ]× Ω.

If boundary conditions for u on ∂Ω are given, we require them to be satisfied as
equalities of continuous functions.

It follows that if u is a classical solution, then F is continuous. We note that in
the abstract setting, strong solutions are often referred to as classical solutions (see
e.g. [47].

Remark 2.14. We recall that, if T is the generator of an analytic semi-group etT

on a Banach space X , then T netT extends to a bounded operator on X and there
exists C > 0 such that

(11) ‖T netT ‖ ≤ Ct−n , for all t ∈ (0, 1] .

The following lemma follows from known results (cf. [41, 47]).

Lemma 2.15. Assume that there exists n ≥ 0 such that D(Pn) ∋ f → ∂αf ∈ C(Ω)
is continuous for all |α| ≤ m. In addition, assume that P generates a c0 semi-group
on X and that F = 0. Then u(t) := etPh is a classical solution of Equation (9) for
all h ∈ D(Pn+1).

Proof. For each fixed t, u(t) ∈ D(Pn+1) defines a continuous function on Ω, since
D(Pn) ⊂ C(Ω) continuously. The same argument shows that the map [0, T ] ∋
t → u(t) ∈ C(Ω) is continuous, and hence u is continuous on [0, T ] × Ω, that
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∂tu, ∂
αu, |α| ≤ m, are defined and continuous on (0, T ] × Ω, and that u′ = Pu

(this is where we need the stronger assumption that h ∈ D(Pn+1), since we need
ǫ−1(u(t+ ǫ)− u(t)) → Pu(t) ∈ D(Pn), as ǫ→ 0). �

Let us denote by

(12) P tv :=
∑

|α|≤m

(−1)|α|∂α(aαv)

be the transpose of P (so that
∫

Ω
(Pu)vdx =

∫

Ω
u(P tv)dx whenever u and v are

compactly supported in Ω). Similarly, we then have the following definition of weak
or distributional solutions.

Definition 2.16. We shall say that u : [0, T ) × Ω → C is a weak solution of the
initial value problem (9) if u, F ∈ L1

loc([0, T )× Ω) and, for all φ ∈ C∞
c ([0, T )× Ω),

(13)

∫

Ω

[

φ(0, x)h(x) +

∫ T

0

(

∂tφ + P tφ
)

u dt +

∫ T

0

φF dt
]

dx = 0 .

If, moreover, v is also a classical solution on [δ, T ] for all δ > 0, we shall say that v
is a classical solution on (0, T ]. If v is a classical solution on (0, T ], for all T < R,
then we say that v is a classical solution on (0, R).

Again, the following lemma is well-known (see e.g. [47]).

Lemma 2.17. Assume that P generates a c0 semi-group on X. Then u(t) := etPh
is a weak solution of the homogeneous Initial-Value Problem (9) with F = 0 for all
h ∈ X.

Proof. We assume that h ∈ D(P ) and that φ is as in Definition 2.16. Then the
function ψ(t) := (etPh, φ(t)) is continuously differentiable on [0, T ]. The relation

ψ(T )−ψ(0) =
∫ T

0 ψ′(t)dt gives that u(t) := etPh is a weak solution of the IVP (9).

Since the weak form (13) depends continuously on h, we obtain that u(t) := etPh
is a weak solution of (9) by the density of D(P ) in X . �

Combining the two lemmas above we obtain.

Proposition 2.18. Assume that D(Pn) ∋ f → ∂αf ∈ C(Ω) is continuous for all
|α| ≤ m. Assume in addition that P generates an analytic semi-group on X and
that F = 0. Then, for all h ∈ X, u(t) := etPh is a classical solution on (0,∞) of
the IVP (9).

2.4. Function spaces. We shall consider various weighted Sobolev spaces as fol-
lows. Let Ω ⊂ Rd be an open subset, as in the previous subsection, and let
w ∈ L1

loc(Ω) satisfy w ≥ 0. If X is any Banach space of functions on Ω with
norm ‖ · ‖X , we define

(14) wX := {wξ, ξ ∈ X } ,
with the norm ‖wξ‖wX := ‖ξ‖X . Thus, if p < ∞, if X = Lp(Ω, dµ), and if w > 0
almost everywhere with respect to µ, µ ≥ 0, then wX = Lp(Ω, w−1/pdµ). Of
course, for any linear operator T we have

(15) T : wX → wX is bounded if, and only if w−1Tw : X → X is bounded.

In fact, these two operators are unitarily equivalent.
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In what follows, we choose weights of the form w := eλ〈x〉, where 〈 · 〉 denotes
the Japanese bracket:

〈x〉 :=
√

1 + x2,

and λ ∈ R is a parameter. The weight w will be viewed as acting on functions of
x ∈ R or of (σ, x) ∈ I ×R, in the later case the weight being independent of σ. For
simplicity, we shall usually write

(16) Hm
λ (R) := eλ〈x〉Hm(R) = { f : R → C, e−λ〈x〉f ∈ Hm(R) }

= { f : R → C, e−λ〈x〉∂if ∈ L2(R), i ≤ m } ,
where the last equality is valid due to the fact that the weight w(x) = eλ〈x〉 has
the property that w−1∂iw forms a bounded family as operators on Hm(R) (by
writing f = wg, with g ∈ Hm(R)). We also let L2

λ = H0
λ. We recall that this

choice of the weight function w is justified by the specific form of the initial data
h(x) := |ex −K|+ for the Cauchy problem for the λSABR model (1).

Let I be a closed interval in R. We consider, similarly, the spaces

(17) Hi,j
λ (I × R)) := wHi(I;Hj(R)) = { u, ∂ασ ∂βxu ∈ L2

λ(I × R), α ≤ i, β ≤ j }
= { u, ∂ασ ∂βx (e−λ〈x〉 u) ∈ L2(I × R), α ≤ i, β ≤ j } = Hi(I;Hj

λ(R)) .

2.5. Operators with totally bounded coefficients. Let Ω = R or Ω = I × R,
with I ⊂ R an interval. We shall often use the following class of functions.

Definition 2.19. A function f : Ω → C is totally bounded if it is smooth and
bounded and all its derivatives are also bounded.

We have the following simple lemma.

Lemma 2.20. Let P be an order m differential operator on Ω with totally bounded
coefficients. Then P defines continuous a map Hs

λ(Ω) → Hs−m
λ (Ω), for every

s ≥ m.

Proof. The proof is a direct calculation. �

Lemma 2.21. Let P :=
∑

|α|≤m aα∂
α be an order m differential operator on Ω

with totally bounded coefficients. If w(σ, x) = eλ〈x〉, as before, then w−1Pw also
has totally bounded coefficients and the same terms of order m as P .

Proof. We have w−1∂σw = ∂σ and w−1∂xw = ∂x + w−1 ∂w
∂x = ∂x + ψ, where

ψ := w−1 ∂w
∂x = λ∂〈x〉

∂x = λ〈x〉′. Since 〈x〉′ is totally bounded, the result follows from

the identity (w−1P1w)(w
−1P2w) = w−1P1P2w for any differentiable operators P1

and P2. �

We formulate the following result in slightly greater generality than needed for
the proof of the existence of the semi-group generated by L, for further possible
applications. Let us now recall the definition of a second order uniformly strongly
elliptic differential operator on Ω = R or Ω = I × R, with real coefficients, in the
form that we will use in this paper.

Definition 2.22. Let P = axx(σ, x)∂
2
x+2aσx(σ, x)∂σ∂x+aσσ(σ, x)∂

2
σ+b(σ, x)∂x+

c(σ, x)∂σ + d(σ, x) be a differential operator with real coefficients on I ×R. We say
that P is uniformly strongly elliptic if it has bounded coefficients and if there exists
ǫ > 0 such that axx ≥ ǫ and axxaσσ − a2σx ≥ ǫ.
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If Ω = R, the operator P reduces to P = axx(σ, x)∂
2
x+ b(σ, x)∂x+d(σ, x) and we

have that P is uniformly strongly elliptic if it has bounded coefficients and there
exists ǫ > 0 such that axx ≥ ǫ.

We have the following standard regularity results. We continue to assume that
Ω = I × R or Ω = R.

Theorem 2.23. Let P be second order, uniformly strongly elliptic differential op-
erator with totally bounded coefficients on Ω. Assume u ∈ H1

λ(Ω) is such that

Pu ∈ Hm−1
λ (Ω). If Ω = I × R, we also assume that u vanishes at the endpoints of

I. Then u ∈ Hm+1
λ (Ω). Moreover, there exists C > 0, independent of u, such that

‖u‖Hm+1

λ
(Ω) ≤ C

(

‖Pu‖Hm−1

λ
(Ω) + ‖u‖H1

λ
(Ω)

)

.

A proof of this result can be obtained by first reducing to the case λ = 0, that
is, w = 1, using Lemma 2.21 and then either by using a dyadic partition of unity
or by using divided differences (this approach is sometimes called Nirenberg’s trick
after [1]), which is facilitated in this case since the boundary is straight (see, for
instance, [39]). We obtain the following consequence.

Corollary 2.24. Let P be second order, uniformly strongly elliptic differential
operator with totally bounded coefficients on R. Then ‖u‖L2

λ
+ ‖P ku‖L2

λ
defines an

equivalent norm on H2k
λ (R).

The above two results hold in the more general framework of manifolds with
bounded geometry. See, for example, [42] and the references therein. See also
[4, 3, 5, 6, 13, 23, 35] for more recent results on PDEs on manifolds with bounded
geometry.

3. The semi-group generated by L and B

In this section, we show that L and B generate analytic semi-groups using the
Lumer–Phillips theorem and the results of the previous section. Our approach is
standard and well known for the case of operators on standard Sobolev spaces. The
analysis on exponentially weighted spaces is less developed. For the reader’s sake,
we work in detail the slightly more complicated case of the operator L and only
sketch the proofs of the results for B.

3.1. The differential operator L. Our next goal is to show that the operator L
is quasi-dissipative on weighted Sobolev spaces. The space

(18) K0 := H2
λ(I × R) ∩ {u = 0 on ∂I × R}

will be the common domain of several operators, so it will play an important role in
what follows. We formulate the following result in slightly greater generality than
needed for the proof of the existence of the semi-group generated by L, for further
possible applications.

Definition 3.1. Let P denote the set of second order differential operators T =
axx(σ, x)∂

2
x + 2aσx(σ, x)∂σ∂x + aσσ(σ, x)∂

2
σ + b(σ, x)∂x + c(σ, x)∂σ + d(σ, x) with

totally bounded, real coefficients on I × R and satisfying

axx, aσσ , axxaσσ − a2σx ≥ 0 .



SABR 11

For T as in this definition, we shall denote

(19) MT :=

[

axx aσx
aσx aσx

]

the matrix determined by its highest order coefficients (the principal symbol) of T .

Proposition 3.2. If w(σ, x) = eλ〈x〉 and T ∈ P, then w−1Tw ∈ P. Let MT be as
in Equation (19), then there exists C > 0 such that

(Tu, u)L2
λ
(I×R) ≤ −

∫

I×R

(MT∇u,∇u)e−2λ〈x〉 dσdx + C‖u‖2L2
λ
(I×R) , u ∈ K0 ,

and hence, T with domain K0 := H2
λ(I×R)∩{u = 0 on ∂I×R} is quasi dissipative

on L2
λ(I × R).

Proof. The fact that w−1Tw is of the same form as T follows from Lemma 2.21.
In view of Equation (15), we can assume that λ = 0, that is, w := eλ〈x〉 = 1. The
rest of the proof is then a well-known direct calculation, which we include for the
benefit of the reader. Since we work with Hilbert spaces, we can take f∗(ξ) = (ξ, f)
in the condition defining the quasi dissipativity. We first notice that, by changing
b, c, and d, we can assume that Tu = ∂x(axx∂xu) + ∂σ(aσx∂xu) + ∂x(aσx∂σu) +
∂σ(aσσ∂σu) + b∂xu+ c∂σu+ du. Then, we perform a standard energy estimate, in
which the integration by parts is justified by the fact that u ∈ K0:

(20) 2ℜ
(

c∂σu, u) := 2ℜ
∫

I×R

c(∂σu)u dσdx =

∫

I×R

c(∂σu)udσdx

+

∫

I×R

c(∂σu)u dσdx =

∫

I×R

∂σ(c|u|2) dσdx −
∫

I×R

(∂σc)|u|2 dσdx

=

∫

R

(

c(β, x)|u(β, x)|2 − c(α, x)|u(α, x)|2
)

dx−
∫

I×R

(∂σc)|u|2 dσdx

= −
∫

I×R

(∂σc)|u|2 dσdx ,

using that c is real valued and the fact that u ∈ K0. Similarly, since b is also real
valued,

(21) 2ℜ
(

b∂xu, u) := 2ℜ
∫

I×R

b(∂xu)udσdx =

∫

I×R

b(∂xu)udσdx

+

∫

I×R

b(∂xu)u dσdx =

∫

I×R

∂x(b|u|2) dσdx −
∫

I×R

(∂xb)|u|2 dσdx

= −
∫

I×R

(∂xb)|u|2 dσdx .

Next, we consider the quadratic terms. By assumption, all the eigenvalues of the
matrixMT of Equation (19) are non-negative. Let δ the smallest of the eigenvalues
of MT . We obtain:

(22) −
(

∂x(axx∂xu) + ∂σ(aσx∂xu) + ∂x(aσx∂σu) + ∂σ(aσσ∂σu), u
)

=

∫

I×R

(

axx(∂xu)∂xu+ aσx(∂σu)∂xu+ aσx(∂xu)∂σu+ aσσ(∂σu)∂σu
)

dσdx

=

∫

I×R

(MT∇u,∇u) dσdx ≥ δ

∫

I×R

|∇u(σ, x)|2 dσdx ,
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and the last term is positive since the quadratic form defined by axx, aσx, and aσx
is positive, by assumption.

Combining Equations (20), (21), and (22), we obtain

(23)

2ℜ
(

Tu, u) ≤ −
∫

I×R

(M∇u,∇u) dσdx dσdx −
∫

I×R

(

∂xb+ ∂σc+ d
)

|u|2 dσdx

≤ −
∫

I×R

(MT∇u,∇u) dσdx + C‖u‖2 ≤ −δ
∫

I×R

‖∇u(σ, x)‖2 dσdx + C‖u‖2 ,

where C = ‖∂xb + ∂σc + d‖∞. The fact that T is quasi-dissipative follows since
δ ≥ 0. �

Let us note also, for further reference, the following consequences of the calcu-
lation in the above proof.

Corollary 3.3. Let T be as in Proposition 3.2. Then there exists a constant C > 0
such that |(Tu, u)| ≤ C‖u‖H1

λ
(I×R)

Proof. This is a simple calculation, very similar to those in the proof of Proposition
3.2. In particular, we can assume λ = 0. The main difference is with Equation (25),
which is replaced by

0 ≤ −
(

∂x(axx∂xu) + ∂σ(aσx∂xu) + ∂x(aσx∂σu) + ∂σ(aσσ∂σu), u
)

=

∫

I×R

(

axx(∂xu)∂xu+ aσx(∂σu)∂xu+ aσx(∂xu)∂σu+ aσσ(∂σu)∂σu
)

dσdx

≤ µ

∫

I×R

‖∇u(σ, x)‖2 dσdx ≤ µ‖u‖2H1(I×R) ,

where µ is the largest of the eigenvalues of the matrix MT of Equation (19). �

Garding’s inequality also holds in our setting. We have the opposite sign to the
one that is typically used, as we work with negative-definite operators.

Corollary 3.4. Let T be as in the statement of Proposition 3.2. Assume also that
there exists ǫ > 0 such that axxaσσ −a2σx ≥ ǫ. Then there exist C1 > 0 and C2 such
that

ℜ(Tu, u) ≤ −C1‖u‖2H1
λ
(I×R) + C2‖u‖2L2

λ
(I×R) .

Also, if u ∈ H1
λ(I×R)∩{u|∂I×R = 0} satisfies Tu ∈ L2

λ(I×R), then u ∈ H2
λ(I×R).

Consequently, T − µ0 : K0 → L2
λ(I × R) is invertible for µ0 > C2.

Proof. Garding’s inequality is an immediate consequence of Equation (23). The
rest is a consequence of this inequality, and we only outline the main steps in the
proof.

First of all, by Lemma 2.21, we can assume that λ = 0. Let Ω := I × R.
Garding’s inequality allows us to invoke the Lax-Milgram Lemma, which gives that
T − µ0 : H1(I × R) ∩ {u|∂Ω = 0} → H−1(I × R) is invertible for µ0 > C2 (that is,
T − µ0 is a continuous bijection with continuous inverse).

By replacing T with T − µ0, if necessary, we can assume that T : H1(I × R) ∩
{u|∂Ω = 0} → H−1(I × R) is invertible. The assumptions on our coefficients (that
they are bounded and that axx ≥ 0, aσσ ≥ 0, and axxaσσ−a2σx ≥ ǫ > 0) imply that
T is uniformly strongly elliptic (see Definition 2.22). Therefore, it satisfies elliptic



SABR 13

regularity (Theorem 2.23). In particular, if u ∈ H1(I × R) ∩ {u|∂Ω = 0} is such
that Tu ∈ L2(I × R), then u ∈ H2(I × R) and hence, by taking into account that
u vanishes at the boundary, u ∈ K0. We finally obtain that

T : K0 := H2
λ(I × R) ∩ {u = 0 on ∂Ω = ∂I × R} → L2(I × R)

is both injective and surjective, and hence it is invertible. (The continuity of the
inverse follows either from abstract principles, namely from the Open Mapping
Theorem, or, constructively, from Theorem 2.23.) �

We obtain as a consequence the following theorem.

Theorem 3.5. Let T be as in the statement of Corollary 3.4. Then T generates
an analytic semi-group etL on L2

λ(I × R). In particular, if I = (α, β) is a bounded
interval with 0 < α ≤ β < ∞, then L as given in (1) satisfies the hypothesis of
Corollary 3.4, and hence it generates an analytic semi-group on L2

λ(I × R).

Proof. Corollaries 3.3 and 3.4 show that the T satisfies the assumptions of Lemma
2.8 (that is, T is continuous and satisfies a Garding-type inequality). Since T − µ0

is invertible for µ0 large, again by Corollary 3.4, we are in position to use Corollary
2.9 to conclude that T generates an analytic semi-group. If I is bounded, then L
has totally bounded coefficients. Since α > 0, L is also uniformly strongly elliptic,
and the first part of the result applies. �

Corollary 3.6. Let T be as in Theorem 3.5 and h ∈ L2
λ(I × R), for some λ ∈ R.

Then u(t) := etTh is a strong solution of ∂tu − Tu = 0, u(0) = h. It is also a
classical solution on (0, τ ], for all τ > 0. Moreover, u(t) does not depend on λ.

Proof. We have that T generates an analytic semi-group S(t) = etT . Moreover, el-
liptic regularity gives D(T k) ⊂ H2k(I×R), for all k ∈ Z+. The Sobolev embedding
theorem then gives us that the assumptions of Lemma 2.15 and Proposition 2.18
are satisfied. This proves the first part of the result.

The independence of u on λ follows from the fact that the map L2
λ′(I × R) →

L2
λ′′(I × R) is injective and continuous for all λ′ < λ′′ and from the uniqueness of

strong solutions. �

Remark 3.7. The assumption that I be a bounded interval in the second half of
Theorem 3.5, is essential for our method to apply. Our method does not apply, for
instance, if I = (0,∞). The problem lies in the fact that, at σ = 0, we lose uniform
ellipticity and, at σ = ∞, the coefficient θ − σ becomes unbounded. However, if
κ = 0, we do obtain that L generates an analytic semi-group using the results in
[42]. The degeneracy at σ = 0 and σ = ∞ could be addressed by introducing
appropriate weights in σ. For the applications of interest in this work, it is enough
to consider σ in a bounded interval, bounded away from zero.

3.2. The differential operator B. We now consider the operator B := ∂2x − ∂x
(recall Equation 3). The fact that B generates an analytic semigroup is classical.
However, since we work with exponentially weighted spaces, we state needed re-
sults for clarity and completeness. We start by collecting all the needed technical
facts about B in the following proposition, which we state in more generality than
actually needed. It an be seen as a special case of the analysis of the operator L
(see also Lemma 2.21).
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Proposition 3.8. Let T = a∂2x + b∂x + c be a uniformly strongly elliptic operator
with totally bounded coefficients. Then:

(i) wTw−1 is also strongly elliptic with totally bounded coefficients.
(ii) There is C3 > C1 > 0 and C2 ∈ R such that, for any u ∈ H2

λ(R),

ℜ(Tu, u) ≤ −C1‖u‖2H1
λ
(R) + C2‖u‖2L2

λ
(R) and |(Tu, u)| ≤ C3‖u‖2H1

λ
(R) .

(iii) T − µ0 : H2
λ(R) → L2

λ(R) is invertible for µ0 > C2.

Using the same argument as for Theorem 3.5, we obtain the following result.

Theorem 3.9. Let T be as in the statement of Proposition 3.8. Then T generates
an analytic semi-group on L2

λ(R). In particular, B generates an analytic semi-group
on L2

λ(R).

Since D(Bk) = H2k
λ (R), we also obtain the following.

Corollary 3.10. The operator B generates an analytic semi-group on Hj
λ(R), for

all j.

Again using the same argument as in the previous subsection, we have also the
following result.

Corollary 3.11. Let T be as in Proposition 3.2 and h ∈ L2
λ(R), for some λ ∈ R.

Then u(t) := etTh is a strong solution of ∂tu − Tu = 0, u(0) = h. Moreover, it is
a classical solution on any interval (0, τ ], τ > 0, and u(t) does not depend on λ.

Remark 3.12. In view of the independence of λ, we obtain that the semi-group etB

is given by the following explicit formula

(24) etBh(x) =
1√
4πt

∫

e−
|x−y−t|2

4t h(y) dy .

In particular, if λ = 0, the semi-group generated by B consists of contractions.

We will need on several occasions the following well-known lemma. In particular,
we will need it to treat families of operators. (We note here that this lemma will
be generalized to deal with differentiability in the strong sense in Lemma 3.15.)

Lemma 3.13. Let ξ ∈ C([0, 1];X) and [0, 1] ∋ t → V (t) ∈ L(X) be strongly
continuous. Then the map [0, 1] ∋ t→ V (t)ξ(t) ∈ X is continuous.

In order to apply our results on analytic semi-groups to Equation (9), we will
need to consider families of operators. In particular, we will show that the operator

P = σ2

2 B, acting on functions of σ and x, that appears in the λSABR PDE, also
generates an analytic semigroup. If p : I → [0,∞) is bounded and continuous, then
we shall write pB for the operator (pBv)(σ) = p(σ)Bv(σ) ∈ L2

λ(R) and e
pB for the

operator (epBv)(σ) = ep(σ)Bv(σ) ∈ L2
λ(R), where v : I → H2

λ(R). We thus regard
both pB and epB as a family of operators parameterized by σ ∈ I and acting on
L2
λ(R)-valued functions defined on I.

Proposition 3.14. Let T be a differential operator as in Proposition 3.8. Let
I ⊂ R be an interval and p : I → [0,∞) be a bounded continuous function. Then
etpT , defined by the formula (etpTh)(σ) := et p(σ) Th(σ) ∈ L2

λ(R), σ ∈ I, defines a
c0 semi-group on L2

λ(I × R) with generator pT .
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Proof. Since T generates a c0 semi-group, et p(σ) Th(s) depends continuously on
σ ∈ I whenever h ∈ L2

λ(I × R) is continuous in σ. Since ‖etT ‖ is uniformly

bounded for t in a bounded interval, we obtain that the family of operators et p(σ) T

thus defines a bounded operator on L2
λ(I × R). �

We shall need the following extension of Lemma 3.13.

Lemma 3.15. Let J := (0, 1) and assume that ξ ∈ C1(J ;X), that T is the generator
of c0 semi-group V (t) on X, and that one of the following two conditions is satisfied:

(i) ξ(t) ∈ D(T ) and the map J ∋ t→ Tξ(t) ∈ X is continuous;
(ii) the semi-group V (t) generated by T is an analytic semi-group.

Then V (t)ξ(t) ∈ C1(J ;X) with differential TV (t)ξ(t) + V (t)ξ′(t).

Let K1 := H2
λ(I × R), as in Corollary 4.4 in the previous subsection.

Corollary 3.16. Let f : [α, β] = I → [ǫ,∞), ǫ > 0. Assume that f , f ′, and f ′′

are (defined and) continuous. Then efB maps K1 to itself. Moreover, etfB defines
a c0-semigroup on K1, generated by fB as an operator with domain

{ξ ∈ K1, Bξ ∈ K1} ⊃ H2,4
λ (I × R) = H2(I;H4

λ(R)) .

Proof. The first part is an immediate consequence of Lemma 3.15(ii) and of Remark
2.14. The second part follows using also Corollary 3.10. �

4. The semi-group generated by L0

In this section, we discuss the derivation of an explicit formula for the distri-
butional kernel of the operator etL0 using Lie algebra techniques. Besides being
of independent interest, in this work we utilize the explicit formula for etL0 to ap-
proximate etL, for which no closed form are available. This is achieved by means
of a perturbative expansion in the parameter ν, the so-called volvol or volatility of

the volatility. We recall that L0 = A + σ2

2 B and L = L0 + νL1 + ν2L2, with Li

independent of ν (see Equations (2) and (3)).
There is an added difficulty in our problem, namely, the fact that L0 is not

strongly elliptic, and ∂t − L0 is not hypoelliptic in the sense of Hörmander [30]
(although L0 is). As a matter of fact, this expansion is only valid under additional
regularity assumptions on the initial data h, which will be discussed in Section 5.

The explicit formula for etL−0 is derived from the corresponding formulas for

etA and e
tσ2

2
B, where the later is defined using Proposition 3.14. Our approach

can be viewed as akin to an operator splitting argument, where the hyperbolic and
parabolic parts of L0 are treated separately, although we do not explicitly resort to
any splitting in the PDE itself.

We thus assume that I = (α, β) satisfies 0 < α < θ < β <∞, as in Proposition
3.14. We will make the further assumption that κ > 0.

This last assumption implies that the characteristics of the operator A are in-
coming at σ = α and σ = β, as long as α < θ < β and κ > 0. Therefore, no
boundary conditions need to be imposed at σ = α and σ = β (cf. the seminal
work of Feller [17, 18]). The case κ < 0 is similar provided one imposes suitable
boundary conditions. However, this case will not be needed for our purposes.

We now study etA and its properties. These will be used in deriving an explicit
formula for etL0 .
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4.1. The transport equation. Let I = (α, β) ⊂ R and A := κ(θ − σ)∂σ, as
before. We consider the transport equation

(25) ∂tv −Av = 0 ,

where v depends on σ and, possibly, on some parameters. Let

(26) δt(σ) := θ(1− e−κt) + σe−κt ,

which satisfies δt(I) ⊂ I, by our assumptions on I, and δt ◦ δs = δt+s.
Most of the results listed below are classical, at least for λ = 0. We state and

prove results in the form needed for our purposes for clarity and completeness.

Lemma 4.1. Let h ∈ L1
loc(I), and let v be given by the formula

(27) v(t, σ) := h(δt(σ)) .

Then v is a weak solution of (25) on [0,∞)×R with v(0) = h (i.e. v(0, σ) = h(σ)).
If h ∈ C1(I), then v is also a classical solution this equation.

Proof. The proof that v is a classical solution if h ∈ C1(I) is by a direct calcula-
tion. To prove that v is a weak solution in general, we can consider the change of
coordinates (t, σ) = (t, δ−t(s)) and then perform an integration by parts in s, using
also Fubini’s theorem. �

In what follows, we consider A as operator acting of functions of σ with values
in a Hilbert space H. For the application at hand, H will be an exponentially
weighted Sobolev space. The following proposition justified.

Proposition 4.2. Let H be a Hilbert space. Let T (t)h = v(t), where v is as in
Lemma 4.1 and h ∈ L2(I;H). Then ‖T (t)h‖ ≤ eκt/2‖h‖, where the norm is the
one on L2(I;H). Moreover, T (t) is a c0 semi-group whose generator coincides with
A on C1(I;H).

Proof. The relation ‖T (t)h‖ ≤ eκt/2‖h‖ follows by a change of variables (note also
that, for I = R, we have equality). The identity T (t1)T (t2)h = T (t1 + t2)h follows
from δt2(δt1(σ)) = δt1+t2(σ). If h ∈ C1(I;H), we obtain from the definition that
t−1(T (t)h− h) → Ah. Since ‖T (t)‖ is uniformly bounded for t ≤ 1, this gives that
T (t)h→ h as t→ 0 for all h. This completes the proof. �

Below, we shall write T (t) = etA, a notation that is justified by Corollary 4.4.

Corollary 4.3. Using the notation of Proposition 4.2, we have that v is a strong
solution of Equation (25) for h ∈ C1(I;L2

λ(R)). If h ∈ C1(I;H1
λ(R)), it is also a

classical solution.

Proof. This follows from Lemma 4.1, Proposition 4.2 and the definitions of strong
and classical solutions. �

We obtain the following consequences for classical solutions of Equation (25).

Corollary 4.4. Let K1 := H2
λ(I × R). Then K1 ⊂ C1(I;L2

λ(R)). Using the
notation of Proposition 4.2, we have that v is a strong solution of Equation (25)
for h ∈ K1. Moreover, etA(K1) ⊂ K1, e

tA defines a c0 semi-group on K1, and hence
v(t) ∈ K1.
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Proof. The inclusion K1 ⊂ C1(I;L2
λ(R)) is a consequence of the Sobolev’s embed-

ding theorem. The fact that v is a strong solution follows from Corollary 4.3, and
from the inclusion K1 ⊂ C1(I;L2

λ(R)). The inclusion etA(K1) ⊂ K1 and the fact
that etA defines a c0 semi-group on K1 follow from the explicit formula for etA. �

4.2. The generation property for L0. It seems difficult to apply the Lumer-
Philips Theorem directly to a degenerate operator of the form of L0. We will
therefore adopt a different strategy and directly prove that etL0 is a semigroup
generated by L0.

Let K1 := H2
λ(I × R), as in Corollary 4.4 in the previous subsection. Also, we

recall the function δt(σ) := θ(1− e−κt) + σe−κt introduced above.

Lemma 4.5. Let g : I → [0,∞) be a continuous function. Assume that either g is
bounded or that the parameter λ = 0 in the definition of the weight w(x) = eλ〈x〉.
Then etAegB = e(g◦δt)BetA.

Proof. The result follows from e(g◦δt)Bξ ◦ δt = (egBξ) ◦ δt = etAegBξ. �

Let us now define

(28) Dκ(t) = Dκ(t, σ) :=
(θ − σ)2

4κ
(1 − e−2κt)− θ(θ − σ)

κ
(1− e−κt) +

1

2
θ2t .

Proposition 4.6. The function D(t, σ) defined in Equation (28) is analytic in
(κ, t, σ) ∈ R3 and satisfies D(0, σ) = 0 and D(t, σ) > 0 for any t > 0 and any
σ ∈ R.

Proof. The function D(t, σ) is analytic since the singularity at zero is removable.
We shall regard D(t, σ) as a second order polynomial in σ with coefficients that are
functions of the parameters t and κ. We have that the leading coefficient 1

4κ (e
2κt−1)

is always positive as t > 0, so we only need to show that the discriminant of D(t, σ)
is non negative. We let f(t) be the discriminant of D(t, σ) (regarded as a second-
order polynomial in σ, as mentioned above), so that

(29) f(t) =
θ2

2κ2
[

(2 + κt)e−2κt − 4e−κt + 2− κt
]

.

We then have:

f ′(t) =
θ2

2κ

[

(3 − 2κt)e2κt − 4eκt + 1
]

and

f ′′(t) = 2θ2
[

(1− κt)e2κt − eκt
]

= 2θ2e2κt
[

1− κt− e−κt
]

< 0 for t 6= 0 .

It follows that f ′(t) is decreasing, and hence f ′(t) < f ′(0) = 0 for t > 0. Conse-
quently, f(t) is also decreasing, which gives f(t) < f(0) = 0 for positive t. �

This lemma allows us to define eD(t)B if I is bounded or if λ = 0. We let then

(30) S(t) := eD(t)BetA .

Then S(t) is a bounded operator, since it is the composition of bounded operators.
We will establish that S(t) is a co-semigroup generated by L0 by splitting the

proof in a few Lemmas for convenience.

Lemma 4.7. For all t, s ≥ 0, the family of operators S(t) satisfies:

(1) S(t)S(s) = S(t+ s);
(2) S(t)K1 ⊂ K1.
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Proof. We first notice that D(t) +D(s) ◦ δt = D(t + s), which is easy to check by
direct calculation. By definition, using also Lemma 4.5, we have

(31) S(t)S(s) = eD(t)BetAeD(s)BesA = eD(t)Be(D(s)◦δt)BetAesA

= e(D(t)+D(s)◦δt)Be(t+s)A = eD(t+s)Be(t+s)A = S(t+ s).

This calculation completes the proof of the first part. The last part follows from
Corollaries 4.4 and 3.16. �

We recall that we assume σ is in a bounded interval I ⊂ (0,∞).

Lemma 4.8. We have that for all j ≥ 0,

‖∂jσD(t)/t− σ2/2‖L∞(I) → 0 as t → 0 , t > 0 .

Proof. We observe that the function ∂jσD(t)/t, defined on I × (0, 1], extends to a
continuous function on I × [0, 1]. Since I is a bounded interval, this fact is enough
to provide the result. �

Lemma 4.9. The following limits in H hold:

(i) limtց0 S(t)ξ = ξ for all ξ ∈ H and, similarly,
(ii) limtց0 t

−1(S(t)ξ − ξ) = L0ξ for all ξ ∈ K1.

Proof. By the semigroup property, the operators etB and etA are uniformly bounded
if 0 ≤ t ≤ ǫ, for any fixed ǫ > 0. Since I is a bounded interval, the functions D(t)
are uniformly bounded for t ≤ ǫ. Moreover, ‖D(t)‖L∞(I) → 0 as t ց 0. By the
definition of S(t), Equation (30), the first part of the lemma follows.

The second part of the lemma is proved in a similar fashion. Indeed, the relations
S(t)K1 ⊂ K1 (see Lemma 4.7), D′(0) = σ2/2 (see Lemma 4.8), the fact that etA is
a c0 semi-group that leaves K1 invariant (Corollary 4.4), and Lemma 3.13 give that

∂t
(

T (t)ξ
)

|t=0 = ∂t
(

eE(t)BetAξ
)

|t=0 = lim
t→0

t−1
(

eE(t)BetAξ − ξ
)

= lim
t→0

t−1
(

eE(t)BetAξ − etAξ
)

+ lim
t→0

t−1
(

etAξ − ξ
)

=
∂E

∂t
(0)Bξ +Aξ = L0ξ ,

whenever ξ ∈ K1. �

We have the following similar result on K1:

Lemma 4.10. The following limits in K1 hold:

(i) limtց0 S(t)ξ = ξ for all ξ ∈ K1 and, similarly,
(ii) limtց0 t

−1(S(t)ξ − ξ) = L0ξ for all ξ ∈ K1 such that L0ξ ∈ K1.

These limits are valid also as limits in K1 if ξ ∈ K1 in the first limit and if ξ ∈
H4(I × R) for the second limit.

Proof. The proof is similar to that of Lemma 4.10, but using also the second part
of Corollary 3.16. �

We finally have that L0 generates the semigroup S(t).

Theorem 4.11. Let κ > 0 and I = (α, β), with 0 < α < θ < β < ∞, as before.
Then, S(t) := eD(t)BetA defines a c0 semi-group on H, the generator of which
coincides with L0 on K1. Moreover, S(t) defines a c0 semi-group on K1.
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Proof. The first part is an immediate consequence of Lemmas 4.7 and 4.9. The
second part uses Lemma 4.10 instead. �

Obtaining explicit formulas is important in practice because it allows for very
fast methods. This is one of the reasons Heston’s method [28] is so popular. Explicit
formulas lead also to faster methods in inverse approaches to the determination of
implied volatility, see [8], for instance.

Corollary 4.12. Under the assumptions of Theorem 4.11, let h = h(σ, x) ∈ L2
λ(I×

R) := eλ〈x〉L2(I × R) and set u(t) := S(t)h. Then, for almost all σ ∈ I:

(32) u(t, σ, x) :=
1√
4πD

∫

e−
|x−y−D|2

4D h(δt(σ), y) dy

and u is a mild solution of the Initial Value Problem: ∂tv − Lv = 0, v(0) = h.
If h ∈ K, then u is a strong solution, and a classical solution provided that h ∈
C1,2(I × R) ∩ L2

λ(I × R).

5. Mapping properties and error estimates

In this section, we prove mapping properties between weighted spaces for etL0 ,
by deriving another formula for its distributional kernel. We then use these results
to compare the semi-groups S(t) := etL0 and etL. We continue to assume that
I = (α, β), 0 < α < θ < β <∞, and that κ > 0.

5.1. Lie algebra identities and semi-groups. In the previous section we used
implicitly commutator estimates between the operators A and B. We collect in
the remark below results pertaining to a general class of operators with properties
similar to the operators A and B, which, with abuse of notation, we continue to
denote by A and B.

Remark 5.1. Let V be a finite dimensional space of (usually unbounded) operators
acting on some Banach space X , and let A be a closed operator on X with domain
D(A). We make the following assumptions

(i) All operators in V have the same domain K, which is endowed with a Banach
space norm such that, for any B ∈ V , B : K → X is continuous.

(ii) The space

W := { ξ ∈ D(A) , Aξ ∈ K} ∩ { ξ ∈ K , Bξ ∈ D(A) (∀)B ∈ V }
is dense in K in its induced norm.

(iii) If B ∈ V , the closure of the operator [A,B] with domain W is in V .
(iv) A generates a c0 semi-group of operators on X that leaves K invariant and

induces a c0 semi-group on K.

Then, denoting by et adA : V → V the exponential of the endomorphism adA :
V → V of the finite dimensional space V , we obtain the following Hadamard type
formula

(33) etAB = et adA(B)etA , (∀)B ∈ V .

This relation can be proved by considering the function

F (t) := etABξ − et adA(B)etAξ , B ∈ V and ξ ∈ W .
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Our assumptions imply that F (t) ∈ D(A) for all t, that F (t) is differentiable,
and that F ′(t) = AF (t). By the uniqueness of strong solutions to this evolution
equation [2, 47], it follows that F (t) = 0 for all t ≥ 0, since F (0) = 0.

We shall use the above remark in the following setting.

Remark 5.2. Let V = C∂σ with domain K1, and let A := κ(θ− σ)∂σ . consider the
adjoint action of A on V . Since

A∂σ − ∂σA = [A, ∂σ] = [κ(θ − σ)∂σ, ∂σ] = [κ(θ − σ)∂σ , ∂σ] = κ∂σ ,

it follows that etA∂σ = eκt∂σe
tA.

In the same spirit, we have the following.

Remark 5.3. We keep the same notation and assumptions as in 5.1, but we further
assume that V ≃ ⊕a∈RVa, where

(34) [A,Ba] := ABa −BaA = aBa , for any Ba ∈ Va, a ∈ R.

Of course, Va = 0, except for finitely many values a ∈ R. Let B ∈ V and decompose
it as B =

∑

a∈R
Ba, with Ba ∈ Va. We proceed formally to guess a formula for

et(A+B). We write et(A+B) = etAe
∑

a fa(t)Ba . Differentiating this inequality, using
the semigroup property ∂te

t(A+B) = (A + B)et(A+B), that etABa = etaBae
tA,

and identifying the coefficients, we obtain fa(t) = (1 − e−at)/a = E(−at)t, where
E(s) = (es − 1)/s. Hence, this procedure gives the (formal!) result

(35) et(A+B) = etAe
∑

a E(−at)tBa = e
∑

a E(at)tBaetA .

Of course, this procedure has to be justified independently or one has to make
sense of all the steps in its derivation. In this paper, we have chosen to verify
independently Formula (30). See also [29].

We close by deriving an equivalent formula for S(T ), which, by the smoothing
properties of etB, t > 0, in x, can be used to show that, if ξ ∈ C1(I;L2

λ(R)), then
u(t) = S(t)ξ defines a classical solution of ∂tu − L0u = 0 for t > 0. This result
uses also Corollaries 4.3, 4.4, and 3.16. The method of proof is that of the proof of
Lemma 5.6. For this purpose, we introduce the function:

(36) C(t) := C(t, σ) :=
(θ − σ)2

4κ
(e2κt − 1)− θ(θ − σ)

κ
(eκt − 1) +

1

2
θ2t.

We notice that C(t) is obtained from D(t) by replacing κ with −κ, so it is still non
negative everywhere (see Proposition 4.6). Applying the reasoning in the previous
remark, we obtain the following alternative expression for S(t):

(37) S(t) := eD(t)BetA = etAeC(t)B .

5.2. Mapping properties. We shall need certain mapping properties for the semi-
groups etL and etL0 , some of which are standard and some of which we prove in
this subsection.

Lemma 5.4. Assume that I := (α, β) is bounded and that α > 0. Then there exists
ǫ > 0 such that D(t, σ) ≥ ǫt for σ ∈ I and t ∈ [0, 1].

Proof. Let us consider the function h(t, σ) := D(t, σ)/t for σ ∈ [α, β] and t ∈ (0, 1].
By Proposition 4.6, h extends to a continuous function on [α, β] × [0, 1]. By the
assumption that α > 0 and by Proposition 4.6, we have that h > 0 on [α, β]× [0, 1].
Therefore ǫ := inf h > 0. �
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We recall also the following general fact.

Remark 5.5. If T generates a c0 semi-group etT on a Banach space X , then (etT )∗

will also be a semi-group (but the strong continuity property may fail). However,
if X is reflexive, then (etT )∗ is strongly continuous and, in fact, (etT )∗ is a c0 semi-
group with generator T ∗ (see Corollary 1.10.6 in [47]). In other words, (etT )∗ =

etT
∗

, if X is reflexive. Moreover, if etT is an analytic semi-group, then (etT )∗ is
also analytic since the function (ezT )∗ is holomorphic in a domain of the form ∆δ,
δ > 0.

All the norms ‖ ‖ below refer to the norm of vectors in H = L2
λ(I × R) or of

bounded operators on that space.

Lemma 5.6. Let s ≥ 0. There exists Cs > 0 such that, for all h ∈ H := L2
λ(I×R),

ts/2‖eD(t)Bh‖H0,s

λ
(I×R) ≤ Cs‖h‖ := Cs‖h‖L2

λ
(I×R) , for t ∈ (0, 1] .

Consequently, ‖∂kxetL0‖ ≤ Ct−k/2, where t ∈ (0, 1] and C is independent of t. In
particular, ∂kxe

tL0ξ is continuous in t.

Proof. Let us assume first s = 2n, for some positive integer n. We have that the
norm ‖g‖H0,2n

λ
(I×R) is equivalent to the norm ‖g‖ + ‖Bng‖, since B is uniformly

strongly elliptic on R with totally bounded coefficients (see Corollary 2.24). In
particular, ‖g‖H0,2n

λ
(I×R) ≤ C

(

‖g‖ + ‖Bng‖
)

. It is therefore enough to show that

there exists C′
s such that

(38) ‖eD(t)Bh‖+ ‖BneD(t)Bh‖ ≤ C′
st

−n‖h‖ ,
since then the desired relation follows with Cs = CC′

s. Lemma 5.4 gives

‖eD(t)Bh‖+ ‖BneD(t)Bh‖ = ‖eD(t)Bh‖+ ‖e(D(t)−ǫt)BBneǫtBh‖
≤ C

(

‖h‖+ ‖BneǫtBh‖
)

≤ C(ǫt)−n‖h‖ ,

since egB is bounded on L2
λ(I × R), if g ≥ 0 is bounded measurable, and tnBnetB

is also bounded on the same space (by Equation (11) for T = B). Here, we have
used the assumption that I is bounded. This argument proves Equation (38), and
consequently also the result for s = 2n. For general s ≥ 0, the result follows by
complex interpolation.

To prove the last part, we write

∂2kx etL0 = ∂2kx (µ0 −B)−k(µ0 −B)keD(t)BetA ,

where µ0 is large. We have that ∂2kx (µ0 − B)−k is bounded by the uniform strong
ellipticity of B and Theorem 2.23. Remark 2.14 and Lemmas 3.13 and 5.4 show
that (µ0 − B)keD(t)B depends smoothly on t. Next, Remark 2.14 also gives that
‖(µ0 − B)keD(t)B‖ ≤ Ct−k. This implies that ‖∂2kx etL0‖ ≤ Ct−k. Our desired
estimate ‖∂kxetL0‖ ≤ Ct−k/2 is then obtained by interpolation. Finally, using also
Lemma 3.13, we obtain that ∂kxe

tL0 depends continuously on t. �

In the same way, we obtain the following result.

Lemma 5.7. If h ∈ H := L2
λ(I × R), then

‖etLh‖Hs
λ
(I×R) ≤ Ct−s/2‖h‖ .
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If P is a differential operator of order k with totally bounded coefficients on I ×R,
then PetL and etLP extend to bounded operators on H of norm ≤ Ct−k/2 that
depend smoothly on t > 0.

Proof. Since L is uniformly strongly elliptic with totally bounded coefficients, there
exists µ0 > 0 such that

L− µ0 : Hm+1
λ (I × R) ∩ {u(α, x) = u(β, x) = 0} → Hm−1

λ (I × R),

is an isomorphism by Theorem 2.23 and Corollary 3.4. Let (L− µ0)
−1 denote the

resulting map L2
λ(I × R) → H2

λ(I × R). Then (L − µ0)
−1 maps Hm−1

λ (I × R) →
Hm+1

λ (I ×R) continuously. In particular, (L− µ0)
−n : L2

λ(I ×R) → H2n
λ (I ×R) is

continuous. Let us assume now that s = 2n. Then

‖etLh‖H2n
λ

(I×R) = ‖(L− µ0)
−n(L − µ0)

netLh‖H2n
λ

(I×R)

≤ C‖(L− µ0)
netLh‖L2

λ
(I×R) ≤ Ct−s/2‖h‖ ,

since L generates an analytic semi-group. For general s, the inequality follows by
interpolation.

Let P now be as in the statement of the lemma. Then P : Hk
λ(I×R) → L2

λ(I×R)
is bounded. This implies the result for PetL. The result for etLP is obtained
by taking adjoints, since L∗ is uniformly strongly elliptic with totally bounded
coefficients and generates an analytic semi-group. �

Lemma 5.7 gives the following result. All norms of operators are on L2
λ(I × R).

Lemma 5.8. The operator F (s) := e(t−s)L∂σe
sL extends, for each s ∈ [0, t], to a

bounded operator on L2
λ(I×R), and the resulting function is continuous in s ∈ [0, t]

and differentiable for s ∈ (0, t). Its derivative is the function

F ′(s) = e(t−s)L[∂σ, L]e
sL ,

which satisfies ‖F ′(s)‖ ≤ Ct−1, with C independent of 0 < s < t ≤ 1.

Proof. Lemma 5.7 gives that both functions e(t−s)L and ∂σe
sL are continuous on

(0, T ] and infinitely many times differentiable on (0, t) as functions with values
in the space of bounded operators. The formula for the derivative follow from
the standard formula (esL)′ = LesL, which we note to be valid in norm, since L
generates an analytic semi-group and s > 0. The continuity on [0, t) follows in the
same way by considering e(t−s)L∂σ and esL.

If s ≤ t/2, since [∂σ, L] is a second order differential operator, Lemma 5.7 implies
that e(t−s)L[∂σ, L] is bounded with norm ≤ C(t − s)−1 ≤ 2Ct−1. In addition,
‖F ′(s)‖ ≤ Ct−1 given that esL is norm bounded. The case s ≥ t/2 is completely
similar, using the bounds for [∂σ, L]e

sL provided by Lemma 5.7. �

5.3. A comparison of etL and etL0. In this last section, we compare the semi-
groups S(t) := etL0 and etL. We recall that we set L = L0 + V , where V =

νL1 + ν2L2 = νρσ2∂x∂σ + ν2σ2

2 ∂2σ, and we think of L as a perturbation of L0 for

ν sufficiently small. We recall also that K1 := H2
λ(I × R) and K0 := H2

λ(I × R) ∩
{u(α, x) = u(β, x) = 0}, where I = (α, β) is a fixed bounded interval containing θ.

The approach presented in this subsection can be iterated to derive higher-order
approximate solutions in the parameter ν. These are the focus of current work by
the authors.
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Lemma 5.9. Let ξ ∈ K1. Then F (s) := e(t−s)LesL0ξ is continuous on [0, t] and
differentiable on (0, t), with F ′(s) = −e(t−s)LV esL0ξ.

Proof. Since ξ is in the domain of L0 (which contains K1, by Theorem 4.11), the
function ζ(s) := esL0ξ is differentiable for s ≥ 0. But etL is a c0 semi-group,
therefore Lemma 3.13 gives that F (s) = e(t−s)Lζ(s) is continuous on [0, t]. Since
etL is an analytic semi-group, it follows in addition that F (s) is differentiable for
s ∈ (0, t), by Lemma 3.15, and its derivative is F ′(s) = −e(t−s)LV esL0ξ.

�

We continue to assume that ‖ · ‖ refers to the norm in H = L2
λ(I × R) or the

operator norm of bounded operators on H.

Lemma 5.10. Let ξ ∈ K1, then e
(t−s)LL1e

sL0ξ depends continuously on s and

(ρν)−1‖e(t−s)LL1e
sL0ξ‖ = ‖e(t−s)Lσ2∂σ∂xe

sL0ξ‖ ≤ C(t− s)−1/2s−1/2‖ξ‖ .

Consequently,
∥

∥

∥

∫ t

0
e(t−s)LL1e

sL0 ds
∥

∥

∥
≤ Cρν.

Proof. Lemmas 5.6 and 5.7 show that e(t−s)Lσ2∂σ and ∂xe
s(L0−κ)ξ satisfy the as-

sumptions of Lemma 3.13, so e(t−s)Lσ2∂σ∂xe
s(L0−κ)ξ is continuous in s. Similarly,

Lemmas 5.6 and 5.7 give

‖e(t−s)Lσ2∂σ∂xe
s(L0−κ)ξ‖ ≤ ‖e(t−s)Lσ2∂σ‖ ‖∂xes(L0−κ)ξ‖ ≤ C(t− s)−1/2s−1/2‖ξ‖.

The integral can be estimated by splitting the interval [0, t] in two halves. �

To estimate the terms involving L2, we exploit the next result.

Lemma 5.11. Let ξ ∈ K1, then ∂σe
tL0ξ = et(L0−κ)∂σξ +

∂D(t,σ)
∂σ BetL0ξ.

Proof. The main calculation is contained in Remark 5.2. More precisely, this is a
direct calculation using Equation (30), together with Lemma 3.15, with Hadamard’s
theorem (see Remarks 5.1 and 5.2), and with the fact that adL0

(∂σ) adA(∂σ) =
κ∂σ. �

However, the terms in L2 present some additional challenges, since L0 is not
elliptic.

Lemma 5.12. Let ξ ∈ K1, then e
(t−s)LL2e

sL0ξ depends continuously on s and the
following estimate holds:

2

ν2
‖e(t−s)LL2e

sL0ξ‖ = ‖e(t−s)Lσ2∂2σe
sL0ξ‖ ≤ C(t− s)−1/2(

∥

∥∂σξ‖+ ‖ξ‖
)

.

Consequently,
∥

∥

∥

∫ t

0
e(t−s)LL2e

sL0ξ ds
∥

∥

∥
≤ Cν2

√
t
(

‖∂σξ‖+ ‖ξ‖
)

.

Proof. Lemma 5.11 gives

(39) e(t−s)Lσ2∂2σe
sL0ξ = e(t−s)Lσ2∂σ

(

es(L0−κ)∂σξ +
∂D(s, σ)

∂σ
BesL0ξ

)

.

As in the proof of Lemma 5.10, Lemmas 5.7 and 5.6 give that both e(t−s)Lσ2∂σe
sL0

and e(t−s)Lσ2∂σ
∂D
∂σ Be

sL0 define bounded operators that depend continuously on
s ∈ (0, t) in the strong operator topology. We estimate separately the norm of each
of them. Again from Lemma 5.7, we obtain

‖e(t−s)Lσ2∂σe
s(L0−κ)‖ ≤ ‖e(t−s)Lσ2∂σ‖ ‖es(L0−κ)‖ ≤ C(t− s)−1/2 .



24 SIYAN ZHANG, ANNA L. MAZZUCATO, AND VICTOR NISTOR

For the estimate of the second term, we first notice that ‖∂D(t,σ)
∂σ ‖L∞(I) ≤ Ct,

since the function ∂D(t,σ)
t∂σ extends to a continuous function on I × [0, 1]. Hence,

‖∂D(s,σ)
∂σ BesL0‖ ≤ ‖sBesL0‖ ≤ C by Lemma 5.6, and

∥

∥

∥
e(t−s)Lσ2∂σ

∂D(s, σ)

∂σ
BesL0

∥

∥

∥
≤ ‖e(t−s)Lσ2∂σ‖

∥

∥

∥

∂D(s, σ)

∂σ
BesL0

∥

∥

∥
≤ C(t−s)−1/2 .

The last two displayed equations and Equation (39) then combine to give the first
part of the statement. The last relation in the statement follows directly by inte-
grating the first one. �

Combining the previous two lemmas we obtain the following corollary.

Corollary 5.13. The family G(s) := e(t−s)LV esL0 consists of bounded operators
on H. Moreover, for any ξ ∈ K1, G(s)ξ is continuous and integrable in s ∈ (0, t)
and we have:
∥

∥

∥

∫ t

0

G(s)ξ ds
∥

∥

∥
:=

∥

∥

∥

∫ t

0

e(t−s)LV esL0ξ ds
∥

∥

∥
≤ C

(

ρν‖ξ‖+ ν2
√
t
(

‖∂σξ‖+ ‖ξ‖
)

)

.

Lemma 5.9 and Corollary 5.13 then give:

etLξ − etL0ξ = F (0)− F (t) =

∫ t

0

e(t−s)LV esL0ξ ds .

The final estimate is for ξ ∈ H1(I, L2
λ(R)) := {ζ ∈ L2

λ(I × R), ∂σζ ∈ L2
λ(I × R)}.

Theorem 5.14. There is C > 0 such that

‖etLξ − etL0ξ‖ ≤ C ν
(

‖ξ‖+ ν‖∂σξ‖
)

,

for ξ ∈ H1(I, L2
λ(R)) and 0 ≤ t ≤ T . The bound C depends on T , but not on ξ.

Proof. The statement was proved for ξ ∈ K1. For general ξ, it follows from the
density of K1 := H2

λ(I ×R) in H1(I, L2
λ(R)) and the continuity on H1(I, L2

λ(R)) of
all the operators appearing on the left and right sides of the inequality. �

We close by observing that similar commutator estimates were obtained in [9,
10, 12, 22]. The main difficulty addressed in this work is that L0 is not an elliptic
operator.
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[30] L. Hörmander. The analysis of linear partial differential operators. III. Classics in Mathe-
matics. Springer, Berlin, 2007. Pseudo-differential operators, Reprint of the 1994 edition.

[31] J. Hull and A. White. The pricing of options on assets with stochastic volatility. Journal of
Finance, 42:281–300, 1987.

[32] A. Jacquier and M. Lorig. From characteristic functions to implied volatility expansions. Adv.
in Appl. Probab., 47(3):837–857, 2015.

[33] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag,
Berlin, 1995. Reprint of the 1980 edition.

http://arxiv.org/abs/1301.7569
http://arxiv.org/abs/1410.8627


26 SIYAN ZHANG, ANNA L. MAZZUCATO, AND VICTOR NISTOR

[34] A. Kolmogoroff. Zufällige Bewegungen (zur Theorie der Brownschen Bewegung). Ann. of
Math. (2), 35(1):116–117, 1934.

[35] Yu. Kordyukov. Lp-theory of elliptic differential operators with bounded coefficients. Vestnik
Moskov. Univ. Ser. I Mat. Mekh., (4):98–100, 1988.

[36] S. Kovalenko, V. Stogniy, and M. Tertychnyi. Lie symmetries of fundamental solutions of
one (2+1)-dimensional ultra-parabolic Fokker–Planck–Kolmogorov equation. ArXiv e-prints,
August 2014.
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