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A Greedy Sparse Method Suitable for Spectral-Line

Estimation
Souleymen Sahnoun, Pierre Comon, Fellow, IEEE, Alex P. da Silva

Abstract—This letter presents a variant of Matching Pursuit
(MP) method for compressive sensing and sparse signal re-
construction. As an extension of MP, the proposed algorithm
incorporates a new backward technique to maintain or replace
the previous selected atoms in the case of coherent dictionaries.
Computer simulations using Fourier dictionaries are conducted
to show the effectiveness of the proposed method compared to
some other sparse approximation methods.

Index Terms—sparse approximation, compressive sensing, ex-
act recovery, spectral analysis, matching pursuit.

I. INTRODUCTION

Sparse approximation with regard to a redundant dictionary

has attracted much attention in recent years. Let x ∈ CN be

a signal that should be recovered from the following linear

measurement

Φx = y (1)

where Φ = [φ1, . . . ,φN ] ∈ C
M×N is a dictionary with M <

N and ‖φn‖2 = 1 for n = 1, . . . , N .

A. State of the art

In general, the solution of the previous problem is not

unique. However, when x is sparse, in the sense that there

are a few nonzero elements in x, it is well known that under

some sufficient conditions on Φ, the exact recovery is possible

through some non-linear convex optimization methods, such

as ℓ1 Basis Pursuit [1]. Recently, greedy algorithms received

more attention due to their low computational complexity com-

pared to ℓ1 optimization methods. The most known greedy al-

gorithms are: matching pursuit (MP) [4], orthogonal matching

pursuit (OMP) [5], regularized OMP (ROMP) [6], compressive

sampling matching pursuit (CoSaMP) [7], subspace pursuit

(SP) [8] and stagewise OMP (StOMP) [9].

In the compressed sensing literature, a widely used con-

dition on Φ to ensure the exact recovery of x is known as

Restricted Isometry Property (RIP) [2]. A matrix Φ is said to

satisfy the RIP condition of order K , if there exists a constant

δ ∈ [0, 1) such that

(1 − δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22
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for every K-sparse vector x (i.e. ‖x‖0 ≤ K). Moreover, δK
def
=

inf{δ : (I-A) holds for any K-sparse x} is called the isometry

constant. It was shown in [10] that under the RIP condition

δK+1 <
1√

K + 1
, (2)

OMP can recover exactly the support of any K-sparse vector.

Another framework widely employed to derive conditions

on Φ for ensuring the exact recovery of x is called Mutual

Coherence Property (MCP) [3]. The mutual coherence of a

matrix Φ is defined by

µΦ = max
i6=j

|〈φi,φj〉|.

It was shown in [3] that OMP and Basis Pursuit can exactly

reconstruct any K-sparse vector if the MCP condition

µΦ <
1

2K − 1
(3)

is satisfied. A new result in [11] shows that exact support

recovery can be guaranteed with OMP if µΦ < 1
K

and the

elements of the support of x satisfy a decay condition, which

is not easily satisfied in practice.

B. Problem statement

Motivated by the spectral analysis using sparse approxima-

tion, we are interested in the exact support recovery in the

presence of dictionaries that do not satisfy either the RIP or

the MCP conditions. For instance, to reconstruct a 3-sparse

signal, the MCP and RIP conditions are respectively µΦ< 1
5

and δ4 < 0.366, which are strong requirements that yield to

coarse frequency estimation. Nevertheless, it is known that

OMP and other sparse approximation algorithms can recover

exactly x even when the exact recovery conditions are not

satisfied. However, we observe in practice that the support of

x may not be recovered exactly from highly correlated Fourier

dictionaries Φ with µΦ ≥ 1
2K−1 , even if the signal y is formed

by a set of atoms {a1, . . . , aK} ⊂ {φ1, . . . ,φN} that satisfy

µA < 1
2K−1 , where A = [a1, . . . , aK ]. In this paper, we are

interested in this problem.

Recently some new sparse algorithms have been proposed

[12], in which continuous dictionaries are used. These algo-

rithms deal with the off-grid frequencies problem by formu-

lating it as a semidefinite program. Nevertheless, they are

computationally expensive. This is why in [12] the authors

propose to use Lasso with discrete grids as an alternative, to

reduce the computational time.
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Algorithm 1: Improved Matching Pursuit (IMP)

input : y ∈ CM , Φ ∈ CM×N (with normalized columns)
output: An estimated support Ω.

initialization: k = 0,Ω0 = ∅, r0 = y

Forward step:

while k < K do

k = k + 1
tk = argmax

i∈{1,...,N}
|〈rk−1,φi〉| // identification

xk = 〈rk−1,φtk 〉

rk = rk−1 − xkφtk
end

Backward step:

v0 = rK
for k = 1 : K do

qk = xkφtk + vk−1

nk = argmax
i∈{1,...,N}

|〈qk,φi〉| // identification

Ωk = Ωk−1 ∪ {nk}

α̂k = 〈qk ,φnk
〉

vk = qk − α̂kφnk

end

return Ω = ΩK , α̂ = Φ
†
Ω
y

C. Contributions and organization of the paper

In this paper we present a new forward-backward sparse

algorithm to improve the support recovery in the presence of

coherent dictionaries that do not satisfy the exact recovery

conditions (2) and (3). The proposed algorithm is composed

of a forward step followed by a backward step. The former is

nothing else but the standard MP algorithm. The latter is an

estimate refinement stage in which possible wrong estimations

can be rectified. So the proposed method can be considered

as an improvement of the MP algorithm, hence it will be

called improved MP (IMP). It is important to mention that

the backward step may also be added to OMP since MP and

OMP are similar forward algorithms that differ only in the

residue update. We also present a sufficient condition on the

atoms composing the signal y ensuring the exact recovery of

the support of x by IMP.

The remainder of this paper is organized as follows. In

Section II, we formulate the problem and present the proposed

algorithm. Simulation results are presented in Section III.

Finally, conclusions are given in Section IV.

II. PROPOSED ALGORITHM

Let y be a signal given by

y =

K∑

k=1

αkak (4)

where αk ∈ C and ak ∈ CM , 1 ≤ k ≤ K. Assume that

µA <
1

2K − 1
(5)

with A = [a1, . . . , aK ]. We want to estimate αk and

ak, ∀k, from the observation y using a sparse approximation

framework where the dictionary Φ contains the components

{a1, . . . , aK} ⊂ {φ1, . . . ,φN}. We are particularly interested

in dictionaries with mutual coherence

µΦ ≥ 1

2K − 1
,

otherwise the components of y could be recovered exactly with

OMP using a dictionary satsifying the MCP or RIP conditions.

The proposed IMP method first chooses K atoms using

the known stepwise forward MP method [4], and then uses

a new backward technique to replace wrongly selected atoms

by better ones. The process of the proposed IMP is given in

Algorithm 1. IMP begins by initializing the residual with the

input signal r0 = y and the support of x by the empty set

Ω0 = ∅. Then a new atom is selected at each iteration of

the forward step (MP), where the chosen atom is that with

highest correlation with the dictionary . The coefficients xk

are calculated as the inner product between the current residual

and the selected atom φtk , and then the residual is updated.

The backward step assumes there are wrongly selected atoms

in the forward step. It begins by setting v0 = rK . For each

iteration k, k = 1, . . . ,K , of the backward step we put

qk = xkφtk + vk−1

= xkφtk +

k−1∑

i=1

(αiai − α̂iφni
) +

K∑

p=k

(αpap − xpφtp)

= αkak +
k−1∑

i=1

(αiai − α̂iφni
) +

K∑

p=k+1

(αpap − xpφtp)

︸ ︷︷ ︸
sk

= αkak + sk (6)

Therefore, qk may be considered as a noisy version of αkak,

i.e., qk = αkak + sk where sk is seen as a noise. Here again,

at each iteration we select the atom the most correlated with

qk. Then the backward step solves K sparse problems, where

each one is a 1-sparse problem. This allows the backward

step to have a performance that is independent of the number

K of components present in y. However, the exact support

recovery becomes dependent on the level of perturbations

‖sk‖2. Nevertheless, ‖sk‖2 are guaranteed to be small since

the true atoms are in the dictionary and they are sufficiently

separated according to (5).

A. Discussion on the exact recovery

The following proposition provides a sufficient condition

for the exact support recovery of x.

Proposition 1: Let Φ be a dictionary in CM×N with µΦ ≥
1

2K−1 , and a signal y =
∑K

k=1 αkak with µA < 1
2K−1 such

that {a1, . . . , aK} ⊂ {φ1, . . . ,φN}. Let also Λ be the set of

indices of atoms present in signal y. If

‖sk‖2 <
1

2
(1− δ2)|αk|, k = 1, . . . ,K, (7)

then Λ ≡ Ω, where Ω is the support of x estimated in the

proposed algorithm.
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Proof The proof is inspired by a technique that was used in

[14]. On one hand, suppose nk ∈ Λ, i.e., a correct atom is

selected, then

|〈qk,φnk
〉| = max

i∈{1,...,N}
|〈qk,φi〉|

= |〈qk, ak〉|
(a)
= |αk〈ak, ak〉+ 〈sk, ak〉|
(b)

≥ |αk| − |〈sk, ak〉|
(c)

≥ |αk| − ‖sk‖2 (8)

where (a) comes from (6), (b) is from the triangular inequality,

(c) is from the definition of the inner product.

On the other hand, if a wrong atom is selected at iteration

k of the forward step, i.e., nk /∈ Λ, then

|〈qk,φnk
〉| = |αk〈ak,φnk

〉+ 〈sk,φnk
〉|

(a)

≤ |αkφ
H

nk
ak|+ |〈sk,φnk

〉|
(b)

≤ |αk|µΦ + |〈sk,φnk
〉|

(c)

≤ |αk|µΦ + ‖sk‖2 (9)

(d)
= |αk|δ2 + ‖sk‖2 (10)

where (a) is from the triangular inequality, (b) uses the

definition of the coherence, (c) is from the definition of the

inner product, (d) comes from Proposition (2.10) in [13] that

shows that δ2 = µΦ. To conclude, from (8) and (10), we

respectively have:

|〈qk, ak〉| ≥ |αk| − ‖sk‖2, (11)

|αk|δ2 + ‖sk‖2 ≥ |〈qk,φnk
〉|, ∀φnk

6= ak. (12)

Yet, from hypothesis (7),

|αk| − ‖sk‖2 > |αk|δ2 + ‖sk‖2.

Now, combining this inequality with (11) and (12) leads to:

|〈qk, ak〉| > |〈qk,φnk
〉|, ∀φnk

6= ak, (13)

which shows that vectors qk computed in the algorithm permit

to detect the correct atoms in the dictionary, namely ak. �

It is known that the MP algorithm yields similar results

as OMP with Fourier dictionaries when the true number of

components K is known. However OMP outperforms MP

when they deal with other types of dictionaries. To get an

improved OMP (IOMP) algorithm using a backward procedure

as that used in IMP (Algorithm 1), we need simply to replace

the forward step in Algorithm 1 by OMP algorithm [5].

Now, we present some numerical experiments evincing that

condition (7) is less restrictive than the MCP condition (3). We

set M = 30 and K = 6. We consider a sample of 1000 signals

y whose components ak are chosen randomly from a Fourier

dictionary defined on a uniform grid of frequencies in the inter-

val [0, 1). Define the metric ∆k = 1
2 (1−δ2)|αk|−‖sk‖2. Note

that when ∆k ≥ 0, the condition (7) is satisfied at iteration

k. Figure 1 shows the value of ∆k along the K iterations for
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Fig. 1. Exact recovery condition at iteration k (M = 30, K = 6).

four different sizes of dictionaries: N = 40, 60, 80, and 100.

Therein, only at the first iteration for N = 100 the condition

was not satisfied, which is not necessarily a drawback to

estimate the correct atoms since condition (7) is sufficient and

not necessary. Table below shows that the MCP condition

is not satisfied for the same generated Fourier dictionaries Φ

used before, which confirms that the backward stage of IMP

is an appropriate procedure to deal with coherent dictionaries.

Number of atoms Mutual coherence µΦ

1

2K − 1
N = 40 0.3004 0.0909

N = 60 0.6369 0.0909

N = 80 0.7844 0.0909

N = 100 0.8585 0.0909

TABLE I
MUTUAL COHERENCE FOR DIFFERENT SIZES OF DICITIONARIES.

B. Computational complexity

Regarding the computational complexity, the backward step

has the same cost as MP algorithm which is O(MNK) where

M is the size of the signal y, N the number of atoms in the

dictionary and K the sparsity level (number of components

in the signal). Then the computational complexity of IMP is

linear as a function of data size.

III. COMPUTER RESULTS

In order to asses the performance of the proposed algorithm,

we compare it to some other sparse algorithms using computer

simulations. The performance is measured by the rate of true

support recovery. A recovered support is considered true if all

atoms ak, k = 1, . . . ,K, are exactly selected. We consider the

harmonic spectral estimation framework.

The following algorithms are considered in our compar-

isons: MP [4], OMP [5], ROMP [6], CoSaMP [7], StOMP

[9], SPICE [15], Lasso [16]. Since SP [8] is very similar to

CoSaMP, it is not included herein. A thresholding is performed

on the solutions of ROMP, StOPM, SPICE and Lasso. We use

the SparseLab1 implementation to solve the the Lasso problem.

Results of MP are the same as OMP in our simulations, so

we remove them for the sake of clarity in figures.

1https://sparselab.stanford.edu
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Fig. 2. Exact support recovery rate with respect to the number of atoms in
the dictionary N . Number of components K = 2. Number of trials: 1000.
Noiseless case.

The Fourier dictionary Φ is defined on a uniform grid

of frequencies in [0, 1). The components {a1, . . . , aK} of y

are chosen randomly from the dictionary so that they satisfy

µA < 1
2K−1 . The size of generated signals y is 30. The

real and imaginary parts of coefficients αk, k = 1, . . . ,K,
are generated according to a uniform measure in [0.5, 1.5]. In

all experiments, the success rate of exact support recovery is

computed upon 1000 trials.

The first experiment consists of trials where noiseless sig-

nals composed of two components (K = 2) are considered.

Figure 2 depicts the success rate with respect to the number of

columns in the dictionary. SPICE (50) and SPICE (100) denote

SPICE running up to 50 and 100 iterations, respectively. We

see that IMP and SPICE (100) show similar results and have

better success rate than the other methods.

The second experiment is similar to the first one, only the

number of components changes, which is set to six (K = 6).
Results are presented in Figure 3. We can observe that IMP

outperforms the other methods for N > 200 atoms.

In the third experiment, we corrupt the signals of the first

experiment by an additive zero-mean complex Gaussian white

noise. The signal-to-noise ratio (SNR) is set to 20 dB. Results

are depicted in Figure 4. We observe that IMP outperforms

the other methods.

Settings of the fourth experiment are similar to the previous

one except the number of components which is set to six

(K = 6). Figure 5 presents the obtained results. Again, IMP

performs better than the other methods. In summary, IMP

exhibits better success rates even in the presence of noise.

IV. CONCLUSION

In this letter, we proposed a new greedy method called

IMP for sparse reconstruction problems. IMP improves the

well known stepwise forward Matching Pursuit method by

adding a backward step which is based on several 1-sparse

approximation problems. This method is suitable to recover

sparse signals from incoherent dictionaries, in particularly

Fourier dictionaries. The simulation results show that IMP

outperforms OMP and some other methods.
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Fig. 3. Exact support recovery rate with respect to the number of atoms in
the dictionary N . Number of components K = 6. Number of trials: 1000.
Noiseless case.
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Fig. 4. Exact support recovery rate with respect to the number of atoms in
the dictionary N . Number of components K = 6. Number of trials: 1000.
SNR = 20dB.

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Number of atoms in the dictionary

S
uc

ce
ss

 r
at

e 
(%

)

 

 

IMP
OMP
ROMP
CoSaMP

StOMP
SPICE (50)
SPICE (100)
Lasso

Fig. 5. Exact support recovery rate with respect to the number of atoms in
the dictionary N . Number of components K = 2. Number of trials: 1000.
SNR = 20dB.
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