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Abstract

We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a tele-
com wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently
prepared in a polarization entangled state via a stabilized fiber interferometer. We show that the single photon
emission wavelength can be tuned over more than 50 nm, whereas the single photon spectral bandwidth can
be chosen at will over more than five orders of magnitude (from 25MHz to 4THz). Moreover, by performing
entanglement analysis, we demonstrate a high degree of control of the quantum state via the violation of the
Bell inequalities by more than 40 standard deviations. This makes this scheme suitable for a wide range of
quantum optics experiments, ranging from fundamental research to quantum information applications.
We report on details of the setup, as well as on the characterization of all included components, previously
outlined in F. Kaiser et al. (2013 Laser Phys. Lett. 10, 045202).
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1. Introduction

Quantum communication science has become a very broad and active field of research. On one hand, quantum
key distribution (QKD) [1], allowing secure distribution of cryptography ciphers between distant partners, has
reached the commercial market as well as high-speed system capabablities [2]. Related networking protocols,
such as entanglement based quantum relay operations, are employed as a means for extending the distance of
quantum communication links [3, 4]. On the other hand, the study of light/matter interaction is a promising
approach for implementing quantum storage devices [5]. Those devices are essential elements to achieve quantum
repeater scenarios in which entanglement is distributed, stored, and distilled, all in a heralded fashion, making
it possible to increase the overall link efficiency [6].

Over the past three decades, entanglement has been widely exploited as a resource in fundamental tests of
quantum physics [7, 8]. We find, among others, nonlocality tests involving spacelike separated paired photons [9,
10], quantum delayed-choice experiments [11, 12, 13], and demonstrations of micro-macro entangled states of
light [14, 15]. Moreover, with the emergence of long-distance quantum communication links working at telecom
wavelengths [16, 17, 18, 19], new generation sources have been developed, featuring higher brightness, better
stability, compactness, and near perfect entanglement fidelities. Photons can now be generated over narrow
enough bandwidths (≤100GHz) to avoid both chromatic and polarization mode dispersion along the distribution
fibers [20]. More importantly, current light/matter interaction based quantum memories have, depending on
both the physical system and the applied storage protocol, acceptance bandwidths ranging from some MHz to
several GHz [5]. Consequently, to push long-distance quantum communication one step further, there is a need
for implementing versatile solutions so as to benefit from the advantages of different quantum technologies. In
this framework, sources based on quantum integrated photonics [21] appear to be natural and very promising
candidates, offering the possibility to efficiently create polarization entanglement at wavelengths compatible
with standard fiber components [22, 23].

In the following, we present the details of a versatile, high-brightness, source of polarization entangled pho-
tons, whose main results were first presented in Ref. [24]. Its key features, i.e., the central emission wavelength,
the spectral bandwidth, and the quantum state, can be tuned at will and adapted to a broad range of quantum
network applications. This is enabled by a pertinent combination of an integrated nonlinear optics photon-pair
generator, standard telecommunication components, and an entangled state preparation stage based on a sta-
bilized Mach-Zehnder interferometer (MZI). After the presentation of the overall setup and the principle of the
source, we will detail all the key elements, namely the integrated nonlinear generator, employed filters, and the
quantum state preparation stage. We will then present the entanglement characterization proving the relevance
of our approach. Related stabilization schemes and performances in terms of brightness and internal losses will
also be outlined. Finally, we will summarize the obtained results, in the perspective of overall performances,
and discuss potential improvements.

2. Specifications, setup, and principle of the source

Generation of polarization entanglement has been demonstrated using various strategies based on nonlinear
media, such as microstructured fibers [25, 26], single pass bulk crystals [27, 28], crystals surrounded by a cavity
referred to as optical parametric oscillators below the threshold [29, 30], or type-II waveguide crystals [22,
23]. However, these strategies have all shown relatively low brightness, which becomes an issue when (ultra-
)narrowband photons are needed. Other approaches, capable of generating narrowband polarization entangled
photons based on quantum dots [31] or cold atomic ensembles [32, 33] have recently been demonstrated, albeit
showing limited entanglement fidelities.

Our source specifications are outlined in the following. First, the paired photons are emitted at a wavelength
lying in the telecom C-band (1530 - 1565 nm), and further collected using a single mode telecom fiber in order
to benefit from both standard components for routing and filtering purposes and low propagation losses in
case of distribution over a long distance. Second, the photon bandwidth is made readily adaptable so as to be
compatible with a broad variety of applications, ranging from QKD in telecommunication channels to quantum
storage device implementations. Third, the coding of quantum information relies on the polarization observable
since entanglement correlations can be measured using simple analyzers, being free of interferometric devices
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as opposed to the case of the time-bin observable [34]. In addition, polarization entanglement can now be
distributed over long distances thanks to active compensation systems of fiber birefringence fluctuations [35].
Eventually, and importantly, the key figures of merit are a high rate of available photon-pairs, and a fidelity to
the desired entangled state as close to unity as possible.

Based on the experimental setup depicted in Figure 1, we outline in the following the principles of the main
building blocks.

Figure 1: Experimental setup. (a) Light from a stabilized laser at 780.24 nm is sent through a PPLN/W for the generation of twin
photons at the degenerate wavelength 1560.48 nm. After collection with a single mode telecom fiber, the paired photons pass through
a polarization controller (PC1) followed by a filter, adapting their bandwidth to the desired application. With commercially available
components, the filtering transmission bandwidth can be chosen from some MHz to several hundreds of GHz. An unbalanced MZI
made, of two fiber-polarizing beam-splitters (f-PBS) connected by polarization maintaining fibers, allows preparation of the desired
polarization entangled state (via post-selection in the time domain). A fiber beam-splitter (BS) is used to separate the photons
and to distribute them to Alice and Bob. At both locations, measurements are carried out using a polarization state analyzer,
comprising a half-wave plate (HWP), a polarizing beam-splitter (PBS), and a single photon detector (SPD). (b) Principle of the
entanglement preparation stage. Photon-pairs in the diagonal state |D〉|D〉 enter the unbalanced MZI and exit in four possible
states. If the photon-pair creation time remains unknown, the states |H〉|H〉 and |V 〉|V 〉 are indistinguishable in the time domain,
and thus entanglement can be generated by post-selecting only when the two photons exit in the same time-bin [34].

2.1. Photon-pair generation via type-0 spontaneous parametric down-conversion
Light from a continuous-wave (CW) pump laser at 780.24 nm is sent through a type-0 periodically poled

lithium niobate waveguide (PPLN/W) in order to generate, via spontaneous parametric down-conversion (SPDC),
paired photons around the degenerate wavelength of 1560.48 nm. Using a vertically polarized (V) pump beam,
the type-0 interaction permits to create vertically polarized twin photons, i.e., |V 〉p

type−07−→ |V 〉s|V 〉i, where the
indices p, s, and i represent the pump, signal and idler modes, respectively. Utilizing the type-0 process presents
two main advantages compared to the type-II interaction which produces cross-polarized photons, i.e., in the
state |H〉p

type−II7−→ |H〉s|V 〉i, as detailed in [22] and references therein. On one hand, the associated generation
efficiency is at least 2 orders of magnitude higher. On the other hand, single photon bandwidth narrow filtering
can readily be achieved using fiber filters, without problems with fiber birefringence. However, in contrast to
the type-II interaction, where polarization entanglement can be formed by simply splitting the paired photons,
the price to pay for using the type-0 process is a more complex experimental arrangement [24].
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2.2. Bandwidth filtering stage
In principle, the bandwidth of the paired photons can adapted at will depending on the desired quantum

application. In our case, we work with fiber solutions only, compatible with all other elements of the source.
By doing so, we avoid the losses due to in and out fiber coupling, yielding a higher long-term stability. After
collection of the paired photons using a single mode fiber, we therefore take advantage of three filtering solutions
based on telecom compatible components in order to demonstrate the versatility of our approach:

(a) a standard 100GHz-spacing dense wavelength division multiplexing (DWDM) filter (AC photonics) com-
patible with DWDM-QKD protocols [2, 22];

(b) a 540MHz phase shifted fiber Bragg grating filter (PSFBG, from AOS GmbH) compatible with broad
acceptance bandwidth quantum memories, based on, e.g., room temperature atomic vapors or ion doped
crystals [36, 37, 38];

(c) a 25MHz PSFBG (Teraxion) compatible with the acceptance bandwidth of cold atom, and trapped ion
based quantum memories [39, 40].

Moreover, to avoid any polarization dependent transmission, and therefore degradation of entanglement, with
the narrowband PSFBG filters, those have to placed in front of the state preparation stage. The polarization
state of the photons is adjusted beforehand using a fiber polarization controller (PC1) (see more details below).

2.3. Polarization entanglement preparation stage
To prepare the polarization entangled state, we employ an unbalanced MZI made of two fiber polarizing

beam-splitters (f-PBS) connected by polarization maintaining fibers. This interferometer introduces a delay δt
between the two polarization modes H (short arm) and V (long arm). By sending the paired photons prepared
in the diagonal (D) state |D〉s|D〉i into this device, the exit states are of the form:

|D〉s|D〉i
Prep.7→ 1

2

[
|H〉s,e|H〉i,e + eiφ/2|H〉s,e|V 〉i,l + eiφ/2|V 〉s,l|H〉i,e + eiφ|V 〉s,l|V 〉i,l

]
, (1)

where e and l refer to “early” and “late” time bins, respectively. Here, φ/2 represents the phase difference
between the short and long paths. Post-selecting only the cases where the two photons exit the interferometer
simultaneously reduces the quantum state to |ψ〉post = 1√

2

[
|H〉s,e|H〉i,e + eiφ|V 〉s,l|V 〉i,l

]
. This time-bin type

post-selection constraints δt to be greater than the coherence time of the photon (τp) and the detector timing
jitters (τd). It is important to note that the labels e and l have physical meanings only if the photon-pair creation
time is known. In the case of CW SPDC, the creation time uncertainty is directly given by the coherence time
of the pump laser (τL). In this way, using a laser with a coherence time much greater than δt ensures a constant
phase for the two contributions of interest, |H〉s|H〉i and |V 〉s|V 〉i, and therefore allows obtaining polarization
entangled states of the form:

|ψ〉post =
1√
2

[
|H〉s|H〉i + eiφ|V 〉s|V 〉i

]
, (2)

where φ represents the phase experienced by the two-photon contribution |V 〉s|V 〉i in the long arm of the
interferometer. To summarize the operation principle described above, the source can produce, together with a
proper post-selection, the maximally polarization entangled state of Eq. 2 only if the conditions

τL � δt� τp + τd (3)

are satisfied, as is the case in time-bin type experiments [8, 34, 41].
By controlling the phase difference between the arms of the MZI, and by adjusting the input polarization state

of the two photons, it is possible to prepare any arbitrary superposition of the maximally entangled Bell states
|Φ+〉 and |Φ−〉1. Suppose that the input of the preparation stage is the two-photon state (α|H〉+β|V 〉)(α|H〉+
β|V 〉), with the normalization |α|2 + |β|2 = 1. In this case we obtain, after appropriate post-selection of events in
the time domain, non-maximally entangled states of the form |ψ〉post = 1

N

[
α2|H〉s|H〉i + eiφβ2|V 〉s|V 〉i

]
, where

N =
√
α4 + β4 is the normalization. This can be further generalized by simply adding a half-wave plate in the

path of one of the two photons. This way, one can prepare non-maximally entangled states as a superposition
of the four maximally entangled Bell states.

1There are four maximally entangled states referred to as Bell states [8]. They are defined as |Φ±〉 = 1√
2

[
|H〉s|H〉i ± |V 〉s|V 〉i

]
and |Ψ±〉 = 1√

2

[
|H〉s|V 〉i ± |H〉s|V 〉i

]
, and form a complete orthonormal basis.
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3. Setup and characterization of the key elements

3.1. Frequency stabilization of the pump laser
As laser source, we use a commercial tapered amplifier system (Toptica Photonics TApro) operating at a

wavelength around 780.24 nm in the CW regime. A small fraction of the laser light (∼ 1 mW) is sent to a
standard saturated absorption spectroscopy setup for frequency stabilization purpose. The stabilization is made
on the |F = 2〉 → |F ′ = 2× 3〉 hyperfine crossover transition of the D2 line of rubidium atoms (87Rb). The
Zeeman shifted resonance is modulated by ∼20 kHz using a small electromagnet. The saturation absorption
signal is then demodulated using a lock-in amplifier (EG&G 5210), and fed forward to the laser diode current
through a home-made PID controller. The speed of the stabilization system is sufficient in order to achieve a
laser linewidth < 150 kHz, over all the relevant time scales, which guarantees a coherence time τL > 3µs. We
can therefore fulfill the remaining requirement of inequality (3) even for long coherence time photons, i.e., up
to τp =20 ns, as will be detailed below.

3.2. Phase matching and optical characterization of the nonlinear integrated waveguide
The photon-pair generator is a 4.5 cm long, home-made, waveguide, integrated at the surface of a periodically

poled lithium niobate substrate using the so-called soft proton exchange (SPE) technique [42]. This permits
obtaining low-loss (∼0.2 dB/cm) single-mode optical waveguide structures at telecom wavelengths, showing rea-
sonably high mode confinement, via index variations on the order of 2×10−2. It also allows to maintain the
integrity of the second-order non-linearity ([χ]2) of the lithium niobate substrate. The desired quasi phase-
matching condition (780.24 nm 7→ 1560.48 nm) for the type-0 SPDC process is obtained for a 7µm-width waveg-
uide, a poling period of the substrate of 16.3µm, and for a temperature of 387K. Note that heating the sample
also permits canceling the photorefractive effect induced by the coupled pump intensity in the waveguide.

The PPLN/W internal down-conversion probability was characterized in the single photon counting regime,
as described in Ref. [43], and found to be ∼4.8×10−6 generated pairs per injected pump photon. This outper-
forms photon-pair generators based on optical parametric oscillators [29, 30] and bulk crystals [27, 28] by a few
orders of magnitude, and is comparable to the best values reported to date for SPDC in type-0 PPLN/Ws [43, 44].
Such a high SPDC conversion probability can mainly be ascribed to the tight light confinement in the waveguide
structure, since the efficiency grows quadratically with the optical power density [21].

The temperature dependent emission spectrum measured at the output of the PPLN/W is shown in Fig-
ure 2(a). Signal and idler wavelengths can each be tuned over more than 50 nm for a temperature change of

Figure 2: SPDC emission spectrum obtained from a PPLN/W having a poling period of 16.3µm, a width of 7µm, being pumped
by a laser at 780.24 nm. (a) Spectral density over the full phase matching curve as a function of temperature. The colorbar on top
indicates the relative intensity. Changing the crystal temperature by 3K results in a wavelength tunability of more than 50 nm for
either the signal or the idler photon. (b) Degenerate spectrum around 1560 nm, when the PPLN/W is heated to 387K. The shape
of the curve is a sinc function, as expected from the SPDC process, and its FWHM spectral bandwidth is of 32 nm, corresponding
to 4THz.

3K. In the following of this paper, the PPLN/W is operated at 387K, for which paired photons are emitted,
as shown in Figure 2(b), at the degenerate wavelength of 1560.48 nm, within a spectral bandwidth of 4THz
(↔ 32 nm). Note that such a broad bandwidth is in general unsuitable for many quantum communication
applications, since, e.g., QKD in a DWDM environment requires 50 − 200GHz photonic bandwidths, while
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quantum memory protocols typically demand bandwidths reduced down to 10MHz−5GHz. However, 4THz is
a broad enough bandwidth that can be further reduced so as to match a desired quantum application.

3.3. Characterization of the transmission of the filters
As mentioned previously, we employ three different fiber filters, i.e., a standard 100GHz DWDM, a 540MHz

PSFBG, and a 25MHz PSFBG, to reduce the photonic spectral bandwidth from the 4THz initially generated
by the PPLN/W. These filter bandwidths, together with the initial one, span more than 5 orders of magnitude.

As depicted in Figure 3(a), we properly characterize and set the three filters at the desired wavelength
(1560.48 nm). Notably, the two PSFBG filters are configured using laser spectroscopy. Fort this, we inject light
from a tunable diode laser (Toptica Photonics DL100 pro design), followed by a polarization controller (PC),
and we monitor the transmitted power at the output. To obtain an accurate frequency reference, a fraction
of the laser power is amplified using an erbium doped fiber amplifier (EDFA) and then frequency doubled in
another home-made PPLN/W. For ∼ 100 mW of power at 1560.48 nm sent in the dedicated PPLN/W, we
obtain ∼ 3 mW at 780.24 nm at its output. This is enough to perform saturated absorption spectroscopy in a
Rb cell. The obtained hyperfine structure absorption lines here serve as accurate absolute frequency references
when scanning the laser.

Figure 3: Characterization of the employed filters. (a) Experimental setup. A tunable laser, emitting around the wavelength
of 1560.48 nm, is sent through the filter under test and the polarization dependent transmission spectrum is recorded. In order
to obtain a frequency reference in the case of the two PSFBG filters, the laser is amplified (EDFA) and frequency doubled in a
PPLN/W, before being sent to a standard Rb saturated absorption spectroscopy setup. (b) Transmission spectrum of the 100GHz
DWDM filter showing a flat-top shaped profile. (c) Transmission spectrum of the 540MHz filter. (d) Transmission spectrum of the
25MHz filter. The two latter filters show lorentzian transmission profiles, which have a polarization dependence caused by fiber
birefringence.

As depicted in Figure 3(b), the 100GHz DWDM filter shows a flat-top transmission bandwidth of 80GHz.
In Figure 3(c), we show the transmission of the 540MHz PSFBG, which has lorentzian transmission bandwidths
of 540MHz and 580MHz for vertically and horizontally polarized light, respectively. Due to fiber birefringence,
the modes are separated by 480MHz. The measurements for the 25MHz PSFBG are given in Figure 3(d),
with lorentzian transmission bandwidths of 25MHz and 28MHz for vertically and horizontally polarized light,
respectively, and a mode separation of 80MHz. Note that a consequence of the polarization dependent trans-
mission behavior is that these PSFBGs cannot be directly applied to polarization entangled paired photons,
as the frequency separation between horizontally and vertically polarized photons would reduce the entangled
state to a product state.
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The central frequency (wavelength) of both PSFBG filters can be finely tuned by adjusting the tempera-
ture. Experimentally, the 540MHz and the 25MHz filters present respectively a tunability of ∼1GHz/K and
∼200MHz/K, such that we can achieve about 50GHz (↔ 400 pm) and 1GHz (↔ 80 pm) over a temperature
range between 30◦C and 80◦C. As a side effect, the temperature of the filters needs to be stabilized in order to
avoid any central wavelength drift. In our case, this is done by isolating the filters hermetically from ambient air
and by employing standard PID-type temperature controllers. Using such systems, we can set the transmission
peak of both filters for vertically polarized light at exactly twice the wavelength of the Rb |F = 2〉 → |F ′ = 2× 3〉
hyperfine transition, against which the pump laser is stabilized (indicated by a star in the graphs of Figure 3(b)
and (c)). The achieved temperature stability is 10mK, corresponding to frequency stabilities of ∼ 10 MHz and
∼ 2 MHz for the 540MHz and the 25MHz filters, respectively.

Note that these PSFBG filters represent simple solutions compared to standard optical cavities, concerning
both practicality and reliability. For instance, stabilizing a cavity to better than 2MHz requires a ∼1mK
temperature stability, as well as a stringent isolation to ensure a constant pressure and a limited sensibility to
acoustic vibrations. This is actually unnecessary with our fiber filters. Moreover, tuning the central frequency
of a cavity necessitates the use of a piezo-electric transducer place on one of the cavity mirrors. This, in our
case, can simply be achieved using basic temperature control. A good example of a narrow filtering made with
an optical cavity can be found in reference [28].

3.4. Polarization entanglement preparation stage and coincidence histogram
As described above, after paired photons have been generated in the PPLN/W and subsequently filtered in

bandwidth (see Figure 1), we take advantage of an unbalanced MZI to engineer the polarization bi-photon state.
When two diagonally polarized photons are injected in the device, they emerge in the state of Eq. 1, which can
be further reduced to the maximally polarization entangled state of Eq. 2 by post-selection in the time domain.
A proper post-selection can only be achieved provided the different contributions to the state of Eq. 1 are made
temporally distinguishable. In other words, the delay δt between the two arms of the interferometer has to be
much greater than the coherence time τp of the photons, as stated by inequality 3. For this reason, we have
chosen a fiber path length difference of 18m, corresponding to a propagation time difference of 76 ns, enough to
obtain a fidelity greater than 99% with spectral bandwidths as narrow as 19MHz (coherence time of 20.5 ns).

We show in Figure 4(a) the experimental configuration employed for obtaining arrival time coincidence
histograms at the output of the interferometer. A beam-splitter (BS) is used to separate and distribute the
photons to Alice and Bob. Each user employs a free running indium-gallium-arsenide (InGaAs) avalanche
photodiode (IDQ-220) as single photon detector (SPD). Both devices feature 20% detection efficiencies and dark
count probabilities on the order of 10−6/ns. The SPD outputs are connected to a coincidence measurement
apparatus (&).

As shown in Figure 4(b), we observe three distinct coincidence peaks for all three filters. The side peaks
contain the cross-polarized photon-pair contributions, while the central peak is twice as high and contains the
desired contributions |H〉|H〉 and |V 〉|V 〉. Selecting only the events at zero relative delay generates the desired
entangled state |ψ〉post of Eq. 2. For the 100GHz DWDM filter, we expect a coherence time ∼ 5ps smaller than
the timing jitters of the detectors. Consequently the width of the corresponding coincidence peaks (dark curve
in Figure 4) is mainly given by the convolution of the detectors’ timing jitters (230 ps for each detector). Having
the 540MHz or the 25MHz filter in place leads to a broadening of the coincidence peaks of 800±20 ps (red
curve in Figure 4) and 15.6±0.7 ns (blue curve in Figure 4), respectively, which reflects the increased coherence
time of the photons. These values are in good agreement with the corresponding filter bandwidths shown in
Figure 3(b) and (c).

3.5. Phase stabilization of the polarization entanglement preparation stage
In order to demonstrate high quality polarization entanglement via the violation of the Bell inequalities (see

below), the phase relation between the contributions |H〉|H〉 and |V 〉|V 〉 to the desired entangled state needs to
be stable throughout the measurement time [45]. Our calculations showed that phase fluctuations on the order
of ∆φ ≈ 2π

50 cause a degradation of the entanglement state fidelity of about 0.5%. In our MZI fiber configuration,
phase variations are mainly due to refractive index fluctuations induced by temperature instabilities [46]. The
temperature phase dependency is approximately given by ∆φ

∆T ≈ 103 rad K−1. This means that achieving a phase
stability better than 2π

50 would require a temperature stability of about 30µK, which is technically demanding
as the MZI would have to be placed in a vacuum chamber.

To avoid the latter constraint, we opted for an active stabilization scheme. As depicted in Figure 5, light from
a reference diode laser (Toptica Photonics DL100 pro design), diagonally polarized and emitted at 1558.6 nm, is

7



Figure 4: Characterization of the polarization entanglement preparation stage, in combination with the three filters, for a diagonally
polarized two-photon input state. (a) Experimental setup. At the output of the preparation stage, the photons are separated by
a BS and subsequently detected. The arrival time correlations are recorded using a coincidence counter (&). (b) Coincidence
histograms. Three well separated peaks are obtained for all the three filters. The two outer ones, located at ±76 ns, correspond to
cross polarized contributions. The central peak at zero relative time delay contains the desired contributions |H〉|H〉 and |V 〉|V 〉.

injected in the interferometer via a telecom DWDM in the backward direction compared to that of the paired
photons. Note that this component is a 200GHz-spacing DWDM allowing multiplexing and demultiplexing of
the standard ITU2 telecommunication channels N◦21 and 23. At the output of the MZI device, the laser light
is separated from the photons of interest via another DWDM and sent to an electro-optical phase modulator.
The corresponding polarization state can therefore be written as |ψ〉r = 1√

2

(
|H〉+ ei(φr+φe) |V 〉

)
, where φr

is the relative phase difference between the short (horizontal) and long (vertical) arms of the MZI, and φe a
controllable phase added by the modulator to the vertical contribution. Finally, a fiber PBS is used to project
the light into the {|D〉, |A〉} basis, in which one obtains |ψ〉r = sin

(
φr+φe

2

)
|D〉+cos

(
φr+φe

2

)
|A〉. Consequently,

measuring the light intensity at detector DetA allows us to infer the phase term (φr + φe) mod 2π.
Our phase stabilization scheme is based on a standard feedback loop, in which the reference wavelength is

modulated via the current controller of the laser diode. To obtain the error signal, a lock-in amplifier demodulates
the detector signal. The phase correction is applied to a home-made piezoelectric (PZT) fiber stretcher acting
on the long arm of the MZI via an integrator circuit. Our system holds the phase term φr +φe constant at zero
or π. The phase inside the interferometer, φr, is then tuned by adjusting φe. Our system is therefore capable
of accurately setting the phase to any desired value over short time scales, i.e. on the order of 1ms (mainly
limited by the response time of the PZT).

Moreover, to ensure a long term stability, the 1558.6 nm reference laser is stabilized in a cavity, after frequency
doubling to 779.3 nm. The cavity is itself stabilized upon that of the 780.24 nm pump laser (see above), which

2International Telecommunication Union.

8



Figure 5: Phase stabilization system of the interferometric entanglement preparation stage. The phase accumulated by a reference
laser is measured and a correction signal is forwarded to a PZT. The phase can be accurately tuned to any desired value by adding
an offset phase with a phase modulator.

means that the reference laser is stabilized thanks to a transfer-cavity lock configuration. The overall system
achieves an overall phase stability better than π

100 and works reliably over time scales of several days.

4. Entanglement analysis

In this section, we first demonstrate our capability to coherently tune the phase of the preparation interfer-
ometer. Thereafter, we set the phase to the desired value of π in order to create the entangled state |Φ−〉, and
we perform entanglement analysis via the violation of the Bell inequalities.

4.1. Phase tuning demonstration and long-distance distribution of the paired photons
The experimental setup used to demonstrate the phase tunability is shown in Figure 6(a). The photon-pairs,

at the output of the interferometric preparation stage, are expected to be prepared, together with a proper time-
bin post-selection, in the state |ψ〉post (see Eq. 2 and related discussion). The paired photons are then separated
at a beam-splitter and sent to Alice and Bob. They both project their respective photons into the the phase
sensitive diagonal/antidiagonal basis {|D〉, |A〉} using a polarization state analyzer made of a bulk polarizing
beam-splitter (PBS) oriented at 45◦ and an InGaAs avalanche SPD. In this situation, the coincidence rate, Rc,
recorded between the two users is given by

Rc =
1

2
(1− V cosφ) , (4)

where φ is the phase imprinted on the entangled state by the interferometric preparation stage, and V represents
the fringe visibility of the interference pattern.

In Figure 6(b), we present the coincidence rate recorded as a function of the phase set in the preparation stage
for all three filters. For these measurements, the phase is tuned between −π and 5π/2, using our stabilization
system. The three curves follow the relation described by equation 4, and sinusoidal fits permit to infer the
associated interference pattern visibilities. The net visibilities are 99.9±1.2%, 99.4±1.5%, and 97±2%, for the
100GHz (squares and dark line), 540MHz (circles and red line), and 25MHz (triangles and blue line) filters,
respectively. Net visibilities mean that accidental coincidences induced by the detector dark counts have been
subtracted. Without noise subtraction, the raw visibilities are 99.9±1.2%, 97.1±1.2%, and 88±2%, respectively.
The last value is smaller than the others, owing to a degraded signal-to-noise ratio associated with the 25MHz.

Moreover, Figure 6(c) shows the results obtained with the 540MHz filter when the paired photons are
distributed over 4 km of standard telecom optical fiber, and its direct comparison to a 20m fiber distribution
scenario. The obtained net and raw visibilities are 99 ± 2% and 96 ± 2%, respectively. The reductions in
coincidence rate and raw visibility are ascribed to additional propagation losses of about 1.2 dB, which again
causes a degradation of the signal-to-noise ratio.

To conclude this phase control and tunability study, it is worth mentioning that our preparation system
works perfectly as it permits setting the phase of the entangled state to any desired value on short time scales
(< 1ms). The curves presented in Figure 6 therefore stand as a proof that any maximally entangled state of
the form |ψ〉 = 1√

2

(
|H〉|H〉+ eiφ |V 〉|V 〉

)
can be generated at will. For the following study, we now set φ = π

in order to generate the state |Φ−〉, on which entanglement analysis is performed.
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Figure 6: Demonstration of phase control capabilities. (a) Experimental setup. Alice and Bob both set their polarization state
analyzers at 45◦, in order to project the entangled state on the phase sensitive {|D〉, |A〉} basis. The coincidence rate between the two
detectors is recorded as a function of the phase set in the fiber preparation stage. (b) Results obtained for photon-pair distribution
over 20m of standard optical fiber: for all three filters, near perfect sinusoidal coincidence rate oscillations are observed, underlining
the high phase stability achieved with our approach. (c) Results obtained for the 540MHz filter when distributing the entangled
photons over 20m and 4 km of standard optical fiber, respectively. Again, high-visibility interference patterns are observed. Note
that for all results presented here, noise contributions induced by accidental coincidences have been subtracted.

4.2. Entanglement analysis for the |Φ−〉 state
In the following, we employ, among other possibilities [47], the violation of the Bell inequalities as an

entanglement witness [48, 49]. To this end, we consider the standard experimental configuration shown in
Figure 7(a), in which the users each employ a polarization state analyzer, comprising a half-wave plate (HWP),
a PBS, and an SPD. As was the case for the phase control study, the two detectors are connected to a coincidence
measurement apparatus (&).

The measurements are made in the following manner. Alice projects her photons consecutively along the
horizontal (|H〉), vertical (|V 〉), diagonal (|D〉) and anti-diagonal (|A〉) directions. For each of the four settings,
we record the coincidence rates as a function of Bob’s HWP angle. The experimental results corresponding
to the three filters are shown in Figure 7(b), (c) and (d). For each filter and for all four settings chosen at
Alice’s side, sinusoidal coincidence rate oscillations are observed, underlining the rotational invariance of the
generated entangled state. Sinusoidal fits permit to infer the associated interference pattern visibilities. We
obtain average raw visibilities (including noise contributions) of 99.6 ± 1.3%, 97.1 ± 0.9% and 99 ± 3% for the
100GHz, 540MHz, and 25MHz filters, respectively. These values are clearly above the non-local threshold
of 71% for two-photon experiments [50]. Note that in order to increase the visibility for the 25MHz filter,
two superconducting detectors (Scontel TCOPRS-001) have been used instead of the two InGaAs avalanche
photodiodes that were in place for all the previous measurements. These superconducting devices both feature
7% detection efficiencies and less than 10 dark counts per second. This permits us to increase the signal-to-noise
ratio at the price of lower coincidence counts.

Besides the obtained visibility, the Bell parameter is another quantitative measure for evaluating the quality
of entanglement. We obtain raw Bell parameters Sraw of 2.82± 0.01, 2.80± 0.02 and 2.82± 0.02 for the three
employed filters, meaning that the Bell inequalities are violated by at least 40 standard deviations [48, 49]. This
underlines the high quality of the entangled states that can be generated with our scheme [24].
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Figure 7: Demonstration of entanglement quality via the violation of the Bell inequalities. (a) Experimental setup. Both users
utilize a polarization state analyzer consisting of a half-wave plate (HWP), a PBS, and a SPD. The coincidence rate correlations
for the standard polarization settings are recorded. For all three filters, DWDM (b), 540MHz PSFBG (c) and 25MHz PSFBG (d),
near perfect visibility two-photon interference patterns are obtained for all polarization settings. This underlines the high quality
entanglement generated with out approach.

5. Brightness and internal losses of the source

In addition to high entanglement qualities, the brightness of the photon-pair generator is one of its key
features, since it provides the rate at which a quantum communication link can be operated. Typically, the
brightness is defined as the number of paired photons available in one spatial mode, per of integration time,
pump power, and spectral bandwidth. Achieving a high brightness requires the use of a high-efficiency generator
associated with low propagation losses in the overall setup. In the following, we first detail the two latter figures,
before giving the rate of entangled photon-pairs available at the output of the source.

On one hand, the internal down-conversion probability of the type-0 PPLN waveguide obtained over the full
emission spectral bandwidth of 4THz, shown in Figure 2(b), corresponds to a brightness Bfull ≈ 2400 pairs · (s ·
mW ·MHz)−1. However, all the three employed filters provide much narrower bandwidths than that of the full
spectrum, such that the peak intensity within these bandwidths can be considered constant with an associated
brightness Btop ≈ 3600 pairs · (s ·mW ·MHz)−1. As for all generators based on spontaneous processes, the main
limitation comes from multiple pair emission issues, generally dominated, at weak pump powers, by double pair
contributions. Those are due to the emission statistics that can be either poissonian or thermal, depending on
both the coherence time of the photons and the time acquisition window [51, 52]. In other words, operating
the source at high pump powers would lead to non negligible double pair contributions and cause a severe
degradation of the entangled state fidelity [53]. For instance, working with a probability for single photon-pair
emission equal to 0.01 per detection time window, generally defined as the maximum between the timing jitter
of the detectors and the coherence time of the photons, leads to a decrease of the relative entangled state fidelity
of 1%. Note that with our non-linear waveguide, a laser pump power of 7mW is enough to achieve such a
probability value per coherence time.

On the other hand, to compute the overall source brightness, we need to consider all losses from the output
of the photon-pair generator to the output of the source itself, i.e., the two outputs of the fiber beam-splitter
shown in Figure 1. We measure the single photon propagation losses between the output of the crystal and
the input of the beam-splitter by replacing the pump laser by one emitting at 1560.48 nm. We obtain 4.5 dB,
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5.2 dB, and 5.7 dB for the 100GHz, 540MHz and 25MHz filters, respectively. However, when considering the
propagation of the paired photons to the output of the source, additional losses have to be taken into account.
We find the following values:

- 3 dB due to the lorentzian transmission profiles of the PSFBG filters. Note that this is not the case for
the DWDM filter, since it shows a flat-top transmission profile;

- 3 dB due to the time-bin structure associated with the preparation stage, since only half of the generated
photon-pairs are actually prepared in a maximally polarization entangled state;

- 3 dB introduced by a non-deterministic pair separation at the output beam-splitter.

The overall losses experienced by the paired photons are therefore 15 dB, 19.4 dB and 20.4 dB, respectively for
the three filter configurations.

Finally, combining the generator brightness and the internal losses of the full setup leads to available photon-
pair rates of about 9×106, 11000, and ∼400 per second and mW of pump power, respectively for the three filter
configurations. A summary of the relevant figures of merit for the source, in combination with the three different
filters, is presented in table 1.

Bandwidth [MHz] 80×103† 540† 25‡

Photon coherence time [ns] 5.5×10−3 0.8 15.6
Injected pump power [mW] 0.02 0.4 7
Photon-pair losses [dB] 15 19.4 20.4
Available output rate [(s×mW)−1] 9×106 11×103 400
Detected pair rate [s−1] 2000 50 6
Interference raw visibility (%) 99.6±1.3 97.1±0.9 99±3

Table 1: Summary of the experimental results carried out with the experimental setup shown in Figure 1 for the three different
filters. Note that the imperfections of the detectors provide limitations on data acquisition, since low efficiencies are associated with
lower pair detection rates, and dark counts are one of the main limiting factor for achieving high raw visibility values [54]. Moreover,
for both the 100GHz DWDM and the 540MHz PSFBG filters, the dead-times of the detectors induce an inherent reduction of
the detected pair rate. † For these measurements, standard InGaAs avalanche photodiode SPDs have been used [55]. ‡ For this
particular measurement, superconducting SPDs have been employed in order to reduce accidental coincidence events [55].

6. Potential improvements of the source

The pair rate could be improved considerably by reducing the internal propagation losses of the source,
notably in the case of the narrowest employed filters. First, the lorentzian PSFBG filters (540MHz and 25MHz)
could be replaced by flat-top ones, as for the 100GHz DWDM filter. This would, in this case, lead to a pair loss
reduction of 3 dB. Secondly, the propagation losses could also be reduced by splicing all the fiber patch cords
instead of using fiber connectors. This would lead to approximately a 2 dB pair loss reduction. Thirdly, using
a tapered waveguide structure at the output of the non-linear waveguide generator would yield another 1 dB of
loss reduction, due to an adiabatic spatial mode adaptation between the waveguide and the collection fiber [56].
Finally, one could address the non-deterministic separation of the paired photons by utilizing a fiber coupled
cavity able to transmit two peaks on both sides of the wavelength degeneracy (1560.48 nm). For instance, a
free spectral range of 100GHz combined with a transmission bandwidth of 25MHz can be achieved by using a
1.2mm-long cavity, finesse 4000. Despite the difficulty of building such a high finesse cavity, this would permit
obtaining pairs of entangled photons easily separable using a simple DWDM placed after the interferometric
preparation stage, providing a 3 dB pair loss reduction. Combining some of the above mentioned strategies
could lead to an average pair loss reduction on the order of 6 dB, at the price of an increased setup complexity.

7. Conclusion

We have demonstrated a versatile and efficient scheme for the generating polarization entangled photon-pairs
at telecom wavelengths. The versatility lies in both the spectral properties of the photons and in the generated
quantum state. For instance, the wavelength of the emitted single photons can easily be adjusted over more
than 50 nm, using basic temperature control of the photon-pair generator. We have also shown near perfect
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entanglement qualities over photonic spectral bandwidths ranging from 25MHZ to 100GHz, thus spanning
more than four orders of magnitude. Our scheme is readily extendable to the 4THz spectral bandwidth initially
available at the output of the photon-pair generator, and therefore to five orders of magnitude. Moreover,
the active stabilization system of the preparation stage allows us to set and to further tune the phase relation
between the two contributions, |HH〉 and |V V 〉, to the entangled state. The weight of the contributions, and
the contributions themselves, can be easily chosen by means of basic polarization controls in front of and after
the preparation stage. We can therefore prepare any two-photon polarization state, ranging from product to
maximally entangled states, as a superposition of two of the four Bell states.

All the presented results have been obtained with near perfect entanglement qualities, i.e., the Bell in-
equalities have been violated for all chosen bandwidths by more than 40 standard deviations, without noise
subtraction. These results have also been made possible by the high brightness of our source, which is mainly
due to a high-efficiency waveguide photon-pair generator, and optimized losses in the presented configuration.
We have also outlined suggestions for future improvements that could lead to a potential brightness increase of
almost one order of magnitude. These modifications are currently being implemented on our setup.

We believe that our scheme is a good candidate for a broad range of quantum experiments, ranging from
fundamental quantum optics to quantum network applications. In the latter framework, our photon spectral
bandwidths of 540MHz and 25MHz are already suitable for several quantum memory strategies based on
hot atomic vapors and solid state devices. In order to adapt the wavelengths of the entangled photons to
the absorption resonances of the corresponding memory devices, non-linear wavelength conversion processes
such as sum frequency generation and difference-frequency generation have been proven to be very efficient
strategies [57, 58].
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