
HAL Id: hal-01315225
https://hal.science/hal-01315225

Submitted on 12 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theoretical studies and simulation of graded index
segmented LiNbO 3 waveguides for quantum

communications
O Danila, Marc P de Micheli, P Aschieri, P Sterian

To cite this version:
O Danila, Marc P de Micheli, P Aschieri, P Sterian. Theoretical studies and simulation of graded
index segmented LiNbO 3 waveguides for quantum communications. Optoelectronics and Advanced
Materials - Rapid Communications, 2012, 6 (1-2), pp.40-43. �hal-01315225�

https://hal.science/hal-01315225
https://hal.archives-ouvertes.fr


OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS                 Vol. 6, No. 1-2, January-February 2012, p. 40 - 43  

  

Theoretical studies and simulation of graded index 

segmented LiNbO3 waveguides for quantum 

communications 
 

 

O. DANILA
*a

, M. DEMICHELI
b
, P. ASCHIERI

b
, P. STERIAN

a
 

a
Polytechnical University of Bucharest, Faculty of Applied Sciences, 060082, Bucharest, Romania 

b
Laboratoire Physique de Matière Condensée, UMR 6622, Nice Cedex 2, France 

 
 

 

The present paper focuses on the theoretical characterization and simulation of different graded index segmented LiNbO3 

waveguides. Several dependencies of the refractive index versus the z direction of propagation of the applied laser field are 

examined and a comparative discussion is made, taking into account dispersive and attenuation losses. 
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1. Introduction 
 

Quantum waveguides [1-5] play an important role in 

the coherent control of injected light, the efficiency of these 

guides being always a subject of improvement. Guiding 

light is greatly exploited by optical and quantum 

communication [2, 7-12]. Nonlinearities that appear in the 

waveguides are of great use in second-order susceptibility 

applications such as sum and difference frequency 

generation [1, 2]. Periodically poled lithium niobate 

waveguides [4] have the ability to generate entangled 

photon pairs with a very good efficiency – albeit that 

improvements can be done in order to reduce input power – 

which play an imperative role in quantum sources and 

quantum repeater schemes [1-4]. The paper is divided into 

four sections: the introductory section, where an outline of 

the recent progresses is discussed. Part two represents the 

theoretical section, in which the model and equations that 

lead to the simulations are shown. In the third section, the 

simulation and results section are presented and discussed 

comparatively. Conclusions are drawn in the fourth section. 

 

 

2. Theoretical model 
 

The theoretical model of the waveguide takes into 

consideration a slab z-cut waveguide that has a periodical 

segmented index profile as shown in Fig. 1. The z direction 

index profile of the guide is considered independent of the 

other directions, for the simplicity of the calculus. 

 

 

Fig. 1. Refractive index vs. field propagation direction, 

with b – thickness of the guiding index region, d – 

thickness of the substrate index region, L – period  of  

segmentation,     ng  –    guiding    refractive   index    and  

                       ns – substrate refractive index. 

 

The index model follows the equivalent guide model 

[6, 13-14] given by the relation 

 

 ( )equiv g g s

b
n n n n  


                (2.1) 

where 
d


 is the duty cycle of the segment period, ng the 

refractive index of the segment and ns the index of the 

substrate. 

This approach treats the segmented waveguide as a 

continuous one, but with a refractive index equal to nequiv. 

The duty cycle is kept constant throughout the guide. 

However the segment index will be considered variant with 

respect to z: 

 

 0 ( )g gn n f z                                 (2.2) 
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where  ng0  is the effective refractive index of the segment and 

f(z) is a continuous weight function that describes the 

modulation and averaging of the refractive index throughout 

the waveguide. The simulations will consider the averaging 

function as well as some continuously variable functions in 

order to establish a comparison basis. 

The weight function is specifically modeled in order to 

assure the modulation. Boundary conditions, together with 

the linearity of the profile, dictate that the continuous 

unmodulated function of Fig. 1 is  

 

 ( ) 1f z mz                                  (2.3) 

 

where m is the slope of the refraction index, or modelling 

parameter. Modulation of this function is done by averaging 

the weight function over the guiding regions of one period. 

The length of one period is divided into an equal number  

of guiding and substrate regions: 

 

 ( )i

i

L b d                              (2.4) 

and therefore, the average refractive index over one guiding 

region is 

 

( )

( )

0 ( )

( )

( )d

d

i b d b

i b d

gi g i b d b

i b d

f z z
n n

z

 



 







                        (2.5) 

thus, the refractive index taken over all of the guided 

regions being the average of all independent indices: 

 

 
( )gii

g

i

n z
n

i




                            (2.6) 

Substituting (2.6) in (2.1) will yield the equivalent 

refractive index. As an observation, it should be noted that 

the modelling function can take a user-defined form, each 

function leading to a different waveguide behavior towards 

the same applied field. 

The electric field inside the waveguide respects the 

Helmholtz equation [5] 

 

 2 2 0E k E                              (2.7) 

 

where k is the wave number of the applied field. As it is 

known, the refractive index is the velocity rapport given by: 

  

phase

c ck
n  

v
                              (2.8) 

Substituting the last equation into (2.7), we have 

 

 
2 2

2

2
0

n
E E

c


                             (2.9) 

 

We shall make the further assumption that the 

component E (x, y) is a slowly variable function and 

therefore can be perceived as a constant.  

Furthermore, the wave is assumed to propagate 

independently on the three axes, therefore Eq. (2.9) can be 

rewritten as only a z – direction variation: 

 

 
2 2 2

2 2

d
0

d

E n
E

z c


                                (2.10) 

 

Solutions of the trivial equation (n (z) = ct.) are a sum 

of sine and cosine functions that propagate throughout the 

waveguide. However, when the refractive index varies with 

the propagation direction, the profile of the electric field 

changes, as we will show in Section 3. 

Power losses occur from attenuation and dispersion 

effects in the material. Attenuation effects will be discussed 

by directly evaluating the intensity graphs in the 

propagation direction. Dispersion effects come into play 

when perturbations in the refractive index value of the 

waveguide occur. Such perturbations will depend on the 

other propagation directions n = n (x, y, z).  

For simplicity, we shall only evaluate the n = n (x, z), as 

a step discontinuity of the value. To evaluate this 

phenomenon, we shall consider the field component of the 

form [3] 

 
i i

( ) ( , ) ( ) ( , ) dg d
z z

g g d d dE A z u x y e B z u x y e
   


    (2.11) 

 

where Ag (z), Bd (z) are the amplitudes of the guided and 

dispersive modes in the direction of propagation, ,g d   

the propagation constants in the guided and dispersive 

modes and ,g du u  the normalized transversal guided and 

dispersed fields on the directions perpendicular to the 

propagation direction. For simplicity, we shall consider a 

one-dimensional dependency of the guided and dispersive 

modes ( ), ( )g du x u x .  

Substituting (3.2) into (2.10), and multiplying by 
*

du , 

after some mathematics and second derivative negligible 

approximations, the resulting equation is 

 

i *

0

d i
( , ) ( ) ( )d

d 2

zd
g eq g d

B
A n e n x z u x u x x

z







    (2.12) 

where 0  the void electrical permittivity, eqn  the 

equivalent refractive index, g d    the propagation 

constant difference between the guided and the radiant 

modes, and ( , )n x z  the refractive index perturbation. 

The field functions will be taken as [3] 

 

( ) cos( )g gu x k x ,   ( ) cos( )d du x k x   (2.13) 

 

For the simplicity of the calculus, we shall consider the 

perturbations to be localized to certain points of the 

material, and having step index differences. Perturbations in 

the z direction shall not be taken into consideration, thus the 

refractive index perturbation can be written as  
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 ( , ) ( )p

p

n x z x x                        (2.14) 

with ( )p px x n    . Solving Eq.(3.3), with these 

considerations yields 

 

i
sin( ) sin( )

( )
4 2( ) 2( )

g g d g d z

d p

p g d g d

A k k k k
B z n e

k k k k


  

        


 (2.15) 

 

The radiative power is given by the relation 

 

( ) dd dP B z z



                          (2.16) 

 

Integration will be taken over the width W of the 

sample, therefore, the radiative dissipated power is 

given by 
2222 sin( ) sin( )

8 2( ) 2( )

g g d g d

d p

p g d g d

A W k k k k
P n

k k k k

   
           

  (2.17) 

 

3. Simulations and results 
 

Solving Eq. (2.10) for the discussed modelling 

parameters yields the graphs shown below (Fig. 2): 

 

 
Fig. 2. The electric field and intensity profiles through 

the z direction of the waveguide. The waveguide 

parameters are: length 30 m,L    maximum indices 

difference 
0 0.085,g sn n n     pump wavelength 

1560 nm,  and modelling parameter 50.7 10 .m    The 

number of  segments  have  been chosen to be:  a) n = 2,  

                                        b) n = 5. 

 

Discretization of the waveguide profile with the use of 

the integral averaging function does not change the 

wavefront form in the waveguide.  

However, the effective refractive index can be 

modelled by varying the modelling parameter to achieve 

the desired output intensity and the number of guiding 

regions to control the field and intensity frequencies. 

Simulations were carried out for the continuously 

varying refractive index n = n(z), using the Coupled-Mode 

Theory (CMT) [3] approach. 

In this picture, Eq. (2.10) changes to the following: 

 

 
2 2

2

2 2

d ( )
( ) ( ) 0

d

E z
n z E z

z c


                (3.1) 

 

Solving (3.1) for different  gives the field and 

intensity profile, seen in Fig. 3 and Fig. 4: 

 

 

Fig. 3. Electrical field and intensity profiles for 

continuously varying refractive index. Comparison 

between: a): linear ( ) 1n z mz   and exponential 

( ) exp( )n z mz   dependencies; b): linear and square  

                  root ( )n z m z   dependencies. 

 

 

Fig. 4. Electrical field and intensity profiles for continuously 

varying refractive index. Comparison between linear and 

hyperbolic 
1

( )n z
mz




 – dependencies. The length of the 

guide is taken as such as it exhibits the rise in the hyperbolic 

dependency. 

  

Dispersive spectral power losses are calculated using 

Eq. (2.17), and are normalized by a factor given by the sinus 

coefficients in (2.17): 

 

 
Fig. 5. Normalized radiative power as a function of the 

propagation number sum and difference between the 

guided and radiated modes. 
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4. Discussions 
 

As it can be seen from Fig. 3, the linear field 

dependence exhibits an attenuation over small (10
5

 order) 

distances. The exponential dependence, however, shows an 

amplitude increase over the same distance. Real 

experiments will conclude that this increase will be 

saturated at the maximum pump power. The root 

dependence of the refractive index shows an increase in 

field frequency, with an overall attenuation of the field. Fig. 

4 shows the behavior of the linear and inverse linear 

dependences over a guide length comparable to achievable 

dimensions with the current technology. In the linear case, 

we can observe a preservation of the electric field and 

intensity amplitude, but an overall modulation of the signal 

occurs. Inverse linear dependence shows a great increase in 

the amplitudes, the overall modulation of the signal still 

remaining present. 

Power attenuation considerations can be drawn from 

the graphs above. For some dependencies, the intensity 

( )I z  decreases swiftly, over guide lengths of several 

micrometers. In other cases, the intensity increases, with 

oscillations, to a saturation, the medium contributing to the 

amplification of the radiation. To this effect, we highlight 

the inverse and exponential dependencies of the refractive 

index. 

 

5. Conclusions 
 

In this paper we have investigated the behavior of 

lithium niobate waveguides with a graded refractive index 

on the field direction of propagation. Using the equivalent 

guide model, different dependencies were simulated at 

microscopic and macroscopic lengths, yielding different 

behaviors over the appreciated distances. A signal 

modulation appears in the case of linear and inverse linear 

modulation, the frequency being dependent on waveguide 

parameters. We can therefore assume that information can 

be encoded on the incident wave by using the waveguide, 

and if successfully controlled, the waveguide can be treated 

as either an amplitude or a frequency modulator, depending 

on the different dependence. 
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