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Exponential decay to equilibrium for a fibre lay-down process on a

moving conveyor belt

Emeric Bouin ∗ Franca Hoffmann†‡ Clément Mouhot §

May 12, 2016

Abstract

We show existence and uniqueness of a stationary state for a kinetic Fokker-Planck equation
modeling the fibre lay-down process in the production of non-woven textiles. Following a micro-
macro decomposition, we use hypocoercivity techniques to show exponential convergence to
equilibrium with an explicit rate assuming the conveyor belt moves slow enough. This work is
an extention of [2], where the authors consider the case of a stationary conveyor belt. Adding
the movement of the belt, the global Gibbs state is not known explicitly. We thus derive a more
general hypocoercivity estimate from which existence, uniqueness and exponential convergence
can be derived. To treat the same class of potentials as in [2], we make use of a an additional
weight function following the Lyapunov functional approach in [8].

Keywords— hypocoercivity, rate of convergence, fibre lay-down, existence and uniqueness of
stationary state, perturbation, moving belt

1 Introduction

The mathematical analysis of the fibre lay-down process in the production of non-woven textiles
has seen a lot of interest in recent years [9, 10, 4, 6, 7, 2, 8]. Non-woven materials are produced
in melt-spinning operations: hundreds of individual endless fibres are obtained by continuous ex-
trusion through nozzles of a melted polymer. The nozzles are densely and equidistantly placed in
a row at a spinning beam. The viscoelastic, slender and inextensible fibres lay down on a moving
conveyor belt to form a web, where they solidify due to cooling air streams. Before touching the
conveyor belt, the fibres become entangled and form loops due to highly turbulent air flow. In [9]
a general mathematical model for the fibre dynamics is presented which enables the full simulation
of the process. Due to the huge amount of physical details these simulations of the fibre spinning
and lay-down usually require an extremely large computational effort and high memory storage,
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Paris Cedex 16, France. E-mail: bouin@ceremade.dauphine.fr
†CCA, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK. E-mail:

fkoh2@cam.ac.uk
‡Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.

E-mail: fh1009@ic.ac.uk
§DPMMS, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK. E-mail:

c.mouhot@dpmms.cam.ac.uk

1



see [10]. Thus, a simplified two-dimensional stochastic model for the fibre lay-down process is intro-
duced in [4]. The density of the stochastic process satisfies an associated Fokker-Planck evolution
equation. An analytic investigation of this Fokker-Planck equation has been performed in [4] where
asymptotic properties and ergodicity of the process have been proven and explicit rates for the
convergence to the stationary solution have been obtained. Generalisations of the two-dimensional
stochastic model [4] to three dimensions has been developed by Klar et al. in [6] and to any di-
mension d ≥ 2 by Grothaus et al. in [5].

We now describe the model we are interested in, which comes from [4]. We track the position
x(t) ∈ R

2 and the angle α(t) ∈ S
1 of the fibre at the lay-down point where it touches the con-

veyor belt. Interactions of neighbouring fibres are neglected. If x0(t) is the lay-down point in the
coordinate system following the conveyor belt, then the tangent vector of the fibre is denoted by
τ(α(t)) with τ(α) = (cosα, sinα). Since the extrusion of fibres happens at a constant speed, and
the fibres are inextensible, the lay-down process can be assumed to happen at constant normalised
speed ||x′0(t)|| = 1. If the conveyor belt moves with constant speed κ in direction e1 = (1, 0), then

dx

dt
= τ(α) + κe1.

Note that the speed of the conveyor belt cannot exceed the lay-down speed: 0 ≤ κ ≤ 1. The fibre
dynamics in the deposition region close to the conveyor belt are dominated by the turbulent air flow.
Applying this concept, the dynamics of the angle α(t) can be described by a deterministic force
moving the lay-down point towards the equilibrium x = 0 and by a Brownian motion modelling the
effect of the turbulent air flow. We obtain an Itô stochastic differential equation for the random
variable Xt = (xt, αt) on R

2 × S
1,

{

dxt = (τ(αt) + κe1) dt,

dαt = −τ⊥(αt) · ∇xV (xt)dt+AdWt ,
(1.1)

where Wt denotes a one-dimensional Wiener process, τ⊥ = (− sinα, cosα), A > 0 measures its
strength relative to the deterministic forcing, and V : R2 −→ R is an external potential carrying
information on the coiling properties of the fibre. More precisely, since a curved fibre tends back
to its starting point, the change of the angle α is assumed to be proportional to τ⊥(α) · x. It has
been shown in [8] that under suitable assumptions on the external potential V , the fibre lay down
process (1.1) has a unique invariant distribution and is even geometrically ergodic. The stochastic
approach yields exponetial convergence in total variation norm, however without an explicit rate.
We will show here that a stronger result can be obtained with the functional analytic approach. Our
argument uses crucially the construction of a Lyapunov functional for the fibre lay-down process
in the case of unbounded potential gradients as in the stochastic paper (Proposition 3.7, [8]).

The probability density function f(t, x, α) corresponding to the stochastic process (1.1) is gov-
erned by the Fokker-Planck equation

∂tf + (τ + κe1) · ∇xf − ∂α

(

τ⊥ · ∇xV f
)

= D∂ααf (1.2)

with diffusivity D = A2/2. We require the following assumptions on the external potential V :

2



(H1) Regularity : V ∈ W 2,∞
loc (R2) ∩C2(R2) and V is spherically symmetric outside some ball

B(0, R).

(H2) Normalisation:
∫

R2 e
−V dx = 1.

(H3) Spectral gap condition: there exists a positive constant Λ such that for any u ∈
H1(e−V dx) which

∫

R2 ue
−V dx = 0, we have

∫

R2

|∇xu|2 e−V dx ≥ Λ

∫

R2

u2e−V dx.

(H4) Pointwise condition: there exists c1 > 0 such that for any x ∈ R
2,

|D2
xV (x)| ≤ c1(1 + |∇xV (x)|),

where D2
xV denotes the Hessian of V (x).

(H5) Behaviour at infinity : lim|x|→∞
|∇xV (x)|

V (x) = 0.

Remark 1. Assumptions (H2)–(H4) are as stated in [2]. Assumption (H1) assumes stronger
regularity of the potential. Assumption (H5) is only necessary if the potential gradient |∇xV |
is unbounded, and trivial otherwise. Both bounded and unbounded potential gradients may appear,
depending on the physical context. A typical example for an external potential satisfying assumptions
(H1)–(H5) is given by

V (x) = K
(

1 + |x|2
)β/2

(1.3)

for some constants K > 0 and β ≥ 1 [3, 8]. The potential (1.3) satisfies (H3) since

lim inf
|x|→∞

(

|∇xV |2 − 2∆V
)

> 0 ,

see for instance (A.19. Some criteria for Poincaré inequalities, [11], page 135). The other assump-
tions are trivially satisfied as can be checked by direct inspection. The gradient of this choice of
potential is bounded for β = 1 and unbounded for β > 1.

Remark 2. The ergodicity proof in [8] assumes that the potential satisfies

lim
|x|→∞

|∇xV (x)|
V (x)

= 0, lim
|x|→∞

|D2
xV (x)|

|∇xV (x)| = 0, lim
r→∞

V ′(r) = ∞. (1.4)

Under these assumptions, there exist an invariant distribution ν to the fibre lay-down process (1.1),
and some constants C(x0) > 0, λ > 0 such that

||Px0,α0
(Xt ∈ ·)− ν||TV ≤ C(x0)e

−λt.

The stochastic Lyapunov technique applied in [8] however does not give any information on how
the constant C(x0) depends on the initial position x0, or how the rate of convergence λ depends on
the belt speed κ, the potential V and the noise strength A. This can be achieved using hypocoercivity
techniques, proving convergence in a weighted L2-norm, which is slightly stronger than the conver-
gence in total variation norm shown in [8]. Conceptually, conditions (1.4) ensure that the potential
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V is driving the process back inside a compact set, where the noise can be controlled. Note that
conditions (1.4) follow directly from (H1)–(H5). They are more general in the sense that we do
not require a spectral gap, the proof for exponential convergence to equilibrium done in [8] however
makes use of the strong Feller property which can be translated in some cases into a spectral gap.
Further, in [8], hypoellipticity of the fiber lay down process allows to deduce the existence of a tran-
sition density, which provides the result via an explicit Lyapunov function argument. By making
the stronger assumptions (H1)–(H5), and adapting the Lyapunov function argument presented in
[8], we are able to derive an explicit rate of convergence including its dependence on the initial data
f0, the relative speed of the conveyor belt κ and the potential V .

To set up a functional framework associated to this Fokker-Planck equation, we may rewrite
(1.2) as an abstract ODE

∂tf = (L− T) f + Pκf, (1.5)

where the collision operator L = D∂αα acts as a multiplicator in the position variable x, Pκ is the
perturbation introduced by the moving belt,

Pκf = −κe1 · ∇xf,

and the transport operator T is given by

Tf = τ · ∇xf − ∂α

(

τ⊥ · ∇xV f
)

.

We consider solutions to (1.5) in the space L2(R2 × S
1,dµ) = L2(dµ) with measure

dµ(x, α) = eV (x) 1

2π
dxdα .

We denote by 〈·, ·〉 the corresponding scalar product and by || · || the associated norm. We introduce
the orthogonal projection Π on the set of local equilibria Ker L consisting of all α-independent
distributions,

Πf :=
1

2π

∫

S1

f dα .

We also define the mass of a given distribution f ∈ L2(dµ) through the formula

Mf :=
1

2π

∫

R2×S1

f dxdα

so that Mfe
−V is the projection onto the unperturbed equilibrium distribution F0. We notice after

integrating (1.2) over R
2 × S

1 that the mass of any solution of (1.2) is conserved through time.
Moreover, any solution of (1.2) remains non-negative as soon as the initial datum is non-negative.

In this functional setting, the operators T and L have several nice properties that allow us to
apply the general theory for linear kinetic equations conserving mass as outlined in [3]. First of
all, L and T are closed operators on L2(dµ) such that L−T generates the C0-semigroup e(L−T)t on
L2(dµ). Furthermore, L is symmetric and negative semi-definite on L2(dµ),

〈Lf, f〉 = −D||∂αf ||2 ≤ 0 ,
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i.e. L is dissipative. Further, we have for any f ∈ L2(dµ),

TΠf = e−V τ · ∇xuf

with uf := eV Πf , which implies ΠTΠ = 0 on L2(dµ). Since the transport operator T is skew
symmetric with respect to 〈· , ·〉, we obtain the entropy equality

1

2

d

dt
||f ||2 = 〈Lf, f〉+ 〈Pκf, f〉,

for any f in L2(dµ). In the case κ = 0, if the entropy dissipation −〈Lf, f〉 was coercive with respect
to the norm || · ||, exponential decay to zero would follow as t −→ ∞. However, such a coercivity
property cannot hold since L vanishes on the set of local equilibria. Instead, Dolbeault et al. [3]
applied a strategy called hypocoercivity, first developed by Villani in [11]. The full hypocoercivity
analysis of the long time behaviour of solutions to this kinetic model in the case of a stationary
conveyor belt, κ = 0, is completed in [2]. For technical applications in the production process of
non-wovens, one is interested in a model including the movement of the conveyor belt, and our aim
is to extend the results in [2] to the case κ 6= 0. Following the idea of a micro-macro decomposition,
we shall split our assumptions into two main requirements: microscopic coercivity, which assumes
that the restriction of L to Ker⊥L is coercive, and macroscopic coercivity, which is a spectral gap-like
inequality for the operator obtained when taking a parabolic drift-diffusion limit, in other words,
the restriction of T to Ker L is coercive.

• Microscopic coercivity: The operator L is symmetric and the Poincaré inequality on S
1,

1

2π

∫

S1

|∂αf |2 dα ≥ 1

2π

∫

S1

(

f − 1

2π

∫

S1

f dα

)2

dα,

yields that for all f ∈ D(L),
−〈Lf, f〉 ≥ D||(1− Π)f ||2.

• Macroscopic coercivity: The operator T is skew-symmetric and for any g ∈ L2(dµ) such
that ug ∈ H1(e−V dx) and

∫

R2×S1
g dµ = 0,

||TΠg||2 =
1

4π

∫

R2×S1

e−V |∇xug|2 dxdα ≥ Λ

4π

∫

R2×S1

e−V u2g dxdα =
Λ

2
||Πg||2

by the spectral gap condition (H3).

In the case κ = 0, we have existence of a unique global normalised equilibrium distribution
F0(x) = e−V (x) in the intersection of the null spaces of T and L, Ker L ∩ KerT. For a moving
conveyor belt, F0 is not in the kernel of Pκ and we are not able to find the global Gibbs state of
(1.5) explicitly. However, the hypocoercivity method as applied to the fibre lay-down process in
[2] only depends on the first moment which cancels on the solution of the linear equation (1.5).
Moreover, the hypocoercivity theory is based on a priori estimates [3], and is therefore quite stable
under perturbation. These considerations in mind, we establish existence and uniqueness of a global
Gibbs state and determine the rate of convergence of solutions in L2(dµ) towards this equilibrium
distribution using hypocoercivity techniques. Namely, we prove the following result, giving an
explicit rate of convergence for small enough movement of the conveyor belt:
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Theorem 1.1. Under assumptions (H1)–(H5) and for 0 < κ ≪ 1 small enough, there exists a
unique stationary state

0 ≤ Fκ(x, α) ∈ L2(dµ)

of unit mass. In addition, for any solution f(t, ·) ∈ L2(dµ) of (1.2) with mass Mf we have

||f(t, ·)−MfFκ|| ≤ C e−λκt (1.6)

with λκ > 0 and C > 0 positive constants which only depend on the initial data f(t = 0, ·), the
relative speed of the conveyor belt κ, and the potential V .

In general, we are not able to compute the stationary state explicitly, but from the analysis in
[2] for the case κ = 0, we can expect that Fκ converges to e−V as κ → 0.

The rest of the paper is organized as follows. In Section 2, we prove the main hypocoercivity
estimate. This allows us to prove existence and uniqueness of a steady state in Section 3 by a
contraction argument.

Acknowledgements

EB is very grateful to the University of Cambridge for its sunny hospitality during the second
semester of the academic year 2015-2016. EB and CM acknowledge the support of the ERC Grant
MATKIT (ERC-2011-StG). FH acknowledges support from the Engineering and Physical Sciences
Research Council (UK) grant number EP/H023348/1 for the University of Cambridge Centre for
Doctoral Training, the Cambridge Centre for Analysis.

2 Hypocoercivity estimate

To follow an hypocoercivity strategy, we need to define a modified entropy functional. For this
purpose, let us first introduce the auxiliary operator

A := (1 + (TΠ)∗(TΠ))−1(TΠ)∗.

This operator is now classical after [3] (and the references therein). As in [3], the modified entropy
functional then reads

H[f ] :=
1

2
||f ||2 + ε1〈Af, f〉

for some suitably chosen ε1 ∈ (0, 1) to be determined later. We know crucially from [3] that H1/2[·]
is equivalent to || · || on L2(dµ),

1− ε1
2

||f ||2 ≤ H[f ] ≤ 1 + ε1
2

||f ||2, f ∈ L2(dµ) . (2.1)

If the potential gradient is unbounded, we will add an extra term to the energy functional,

G[f ] = H[f ] +
ε2
2π

∫

R2×S1

f2g dxdα

for a convenient choice of weight g(x, α) to be defined below. If the potential gradient is bounded,
we set ε2 = 0. In this section, we will prove the following hypocoercivity estimate:
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Proposition 2.1. Assume that hypothesis (H1)–(H5) hold and that 0 < κ ≪ 1 is small enough.
Let f be a solution of (1.2). If |∇xV | is unbounded, then ε2 > 0 and we assume in addition that
f(t = 0, ·) ∈ L2

(

g(x, α) 1
2πdxdα

)

, where g is a suitable Lyapunov function given in Proposition 2.2.
Otherwise, ε2 = 0. Then f satisfies the following Grönwall type estimate:

d

dt
G[f(t, ·)] ≤ −γ1G[f(t, ·)] + γ2M

2
f , (2.2)

where γ1 > 0, γ2 > 0 are explicit constants only depending on the initial data f(0, ·), the relative
speed of the conveyor belt κ and the potential V .

In fact, the estimate (2.2) is stronger than what is required for the uniqueness of a global Gibbs
state, and represents an improvement of the estimate given in [2]. If applied to the difference of
two solutions with the same mass, f̃ = f1 − f2, we can find an estimate of the exponential decay
rate towards equilibrium.

2.1 Lyapunov functional approach for weight function g

In order to prove the hypocoercivity estimate (2.2), we will distinguish two cases: either the po-
tential gradient is bounded, or it is unbounded. In the case of unbounded potential gradients, we
make use of a new weight function

g(x, α) = exp

(

βV (x) +G

(

τ(α) · ∇xV

|∇xV |

))

,

where β > 1 and G ∈ C1 ([−1, 1]), G > 0 are yet to be determined. The idea is to choose the weight
g in a way that it is a Lyapunov function for the fibre lay down process, allowing us to control
the perturbation operator Pκ. Indeed, we can show existence of such a Lyapunov function g under
appropriate conditions following the argument in [8]:

Proposition 2.2. Assume V ∈ C2(R2) is spherically symmetric outside some ball B(0, R), and
satisfies V ′(r) → ∞ as r → ∞. If κ < 1/2 and (H5) holds true, then there exists a function
g(x, α), a constant c > 0 and a finite radius ρ > 0 such that

∀|x| > ρ, ∀α ∈ S
1, L(g) ≤ −cg , (2.3)

where L is the adjoint of L in L2(g(x, α) dxdα),

L(g) := D∂ααg + (τ + κe1) · ∇xg + 2∂α

(

τ⊥ · ∇xV
)

g − ∂α

(

τ⊥ · ∇xV g
)

= D∂ααg + (τ + κe1) · ∇xg −
(

τ⊥ · ∇xV
)

∂αg − (τ · ∇xV ) g .

Proof of Proposition 2.2. Let us consider the function

g(x, α) = exp

(

βV (x) +G

(

τ(α) · ∇xV

|∇xV |

))

,

where G(Y ) = |∇xV |Γ(Y ) for a function Γ(·) to be determined, and we define

Y :=

(

τ · ∇xV

|∇xV |

)

, Y ⊥ :=

(

τ⊥ · ∇xV

|∇xV |

)

.
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Applying L to g, we can compute explicitly

L(g)
g

=D
(

∂ααG+ |∂αG|2
)

+ (τ(α) + κe1) · (β∇xV +∇xG)− |∇xV |Y ⊥∂αG− |∇xV |Y .

Since
∂αG = |∇xV |Y ⊥Γ′(Y ) ,

∂ααG = |∇xV |∂α
(

Y ⊥Γ′(Y )
)

= |∇xV |
(

−Y Γ′(Y ) + |Y ⊥|2Γ′′(Y )
)

,

we get

L(g)
g

=D
(

|∇xV |
(

−Y Γ′(Y ) + |Y ⊥|2Γ′′(Y )
)

+ |∇xV |2|Y ⊥|2
(

Γ′(Y )
)2
)

+ (τ(α) + κe1) · (β∇xV +∇xG)− |∇xV |2|Y ⊥|2Γ′(Y )− |∇xV |Y
=(β − 1−DΓ′(Y ))|∇xV |Y + kβe1 · ∇xV + (τ(α) + κe1) · ∇xG

+ |Y ⊥|2
(

D|∇xV |Γ′′(Y ) + |∇xV |2
[

D
(

Γ′(Y )
)2 − Γ′(Y )

])

.

In order to see which Γ to choose, let us divide by |∇xV | and denote the diffusion and transport
part by

diff(x, α) := (τ(α) + κe1) ·
∇xG

|∇xV | , tran(x) :=
e1 · ∇xV

|∇xV | ,

so we can rewrite the above and seek a positive constant c > 0 and a radius ρ > 0 such that for
any α ∈ S

1 and |x| > ρ,

(β − 1−DΓ′(Y ))Y + κβtran(x) + diff(x, α)

+ |Y ⊥|2
(

DΓ′′(Y ) + |∇xV |
[

D
(

Γ′(Y )
)2 − Γ′(Y )

])

≤ − c

|∇xV | .

To achieve this bound, note first of all that |Y | ≤ 1 and |tran| ≤ 1 for all (x, α) ∈ R
2×S

1. Further,
the diffusion term diff(·) can be made arbitrarily small outside a sufficiently large ball:

diff(x, α) = (τ + κe1) · ∇x

(

Γ

(

τ · ∇xV

|∇xV |

))

+ Γ

(

τ · ∇xV

|∇xV |

)

(τ + κe1) ·
∇x (|∇xV |)

|∇xV |

= (τ + κe1) ·
[

Γ′ (Y )∇xY + Γ (Y )
∇x(|∇xV |)

|∇xV |

]

,

and both |∇xY | and |∇x(|∇xV |)|/|∇xV | converge to zero as |x| → ∞ since we can deduce

lim
|x|→∞

|D2
xV (x)|

|∇xV (x)| = 0

from (H2)–(H4)–((H5). In other words, using the fact that the potential gradient is unbounded,
it remains to show that we can find constants γ > κβ > 0 such that

(β − 1−DΓ′)Y + |Y ⊥|2
(

DΓ′′ + |∇xV |
[

D
(

Γ′
)2 − Γ′

])

≤ −γ . (2.4)
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This can be done by an explicit construction. We fix ε0 ∈ (0, 1) and define Γ′ ∈ C0([−1, 1])
piecewise,

Γ′(Y ) =



















δ+ if Y > ε0,

δ+−δ−

2ε0
(Y + ε0) + δ− if |Y | ≤ ε0,

δ− if Y < −ε0,

where 0 < δ− < δ+ < 1/D are to be determined. With this choice of Γ′, we can assure that Γ
is strictly positive in the internval [−1, 1]. Now, let us show that there exist suitable choices of γ
and β for the bound (2.4) to hold. More precisely, choosing β such that (β − 1)/D ∈ (δ−, δ+) and
γ = ε0 (β − 1−Dδ−), γ̃ = ε0 (1 +Dδ+ − β), we have 0 < γ < γ̃. We split our analysis into cases:

• Assume Y > ε0. Then the LHS of (2.4) can be bounded as follows:

(β − 1−Dδ+)Y + δ+
(

Dδ+ − 1
)

|∇xV ||Y ⊥|2 < (β − 1−Dδ+)ε0 = −γ̃.

• Assume Y < −ε0. Then the LHS of (2.4) can be bounded as follows:

(β − 1−Dδ−)Y + δ−
(

Dδ− − 1
)

|∇xV ||Y ⊥|2 < −(β − 1−Dδ−)ε0 = −γ.

• Assume |Y | ≤ ε0. Since 1 = |Y |2 + |Y ⊥|2, we have |Y ⊥|2 ≥ 1− ε20. Further, setting

h = aY + b ∈ (δ−, δ+) , a =
δ+ − δ−

2
, b =

δ+ + δ−

2
,

we have Dh2 − h ≤ Dδ−(δ+ − 1/D). Now, using the fact that the potential gradient is
unbounded, we can find a radius ρ > 0 large enough such that for all |x| > ρ,

D(δ+ − δ−)

2ε0
−Dδ−

(

1

D
− δ+

)

|∇xV | < −2γ/(1 − ε20).

Putting these estimates together, we obtain for |x| > ρ :

(β − 1−Dh)Y + |Y ⊥|2
(

D(δ+ − δ−)

2ε0
+ |∇xV |

[

Dh2 − h
]

)

≤ (β − 1−Dδ−)ε0 + |Y ⊥|2
(

D(δ+ − δ−)

2ε0
+ |∇xV |

[

Dδ−
(

δ+ − 1

D

)])

≤ γ + (1− ε20)

(

D(δ+ − δ−)

2ε0
+ |∇xV |

[

Dδ−
(

δ+ − 1

D

)])

≤ −γ .

Remark 3. We point out that it is always possible to choose δ−, δ+, ε0, β such that κβ < γ holds
true. Indeed, recall that 0 < γ < γ̃ and if k < 1/2, then we can choose

• 0 < δ− < δ+ < 1/D such that

0 < k < 1− 1 +Dδ−

1 +Dδ+
.
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• 1 +Dδ− < β < 1 +Dδ+ such that

1 +Dδ−

1 +Dδ+
<

1 +Dδ−

β
< 1− κ.

For example, we could choose

β =
1

2

(

1 +Dδ−

1− k
+ 1 +Dδ+

)

.

• ε0 ∈ (0, 1) such that
κβ

(β − 1−Dδ−)
< ε0 < 1.

For example, we could choose

ε0 =
1

2

(

1 +
κβ

β − 1−Dδ−

)

.

Then we have κβ < γ as required.

2.2 Proof of Proposition 2.1

Differentiating the modified entropy G[f ], we obtain

d

dt
G[f ] = D0[f ] + D1[f ] + D2[f ] ,

where the entropy dissipation functionals D0, D1 and D2 are given by

D0[f ] = 〈Lf, f〉 − ε1〈ATΠf, f〉 − ε1〈AT(1− Π)f, f〉+ ε1〈TAf, f〉+ ε1〈ALf, f〉 , (2.5)

D1[f ] = ε1〈APκf, f〉+ ε1〈P∗
κAf, f〉 , (2.6)

D2[f ] = 〈Pκf, f〉+
ε2
2π

d

dt

∫

R2×S1

f2g dxdα . (2.7)

Note that the term 〈LAf, f〉 vanishes since it has been shown in [3] that A = ΠA and hence
Af ∈ Ker(L). We shall now estimate the dissipation of the entropy in the same spirit as in [2].

# Step 1: Estimation of D0[f ].

We will show the boundedness of D0, which is in fact the dissipation functional for a stationary
conveyor belt. We thus recall in the following Lemma some results from [2].

Lemma 2.1 (Dolbeault et al.). The following estimates hold true :

〈Lf, f〉 ≤ −D||(1− Π)f ||2, ||AT(1− Π)f || ≤ CV ||(1− Π)f ||.

||ALf || ≤ D

2
||(1− Π)f ||, ||TAf || ≤ ||(1 − Π)f ||.

10



In the analysis, we just take care of the fact that we work with densities of non-zero mass to
control the remaining contribution in D0. In what follows, we denote

g̃ = f −Mfe
−V ,

for any density f ∈ L2(dµ). Then g̃ has zero mass and
∫

R2 Πg̃ dx = 0 for all f ∈ L2(dµ). To

control the second term in (2.5), we note that ATΠ = (1 + (TΠ)∗TΠ)−1 (TΠ)∗TΠ shares its spectral
decomposition with (TΠ)∗TΠ, and by macroscopic coercivity

〈(TΠ)∗TΠf, f〉 = ||TΠf ||2 = ||TΠg̃||2 ≥ Λ

2
||Πg̃||2

and hence

〈ATΠf, f〉 ≥ Λ/2

1 + Λ/2
||Πg̃||2 .

Now recalling Lemma 2.1 and using ||Πg̃||2 = ||Πf ||2 −M2
f , we can estimate :

D0[f ] ≤ −D||(1− Π)f ||2 + ε1B||(1− Π)f || · ||f || − ε1
Λ/2

1 + Λ/2

(

||Πf ||2 −M2
f

)

,

where we defined B := CV + 1 +D/2.

# Step 2: Estimation of D1[f ].

We now turn to the entropy dissipation functional D1, which we will estimate using elliptic
regularity. Instead of bounding APκ, we apply an elliptic regularity strategy to its adjoint, as for
AT(1− Π) in [2]. Let f ∈ L2(dµ) and define h := (1 + (TΠ)∗TΠ)−1 f so that uh = eV Πh satisfies

Πf = e−V uh − ΠT
2
(

e−V uh
)

= e−V uh −
1

2
∇x ·

(

e−V ∇xuh
)

.

Then
A
∗f = TΠh = e−V τ · ∇xuh

and it follows that

||(APκ)
∗f ||2 = ||κ τ · ∇x(e1 · ∇xuh)e

−V ||2

=
κ2

2

∫

R2

e−V |∇x (e1 · ∇xuh) |2 dx

≤ κ2

2
||D2

xuh||2L2(e−V dx)

≤ κ2

2
C2
V ||Πf ||2 ,

where we used the elliptic regularity estimate of Proposition 5 in [2] in the last inequality. Here,
the positive constant CV can be choosen to be the same as in Lemma 2.1. This concludes the
boundedness of APκ,

||APκf || ≤ CV
κ√
2
||Πf || . (2.8)
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Using a similar approach for the operator P∗
κA, we rewrite its adjoint as

A
∗
Pκf = TΠh,

where we define h := (1 + (TΠ)∗TΠ)−1
Pκf for a given f ∈ L2(dµ), or equivalently

e−V uh −
1

2
∇x ·

(

e−V ∇xuh
)

= ΠPκf = PκΠf .

Multiplying by uh and integrating over R2, we have

||uh||2L2(e−V dx) +
1

2
||∇xuh||2L2(e−V dx) = −κ

∫

R2

e1 · ∇x (Πf)uh dx

= κ

∫

R2

(Πf) e1 · ∇xuh dx

≤ κ

∫

R2

∣

∣

∣
∇xuhe

−V/2
∣

∣

∣

∣

∣

∣
ΠfeV/2

∣

∣

∣
dx

≤ κ||∇xuh||L2(e−V dx)||Πf ||

≤ 1

4
||∇xuh||2L2(e−V dx) + κ2||Πf ||2 .

This inequality can be understood as aH1(e−V dx) → H−1(e−V dx) elliptic regularity result. Hence

||A∗
Pκf ||2 = ||TΠh||2 =

1

2
||∇xuh||2L2(e−V dx) ≤ 2κ2||Πf ||2 ,

and so we conclude
||P∗

Aκf || ≤
√
2κ||Πf || . (2.9)

Combining (2.8) and (2.9), the entropy dissipation functional D1 as given in (2.6) is bounded by

D1[f ] ≤ κε1

(

CV√
2
+

√
2

)

||Πf || ||f || ≤ 2κλ1 ||f ||2,

where we defined

λ1 :=
1

2

(

CV√
2
+

√
2

)

,

and where we used the relation ||Πf || ≤ ||f ||, which follows directly from Jensen’s inequality.

# Step 3: Estimation of D2[f ].

The adjoint for 〈·, ·〉 of the perturbation operator Pκ is given by

P
∗
κ = −Pκ − PκV .

We deduce
〈Pκf, f〉 = 〈f,P∗

κf〉 = 〈−Pκf, f〉 − 〈(PκV ) f, f〉 ,
and thus we can write

〈Pκf, f〉 =− 1

2
〈(PκV ) f, f〉 = κ

4π

∫

R2×S1

(e1 · ∇xV ) f2eV dxdα .
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We will now split our analysis into two cases: bounded and unbounded potential gradients. In the
first case, the control of the perturbation operator is trivial:

Case 1 Assume there exists a constant c2 > 0 such that |∇xV | ≤ c2 for all x ∈ R
2. Since in

this case ε2 = 0, the estimation of the dissipation functional D2 is trivially

D2[f ] = 〈Pκf, f〉 ≤
κc2
2

||f ||2 (2.10)

and we don’t require the construction of the additional weight g.

Case 2 Assume |∇xV | → ∞ as |x| → ∞. In that case, Proposition 2.3 allows us to control the
g-weighted L2-norm outside some fixed ball. More precisely, we have

1

2π

d

dt

∫

R2×S1

f2g dxdα =
1

2π

∫

R2×S1

(L− T+ Pκ) (f)fg dxdα

=
1

2π

∫

R2×S1

L(g)f2 dxdα− 1

π

∫

R2×S1

(∂αf)
2g dxdα

≤ 1

2π

∫ 2π

0

∫

|x|<ρ
L(g)f2 dxdα+

1

2π

∫ 2π

0

∫

|x|>ρ
L(g)f2 dxdα

≤ 1

2π

∫ 2π

0

∫

|x|<ρ

(

(L(g) + cg) e−V
)

f2eV dxdα− c

2π

∫

R2×S1

f2g dxdα.

≤C3(ρ)‖f‖2 −
c

2π

∫

R2×S1

f2g dxdα , (2.11)

where C3(ρ) := sup|x|≤ρ

(

|L(g) + cg|e−V
)

. Further, thanks to the choice of g, we have the estimate

∫

R2×S1

|∇xV |f2eV dxdα ≤ C4

∫

R2×S1

f2g dxdα (2.12)

with
C4 := sup

x∈R2

(

|∇xV |e(1−β)V
)

< ∞ .

Combining estimates (2.11) and (2.12), we have

D2[f ] =
κ

4π

∫

R2×S1

(e1 · ∇xV ) f2eV dxdα+
ε2
2π

d

dt

∫

R2×S1

f2g dxdα

≤ 1

2π

(

κC4

2
− ε2c

)
∫

R2×S1

f2g dxdα+ ε2C3(ρ)‖f‖2 . (2.13)

# Step 4: Putting the three previous steps together.
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We are now ready to choose a suitable ε1 > 0 following the approach in [2]. We write

D0[f ] + D1[f ] ≤−D||(1− Π)f ||2 + ε1B||(1− Π)f || · ||f || − ε1
Λ/2

1 + Λ/2

(

||Πf ||2 −M2
f

)

+ 2κλ1 ||f ||2

≤
(

−D + ε1B

(

1 +
1

2δ

))

||(1− Π)f ||2 + ε1

(

Bδ

2
− Λ/2

1 + Λ/2

)

||Πf ||2

+ 2κλ1 ||f ||2 + ε1
Λ/2

1 + Λ/2
M2

f ,

for any choice of δ > 0, and where we used the identity

||(1 − Π)f || · ||f || ≤ ||(1 − Π)f ||2 + ||(1− Π)f || · ||Πf || .

Let us choose first δ and then ε1 following the analysis in the case of a stationary belt [2]: we take

δ =
Λ/2

B (1 + Λ/2)

and define

r(D) := B

(

1 +B
Λ/2

1 + Λ/2

)

, s :=
Λ/4

1 + Λ/2
.

This allows us to rewrite the bound on the dissipation functional as

D0[f ] + D1[f ] ≤− (D − ε1r(D)) ||(1 − Π)f ||2 − ε1s||Πf ||2 + 2κλ1 ||f ||2

+ ε1
Λ/2

1 + Λ/2
M2

f .

With the same choice of ε1 ∈ (0, 1) as in [2], we can find λ0 > 0 such that

D − ε1r(D) ≥ ε1s ≥ 2λ0

with the constant λ0 only depending on Λ and CV and, thus, only on the potential V . From this
analysis, we conclude

D0[f ] + D1[f ] ≤ −2 (λ0 − κλ1) ||f ||2 + ε1
Λ/2

1 + Λ/2
M2

f .

Now adding the control of D2, we obtain a different estimate depending on the behaviour of the
potential gradient at infinity, following the analysis done in Step 3.

Case 1 If the potential gradient is bounded, we have G[·] = H[·], and we conclude from (2.10),

d

dt
G[f ] = D0[f ] + D1[f ] + D2[f ] ≤ −γ1 ||f ||2 + γ2M

2
f ≤ −γ1 G[f ] + γ2M

2
f

by the norm equivalence (2.1). Here, we defined

γ1 = 2λ0 − 2κλ1 +
κc2
2

> 0, γ2 = ε1
Λ/2

1 + Λ/2
> 0 .
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For our analysis to work, we have to impose that the movement of the conveyor belt is slow enough
with respect to the speed at which the fibres are produced, κ ≪ 1. More precisely, in the case of a
bounded potential gradient, let us suppose that

0 < κ <
2λ0

2λ1 + c2/2
<

λ0

λ1
.

Case 2 We conclude from (2.13),

d

dt
G[f ] =D0[f ] + D1[f ] + D2[f ]

≤− (2λ0 − 2κλ1 − ε2C3(ρ)) ||f ||2 +
1

2π

(

κC4

2
− ε2c

)
∫

R2×S1

f2g dxdα+ γ2M
2
f

≤− 2 (2λ0 − 2κλ1 − ε2C3(ρ))

1 + ε1
H[f ] +

1

2π

(

κC4

2
− ε2c

)
∫

R2×S1

f2g dxdα+ γ2M
2
f

≤− γ1 G[f ] + γ2M
2
f ,

again by norm equivalence (2.1), and where we defined

γ1 = min

{

2 (2λ0 − 2κλ1 − ε2C3(ρ))

1 + ε1
, c− κC4

2ε2

}

> 0 , γ2 = ε1
Λ/2

1 + Λ/2
> 0 .

Here, we choose ε2 small enough such that

0 < ε2 <
2(λ0 − λ1)

C3(ρ)
,

and we impose that the relative speed of the conveyor belt κ is small enough such that

0 < κ < min

{

2cε2
C4

,
1

2

}

.

This restriction also implies that κ < λ0/λ1 as 0 < κ < 1.

3 Existence and uniqueness of a steady state

Proposition 2.1 is the key result that allows us to easily deduce Theorem 1.1 from the hypocoercivity
estimate (2.1).

3.1 Proof of Theorem 1.1.

We are now ready to prove the existence of a global Gibbs state Fκ ∈ L2(dµ) of mass 1, using
the contraction of the modified entropy G[·]. Since the C0-semigroup (St)t≥0 conserves mass and
positivity, the set C defined by

C :=
{

f ∈ L2(dµ) : f ≥ 0, Mf = 1
}

remains invariant under the action of the C0-semigroup (St)t≥0,

St(C) ⊂ C.
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Integrating the hypocoercivity estimate (2.2) in Proposition 2.1, we find

G[Stf − Stg] ≤ e−γ1tG[f − g]

for any t > 0 and f, g ∈ C. It follows by Banachs fixed point theorem that there exists a unique
ut ∈ C such that St(u

t) = ut for each t ≥ 0. In fact, there exists a function u ∈ C such that
St(u) = u for all t ≥ 0. To see this, let tn = 2−n, n ∈ N, un = utn . Then S2−n(un) = un, and by
repeatedly applying the semigroup property,

∀k ∈ N, ∀n ∈ N, Sk2−n(un) = un .

Since C is bounded in L2(dµ), it is weakly compact in L2(dµ), and thus we can find a subsequence
(nj)

∞
j=1 and u ∈ C such that unj

converges weakly to u in C. We will now show that

∀n ∈ N, ∀k ∈ N, Sk2−n(u) = u .

Fix n ∈ N. Then for all M ∈ N,
S2−n−M (un+M ) = un+M .

Define Mj = nj − n for all j ∈ N such that Mj > 0. We have

Sk2−n(un+Mj
) = S

k2Mj2−n−Mj (un+Mj
) = un+Mj

.

By continuity of St(·) in the weak topology, un+Mj
⇀ u as j −→ ∞ implies

Sk2−n(un+Mj
) ⇀ Sk2−n(u),

which proves Sk2−n(u) = u as claimed. By density of the dyadic rationals {k2−n : k ∈ N, n ∈ N} in
R>0 and uniform continuity of St(u) in t for all u ∈ C, we conclude

∀t ≥ 0, St(u) = u .

This shows the existence and uniqueness of a global stationary state Fκ of mass 1.

To complete the proof of Theorem 1.1, we apply the hypocoercivity estimate (2.1) to the dif-
ference between a solution f ∈ L2(dµ) and the unique stationary state of the same mass, MfFκ, to
show exponential convergence to equilibrium in || · ||:

||f(t)−MfFκ||2 ≤
2

1− ε1

(

G[f(t)−MfFκ]−
ε2
2π

∫

R2×S1

(f(t)−MfFκ)
2 g dxdα

)

≤ 2

1− ε1
G[f(t)−MfFκ]

≤ 2

1− ε1
G[f(0)−MfFκ]e

−γ1t ,

which proves (1.6) with C2 = 2
1−ε1

G[f(0)−MfFκ] and rate of convergence λκ := γ1/2.

Remark 4. Let us investigate Theorem 1.1 from a spectral point of view. We rewrite the Fokker-
Planck equation (1.5) as

∂tf = Lκf = L0f + Pκf ,
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where L0 = L − T. In the case of a stationary conveyor belt κ = 0, the stationary state is char-
acterised by the eigenpair (Λ0, F0) with Λ0 = 0, F0(x) = e−V (x), and so Ker(L0) = 〈F0〉. By
hypocoercivity, the exponential rate of convergence λ0 can be calculated explicitly under assump-
tions (H1)-(H4), [2]. In other words, we have an isolated eigenvalue Λ0 = 0 and a spectral gap
[−λ0, 0], with the rest of the spectrum Sp(L0) discrete and to the left of −λ0 in the complex plane.
Adding the movement of a conveyor belt, if follows from the existence and uniqueness of the equilib-
rium distribution Fκ that dim(Ker(Lκ)) = 1. More precisely, the exponential decay to equilibrium
with rate λκ corresponds to a spectral gap [−λκ, 0].

Remark 5. Working in L2(dµ) we are treating the operator Lκ as a small perturbation of the case
κ = 0 with stationary conveyor belt. The space that is well-adapted to investigate the convergence
to Fκ in the case κ > 0 however is L2

(

F−1
κ

1
2πdxdα

)

. In this L2-space the transport operator T−Pκ

is not skew-symmetric and the collision operator L is not self-adjoint, so the hypocoercivity method
[3] cannot be applied. To get around this, one can split the operator Lκ differently into a transport
and a collision part following the approach in [1]. More precisely, we can write

Lκ = L̃− T̃,

where

L̃f = ∂α

(

∂αFκ −
∂αFκ

Fκ
f

)

,

T̃f = (τ + κe1) · ∇xf − ∂α

[(

τ⊥ · ∇xV +
∂αFκ

Fκ

)

f

]

.

It is easily seen that L̃ is symmetric and negative semidefinite, and that T̃ is skew-symmetric in
L2

(

F−1
κ

1
2πdxdα

)

. Further, the stationary state Fκ lies in the intersection of the kernels of the col-

lision and transport operators, Fκ ∈ Ker(L̃)∩Ker(T̃). In order to apply the hypocoercivity approach
with this definition of operators, we will need to show microscopic and macroscopic coercivity of L̃
and T̃. This requires as in [1] that we are able to control the behavior of the stationary state at
infinity:

e−µ1V (x) ≤ Fκ(x, α) ≤ e−µ2V (x)

for some constants µ1, µ2 > 0. This would be a very strong physical information about the behaviour
of the stationary state that we don’t know how to prove at the moment. Even with this information
at hand, this approach requires that the existence of the stationary state is known a priori. The
rate of convergence one obtains in this case may be different from the rate obtained here, and it is
not clear which method yields the better rate as both are most likely not optimal.
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[1] Vincent Calvez, Gaël Raoul, and Christian Schmeiser. Confinement by biased velocity jumps:
aggregation of escherichia coli. Kinet. Relat. Models, 8(4):651–666, 2015.

[2] Jean Dolbeault, Axel Klar, Clément Mouhot, and Christian Schmeiser. Exponential rate of
convergence to equilibrium for a model describing fiber lay-down processes. Appl. Math. Res.
Express. AMRX, (2):165–175, 2013.

17



[3] Jean Dolbeault, Clément Mouhot, and Christian Schmeiser. Hypocoercivity for linear kinetic
equations conserving mass. Trans. Amer. Math. Soc., 367(6):3807–3828, 2015.
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