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CHRISTOPHE CHEVERRY

Abstract. This article is concerned with the relativistic Vlasov equation, for collisionless
axisymmetric plasmas immersed in a strong magnetic field, like in tokamaks. It provides
a consistent kinetic treatment of the microscopic particle phase-space dynamics. It shows
that the turbulent transport can be completely described through WKB expansions.
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2 C. CHEVERRY

1. Introduction.

Understanding the transport processes in axisymmetric magnetically confined plasmas like
in tokamaks is a challenging goal. Of special interest are the collective events in the absence
of collisions and with a long-term view of several microseconds. The physical context is
here turbulence theory, and that refers to the deterministic study during long-times of the
Vlasov equations submitted to a strong Lorentz force.

The Vlasov equation is a transport equation for the time evolution of a distribution function
f(·). The value f(τ, x, v) gives the number of charged particles per unit volume having at
the time τ ∈ R+ near the position x ∈ R3 the velocity v ∈ R3. Under the influence of a
large exterior magnetic field B(·), the expression f(·) is subjected to:

(1.1) ∂τf + ε−1 v · ∇xf ± ε−2 [v ×B(x)
]
· ∇pf ± (E + v × B) · ∇pf = 0 .

The origin of the dimensionless formulation (1.1) is explained in Subsection 3.1.1. The plus
or minus sign (±) corresponds to the selection of positive or negative particles, of ions or
electrons. From now on, we will work with the sign −. Then, the observation time can be
adjusted in such a way that τ = 1 represents 10−4 seconds, which is before the sawtooth
crash but after turbulence has developed. The parameter ε is small , with ε := 10−4 � 1.
The function (E,B)(τ, x) is assumed to be known. It is introduced to reflect the influence
of a self-consistent electromagnetic field. The velocity v is limited by the speed of light, 1
in dimensionless variables. It is linked to the relativistic impulsion p through the relations:

(1.2) v(p) = p
(
1 + |p|2

)−1/2
< 1 , p(v) = v

(
1− |v|2

)−1/2
.

The ordinary differential equation underlying (1.1) is:

(1.3)
{
∂τxε = ε−1 vε , xε(0) = x0 ,
∂τvε = ε−2 c(|vε|) B(x)× vε + N(vε,E,B) , vε(0) = v0 ,

with functions c(·) and N(·) adjusted according to:

(1.4) 0 < c(|v|) := (1−|v|2)1/2 , N(v,E,B) := (1−|v|2)1/2 ((E·v) v−E+B×v
)
.

The analysis of (1.3) has a long history and many different facets. The basic motions
underlying (1.3) are discussed in most plasma physics books [1, 22, 24]. Mathematically,
several approaches are possible, the two most important being KAM theory [2, 6, 20] and
gyrokinetics [4, 9, 18]. In continuation of works on rotating fluids [12, 15], an alternative
method has been proposed in [13]. It allows to extend classical results in longer times.
The discussion depends heavily on the properties of the inhomogeneous magnetic field
B(·). The dipole model has been covered in [13], in connection with the description of
magnetospheres. Axisymmetric toroidal plasmas are considered here, with a view towards
fusion devices. The difference between the two situations comes mainly from the reduced
hamiltonian dynamics involving a potential well in the first case and some integrable system
of pendulum type in the second case. While the general strategy is the same, these two
distinct geometrical frameworks require specific studies. In comparison with [13], major
adaptations are needed. They make all the interest of the present contribution.
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The description of trapped-electron mode turbulence is complex. It seems unpredictable
because it is sensitive to small differences in positions or velocities. The motion is often
viewed as chaotic. However, a complete analysis is available. Under the influence of B(·),
the charged particles act synchronously by organizing themselves as oscillating waves or
coherent structures that are outlined below.

Theorem 1. [global and long time dynamics of charged particles in axisymmetric devices]
For axisymmetric configurations like in tokamaks, consider the standard model (2.12) used
to model the exterior magnetic field B(x). Suppose that the self-consistent electromagnetic
field (E,B)(τ, x) is a smooth known given function, and that the Assumption 3.2 given in
Paragraph 3.2.3 is satisfied. Then, the phase space may be decomposed into a finite number
of disjoint open subsets Ωj such that:

(1.5) Ω̄0 ∪ Ω̄1 ∪ · · · ∪ Ω̄m = R3 × R3 , Ωm 6= ∅ , Ω̊j = Ωj , m ∈ N .
Fix any j ∈ {0, · · · ,m} and any compact subset K b Ωj. Uniformly in (x0, v0) ∈ K, there is
some ε0 ∈ ]0, 1[, a time T ∈ R∗+ and profiles (Xj , Vj)(τ, x, v, s, υ) ∈ C∞([0, T ]×K×T2;R6)
with j ∈ N such that the asymptotic behaviour when ε ∈ ]0, ε0[ goes to zero of the solution
(xε, vε)(τ, x0, v0) to (1.3) can be approximated with infinite accuracy in the sup-norm by
the following multiscale and multiphase expansion:

(1.6)
(
xε
vε

)
(τ, x0, v0) ∼

ε→ 0

∞∑
j=0

εj
(
Xj

Vj

)(
τ, x0, v0,

ψl(τ, x0, v0)
ε

,
ψsε(τ, x0, v0)

ε2

)
.

The profiles t(Xj , Vj) and the phases (ψl, ψsε) are determined by easily solvable equations.
The phase ψsε(·) is itself an oscillation of small amplitude as indicated in (4.59).

The above oscillating structures are detailed in Paragraph 4.2.2. We find ∂υX0 ≡ 0 and
∂sX0 6≡ 0, whereas ∂υV0 6≡ 0 and ∂sV0 6≡ 0. Thus, the spatial part xε of (1.6) involves
large amplitude oscillations related to ψl as well as, with the higher frequency ε−2, small
amplitude oscillations with respect to ψsε. The derivatives of t(xε, vε) are of the order ε−2

or ε−1, which corresponds to the production of steep gradients. All these contributions are
physically significant because they all carry a large amount of energy.
The Vlasov equation (1.1) can be associated with an initial data f0(·) or a source term g(·).
Then, the distribution f(τ, ·) is obtained by solving the characteristics backwards. If f0(·)
or g(·) are not well prepared, that is if they are not functions of the adiabatic invariants, the
oscillations of (1.6) are triggered. Theorem 1 is therefore essential to understand plasmas
which are in a state far from thermodynamic equilibrium. As explained in Paragraph 4.1.2,
it furnishes concrete dynamical criteria (which depend on the choice of Ωj) for the long
time confinement of plasmas. It is a key to explore research fields like the non-diffusive
transport or, in the spirit of [13], the intermittency of electromagnetic waves. It could also
help develop computational methods or explain the origin of many microinstabilities.
The structure of the paper is as follows: Section 2 furnishes useful tools to deal with the
axisymmetric geometrical framework; Section 3 is designed to filter the oscillations; and
the last Section 4 is devoted to the WKB calculus and the justification of (1.6).
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2. Axisymmetric toroidal configurations.

The axisymmetric configurations furnish a paradigm for all types of magnetic confinement
systems [3, 24]. To study toroidal devices like tokamaks and spheromax, it is better to work
with a phase space that is adapted to the underlying dynamics. Following [7, 10], this entails
a change of spatial coordinates, which will be achieved in a two-step approach. Starting
from the cartesian coordinates x, this leads in Subsection 2.1 to the toroidal coordinates T ,
and then in Subsection 2.2 to the flux coordinates F . Expressed in terms of F , the field lines
are still not straight. As explained in Subsection 2.3, this can be remedied by decomposing
the velocity field in an adequate frame field. Subsection 2.4 gives an overview of these
transformations. In connection with the forthcoming analysis, some geometrical features
must be displayed. The related aspects are clarified in Subsection 2.5.

2.1. Toroidal coordinates. In dimensionless units (Paragraph 3.1.1), a position x = x̃/r
(with r ∈ R∗+ to be specified later) can be traced by its cartesian coordinates:

(2.1) x = x̃
r = x1 ec1+x2 ec2+x3 ec3 , ec1 :=

 1
0
0

, ec2 :=

 0
1
0

, ec3 :=

 0
0
1

.
The same point can also be identified by a set of one radial coordinate r ∈ R+ (the distance
from the magnetic axis) and two angle coordinates θ ∈ T := R/(2π Z) (the poloidal angle)
and φ ∈ T (the toroidal angle) which reflect the rotational invariances. These choices lead
to the selection of the toroidal coordinates:

Figure 1. Toroidal coordinates.

(r, θ, φ) ∈ [0, r0]× T2.

R0 ∈ R∗+ is the major radius.
r0 ∈ R∗+ is the minor radius.
The distance from the major
axis of the torus is:
R = R(r, θ) := R0 + r cos θ.

Change of coordinates:

x =

R cosφ
R sinφ
r sin θ

 Σct

�
Σtc

T =

 rθ
φ

 .
The new curvilinear coordinates r, θ and φ generate a reciprocal basis. The corresponding
normalized basis (er, eθ, eφ) is orthonormal. It is such that:

(2.2) er(T) =

 cos θ cosφ
cos θ sinφ

sin θ

, eθ(T) :=

− sin θ cosφ
− sin θ sinφ

cos θ

, eφ(T) :=

+ sinφ
− cosφ

0

 .

The plasma is supposed to be confined inside the (compact) toroidal chamber M which is:

(2.3) M :=
{

(r, θ, φ) ∈ R+ × T2 ; r ≤ r0
}
.
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2.2. Flux coordinates. For axisymmetric systems, the field lines lie in nested magnetic
flux surfaces, say Mψ with ψ ∈ R+. The cuts of these flux surfaces with the plane which
passes through the z−axis are closed curves which can be viewed as the level sets of a
poloidal flux function ψ(·). Hence, the poloidal cross sections Cψ take the following form:

(2.4) Cψ = Mψ ∩
{
(r, θ, φ);φ = 0

}
=
{

(r, θ) ∈ R+ × T ; ψ(r, θ) = ψ
}
, ψ ∈ R+ .

In practice, the function ψ(·, θ) is only defined for r ≤ r0. But, to avoid technicalities, we
will consider that it is globally defined.

Figure 2. Flux coordinates.

Assumption 2.1. [structure of the poloidal cross sections]

ψ(·) ∈ C∞(R+ × T;R) ,(2.5a)
ψ(0, θ) = 0 , ∀ θ ∈ T ,(2.5b)
∂rψ(r, θ) > 0 , ∀ (r, θ) ∈ R∗+ × T ,(2.5c)

lim
r→+∞

ψ(r, θ) = +∞ , ∀ θ ∈ T .(2.5d)

It follows from (2.5) that the poloidal cross-sections Cψ are
diffeomorphic to concentric circles. We can find orthogonal
trajectories to the family of curves Cψ which may be found
as the level curves of a new function χ(·) satisfying:

χ(r, θ + 2π) = χ(r, θ) + 2π , ∂θχ(r, θ) > 0 , ∀ (r, θ) ∈ R∗+ × T ,(2.6a)
∇pχ · ∇pψ = ∂rχ ∂rψ+ r−2 ∂θχ ∂θψ = 0 , ∀ (r, θ) ∈ R∗+ × T ,(2.6b)

where∇p = ∂r er+r−1 ∂θ eθ stands for the gradient in the polar coordinates (r, θ). With the
identification (2.6a), the values χ ∈ T of χ(·) can be viewed as angles. The flux coordinates
are defined by F := t(ψ, χ) ∈ R+ × T. They give access to the curvilinear coordinates:

(2.7)

ψχ
φ

 ≡
ψ(r, θ)
χ(r, θ)
φ(φ)

 Σft

�
Σt
f

T =

 rθ
φ

 ,
ψχ
φ

 Σfc

�
Σc
f

x ,
Σf
c := Σf

t ◦ Σt
c ,

Σc
f := Σc

t ◦ Σt
f .

Remark that:

(2.8) Σt
f (F, φ) =

(
Σ̌t
f (F), φ

)
, F = Σ̌f

t (r, θ) := t(ψ,χ)(r, θ) , Σ̌t
f := (Σ̌f

t )−1 .

Define the function$(·) which represents the angle of the direction∇pψ in the basis (er, eθ) :

(2.9)
$ : R+ × T −→ ]− π/2,+π/2 [

F = (ψ, χ) 7−→ $ = $(F) := arctan (r−1 ∂rψ
−1 ∂θψ)

(
Σ̌t
f (F)

)
.

It is adjusted such that eφ(F, φ) := eφ ◦ Σt
f (F, φ) = eφ(φ) and:

eψ(F, φ) :=
t∇pψ
|∇pψ|

= + cos$(F) er ◦ Σt
f (F, φ) + sin$(F) eθ ◦ Σt

f (F, φ) ,(2.10a)

eχ(F, φ) :=
t∇pχ
|∇pχ|

= − sin$(F) er ◦ Σt
f (F, φ) + cos$(F) eθ ◦ Σt

f (F, φ) .(2.10b)
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A basic example is when the poloidal cross sections form concentric circles. This situation
is a bit unrealistic, and it does not exploit the full potential of the functions ψ(·) and χ(·).
But, it will serve as guidelines for the testing of Assumptions and results. This is why it
will appear repeatedly throughout the text.

Example 1. [toy model] The choices ψ(r, θ) = r and χ(r, θ) = θ are compatible with (2.5)
and (2.6). Then F = t(r, θ) and T ≡ (F , φ). Moreover:

(2.11) Σ̌f
t (r, θ) = t(r, θ) , $ ≡ 0 , eψ ≡ er , eχ ≡ eθ .

The basis (eψ, eχ, eφ)(F, φ) is clearly orthonormal and positively oriented. The introduction
of F facilitates the spatial description of axisymmetric devices. But it does not take into
account the entire information contained in B, because it says nothing about the directions
inside the cotangent bundle TM pointed to by the external magnetic field.

2.3. Magnetic coordinates. The field lines are generated by a magnetic field having the
form b0 B(x̃/r), where b0 is a typical size of the amplitude of the magnetic field. The
present study starts from the standard descriptions of B(x). For instance, we can refer to
the book [10], chapter 3.6. The vector field B(·) can be decomposed according to:

(2.12) B = Btor+Bpol , Btor := I ∇φ , Bpol := ∇φ×∇ψ , Btor ⊥ Bpol .

The toroidal component Btor is produced by electromagnets. The axisymmetric hypothesis
implies that ∂φI ≡ 0. Moreover, for isotropic pressure plasmas, the poloidal current I does
not depend on χ so that I ≡ I(ψ), where I : R+ −→ R∗+ is a smooth positive function. The
poloidal component Bpol is supposed to be the result of the toroidal electric current that
flows inside the plasma. The magnetic field B(·) is nowhere-vanishing, with amplitude:

(2.13) 0 < b :=
(
b2tor + b2pol

)1/2
, btor := I |∇φ| , bpol := |∇φ| |∇ψ| .

Thus, expressed in flux coordinates, the scalar functions b(·), btor(·), and bpol(·) are just:

b(F) = (R−1 a) ◦ Σ̌t
f (F) , a(r, θ) :=

[
r−2 (∂θψ)2 + (∂rψ)2 + I(ψ)2]1/2 ,(2.14a)

0 < btor(F) = I(ψ) (R−1) ◦ Σ̌t
f (F) ,(2.14b)

0 < bpol(F) = (R−1 |∇pψ|) ◦ Σ̌t
f (F) .(2.14c)

Introduce the functionω(·) representing the angle of the direction B(·) in the basis (eχ, eφ) :

(2.15) ω : R+ × T −→ ]0,+π/2[
F = (ψ, χ) 7−→ ω = ω(F) := arctan (b−1

tor bpol)(F) .

The unitary vector field e‖(·) which is generated by the directions of B(·) is given by:

(2.16) e‖(F, φ) := sinω(F) eχ(F, φ) + cosω(F) eφ(F, φ) , sinω = b−1 bpol > 0 .

Expressed in toroidal coordinates, this becomes:

(2.17) e‖ ◦ Σf
t (T) := − ∂θψ

r a
er(T) + ∂rψ

a
eθ(T) + I(ψ)

a
eφ(T) .
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The unitary direction e‖ can be completed in order to obtain some positively oriented (non
holonomic) orthonormal basis (eψ, e⊥, e‖). It suffices to take eψ ≡ eψ and:

(2.18) e⊥(F, φ) := (e‖ × eψ)(F, φ) = cosω(F) eχ(F, φ)− sinω(F) eφ(F, φ) .

Example 2. [toy model] With ψ(r, θ) = r and χ(r, θ) = θ, we simply find:

(2.19) ω(F) ≡ ω(T) ≡ ω(r) = arctan I(r)−1 , a(r, θ) ≡ a(r) =
[
1 + I(r)2]1/2 .

The vector field B(·) remains contained in the plane 〈eχ, eφ〉. Viewed as a function of
(F, φ) and projected in the moving plane (eχ, eφ), it is still inhomogeneous with possible
variations in amplitudes (through the function b) and directions (through the function ω).
To straighten out the field lines, we can further implement the Clebsch representation, as
indicated in [10]. Unfortunately, the associated magnetic coordinates M are usually not
orthogonal. As a matter of fact, they allow to catch the direction e‖, but they generate
a contravariant curvilinear basis which has little to do with (eψ, e⊥, e‖). The advantages
resulting from the use of Clebsch variables are not clear when looking at the dynamics of
charged particles. In particular, the euclidean norm of the components of dM/dt would
not be associated with the kinetic energy, and therefore it would not be conserved. For
this reason, the transition from F to M will not be adopted. We will proceed differently by
decomposing the velocity field v in the frame field (eψ, e⊥, e‖).

2.4. Overview of the changes of basis. The aim of this Subsection 2.4 is to put apart
some notations and relations that will appear repeatedly in the text. The letters c, t, f
and m refer respectively to canonical, toroidal, f lux and magnetic representations. The
transformation allowing to pass from the coordinates of type ? ∈ {c, t, f} to the coordinates
of type ∗ ∈ {c, t, f} is denoted by Σ∗?. We have Σ?

? ≡ Id for all ? ∈ {c, t, f}. Moreover, in
accordance with Subsections 2.1 and 2.2, we have:

Σt
c(x) = T =

 r
θ
φ

(x) , Σf
t (T) = F =

ψχ
φ

(T) , Σf
c (x) = Σf

t ◦ Σt
c(x) .

The styles r, θ, φ, ψ and χ will be preferentially involved when r, θ, φ, ψ and χ are viewed
as functions of the preceding variables. Consider the unitary vector fields:

(2.20) e∗?i :=
t∇?Σ∗i?
|∇?Σ∗i? |

, e∗?�i := e∗?i ◦Σ?
� , Σ∗? =

Σ∗1?
Σ∗2?
Σ∗3?

, (∗, ?, �) ∈ {c, t, f}3.

This gives rise to orthonormal basis:
(2.21) (e∗?1, e∗?2, e∗?3) , (e∗?�1, e∗?�2, e∗?�3), (∗, ?, �) ∈ {c, t, f} .

Another way to formulate (2.20) is to say that e∗?i is the ith component of the orthonormal
basis associated to the coordinate system of type ∗, as it can be further decomposed in the
orthonormal basis coming from the initial coordinate system of type ?, allowing us to talk
about the jth component of e∗?i in the basis (e??1, e??2, e??3). The vector e∗?�i is just e∗?i viewed
as a function of the variable of type �.
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In fact, the last definitions can also be applied in the case ∗ = m, yielding for instance:

(2.22) emf1(F) := eψ(F) , emf2(F) := e⊥(F) , emf3(F) := e‖(F) .

The various possible changes of coordinates are summarized in the table below.

cartesian toroidal flux magnetic
curvilinear
coordinates (x1, x2, x3) (T 1, T 2, T 3)

= (r, θ, φ)
(F 1,F 2,F 3)
= (ψ, χ, φ) (M1,M2,M3)

orthonormal
basis (ec1, ec2, ec3) (etct1,etct2,etct3)

= (er,eθ,eφ)
(eftf1, e

f
tf2, e

f
tf3)

= (eψ, eχ, eφ)
(emf1, e

m
f2, e

m
f3)

= (eψ, e⊥, e‖)

Figure 3. Various changes of coordinates.

By convention, for ? ∈ {c, t, f} and for ∗ ∈ {c, t, f,m}, the orthonormal matrix O∗? makes
the transition from the orthonormal basis (e∗?1, e∗?2, e∗?3) to the canonical basis associated
to the coordinates of type ?, that is (e??1, e??2, e??3). In other words:

(2.23) tO∗? = (e∗?1, e∗?2, e∗?3) = (O∗?)−1, O∗? e∗?i = e??i , O∗?� := O∗? ◦ Σ?
� .

In (2.23), the matrix tO∗? is written in column vectors. With this in mind, observe that:

(2.24) O∗? = (O?
∗?)−1 = tO?

∗? , O/
?�O∗/� = O∗?� .

Recall also that e∗?i is decomposed in the orthonormal basis associated to the coordinates
of type ?. From the preceding definitions, it is clear that the functions e∗?, e∗?i and O∗? are
considered as depending on the coordinates of type ?. On the contrary, the functions e∗?�,
e∗?�i and O∗?� depend on the coordinates of type �. In fact, the matrices Of

tf (·) and Om
f (·)

are only functions of F, and they can be identified with the planar rotations:

(2.25) Of
tf (F) :=

+ cos$ sin$ 0
− sin$ cos$ 0

0 0 1

 , Om
f (F) :=

 1 0 0
0 cosω − sinω
0 sinω + cosω

 .
By construction, for all (?, ∗) ∈ {c, t, f}2 (the choice ∗ = m being excluded), we have:

(2.26) d?Σ∗? = D∗? O∗? , D∗? = (D∗?i δij)ij , D∗?� = (D∗?�i δij)ij := D∗? ◦ Σ?
� ,

where d? marks the differential with respect to the variable of type ?, whereas D∗? is a
diagonal matrix with elements D∗?i. The coefficients D∗?i can be interpreted as the inverses
of Lamé coefficients. As a matter of fact, they come from the amplitudes of the gradients
of the curvilinear coordinates. Of particular interest will be the following coefficients:

Df
cf1(F) :=

[
∂rψ(r, θ)2 + r−2 ∂θψ(r, θ)2 ]1/2

|(r,θ)=Σ̌t
f

(F ) ,(2.27a)

Df
cf2(F) :=

[
∂rχ(r, θ)2 + r−2 ∂θχ(r, θ)2 ]1/2

|(r,θ)=Σ̌t
f

(F ) ,(2.27b)

Df
cf3(F) := R ◦ Σ̌t

f (F)−1 = (R0 + r cos θ)−1
|(r,θ)=Σ̌t

f
(F ) .(2.27c)
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Example 3. [toy model] With ψ(r, θ) = r and χ(r, θ) = θ, we simply find:

(2.28) Df
cf1(T) = 1 , Df

cf2(T) = r−1 , Df
cf3(T) = R−1 .

2.5. Geometrical settings. The circle group T := R/(2π Z) has a transitive and faithful
action on the plane perpendicular to the direction emfc3(x) = e‖ ◦ Σf

c (x), that is:

emfc3(x)⊥ ≡ e‖ ◦ Σf
c (x)⊥ :=

{
v ∈ R3 ; v · emfc3(x) = 0

}
.

Starting from (emfc1, emfc2)(x), it allows to reach all other orthonormal basis of (emfc3)(x)⊥.
To this end, it suffices to define:
(2.29) (υ∗emfc1, υ∗emfc2) := (cos υ emfc1+sin υ emfc2,− sin υ emfc1+cos υ emfc2) , υ ∈ T .

By convention, for all υ ∈ T, we set υ∗emfc3 := emfc3. Consider the Ricci rotation coefficients
which are associated to the selection of (υ ∗ emfc1, υ ∗ emfc2). In other words:

(2.30) Γcj3i(x, υ) :=
(
υ ∗ emfci(x) · ∇x

)temc3(x) ·
(
υ ∗ emfcj(x)

)
, (i, j) ∈ {1, 2, 3}2 .

When looking at (2.30), it may be helpful to take into account the relations:

(2.31) (emfc? · ∇x)temfci · emfci = 0 , (emfc? · ∇x)temfci · emfcj + (emfc? · ∇x)temfcj · emfci = 0 .
Define:
(2.32) Γ∗j3i (·, υ) := Γcj3i

(
Σc
∗(·), υ

)
, (i, j) ∈ {1, 2, 3}2 , ∗ ∈ {t, f}

For (i, j) ∈ {1, 2}2, the definition of Γcj3i(x, ·) is based on (emfc1, emfc2)(x). As a matter of fact,
it is linked with the choice inside the plane emfc3(x)⊥ of the special basis (emfc1, emfc2)(x). On
the contrary, the Fourier coefficients:

(2.33) F
(
Γcj3i(x, ·)

)
k

:= 1
2π
´ 2π

0 e−i k υ Γcj3i(x, υ) dυ , k ∈ Z

are expressions which depend only on emfc3(·). In particular, we can put aside:

F(Γcj33)0 = F(Γc33i )0 = 0 , ∀ (i, j) ∈ {1, 2, 3}2 ,(2.34a)

C := F(Γc131)0 = F(Γc232)0 = 1
2
[
(emfc1 · ∇x)temfc3 · emfc1 + (emfc2 · ∇x)temfc3 · emfc2

]
,(2.34b)

We can also specify how the geometrical quantity C is related to I and ψ.

Lemma 2.1. [computation of C] With a(·) as in (2.14), we have:

C(x) = 1
2 div emfc3(x) = 1

2 r
[
− ∂r

(∂θψ
a

)
+ ∂θ

(∂rψ
a

) ](
Σt
c(x)

)
.(2.35a)

Proof. Since (emfc3 · ∇x)temfc3 · emfc3 = 0, we can interpret C according to:

C = 1
2

3∑
j=1

(emfcj · ∇x)temfc3 · emfcj = 1
2 Tr dxemfc3 = 1

2 div emfc3 = 1
2 (divT e‖ ◦ Σf

t ) ◦ Σt
c .

Look at (2.17). This gives immediately access to (2.35a). �

https://en.wikipedia.org/wiki/Christoffel_symbols
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It follows from (2.5) that, for all θ ∈ T, the function ψ(·, θ) : R+ −→ R+ is bijective. The
inverse function of ψ(·, θ) is denoted by ψ(·, θ). It is such that:

(2.36)

ψ: R+ −→ R+
ψ 7−→ ψ(ψ, θ) ,

ψ(ψ(r, θ), θ
)

= r , ψ
( ψ(ψ, θ), θ

)
= ψ .

Introduce the parametrization γψ : T −→ R+ × T given by:

(2.37) γψ(θ) :=
( ψ(ψ, θ)

θ

)
, γ′ψ(θ) = 1

∂rψ(ψ, θ)

(
−∂θψ(ψ, θ)
+∂rψ(ψ, θ)

)
.

The level set Cψ of (2.4) can be parametrized through Cψ =
{
γψ(θ) ; θ ∈ T

}
⊂ R+ × T.

Lemma 2.2. [circulation around Cψ] For all ψ ∈ R∗+ and all F ∈ C0(R∗+;R), we have:

(2.38)
´ 2π

0
[ r Ct F (a)

∂rψ

](
γψ(θ)

)
dθ = 0 , C? := C ◦ Σc

? .

Proof. Let a 7→ G(a) be a primitive of a 7→ a−2 F (a). The line integral over the closed
curve Cψ of the vector field generated by the potential G ◦ a is zero, meaning that:

(2.39) 0 =
´

Cψ
∇(G ◦ a) · dl =

´ 2π
0

[
a−2 F (a)

](
γψ(θ)

) t(∂ra, ∂θa)
(
γψ(θ)

)
· γ′ψ(θ) dθ .

Then, exploit (2.35a) and (2.37). By this way, we can easily extract (2.38). �

Example 4. [toy model] The formula (2.35) gives rise to C ≡ 0.
The properties of C play an important role in the subsequent analysis. It is therefore worth
mentioning that the current situation about C differs completely from [13]. In [13], the
function C(·) was strictly monotone along the field lines with a unique change of sign. By
contrast, in view of (2.38) applied with F ≡ 1 and taking into account (2.5c), we see that
the function C(·) of (2.34b) is bounded, and that it involves at least two changes of sign
along Cψ. It can even be zero on open parts of Cψ, where ψ(·) does not depend on θ. For
instance, in Example 1, we simply find C ≡ 0.

3. Reformulation of the dynamics.

Before getting to times τ ' 1, the solution (x, v) to (1.3) undergoes two different types of
rapid oscillations. The purpose of this Section 3 is to properly separate the two underlying
time-scales . To catch the oscillations appearing first, it is better to change τ into what
will be called the intermediate times t := ε−1 τ . Then, the system (1.3) becomes:

(3.1)
{
∂tx = v , x(0) = x0 ,
∂tv = ε−1 c(|v|) B(x)× v + ε N(v,E,B) , v(0) = v0 .

There remains a large factor, namely ε−1. A work of preparation based on Section 2 is
needed to see how this singular term acts on the phase space. This results at the end
of Subsection 3.1 in a two-scale model, from which we extract in Subsection 3.2 a notion
of mean flow. This mean flow is periodic. Here lies a key to derive uniform estimates,
to eliminate problems of secular growth. This property is the gateway to the three-scale
analysis that is initiated in Subsection 3.3.
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3.1. A work of preparation. For the sake of completeness, in Subsection 3.1.1, the origin
of the dimensionless formulation (1.1) is clarified. In Subsection 3.1.2, a few comments are
added to explain how the study of (3.1) is related to questions arising in fluid dynamics.
In Subsection 3.1.3, to provide a better fit with the motions of charged particles, the space
coordinate x is changed into (F, φ). On the other hand, the velocity v is decomposed in
the orthonormal basis (emf1, e

m
f2, e

m
f3)(F, φ) which is generated at the position (F, φ) by the

magnetic field. As explained in Subsection 3.1.4, interpreted in this frame field, the fast
scale of (3.1) acts on v in a simplified manner, through a group of fast rotations.

3.1.1. Dimensionless equations. As mentioned in the introduction, we will only consider
the case of electrons (sign −). The other case (ions) would require to change the data
accordingly. In standard units, the time, space and velocity variables ( t̃, x̃, ṽ) ∈ R+×R3×R3

are expressed respectively in seconds ( t̃), meters (x̃), and meters per seconds (ṽ). Starting
from ( t̃, x̃, ṽ), various changes of scales are possible [5, 13, 14]. The aim here is to adjust
the scalings to catch some turbulent phenomena.
Consider a population of electrons whose density in the phase space is denoted by f( t̃, x̃, ṽ).
The effects of collisions will be neglected. It follows that the particles interact mainly by
some electromagnetic field (Ẽ, B̃)( t̃, x̃) which is created collectively. On the other hand,
one must take into account the presence of a strong exterior magnetic field B(x), given by
(2.12). In this context, the relativistic Vlasov equation can be written:

(3.2) ∂ t̃f + ṽ · ∇x̃f − qe
[
Ẽ( t̃, x̃) + ṽ× B̃( t̃, x̃) + b0 ṽ×B(x̃/r)

]
· ∇p̃f = 0 .

The relativistic framework comes from the possible presence of energetic electrons. The
velocity v := ṽ/c has a magnitude |v| which is limited by 1, and it is linked to the relativistic
momentum p := p̃/me c through (1.2). Change the time t̃ into t := t̃/T, with T adjusted
in such a way that T := c−1 r. In (3.2), qe ' 1, 6 × 10−19C is the (absolute value of the)
charge of the electron; c ' 3 × 108ms−1 is the speed of light; me ' 9, 1 × 10−31 kg is the
mass of the electron; in agreement with experimental data, take r = 3m and b0 = 5 teslas,
so that T = 10−8 s. Now, retain that the non dimensional variables are:

(3.3) t := t̃

T , x := x̃
r , v := ṽ

c
, p := p̃

me c
, f( t̃, x̃, ṽ) = f

( t̃

T ,
x̃
r ,

ṽ
c

)
.

The quantity ωce := qe b0/me is known as the cyclotron frequency (or also the electron
gyrofrequency). Introduce the cyclotron frequency relative to the reference frequency T−1,
which is the small dimensionless number:

(3.4) 0 < ε := me

qe b0

1
T ' 10−4 � 1 , 1� 1

ε
= qe b0 T

me
' 104 .

Translate (3.2) in the new variables t, x and v (or p). This yields:

(3.5) ∂tf + v · ∇xf −
1
ε

[ 1
cb0

Ẽ(T t, rx) + 1
b0

v × B̃(T t, rx) + v ×B(x)
]
· ∇pf = 0 .

http://www-fusion-magnetique.cea.fr/gb/iter/iter02.htm
https://en.wikipedia.org/wiki/Cyclotron_resonance
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Let us make sure that the electromagnetic field (Ẽ, B̃)(·) is indeed a perturbation. In the
particular case under study, this amounts to introduce (E,B)(t, x, v) with:

(3.6)
(

Ẽ
B̃

)
( t̃, x̃, ṽ) :=

(
c b0 ε

2 E
b0 ε

2 B

)( t̃

T ,
x̃
r ,

ṽ
c

)
.

Then, the change of t into τ = ε t gives (1.1). Remark that τ ' 1 means that t ' ε−1,
which corresponds to 10−4 s. Thus the interval [ε, 1] interpreted in the time variable τ
covers the period [10−8 s, 10−4 s]. With regards to fusion applications, such a time span is
between the electron transit and the sawtooth crash, exactly where turbulence occurs.

3.1.2. The underlying fluid framework. The equation:
(3.7) ∂tv + (v · ∇x)v = ε−1 B(x)× v , v(0, x) = v0(x) ,
describes the motion of a pressureless gas submitted to a strong inhomogeneous magnetic
field. It is a simple model arising in magnetohydrodynamics. The characteristics which
are associated with (3.7) are obtained by solving the ordinary differential equation (3.1)
in the case c(·) ≡ 1 and N(·) ≡ 0. In [19], the authors analyze the interaction between the
penalization and the nonlinear transport term of (3.7). They explain how the flow modifies
the phase of the oscillation. This is done on a finite time interval, that is with t ∈ [0, T ]
for some T ∈ R∗+. In comparison with (3.7), the use of a kinetic description through the
Vlasov equation (1.1) has many advantages that are briefly enumerated below:

(1) The results of [19] cannot be applied over an extended period of times t. Indeed,
the crossing of the characteristics induces the blow-up during intermediate times
(for t ' 1) of the smooth solutions u to (3.7). On the contrary, the bicharacteristics
issued from (3.1) remain separate and are defined for all times t ∈ R. Thus, the
kinetic context is necessary to avoid the singularity formation;

(2) When dealing with fluid turbulence, the right hand term of (3.7) is usually replaced
by an arbitrary oscillating forcing term [11]. In magnetized plasmas, the agitation is
caused by the Lorentz force. Incidently, as will be seen later, the kinetic framework
allows to get around closure problems;

(3) In view of Theorem 1, the profiles t(Xj , Vj)(·) and the phases ψ?(·) of (1.6) depend
on the selected domain Ωj . Except perhaps in the libration case (toy model), the
long time behavior of f(·) differs according to the choice of Ωj . Clearly, such a
purely kinetic feature cannot be seen within a fluid (MHD) model. The assumption
of maxwellianity, at the basis of neoclassical theories [17], is here not satisfied.

3.1.3. Adapted spatial and velocity coordinates. From now on, we will work with the flux
coordinates F. We will follow the trajectory:

(3.8) R 3 t 7−→ t(F, φ)(t) := Σf
c ◦ x(t) = t(ψ(t), χ(t), φ(t)

)
∈ R3 .

On the other hand, the velocity v(t) is decomposed in the orthonormal basis (emcf1, e
m
cf2, e

m
cf3)

which is above the position F(t). In other words, with Om
cf as in (2.23), we consider:

(3.9) w(t) := Om
cf (F, φ)(t) v(t) , v(t) =

∑3
j=1w

j(t) emcfj(F, φ)(t) .

http://smai.emath.fr/cemracs/cemracs10/PROJ/slides-jardin-1.pdf
http://fusionwiki.ciemat.es/wiki/Neoclassical_transport
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In view of (3.9), the three components wj of w represent the coordinates of v in the moving
frame (emc1, emc2, emc3). The decomposition (3.9) allows to easily isolate inside w the two
directions, say w‖ (or v‖) and w⊥ (or v⊥), which are respectively parallel and perpendicular
to the magnetic field:
(3.10) w⊥ := w1 emc1 + w2 emc2 , w‖ := w3 emc3 , w = w⊥ + w‖ .

The triplet (F, φ, w) is not strictly speaking a position in a physical phase space, since w
cannot be interpreted as the time derivative of the position (F, φ). However, the use of w
facilitates the study of the underlying dynamics. Indeed, the kinetic energy is conserved
when passing from v to w in (3.9). We have |w(t)| = |v(t)| for all t ∈ R. Moreover, as
long as t ' 1, the part w‖ (or v‖) remains essentially the same, while the part w⊥ (or v⊥)
undergoes rotations in the plane orthogonal to the direction emc3. In short, we will consider
the time evolution of (F, φ, w). To this end, first exploit (2.26) to compute:

(3.11) ∂t

(
F
φ

)
= (dcΣf

c )
(
x(t)

)
v(t) = Df

cf (F) Of
cf (F) tOm

cf (F) w .

Then, apply the definition given to the matrices O∗?� as it is explained in Paragraph 2.4,
see especially (2.23), and recall (2.25) to extract:

(3.12) Of
cf

tOm
cf =

 teψ
teχ
teφ

( eψ , cosω eχ − sinω eφ , sinω eχ + cosω eφ ) = tOm
f .

We turn now to the study of ∂tw. Consider the Lie derivative Lv along the flow of x(·).
This derivative is thereby coordinate invariant. It is also the derivative in the velocity
direction. More precisely, given a tensor field f , this is just:
(3.13) Lvf(x) = (v · ∇x)f(x) = (tOm

c (x)w · ∇x)f(x) =
∑3
j=1 w

j (emcj(x) · ∇x
)
f(x) .

From (3.9), we can infer that:
(3.14) ∂tw(t) = Om

c

(
x(t)

)
∂tv(t) + Lv(t)Om

c

(
x(t)

)
v(t) .

The action of Om
c allows to straighten out the field lines. We have c(|v|) Om

c (B×v) = B0×w
where the direction of B0(·) is now fixed:

(3.15) B0(F, w) =

B1
0

B2
0

B3
0

(F, w) = c(|w|) b(F)

 0
0
1

 .
On the other hand, with N(·) as in (1.4), we find that Om

c N(v,E,B) = N(w, E, B) with an
electromagnetic perturbation transformed according to:
(3.16) E(F) := Om

cf (F) E ◦ Σc
f (F) , B(F) := Om

cf (F) B ◦ Σc
f (F) .

The right-hand term of line (3.14) takes into account the distortion that is induced by the
change of basis. It has a special structure, and it can be analyzed in terms of (F, φ, w). Use
(2.31) and consider (2.23) to find:
(3.17) Lv(t)Om

c

(
x(t)

)
v(t) = B1

(
F(t), w(t)

)
× w(t) .
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In (3.17), with v ≡ v(F, φ, w) = tOm
cf (F, φ)w, the function B1(·) is given by:

(3.18) B1(F, w) =

B1
1

B2
1

B3
1

(F, w) :=

 [(v · ∇x)temc3] ◦ Σcf · emcf2
[(v · ∇x)temc1] ◦ Σcf · emcf3
[(v · ∇x)temc2] ◦ Σcf · emcf1

 .
The function B1(·) of (3.18) does not involve the variable φ. It is not inadvertence. Due to
the axisymmetric properties, the metric tensor and the Christoffel symbols do not depend
on φ. In short, we have to deal with:

(3.19)

 ∂t

(
F
φ

)
= Df

cf (F) tOm
f (F) w ,

∂tw = ε−1 B(ε, F, w)× w + ε N(w, E, B) , B := B0(F, w) + ε B1(F, w) .
We can complete (3.19) with the initial data:

(F, φ)(0) = (F0, φ0) := Σf
c (x0) , F0 = t(ψ0, χ0) := Σ̌f

c (x0) ,(3.20a)
w(0) = w0 := Omcf (F0, φ0) v0 = w0

t( cos ς0 cos υ0 , cos ς0 sin υ0 , sin ς0
)
.(3.20b)

Retain that:
(3.21) |w0| = |v0| = w0 , ς0 = arctan

(
|w0‖|/|w0⊥|

)
= arctan

(
|v0‖|/|v0⊥|

)
.

The Lorentz force is acting only when w0 = t(w1
0, w

2
0, w

3
0) is such that (w1

0, w
2
0) 6= (0, 0),

that is when ς0 6= π/2 modulo π. This is the most interesting and generic case. With this
in mind, we can start with ς0 ∈ ]0, π[.
Assumption 3.1 (axisymmetric electromagnetic perturbation). We suppose that ∂φE ≡ 0
and that ∂φB ≡ 0.
Since the source term in (3.19) does not depend at all on the variable φ, we can isolate inside
(3.19) the part concerning t(F, w). The component φ can be put aside for the moment.
Indeed, it can be ultimately recovered from t(F, w).

3.1.4. The filtering method. The charged particles rotate rapidly in small circular orbits
which are perpendicular to the magnetic field. The velocity w can be expressed in spherical
coordinates with radial distance w ∈ R∗+, azimuth angle ς ∈ T and polar angle υ ∈ T, this
means that w and ς are slow scales, whereas υ is a fast scale. This aspect can be taken
into account by changing υ into ε−1 ν. This sort of filtering method leads to:
(3.22) w ≡ w(w, ς, υ) := w t( cos ς cos υ , cos ς sin υ , sin ς

)
, υ := ε−1 ν .

The representation (3.22) of w reveals the role of the variable υ ∈ T. To place more
emphasis on the rapid variations, compute:

(3.23) ∂νw = 1
ε

 0
0
1

× w = 1
ε

Λ w , Λ :=

 0 −1 0
1 0 0
0 0 0

 = − tΛ .

In summary, we have identified some effective slow variable z = t(ψ, χ,w, ς) ∈ (R+ × T)2

and a rapid variable ν ∈ R (while υ ∈ T). At time t = 0:
(3.24) z(0) = z0 := t(ψ0, χ0,w0, ς0) , ν(0) = ε υ0 .
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Convention 3.1. From now on, calligraphic fonts like B or N will be used to designate
expressions depending on (z, υ).

Replace w as indicated in (3.22). Then, the functions B?
∗(·) and N(·) lead to new expressions

B?∗(·) and N (·) depending on (z, υ). With this convention, for i ∈ {1, 2, 3}, we have:
(3.25) Bi = Bi

0 + εBi
1 = Bi(ε, z, ε−1 ν) , Bi(ε, z, υ) := Bi0(z) + εBi1(z, υ) .

In view of (3.15), we have:
(3.26) B1

0 ≡ 0 , B2
0 ≡ 0 , B3

0(z) = c(w) b(ψ, χ) .
On the other hand, we find:

B1
1(z, υ) = w

[
(cos ς υ ∗ emcf1 + sin ς emcf3) · (∇xtemc3) ◦ Σc

f

]
· emcf2 ,(3.27a)

B2
1(z, υ) = w

[
(cos ς υ ∗ emcf1 + sin ς emcf3) · (∇xtemc1) ◦ Σc

f

]
· emcf3 ,(3.27b)

B3
1(z, υ) = w

[
(cos ς υ ∗ emcf1 + sin ς emcf3) · (∇xtemc2) ◦ Σc

f

]
· emcf1 .(3.27c)

In the same way, we have:
(3.28) N (z, υ, E, B) = t(N 1,N 2,N 3)(z, υ, E, B) := N

(
w(w, ς, υ), E, B

)
.

Lemma 3.1 (interpretation of the dynamical system). Solving the differential equation
(1.3) amounts to the same thing as looking at the solution t(z, ν)(ε, z0, υ0; t) of:

(3.29) ∂t

(
z
ν

)
=
(
A
a

)(
ε, z,

ν

ε

)
,

(
z
ν

)
(0) =

(
z0
ε υ0

)
.

The nonlinear source term t(A, a)(ε, z, υ) is smooth. It is periodic with respect to υ ∈ T,
with a finite asymptotic expansion in powers of ε. More precisely:

(3.30) A(ε, ·) = A0(·) + εA1(·) , A? = t(A1
?,A2

?,A3
?,A4

?) ,
a(ε, ·) = a0(·) + ε a1(·) + ε2 a2(·) .

The spatial part of A(·) is such that Ai1 ≡ 0 for all i ∈ {1, 2}, and:

(3.31)
(
A1

0
A2

0

)
(z, υ) := w

(
Df
cf1 0 0
0 Df

cf2 0

)
tOm

f

cos ς cos υ
cos ς sin υ

sin ς

 .
The velocity part gives rise to A3

0 = 0. Moreover, with a function N (·) as in (3.28) and
functions Γf∗3?(F, υ) as in (2.30)-(2.32), we find:

A4
0 := w (cos ς Γf1

31 + sin ς Γf1
33) ,(3.32a)

A3
1 := cos ς cos υ N 1 + cos ς sin υ N 2 + sin ς N 3,(3.32b)
A4

1 := w−1 (− sin ς cos υ N 1 − sin ς sin υ N 2 + cos ς N 3) ,(3.32c)
On the other hand, retain that:

a0 := c(w) b ,(3.33a)
a1 := −w sin ς (tan ς Γf2

33 + Γf2
31) + B3

1 ,(3.33b)
a2 := w−1 (cos ς)−1 (− sin υ N 1 + cos υ N 2) .(3.33c)
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Proof. To derive (3.31), just consider the upper part of (3.19), and take into account (3.22).
To obtain (3.32), look at the bottom part of (3.19) where w is again replaced as in (3.22):

∂tw

cos ς cos υ
cos ς sin υ

sin ς

+ w ∂tς

− sin ς cos υ
− sin ς sin υ

cos ς

+ 1
ε

w ∂tν

− cos ς sin υ
+ cos ς cos υ

0


= 1

ε
w c(w) b

− cos ς sin υ
+ cos ς cos υ

0

+ w

 + sin ς B2
1 − cos ς sin υ B3

1
− sin ς B1

1 + cos ς cos υ B3
1

cos ς sin υ B1
1 − cos ς cos υ B2

1

+ ε

N 1

N 2

N 3

.
The selection of a0 as in (3.33a) allows to eliminate the terms with ε−1 in factor. The other
choices inside (3.32) and (3.33) are easily recognized by looking at the above identity. The
last equation of (3.29), the one on ν, can be viewed as an eikonal equation, whereas ν can
be interpreted as a phase. �

The Cauchy-Lipschitz theorem guarantees the local existence and uniqueness of a solution
to (3.29), defined on a maximal time interval

[
0, T (ε, z0, υ0)

]
with T (ε, z0, υ0) > 0. The

special oscillating structures of the source term A(·) confer particular properties on t(z, ν).
These are investigated step by step in the next Subsections.

3.2. The mean flow. The function z(·) of (3.29) can be decomposed into a mean principal
part, say Z(z0; ·) plus deviations. The expression Z(z0; t) = t(Ψ,X,W, ς)(z0; t) does not
depend on ε ∈ ]0, 1]. The time evolution of Z(z0; ·) is deduced from (3.29) by averaging the
oscillations (in order to eliminate the fast variable υ ∈ T) and by neglecting the effects of
O(ε)-terms. By this way, one comes to:

(3.34) ∂tZ = Ā0(Z) , Z(0) = z0 , Ā0(Z) := 1
2π
´ 2π

0 A0(Z, υ) dυ .

A priori, the life span T(z0) associated to (3.34) is finite. To show that T(z0) = +∞,
a first stage (Paragraph 3.2.1) is to remark that the dynamics of (X, ς) can be studied
separately. A second step (Paragraph 3.2.2) is to prove that the related reduced dynamics
are hamiltonian, and moreover that they are completely integrable. It follows a partition of
the phase space into subsets (Paragraph 3.2.3), with corresponding action angle variables
(Paragraph 3.2.4). The flow induced by (3.34) is therefore global, and it acts on these
distinct regions in different ways (Paragraph 3.2.5).

3.2.1. Foliation of the phase space. With the functions ω(·) and Df
cf?(·) of (2.15) and

(2.27), note simply:

(3.35) Df2(F) := Df
cf2(F) sinω(F) ∈ R∗+ , Df3(F) := Df

cf3(F) cosω(F) ∈ R∗+ .

When solving (3.34), the components of Z have different roles.

Lemma 3.2. [structure of the mean flow] The solution Z(z0; ·) to (3.34) can be put in the
form Z = t(ψ0,X,w0, ς). The part (X, ς) can be identified through:

(3.36)
{
∂tX = w0 Df2(ψ0,X) sin ς ,
∂tς = w0 Cf (ψ0,X) cos ς ,

{
X(0) = χ0 ,
ς(0) = ς0 .
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Proof. First, exploit (2.25) to compute:

tOm
f

0
0
1

 =

1 0 0
0 + cosω sinω
0 − sinω cosω

 0
0
1

 =

 0
sinω
cosω

.
Then, with Df

cfi(·) as in (2.26), use (2.34). By this way, a straightforward calculation
indicates that:

(3.37)
(
Ā1

0
Ā2

0

)
= w sin ς

(
0

Df
cf2 sinω

)
,

(
Ā3

0
Ā4

0

)
=
(

0
w Cf cos ς

)
.

Since Ā1
0 ≡ 0 and Ā3

0 ≡ 0, the components Ψ and W remain constant, equal respectively
to ψ0 and w0. The content of (3.36) is directly issued from (3.20) and (3.37). �

In Paragraph 3.2.2, we fix ψ0 and w0, and we concentrate on the flow (X, ς)(·) induced by
(3.36). The parameter w0 can be absorbed by changing t into w0 t. It does not affect the
form of the trajectories. On the contrary, the parameter ψ0 has such an impact.

3.2.2. Reduced hamiltonian structure. In view of (2.6), (2.15) and (2.27b), the function
Df2(·) is positive. This allows to define the first potential function:

(3.38) V1(ψ; X) := −
´ X

0 Cf (ψ, χ) Df2(ψ, χ)−1 dχ , (ψ,X) ∈ R+ × R .

In contrast to [13], the function V1(ψ; ·) has the following remarkable property.

Lemma 3.3. [periodic behavior of the first potential function] For all ψ ∈ R+, the potential
function V1(ψ; ·) is periodic of period 2π.

Proof. Fix ψ ∈ R+. When dealing with (3.38), it is easier to work with the variable θ
instead of χ. Recall (2.8) which gives:
(3.39) θ = Σ̌t

f2(ψ, χ) , ∂χθ = ∂χΣ̌t
f2(ψ, χ) .

Through ψ(·) and χ(·), we have access to Σ̌f
t (·). Compute dr,θΣ̌f

t (·) and the corresponding
inverse matrix to extract:
(3.40) 1 = (∂rψ)−1 (∂θχ ∂rψ− ∂rχ ∂θψ) ∂χΣ̌t

f2 .

It follows first from (2.27b) and (3.40), secondly from an interpretation of (2.6b), and
finally from (2.16) together with (2.14) that:

(3.41) ∂χΣ̌t
f2 Df

cf2 sinω = ∂rψ |∇pχ| sinω
∂θχ ∂rψ− ∂rχ ∂θψ

= ∂rψ sinω
r |∇pψ|

= ∂rψ

r a
.

Change the variable χ into θ in the integrand of (3.38), use the above identity (3.41), and
apply Lemma 2.2 with F (a) = a. This leads to:

(3.42)
ˆ 2π

0

Cf
Df2

(ψ0, χ) dχ =
ˆ 2π

0

[ r Ct a
∂rψ

](
γψ(θ)

)
dθ = 0 .

The function (Cf/Df2)(ψ0, ·) is clearly periodic with period 2π. Combined with (3.42),
this remark gives access to Lemma 3.3. �



18 C. CHEVERRY

Introduce also the second potential function:
(3.43) V2(ς) := − ln (cos ς) , ς ∈ ]− π/2, π/2[ .
The function V2(·) is positive with a strict global minimum at ς = 0. With V1(·) and V2(·),
we can construct some auxiliary function H(ψ; ·).

Definition 3.1. [energy function] The sum of the two potential functions gives rise to:
(3.44) H(ψ; X, ς) := V1(ψ; X) + V2(ς) , (ψ,X, ς) ∈ R+ × T×]− π/2, π/2[ .

The reason for introducing H(ψ; ·) is clear from what follows.

Lemma 3.4. [a constant of motion] For all ψ0 ∈ R+ and w0 ∈ R+, the function H(ψ0, ·)
is constant along the trajectories induced by (3.36), meaning that:
(3.45) H

(
ψ0; X(z0; t), ς(z0; t)

)
= H0 , ∀ t ∈ R , H0 := H(ψ0, χ0, ς0) .

Proof. In view of (3.36), this result is straightforward. �

As a consequence of Lemma 3.3, the function V1(ψ; ·) is bounded. On the other hand, the
function V2(·) is positive, and it goes to +∞ when ς ∈ ]− π/2, π/2[ tends to ±π/2. Now,
let us recall that ς0 was chosen in the interval ] − π/2, π/2[. Look at (3.45). This means
that ς(z0; t) remains confined in a compact set within ]−π/2, π/2[ for all t ∈ R. With this
in mind, Lemma 3.4 says that the positions occupied by (X, ς)(z0; ·) stay on the level set
of H(ψ0, ·) with energy H0, that is on L(ψ0,H0) with:
(3.46) L(ψ0,H0) :=

{
(X, ς) ∈ T×]− π/2, π/2[ ; H(ψ0,X, ς) = H0

}
.

The two-dimensional system (3.36) being conservative, it can be reduced to quadratures.

Proposition 3.1. [the reduced hamiltonian dynamics] The system (3.36) is endowed with
some hamiltonian structure, associated with the reduced hamiltonian:

(3.47) H(ψ0, q, p) := V1(ψ0, q) + p2

2 , (q, p) ∈ R := T× R .

It is therefore of pendulum type, equivalent to:

(3.48)
{
∂tq = + ∂pH(ψ0, q, p) = p ,

∂tp = − ∂qH(ψ0, q, p) = − ∂qV1(ψ0, q) ,

{
q(0) = q0 ,
p(0) = p0 .

Proof. The main task is to define t, q and p. Take 01
1(X) := X for all X ∈ T, as well as:

(3.49) 01
2(0) := 0 , 01

2(ς) :=
√

2 sgn ς (− ln cos ς)1/2 , ∀ ς ∈ ]− π/2, 0[∪]0, π/2[ .
The function 01

2 : ]− π/2, π/2[−→ R is strictly increasing, with 01
2
′(0) = 1. It is bijective

and of class C1(R). Thus, the following application is a diffeomorphism:

(3.50) 01 : T× ]− π/2, π/2[ −→ T× R
(X, ς) 7−→ (q, p) := t

(
01

1(X),01
2(ς)

)
.

Given z0 and some function f : ]−π/2, π/2[−→ R∗+, change the time variable t into t with:

(3.51) t ≡ t(z0; t) := w0
´ t

0 Df2
(
ψ0,X(z0; s)

)
f ◦ ς(z0; s) ds .
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In order to recover the hamiltonian formulation (3.48), the functions f(·) and 01
2(·) must

be adjusted in such a way that:
(3.52) sin ς = f(ς) 01

2(ς) , f(ς) = 01
2
′(ς) cos ς .

We can eliminate f(·) by combining the above relations to extract (01
2 0

1
2
′)(ς) = sin ς/ cos ς .

After integration, this yields p = 01
2(ς) as indicated in (3.49) and (3.50). Then, this gives

access to f(·) through the right part of (3.52). As expected, the function f(·) is positive,
with f(0) = 1. Now, it suffices to take q0 := χ0 and p0 := 01

2(ς0). �

The solution to (3.48) will be denoted by (q, p)(ψ0, q0, p0; t).

3.2.3. Phase portrait with respect to (q, p). According to Sard’s lemma, the set:
(3.53) F(ψ) :=

{
H ∈ R ; ∃ q ∈ R with V1(ψ, q) = H and Cf (ψ, q) = 0

}
of stationary values of V1(ψ, ·) is a bounded closed set of measure zero. To simplify the
discussion, we can work under the following hypothesis.
Assumption 3.2. [finite number of critical values] The set F(ψ) is finite:
(3.54) F(ψ) :=

{
H1(ψ), · · · ,Hm(ψ)

}
, H1(ψ) < · · · < Hm(ψ) .

In view of Lemma 2.2, the set F(ψ) is not empty. The cardinal of F(ψ) is m ∈ N and the
upper bound of F(ψ) is:
(3.55) Hm(ψ) := sup

{
H ; H ∈ F(ψ)

}
= max

{
H ; H ∈ F(ψ)

}
.

Given Hj ∈ F(ψ) and q as in (3.53), the position (q, 0) ∈ R is a fixed point of (3.48), which
is contained in the level set:

(3.56) Lj(ψ) :=
{

(q, p) ∈ R ; H(ψ0, q, p) = Hj
}
, L (ψ) :=

m⋃
j=1

Lj(ψ) .

The separatrices Lj(ψ) mark boundaries (made of homoclinic orbits) between trajectories
corresponding to distinct homotopy classes. Adopt the two conventions H0(ψ) := −∞ and
Hm+1(ψ) := +∞. Introduce the open domains:

RLj(ψ) :=
{

(q, p) ; Hj(ψ) < H(ψ, q, p) < Hj+1(ψ)
}
, ∀ j ∈ {0, · · · ,m} ,(3.57a)

RL(ψ) :=
{

(q, p) ; H(ψ, q, p) 6∈ F(ψ) , H(ψ, q, p) < Hm(ψ)
}

(3.57b)
= RL0(ψ) ∪ · · · ∪RLm−1(ψ) ,

RR(ψ) :=
{

(q, p) ; Hm(ψ) < H(ψ, q, p)
}
≡ RLm(ψ) .(3.57c)

Obviously RL0(ψ) = ∅. On the contrary, since H(ψ, q, ·) goes to +∞ when |p| → +∞, the
set RR(ψ) is not empty. The reduced phase space can be partitioned into:
(3.58) R = RL(ψ) ∪L (ψ) ∪RR(ψ) , RR(ψ) 6= ∅ .
For j ∈ {0, · · · ,m}, the open set Ωj of Theorem 1 is the pullback of RLj(ψ) in the original
phase space variables (x, v), that is:

(3.59) Ωj :=
{

(x, v) ∈ R3 × R3 ; Σf
c (x) = (ψ, χ, φ) , (q, p) = 01(χ, ς) ∈ RLj(ψ) ,

0 < |v| < 1 , Omcf (ψ, χ, φ) v = w ( cos ς cos υ , cos ς sin υ , sin ς
)}
.
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Now, two main types of motions may be distinguished:

(a) • Case L • Libration. This is inside RL(ψ).
The trapped particles are bouncing back and forth
between two poloidal angles ("banana" orbits).
They only explore part of the torus.

(b) • Case R • Rotation. This is inside RR(ψ).
The passing particles have a net parallel velocity.
They are in transit in q with momentum p not
changing sign. They explore all parts of the torus.

Figure 4. The two main types of motions.

In case L, that is when (q0, p0) ∈ RL(ψ0), let q1 and q2 (with q1 ≤ q2) be the turning points
associated with the energy level H0. The solution of (3.48) is periodic with period:

(3.60) PL ≡ PL(ψ0,H0) :=
ˆ q2

q1

√
2√

H0 −V1(ψ0, q)
dq , H0 ≡ H0 := H(ψ0, q0, p0) .

In case R, that is when (q0, p0) ∈ RR(ψ0), the function p(·;ψ0, q0, p0) is periodic of period:

(3.61) PR ≡ PR(ψ0,H0) := 1√
2

ˆ 2π

0

1√
H0 −V1(ψ0, q)

dq .

The other component q(·) satisfies:
(3.62) q(t) = (2π/PR) t + q∗(t) , q∗(t + PR) = q∗(t) , ∀ t ∈ R .
Due to the geometrical identification of q with q + 2π, the function q(ψ0, q0, p0; ·) is also
periodic of period PR. When the potential V1(ψ, ·) is simply the cosine function, analytic
representations (for the period, the action-angle coordinates, the canonical transformations,
etc.) are available in terms of Jacobi elliptic functions and complete elliptic integrals [8].
This is what allows in [7] to find compact formulas for the guiding-center orbits. On the
contrary, for general functions V1(ψ, ·), explicit formulas are not available. Only qualitative
properties remain. The function PL(ψ, ·) of (3.60) is increasing on RL(ψ), with PL(ψ, ·)
going to +∞ whenH tends from the left to elements in F(ψ). On the contrary, the function
PR(ψ, ·) as defined in (3.61) is clearly decreasing on RR(ψ).

Example 5. [toy model] In the case of Example 1, we simply find that V1 ≡ 0. The set of
critical values is F(ψ) = {0}, so that m = 1 and H1(ψ) = 0. Since the function V2(·) is
non negative, we have RL(ψ) = ∅. There remains:
(3.63) L1(ψ) ≡ L (ψ) =

{
(q, 0) ; q ∈ T

}
, RR(ψ) =

{
(q, p) ; q ∈ T , p 6= 0

}
.
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The motion is just a translation in q with a variable speed (depending on p0):
(3.64) (q, p)(ψ0, q0, p0; t) = (q0 + p0 t, p0) , ∀ t ∈ R .

Change the variable t into s = p0 t. The speed becomes constant, equal to 1. Viewed as a
function of s, the flow (q, p)(·) is periodic of period 2π. All particles spiral around the field
lines, and all gyrocenters make both toroidal and poloidal full rotations. The toy model is
concerned only with rotations (R). The periodicity in q is due to the axisymmetric context
(no mirror points). This situation is clearly complementary to the one of [13].

3.2.4. Action angle variables, consequences. Fix some j ∈ {0, · · · ,m}. Inside RLj(ψ), we
can find canonical coordinates, say:
(3.65) (I,Θ) = 02(ψ, q, p) = t(02

1,0
2
2)(ψ, q, p) = 0(ψ, χ, ς) := 02(ψ,01(χ, ς)

)
.

The new hamiltonian becomes:
(3.66) H(ψ, I,Θ) ≡ H(ψ, I) := H

(
ψ,02(ψ, ·)−1(I,Θ)

)
, (I,Θ) ∈ R× T .

We have ∂ΘH ≡ 0 and:

(3.67) 0 < ∂IH(ψ, I) = 2π
P(ψ,H) , P :=

{
PL(ψ,H) if (q, p) ∈ RL(ψ) ,
PR(ψ,H) if (q, p) ∈ RR(ψ) .

Use in place of (q, p) ∈ R the new canonical coordinates (I,Θ) of (3.65) where ψ = ψ0.
The system (3.48) is reduced to:

(3.68)
{
∂tI = 0 ,
∂tΘ = ∂IH(ψ0, I) ,

{
I(0) = I0 := 02

1(ψ0, q0, p0) ,
Θ(0) = Θ0 := 02

2(ψ0, q0, p0) .
The solution to this Cauchy problem (3.68) is globally defined. It is simply:
(3.69) (I,Θ)(I0,Θ0; t) =

(
I0 , Θ0 + ∂IH(ψ0, I0) t

)
, t ∈ R .

Change the time variable t into s with:
(3.70) s ≡ s(z0; t) := ∂IH(ψ0, I0) t(z0; t) , t ∈ R .

Expressed in terms of s, the flow associated to (3.68) becomes a uniform translation:
(3.71) (I,Θ)(I0,Θ0; s) = ( I0 , Θ0 + s ) , s ∈ R .

It must be clear that the action angle variables (I,Θ) as well as the transformations 02(·)
and s(·) depend on the choice of j ∈ {0, · · · ,m}. Now, the mean flow Z(z0; t) can also be
viewed as a function of s. This amounts to consider the application:
(3.72) Z0(z0; s) = t(ψ0,X0(z0; s),w0, ς0(z0; s)

)
, s ∈ R ,

where Z0(·) is uniquely determined by the relation:
(3.73) Z0

(
z0; s(z0; t)

)
= t(ψ0,X(z0; t),w0, ς(z0; t)

)
, ∀ t ∈ R .

With ? ∈ {i, e}, consider smooth functions H̃+?
j : R+ −→ R and H̃−?j+1 : R+ −→ R satisfying:

(3.74) Hj(ψ) < H+e
j (ψ) < H+i

j (ψ) < H−ij (ψ) < H−ej+1(ψ) < Hj+1(ψ) , ∀ψ ∈ R .
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In (3.74), the symbols "i" and "e" stand respectively for interior and exterior. In practice
the value of ψ is bounded, say by ψm ∈ R∗+. On the other hand, the velocity can be
kept away from the two extreme values v = 0 and |v| = 1, say wi ≤ w ≤ wi+1 for some
(wi,wi+1) ∈ ]0, 1[2. Taking this into account, we can distinguish the compact set:

(3.75) K? :=
{
z = t(ψ, χ,w, ς) ∈ (R+ × T)2 ; 0 ≤ ψ ≤ ψm ,wi ≤ w ≤ wi+1 ,
Hj(ψ) < H+?

j (ψ) ≤ H(ψ;χ, ς) ≤ H−?j+1(ψ) < Hj+1(ψ)
}
.

As indicated in Theorem 1, select any compact set K b Ωj . Any such K can be included
inside the pull back of some Ki. In other words, with the notations of (3.59) and (3.75),
we can find two functions H+i

j (·) and H−ij+1(·) such that:

(3.76) K ⊂
{

(x, v) ∈ R3 × R3 ; t(ψ, χ,w, ς) ∈ Ki } .
Thus, with no loss of generality, the discussion may be restricted to Ki. From now on, we
will work with z0 ∈ Ki. Below, we give us some room for manoeuvre in so far as z ∈ Ke.

Lemma 3.5. [a periodic flow with uniformly bounded derivatives] The function Z0(·) is
periodic in s with period 2π. Whatever Ke as in (3.75) is, it follows that Z0(·) has bounded
derivatives of all orders with respect to (z0, s), uniformly in (z, s) ∈ Ke×R. For all s ∈ R,
the application z 7−→ Z0(·; s) is invertible, and moreover:

(3.77) ∃ c(Ke) ∈ R∗+ ; c(Ke) ≤ |det (dz0Z0)(z; s)| , ∀ (z, s) ∈ Ke × R .

Proof. The change (3.70) is precisely introduced to normalize the period of Z(·). It follows
that the function Z0(z; ·) is periodic with period 2π, independently on the choice of z ∈ Ke.
The derivatives of Z0(·) can be computed by using the formula:

(3.78) (X0, ς0)(z0; s) = 0(ψ0, ·)−1(I0,Θ0 + s) , (I0,Θ0) = 0(ψ0, χ0, ς0) .

This implies that all derivatives of Z0(·) are again periodic in s with period 2π, regardless
of the choice of z ∈ Ke. On the other hand, the coefficient det dz0Z0(·) is nowhere zero
since it comes from a flow, or just consider (3.78). Since it is periodic in s, it is bounded
below on the compact set Ke × T, as indicated in (3.77). �

Remark 3.1. Lemma 3.5, especially the bound for all s ∈ R, would not be true if the time
variable t had not been changed adequately (into s), if for instance the time variable t had
been chosen. To be convinced of this fact, just remark that:

(3.79) ∂z0

[
Z0
(
z0; ∂IH(ψ0, I0) t

)]
= ∂sZ0(z0; s) ∂2

z0IH(ψ0, I0) t + ∂z0Z0(z0; s) .

Observe that the term with t in factor gives rise to a linear growth with respect to t.

To gain some uniform stability in t with respect to variations in the initial data, it is
essential to look for the specific coordinates (I,Θ) and the special time variable s. As a
matter of fact, the right strategy is first to locate the action I and secondly to normalize
through a change of time variable the speed of propagation in Θ. In the case R of a pure
rotation, these manipulations are simplified.
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Example 6. [toy model] Here, there is no need for the transformation 02(·). It suffices to
take (I,Θ) ≡ (p, q). The changes of time variable (3.51) and (3.70) become:

(3.80) t = w0 r
−1 f(ς0) t , s = p0 t , s ≡ s(z0; t) = w0 r

−1 f(ς0) p0 t .

Recall that p0 = 01
2(ς0). Using (3.52), this yields f(ς0) p0 = sin ς0. This is consistent with

a direct analysis of (3.36) that would lead to s = w0 r
−1 sin ς0 t. In accordance with the

next definition (3.83), we find also:

(3.81) P (z0) = 2π r
w0 sin ς0

, P(ψ0,H0) ≡ PR(H0) = 2π
p0

= 2π√
2H0

.

On the other hand:

(3.82) Z0(z0, s) = t(ψ0, χ0 + s,w0, ς0) , (dz0Z0)(z0; s) = Id , ∀ s ∈ R .

3.2.5. Different long-time behaviors. Let P (z0) be such that:

(3.83)
{

t
(
z0;P (z0)

)
= PL(ψ0,H0) if (q0, p0) ∈ RL(ψ0) ,

t
(
z0;P (z0)

)
= PR(ψ0,H0) if (q0, p0) ∈ RR(ψ0) .

As a consequence of the preceding analysis, we can state the following.

Lemma 3.6. [periodicity of the mean flow] The solution Z(z0; ·) to (3.34) is periodic in
time t of period P (z0). In particular, it is globally defined, with T(z0) = +∞.

Proof. Indeed, the two components Ψ and W remain constant. On the other hand, with t
as in (3.51) and in view of Paragraph 3.2.3, we have:

(X, ς)(z0; t+ P ) = (01)−1((q, p)(ψ0, q0, p0; t + P )
)

= (01)−1((q, p)(ψ0, q0, p0; t)
)

= (X, ς)(z0; t) . �

With the equation (3.19), we can also extract:

(3.84) ∂tφ = e0
(
z,
ν

ε

)
, e0(z, υ) := w (0, 0,Df

cf3) tOm
f

cos ς cos υ
cos ς sin υ

sin ς

.
The function (φ, ν)(·) can also be decomposed into a mean principal part (Φ,ν)(·) plus
deviations. The functions Φ and ν express the mean motion of the toroidal angle φ and
of the phase ν. With Df3 as in (3.35), observe that:

(3.85) ē0(z) = w Df3(F) sin ς , ā0(z) = a0(z) = c(w) b(F) .

Thus, knowing what (X, ς)(z0; ·) is, the two components Φ and ν can be deduced from:

Φ(z0; t) = φ0 + w0
´ t

0 Df3
(
ψ0,X(s, z0)

)
sin ς(s, z0) ds ,(3.86a)

ν(z0; t) = c(w0)
´ t

0 b
(
ψ0,X(s, z0)

)
ds .(3.86b)

Apart from exceptional cases, we have:

6 ∃k ∈ Z ; Φ
(
z0; t+ P (z0)

)
= Φ(z0; t) + 2 k π .
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On the side of ν, there is also no possible geometrical identification of ν with ν + c that
could be uniform with respect to ε ∈ ]0, 1]. In general, neither Φ nor ν are periodic in t.
However, their time behaviors fall under the following notion:

Definition 3.2. [linear plus periodic function] A function F(·) of a single variable t ∈ R
is said linear plus periodic if there exists some c ∈ R∗ and some periodic function F∗(·) of
period P ∈ R∗+ such that:
(3.87) F(t) = c t+ F∗(t) , F∗(t+ P ) = F∗(t) , ∀ t ∈ R .

Combine (3.67) and (3.83) to get:

(3.88) s(z0; t) = 2π t
P (z0) + s?

(
z0; 2π t

P (z0)
)
, s?(z0; t+ 2π) = s?(z0; t) , ∀ t ∈ R .

Now, expressions like [
(
z, ε−1ν) with [ ∈ {A, a, e0} as in (3.29) are obtained by composing

a periodic function (in υ) with the form (3.87). The result belongs to another category.

Definition 3.3. [quasiperiodic function] A function Z(·) of a single variable t ∈ R is said
quasiperiodic of order m ∈ N, with 2 ≤ m, if there exists a function QZ(·) of m variables,
say (t1, · · · , tm) ∈ Rm, periodic in the sense that:
(3.89) QZ(t1, · · · , tj + 2π, · · · , tm) = QZ(t1, · · · , tm) , ∀ j ∈ {1, · · · ,m} ,
and m positive rationally independent frequencies (ω1, · · · , ωm) ∈ (R∗+)m such that:
(3.90) Z(t) = QZ(ω1 t, · · · , ωm t) , ∀ t ∈ R .

After integration of ∂tν or ∂tφ through (3.29) and (3.84), it is expected (among other
things) that some rapidly oscillating quasiperiodic features emerge.

3.3. Towards a three-scale analysis. At first approximation, the solution z(·) to (3.29)
is supposed to look like the function Z(·) of (3.34). As a byproduct of Subsection 3.2,
the phase space is foliated by two-dimensional surfaces on which the mean flow Z(·) is
completely integrable. By using action angle variables and by changing t into s, the
motions reduce to simple rotations. This geometrical rigidity is crucial. It will allow
us to implement here a sort of generalized filtering method.
The application s(z0; ·) has been introduced at the level of (3.70), as a combination of (3.51)
and (3.70). It is well defined only for z0 = (ψ0, χ0,w0, ς0) with (χ0, ς0) ∈ RL(ψ0)∪RR(ψ0).
It is bijective, with inverse t(z0; s). Recall that:

(3.91) 0 < ∂ts(z0; t) = ∂IH(ψ0, I0) w0 Df2(ψ0,X) 01
2
′(ς) cos ς .

Remark that the derivative ∂ts(z0; ·) viewed as a function of s ∈ R is periodic of period 2π.
There is a deep reason for introducing s, which has been explained in Remark 3.1. Change
further s into τ := ε s (with τ 6= τ). Now, we can turn to the study of (3.29). Interpreted
in terms of τ, this yields a solution t(z, ν)(ε, z0, υ0; τ) of:

(3.92) ∂τ

(
z
ν

)
= 1
ε

(
A
a

)(
ε, z; τ

ε
,
ν

ε

)
,

(
z
ν

)
(0) =

(
z0
0

)
+ ε

(
0
υ0

)
.
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By construction, we have:

(3.93)
(

A
a

)
(z0 | ε, z; s, υ) := ∂ts

(
z0; t(z0; s)

)−1
(
A
a

)
(ε, z, υ) .

The dependence on z0 of the function t(A, a)(·) is introduced through the factor (∂ts)−1.
If need be, it will be mentioned. But otherwise, when it has no effect, it will be simply
omitted and forgotten as is the case for (3.92).
From now on, we will work locally in time, with τ ∈ [0, T ] for some T ∈ R∗+. The
source term t(A, a)(·) is periodic of period 2π both in s and υ. In Paragraph 3.3.1, as a
preliminary point, some operations on such periodic functions are introduced. They will be
used throughout the text. Then, the aim is to remove from (3.92) as much singular terms
as possible. To this end, we perform a lifting procedure presented in Paragraph 3.3.2. This
requires to solve some homological equation studied in Paragraph 3.3.3. This results in a
new system which is still of the form (3.92) but with a partial desingularization. As stated
in Proposition 3.2 which is proved in Paragraph 3.3.4, the source term A may be replaced
by A with A = O(ε).

3.3.1. Operations on periodic functions. Let Z(s, υ) be a function depending on (s, υ) ∈ T2.
Eventually, the function Z(·) may involve other (not listed) parameters (like ε, z, etc.).
Given s ∈ T, the quantity Z̄(s) is the mean value of Z(s, ·) with respect to υ ∈ T. On the
other hand, 〈Z̄〉 is the mean value of Z̄(s) with respect to s ∈ T. In other words:

(3.94) Z̄(s) := 1
2π
´ 2π

0 Z(s, υ) dυ , 〈Z̄〉 := 1
(2π)2

´ 2π
0
´ 2π

0 Z(s, υ) ds dυ .

The oscillating parts of Z(s, ·) and Z̄(·) are respectively Z∗(s, υ) and Z̄?(s) with:
(3.95) Z∗(s, υ) := Z(s, υ)− Z̄(s) , Z̄?(s) := Z̄(s)− 〈Z̄〉 .
These operations can be interpreted at the level of the Fourier series of Z(·) according to:

(3.96) Z(s, υ) =

Z̄(s)︷ ︸︸ ︷
c(0,0)︸ ︷︷ ︸
〈Z̄〉

+
∑
p∈Z∗

c(p,0) e
ip s

︸ ︷︷ ︸
Z̄?(s)

+
∑

(p,q)∈Z×Z∗
c(p,q) e

i(p s+q υ)

︸ ︷︷ ︸
Z∗(s,υ)

.

There are also two actions ∂−1
υ and ∂−1

s which correspond to the inverse operators of the
derivations ∂υ and ∂s (we have ∂−1

υ ∂υ = Id and ∂−1
s ∂s = Id) with values in the set of

functions with zero mean. For instance:

∂−1
s Z̄?(s) :=

´ s
0 Z̄(r) dr − 1

2π
´ 2π

0
(´ s

0 Z̄(r) dr
)
ds , 〈∂−1

s Z̄?〉 = 0 .

3.3.2. The lifting procedure. The procedure described below is an adaptation of the one
presented in [13]. In contrast with [13], the discussion is not global in the phase space.
The pendulum specificities force us to work locally, inside Ωj for some j ∈ {0, · · · ,m},
according to the partition (3.58). Define:
(3.97) D :=

{
z = t(ψ, χ,w, ς) ; (χ, ς) ∈ RL(ψ) ∪RR(ψ)

}
.
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z(τ)

τ z(τ)

Ξ

Figure 5. The lift.

Consider a smooth map:

(3.98) C∞ 3 Ξ : [0, 1]×D× T2 −→ R4

(ε, z, s, υ) 7−→ Ξ(ε, z; s, υ) .

Fix j ∈ {0, · · · ,m} and Ki as in (3.75). Recall Lemma 3.1.

Definition 3.4. [lift] A lift on Ki × [0, T ] through Ξ(·) of the function z(ε, z0, υ0; τ) is a
function z(ε, z0, υ0; τ) with z = t(z1, · · · , z4) ∈ (R+ × T)2 such that for all (ε, z0, υ0, τ) in
the domain [0, 1]×Ki × T× [0, T ], we have:

(3.99) z(ε, z0, υ0; τ) = Ξ
(
ε, z(ε, z0, υ0; τ); τ

ε
,
ν(ε, z0, υ0; τ)

ε

)
.

The introduction of a well chosen lift allows to remove the singular term ε−1 A0 from (3.92),
while conserving the same form as (3.92), and while staying in the framework of periodic
functions of period 2π in both variables s and υ. As a matter of fact:

Proposition 3.2. [desingularization] There exists Ξ(·) as in (3.98) having the form:
(3.100) Ξ(ε, z; s, υ) = Ξ̄0(z; s) + ε Ξ∗1(z; s, υ) , Ξ̄0(z; 0) = z ,

such that for any Ki as in (3.75), there exists T ∈ R∗+ and a lift z(·) on Ki× [0, T ] through
Ξ(·) of z(·) such that (1.3), (3.29) and (3.92) are transformed into:

(3.101) ∂τ

(
z
ν

)
= 1
ε

(
A
a

)(
ε, z; τ

ε
,
ν

ε

)
,

(
z
ν

)
(0) =

(
z0
0

)
+ ε

(
z1
υ0

)
.

The source terms A(ε, z; s, υ) and a(ε, z; s, υ) are periodic of period 2π in both variables s
and υ. They are smooth functions on [0, 1]×D× T2. Moreover:
(3.102) A0(z; s, υ) := A(0, z; s, υ) = 0 , ∀ (z, s, υ) ∈ D× T2 .

The component z1 in the initial data of (3.101) depends smoothly on ε, z0 and υ0. It can
be uniquely determined through the relation:
(3.103) z1(ε, z0; υ0) + Ξ∗1

(
z0 + ε z1(ε, z0; υ0); 0, υ0

)
= 0 .

The proof of Proposition 3.2 is postponed to Paragraph 3.3.4. Below, we begin with a
preliminary analysis. Assume that (3.101) is satisfied for some source terms A(·) and a(·).
Suppose also that z(τ) stays for τ ∈ [0, T ] with T ∈ R∗+ in a compact set Ke as in (3.74)
and (3.75). With z(·) as in (3.99), the condition on ν(·) in (3.101) coincides with the one
on ν(·) in (3.92) if and only if:
(3.104) a(ε, z; s, υ) := a

(
ε,Ξ(ε, z; s, υ); s, υ

)
= a0 + ε a1 + · · · .

Remark that the amplitude of a(·) cannot be modified when moving from a(·) to a(·) as
prescribed in (3.104). The equation (3.101) implies the large factor ε−1, at least in factor
of a(·). To be sure that the function z(·) obtained through (3.99) after solving (3.101) is a
solution to (3.92), it is necessary to adjust Ξ(·) and A(ε, ·) = A0(·) + εA1(·) + · · · so that:
(3.105) (dzΞ A + ∂sΞ + ε−1 a ∂υΞ)(ε, z; s, υ) = A

(
ε,Ξ(ε, z; s, υ); s, υ

)
.
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The next aim is to investigate (3.105) under the constraint A0 ≡ 0. Since a(·) and A(·) are
known functions, this yields conditions on Ξ(·). These conditions are called the homological
equation. They are studied separately, in the paragraph below.

3.3.3. The homological equation. Take into account (3.100) and (3.102). The leading order
term (in powers of ε) issued from (3.105) is just:

(3.106) ∂sΞ̄0 + a0(Ξ̄0; s, υ) ∂υΞ∗1 = A0(Ξ̄0; s, υ) , A0 = t(A1
0, · · · ,A4

0) .

In view of (1.4), (2.14) and (3.33a), we have:

(3.107) ∂υa0 ≡ 0 , 0 < a0(z; s) , ∀ (z, s) ∈ (R+ × T)2 × R .

Take the average of (3.106) with respect to υ. By this way, we can extract the first
modulation equation:

(3.108) ∂sΞ̄0 = Ā0(Ξ̄0; s) , Ξ̄0(z; 0) = z , Ā0 = (∂ts)−1 Ā0 .

The equation (3.108), interpreted in terms of the time variable t, amounts to the same
thing as (3.34). With Z0(·) as in (3.73), this means that Ξ̄0(·) ≡ Z0(·). Thus, by applying
Lemma 3.5, we can state that Ξ̄0(z; ·) is globally defined, and that it is periodic in s of
period 2π. This property is essential. It was one of the goals of Subsection 3.2 to exhibit
it. We know what the function Ξ̄0(·) is. We can therefore come back to (3.106). To obtain
(3.106), it suffices now to adjust Ξ∗1 in the following way:

(3.109) Ξ∗1(z; s, υ) = a0
(
Ξ̄0(z; s); s

)−1
∂−1
υ A∗0

(
Ξ̄0(z; s); s, υ

)
= a0(Ξ̄0)−1 ∂−1

υ A∗0(Ξ̄0; υ) .

Fix any compact set Ke as in (3.74) and (3.75). For ε < ε0 with ε0(Ke) small enough,
the application Ξ(·) is a small perturbation of the flow Z0(·). Since Z0(·) is periodic in s
and since Z0(·; s) is invertible for all s ∈ T (Lemma 3.5), as a consequence of the implicit
function theorem, the application Ξ(ε, ·; s, υ) is also invertible. Moreover, we can find a
constant c(Ke) ∈ R∗+ such that:

(3.110) 0 < c(Ke) < |det dzΞ(ε, z; s, υ)| , ∀ (ε, z, s, υ) ∈ [0, ε0]×Ke × T2 .

The matrix function (dzΞ)−1(·) is therefore well defined, and it has a smooth complete
expansion in powers of ε ∈ [0, ε0], with in particular:

(3.111) dzΞ(ε, z; s, υ)−1 = dzΞ̄0(z; s)−1 +O(ε) , ∀ (z, s, υ) ∈ Ke × T2 .

Now, to solve (3.105), it suffices to determine A(·) by inverting the matrix dzΞ. By this
way, we find A = εA1 +O(ε) with:

(3.112) A1 := (dzΞ̄0)−1 {A1(Ξ̄0; s, υ) + (Ξ∗1 · ∇z)A0(Ξ̄0; s, υ)
− ∂sΞ∗1 − a1(Ξ̄0; s, υ) ∂υΞ∗1 − (Ξ∗1 · ∇z)a0(Ξ̄0; s) ∂υΞ∗1

}
.

The choice of Ξ(·) in (3.100) may seem limited. Supplementary terms like ε Ξ̄1 +ε2 Ξ∗2 + · · ·
could be included in order to absorb A1. As in (3.108), this would yield a differential
equation in s on Ξ̄1. However, there is no assurance that the corresponding flow is globally
well-defined, preventing apparently such a procedure from being completed.
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3.3.4. Proof of Proposition 3.2. To match the initial data of (3.92) and (3.101), in view of
(3.100), we have to impose:

z(0) = z0 = Ξ(ε, z0 + ε z1; 0, υ0) = z0 + ε z1 + ε Ξ∗1(z0 + ε z1; 0, υ0) .

This gives access to the relation (3.103). Just apply the Implicit Function Theorem at the
level of (3.103) to recover z1 with:

(3.113) z1(ε, z0; υ0) = −Ξ∗1(z0; 0, υ0) +O(ε) .

Select A(·) and a(·) as indicated in Paragraph 3.3.3. By construction, we have (3.102),
implying that the expression ε−1 A(ε, z; s, υ) is bounded locally in z and uniformly in ε, s
and υ. For z0 ∈ Ki ⊂ Ke and for all τ ∈ [0, T ] with T ∈ R∗+ small enough, the solution
z(ε, z0, υ0; τ) to (3.101) stays in the compact set Ke. Remark that the time T can depend
on the selection of Ke. Define z(·) as in (3.99). As a result of (3.103), (3.104) and (3.105),
the function t(z, ν)(·) is subjected to (3.92) as required.

4. Anomalous transport.

The neoclassical model often fails to provide an accurate description of experimental results.
As a matter of fact, it tends to underestimate transport by one order of magnitude or more.
The difference between actual transport and the neoclassical expectation is usually called
anomalous transport [1, 16]. This discrepancy comes from the oscillations inside (1.6).
Tokamak plasmas are mainly collisionless and in a state not in thermodynamic equilibrium.
They involve a large disparity of scales between the gyration time τ ' ε2 up to the transport
time τ ' 1. This results in the singular factors ε−2 and ε−1 of (1.3), associated with fast
rotations. As time passes, encoded in the flow of (1.3), the plasmas develop a plethora
of mesoscopic oscillations implying complex structures, and giving the impression of a
turbulent motion. Still, it is possible to provide a complete deterministic description of
this apparently chaotic behavior. This is achieved here by using Wentzel-Kramers-Brillouin
methods (WKB approximations) and tools issued from geometric optics [21, 23].
The starting point of this Section 4 is the differential equation (3.101). The aim is to derive
a complete description of t(z, ν)(·) in terms of an asymptotic series in powers of ε ∈ ]0, 1].
More precisely, given N ∈ N, we seek the solution t(z, ν)(·) to (3.101) in the form:

(4.1)
(
zε
νε

)
(τ) =

(
zaε
νaε

)
(τ) + εN

(
rzε
rνε

)
(τ),

(
zaε
νaε

)
(τ) =

(
Zε
νε

)(
τ,
τ

ε
,
νε(τ)
ε

)
.

The remainders rzε and ε rνε are intended to satisfy uniform estimates in the sup norm with
respect to ε ∈ ]0, 1]. On the other hand, the expressions Zε and νε are supposed to be
given by asymptotic expansions of the following type:

(4.2)
(
Zε
νε

)
(τ, s, υ) = ε−1

( 0
〈ν̄−1〉

)
(τ)+

N−1∑
j=0

εj
(
Z̄j
ν̄j

)
(τ, s)+

N∑
j=1

εj
(
Z∗j
ν∗j

)
(τ, s, υ) .

http://wiki.fusenet.eu/wiki/Neoclassical_transport
http://wiki.fusenet.eu/wiki/Anomalous_transport
https:///wiki/Approximation_BKW
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What comes from (3.29) and (3.101) furnishes:

(4.3)
(
Zε
νε

)
(0, 0, υ0) =

(
z0 + ε z1(ε, z0; υ0)

ε υ0

)
.

In (4.2), the profiles Zj(·) and νj(·) depend smoothly on (τ, s, υ) ∈ R+×T2. Observe that:

(4.4) ∂τ

[(
Zε
νε

)(
τ,
τ

ε
,
νε(τ)
ε

)]
=
[
Op(Zε; ∂)

(
Zε
νε

)](
τ,
τ

ε
,
νε(τ)
ε

)
,

where, taking into account (3.101) to replace ∂τνε, we have introduced:

(4.5) Op(z; ∂) ≡ Op(ε, z; s, υ; ∂τ, ∂s, ∂υ) := ∂τ + ε−1 ∂s + ε−2 a(ε, z; s, υ) ∂υ .

Plug the ansatz (4.1) into (3.101). To obtain formal solutions, we have to impose:

(4.6) Op(Zε; ∂)
(
Zε
νε
)

(τ, s, υ)− 1
ε

(
A
a

)
(ε,Zε; s, υ) = εN

(
Rz

Rν

)
(ε; τ, s, υ) = O

(
εN
)
.

The unknown νε(·) is no more present at the level of (4.6). This is what the filtering method
and the multiscale approach are about. They allow to separate fast from slow scales.

Proposition 4.1. For all N ∈ N, the condition (4.6) is satisfied by a formal solution
t(Zε,νε)(·) given by (4.2), subjected to the initial condition (4.3). This formal solution is
uniquely determined modulo a precision in the sup-norm of the order O(εN−1).

Proposition 4.1 is proved in the next subsection. Then, the matter is to recover the exact
solutions zε(·) and νε(·) from the approximate solutions Zε(·) and νε(·), with eventually a
fixed lost of precision (in terms of negative powers of ε). This second step is achieved in
Subsection 4.2, through Proposition 4.2.

4.1. Profile equations. There is another interesting aspect of (4.6). The part involving
the component Zε does not involve the profile νε. Due to this decoupling property, the
formal analysis of (4.6) is primarily concerned with the condition:

(4.7) Op(Zε; ∂) Zε(τ, s, υ)− 1
ε

A(ε,Zε; s, υ) =
N−1∑
j=−2

εj Lj(Z0, · · · ,Zj+2) +O
(
εN
)
.

The contribution Lj(·) is obtained by collecting the terms with the power εj in factor, after
substitution inside (4.6) of Zε(·) by the expansion (4.2). Now, consider the two first terms
of the sum in the right hand side of (4.7). Since ∂υZ̄0 ≡ 0, there is no contribution of
size ε−2. Furthermore, since A0 ≡ 0 as a consequence of (3.102), the restriction L−1 ≡ 0
reduces to ∂sZ̄0 + a0 ∂υZ

∗
1 = 0. In view of (3.107), this amounts to the same thing as:

(4.8) Z̄0(τ, s) = 〈Z̄0〉(τ) , Z∗1(τ, s, υ) = Z̄1(τ, s) , ∀ (τ, s, υ) ∈ [0, T ]× T2 .

Let us impose (4.8). Then, the sum inside (4.7) starts at j = 0. In Paragraph 4.1.1, we
study the content of the equation L0 ≡ 0. In Paragraph 4.1.3, we solve by induction the
cascade of equations Lj ≡ 0, for j = 1 up to j = N − 1. Then, in Paragraph 4.1.4, we
explain how to recover from (4.6) the remaining component νε, with νε as in (4.3).
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4.1.1. A notion of long time gyrokinetic equation. With A1 as in (3.112), we find:
(4.9) L0

(
〈Z̄0〉, Z̄1,Z2

)
= ∂τ〈Z̄0〉+ ∂sZ̄1 + a0

(
〈Z̄0〉; s

)
∂υZ

∗
2 −A1

(
〈Z̄0〉; s, υ

)
= 0 .

Take the average of (4.9) in both variables s ∈ T and υ ∈ T to exhibit what can be viewed
as the second modulation equation:
(4.10) ∂τ〈Z̄0〉 − 〈Ā1〉(〈Z̄0〉) = 0 , 〈Z̄0〉(0) = z0 .

From (4.9), we can also extract:

(4.11) Z̄?1 = (∂−1
s Ā?

1)
(
〈Z̄0〉(τ); s

)
, Z∗2 = a0

(
〈Z̄0〉(τ); s

)−1
∂−1
υ A∗1

(
〈Z̄0〉(τ); s, υ

)
.

As noted in (3.93), the function A1(·) depends also on the initial data z0. More accurately,
it should be written A1(z0 | z; s, υ). By restricting T ∈ R∗+ if necessary, the nonlinear
differential equation (4.10) has a solution 〈Z̄0〉(·) on the time interval [0, T ]. Then, to solve
(4.9), it suffices to adjust Z̄?1(·) and Z∗2(·) as indicated in (4.11).
Combine (3.99) and (3.100) together with (4.1), (4.2) and (4.8) to see that:

(4.12) zε(τ) = Ξ̄0
(
〈Z̄0〉(z0; τ); τ

ε

)
+O(ε) , ∀ τ ∈ [0, T ] .

In view of (4.12), the long time behavior of the function zε(·) is similar to a large amplitude
oscillation involving the profile Ξ̄0(·) issued from the mean flow, and a slow modulation
governed by 〈Z̄0〉(·). Knowing what Ξ̄0(·) is, the leading-order behavior of the plasma is
therefore revealed through 〈Z̄0〉(·). From that perspective, we can say that the differential
equation (4.10) plays the part of a long time gyrokinetic equation.
It may seem a bit disturbing that the equation (4.10) would be formulated in terms of the
variable z whose physical interpretation is not so readily apparent. On the one hand, this
is unavoidable. On the other hand, since Ξ̄0 ≡ Z0 with Z0 as in (3.73), the relation (4.12)
provides a correspondence between 〈Z̄0〉 and zε, which furnishes in particular:
(4.13) z1

ε (τ) ≡ ψε(τ) = 〈Z̄1
0〉(z0; τ)+O(ε) , z3

ε (τ) ≡ wε(τ) = 〈Z̄3
0〉(z0; τ)+O(ε) .

As a consequence, in contrast with z2
ε ≡ χε and z4

ε ≡ ςε, the two components z1
ε ≡ ψε

and z4
ε ≡ wε are not oscillating with a large amplitude. At main order, they behave as

〈Z̄1
0〉(z0; τ) and 〈Z̄3

0〉(z0; τ), whose physical meaning is therefore clear.
Let us now examine the structure of the source term Ā1(·). To this end, supplementary
information is needed on the functions Aj(·) and aj(·) of Lemma 3.1. In view of the
definitions (3.31) and (3.32), with N0 = 2 and N1 = 3, for j = 0 or j = 1, the Fourier series
expansions with respect to the variable υ ∈ T of the functions Aj(z, ·) take the form:

(4.14) Aj(z, υ) = Āj(z) +
Nj∑
n=1

CAjn(z) cos (nυ) +
Nj∑
n=1

SAjn(z) sin (nυ) .

In the same way, with Ñ1 = 2 and Ñ2 = 3, we have for j ∈ {1, 2}:

(4.15) aj(z, υ) = āj(z) +
Ñj∑
n=1

Cajn(z) cos (nυ) +
Ñj∑
n=1

Sajn(z) sin (nυ) .
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The nonlinear model (4.10) produces some interaction term Āg1(z) given by:

(4.16) Āg1 :=
2∑

n=1

1
2n

[
(CA0n · ∇z − Sa1n)

(SA0n
a0

)
− (SA0n · ∇z +Ca1n)

(CA0n
a0

)]
.

Lemma 4.1. [computation of the source term Ā1] We have:

(4.17) ∂ts
(
z0; t(z0; s)

)
dzΞ̄0(z; s) Ā1(z0 |z; s) = Ā1

(
Ξ̄0(z; s)

)
+ Āg1

(
Ξ̄0(z; s)

)
.

In particular, with SA01 = t(SA1
01, · · · , SA4

01), we find:

(4.18) Ā1
1 = 1

∂ts
Ā1

1 ◦ Ξ̄0 −
1

2 ∂ts
(SA2

01 ∂χ + SA4
01 ∂ς + Ca11)

(CA1
01

a0

)
.

Proof. From (3.93), (3.109) and (3.112), we can infer that:

(4.19) ∂ts dzΞ̄0 Ā1 = A1 + (∂−1
υ A∗0 · ∇z − a1)(a−1

0 A∗0) .

In view of (3.33a), the function a0(·) does not depend on υ. The decompositions (4.14)
with j = 0 and (4.15) with j = 1 combined with (4.19) lead directly to (4.17). Moreover,
with (2.25), the formula (3.31) gives:

(4.20) A1
0 ≡ A1∗

0 = w Df
cf1(F) cos ς cos υ = CA1

01 cos υ , CA1
01

a0
=

w Df
cf1

c(w) b cos ς .

Since SA1
01 ≡ 0, SA3

01 ≡ 0 and Ξ̄1
0(z) = z1 ≡ ψ, we recover (4.18). �

The possible cancellations induced by the action of the mean operator 〈·〉 on Ā1(·) seem
more difficult to evaluate. The effect is to replace the functional Ā1(·) by its mean values
along the energy curves of H(ψ, ·). The resulting expression 〈Ā1〉(·) is therefore a function
depending only on ψ, w and H(ψ, χ, ς), with H(·) as in (3.44).
The right hand side of (4.17) is the sum of two terms:

(1) The first term Ā1 takes into account the impact of the electromagnetic perturbation.
As a consequence of (1.4), (3.28), (3.32b) and (3.32c), we simply find Ā1 ≡ 0 when
(E,B) ≡ (0, 0). The introduction of (E,B) 6= (0, 0) can have a range of effects.
Amongst other things, it can induce a displacement of 〈Z̄3

0〉. Looking at (4.13), this
would mean a modification of the kinetic energy of charged particles;

(2) The second term Āg1 reflects the influence of the curved geometry related to the
inhomogeneities of the exterior magnetic field. Since A3

0 ≡ 0, we have Āg31 ≡ 0. In
the absence of (E,B), this implies that 〈Z̄3

0〉(τ) = w0 for all τ ∈ [0, T ]. Then, as
expected, the kinetic energy is a conserved quantity. Then, the equation (4.10) is
concerned only with the evolution of the three components ψ, χ and ς.
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4.1.2. Towards dynamical criteria for the long time confinement. Simplified models for the
poloidal flux function ψ(·) are usually obtained by solving the Grad-Shafranov equation,
which is the equilibrium equation in ideal magnetohydrodynamics (MHD). To test the
validity of ψ(·), the dynamics of charged particles can also be considered. Trapped and
passing particles respond differently. The dynamical criteria of stability depend on Ωj .
Fix j ∈ {0, · · · ,m}, and work with z0 ∈ Ki ⊂ Ωj . The evolution of 〈Z̄0〉(z0; τ) provides
information on the stability of the configuration Ωj . Of special interest is the behavior of
the first component 〈Z̄1

0〉(·) because it controls the spatial confinement properties. Indeed,
the portion of the plasma that is issued from z0 ∈ Ki ⊂ Ωj remains trapped during long
times τ ' 10−4 s inside the toroidal chamber (of minor radius r0) if:

(4.21) 〈Z̄1
0〉(z0; τ) ≤ r0 , ∀ (z0, τ) ∈ Ki × [0, T ] .

The toy model is of course a restrictive case but it is nonetheless instructive.

Example 7. [toy model] Assume as before that ψ(r, θ) = r and that χ(r, θ) = θ, but also
that (E,B) ≡ (0, 0). Then, by construction:

(4.22) 〈Ā1〉(ψ,w, ς) = 1
2π

ˆ 2π

0
Āg1(ψ, χ,w, ς) dχ , (ψ, χ) ≡ (r, θ) .

On the other hand, with Lemma 3.1, noting ∇ = ∂r er + r−1 ∂θ eθ +R−1 ∂φ eφ, we have:

SA2
01 = w r−1 cosω(r) cos ς ,(4.23a)

SA4
01 = w (emf3 · ∇)temf3 · emf2 sin ς ,(4.23b)

Ca11 = −w (emf3 · ∇)temf3 · emf2 sin2 ς (cos ς)−1 + w (emf1 · ∇)temf2 · emf1 cos ς .(4.23c)

Remark that ω(·) depends only on r. Then, with (2.2), it is easy to compute:

(emf3 · ∇)temf3 · emf2 = −R−1 cosω sin θ ,(4.24a)
(emf1 · ∇)temf2 · emf1 = ∂r(cosω eθ − sinω eφ) · er = 0 .(4.24b)

From (3.80), we have ∂ts = w0 r
−1 sin ς0, and therefore:

(4.25) 〈Ā1
1〉(ψ,w, ς) = − r

a(r) cosω(r) w0
c(w0) sin ς 1

2π

ˆ 2π

0
sinχ dχ = 0 .

The function Ā1
1(·) is not zero. But (4.25) says that its integration with respect to χ gives

zero. It follows that 〈Z̄1
0〉(z0; τ) = ψ0 for all τ ∈ [0, T ]. The criterion (4.21) is obviously

satisfied. Moreover, the system (4.10) becomes:

(4.26) ∂τ〈Z̄0〉 − 〈Ā1〉
(
ψ0,w0, 〈Z̄4

0〉
)

= 0 , 〈Z̄0〉(0) = z0 .

The function 〈Ā1〉(ψ,w, ·) is periodic of period 2π. If 〈Ā4
1〉(ψ,w, ·) has no fixed point:

(4.27) 6 ∃ ς ∈ T ; 〈Ā4
1〉(ψ0,w0, ς) = 0 ,

the fourth component 〈Z̄4
0〉(z0; τ) is periodic, whereas the second component 〈Z̄2

0〉(z0; τ) is
linear plus periodic in the sense of Definition 3.2.

https://en.wikipedia.org/wiki/Grad\T1\DH Shafranov_equation
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The system (4.10) gives access to the instantaneous speed of 〈Z̄1
0〉, which is 〈Ā1

1〉(〈Z̄0〉) with
the function Ā1

1(·) of (4.18). Charged particles tend to expand in the regions of the phase
space where 0 < 〈Ā1

1〉, and they are compressed where on the contrary 〈Ā1
1〉 < 0.

Example 7 gives a mathematical confirmation of a well-known empirical law concerning
passing particles in tokamaks. The rotations around the magnetic axis which are induced by
the poloidal field can cancel the local non trivial drift effects. The good and bad curvatures,
that is the various signs of 〈Ā1

1〉(·), average to produce some stability. Note that a similar
property is not expected when dealing with trapped particles. The full test of (4.21) would
require to solve (analytically or numerically) the system (4.10). Such a general study would
be very interesting but it is beyond the scope of the present investigation.

4.1.3. The WKB method. In order to find the Zj(·) for j ≥ 1, we introduce the following
inductive hypothesis:

(Hj) :
{

The expressions Zk are known on the domain [0, T ]× T2 for 0 ≤ k ≤ j − 2 ,
The expressions Z̄?j−1, Z∗j−1 and Z∗j are known on the domain [0, T ]× T2.

We have already checked from (4.8), (4.9) and (4.11) the validity of (H2). Assume (Hk)
for all k ∈ {2, · · · , j}. Then, consider what comes in (4.7) with εj−1 in factor. This is a
linearized version of (4.9), namely:
(4.28) ∂τ〈Z̄j−1〉+∂sZ̄

?
j +(〈Z̄j−1〉 ·∇z)a0 ∂υZ

∗
2 +a0 ∂υZ

∗
j+1− (〈Z̄j−1〉 ·∇z)A1 = Gj−1 ,

where Gj−1 is a known function. By averaging the constraint (4.28) in s ∈ T and υ ∈ T,
we recover the linear equation :
(4.29) ∂τ〈Z̄j−1〉 − (〈Z̄j−1〉 · ∇z)〈Ā1〉 = 〈Ḡj−1〉 ,
which must be completed by the initial data coming from (4.3):

(4.30) 〈Z̄j−1〉(0) = 1
(j − 2)! (∂j−2

ε z1)(0, z0; υ0)− Z̄?j−1(0, 0)− Z∗j−1(0, 0, υ0) .

The linear Cauchy problem (4.29)-(4.3) has a solution 〈Z̄j−1〉 on the whole interval [0, T ].
It means that the life span of all the Zj is the same as the one of (4.10). Stop the induction
when j = N . With the Zj thus obtained, build Zε as indicated in (4.2). Using Borel’s
summation, one can also construct approximate solutions at order O(ε∞).

4.1.4. Construction of the profile νε. Consider the asymptotic expansion proposed in (4.2),
and perform a formal analysis at the level of (4.6). The first contribution to appear has
the power ε−1 in factor. It is:
(4.31) ∂τ〈ν̄−1〉+ ∂sν̄?0 + a0

(
〈Z̄0〉(τ); s

)
∂υν∗1 − a0

(
〈Z̄0〉(τ); s

)
= 0 .

From (4.31), we can easily extract:

(4.32) 〈ν̄−1〉(τ) =
´ τ

0 〈a0〉
(
〈Z̄0〉(r)

)
dr =
´ τ

0 〈(∂τs)
−1〉
(
〈Z̄0〉(r)

)
a0
(
〈Z̄0〉(r)

)
dr ,

as well as:
(4.33) ν̄?0 = (∂−1

s a?0)
(
〈Z̄0〉(τ); s

)
, ν∗1 ≡ 0 .
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Consider the following inductive hypothesis (H̃j) which is closely modelled on (Hj) :

(H̃j) :
{

The expressions νk are known on the domain [0, T ]× T2 for −1 ≤ k ≤ j − 2 ,
The expressions ν̄?j−1, ν∗j−1 and ν∗j are known on the domain [0, T ]× T2.

The condition (H̃1) is satisfied. Assume (H̃k) for all k ∈ {1, · · · , j − 1}. Then, consider
what comes in (4.6) with εj−2 in factor. We find:

(4.34) ∂τ〈ν̄ j−2〉+ ∂sν̄?j−1 + a0 ∂υν j = Kj−2 ,

where Kj−2 is a known function. The condition (4.34) together with what comes from the
constraint νε(0) ≡ ε υ0 in (3.101) allows to determine 〈ν̄ j−2〉 through:

(4.35) ∂τ〈ν̄ j−2〉 = 〈K̄j−2〉 , 〈ν̄ j〉(0) = υ0 δj0 − ν̄?j (0, 0)−ν∗j (0, 0, υ0) .
Then, we can extract:
(4.36) ν̄?j−1 = ∂−1

s K̄?j−2 , ν∗j = ∂−1
υ (a−1

0 K
∗
j−2) .

From (4.35) and (4.36), we can recover (H̃j). We can therefore determine the profiles ν j
successively for j = 1 up to N . Put the ν j together to find νε.
4.2. Exact solutions. In Paragraph 4.2.1, we compare the approximate solution t(zaε , νaε )
of (4.1) to the exact solution t(zε, νε) of (3.101). This is Proposition 4.2 stated below.
In Paragraph 4.2.2, we describe precisely the oscillating structure of t(zε, νε). Finally, in
Paragraph 4.2.3, we complete the proof of Theorem 1. In fact, this amounts to interpret
Proposition 4.2 in terms of the original phase space variables t(x, v).

4.2.1. Justification of the WKB analysis. The proof of stability requires only minor changes
in comparison to [13]. However, for the sake of completeness, it is reported here. The
lifespan of the solution t(zε, νε) to (3.101) is some Tε ∈ R∗+. If T < Tε, then just rename
Tε ≡ T . Select some integer N ∈ N∗, and construct profiles t(Zε,νε) like in (4.2), through
the procedure of Subsection 4.1. The substitution of s and υ with ε−1 τ and ε−1 νε gives
access on [0, Tε] to the approximate solution t(zaε , νaε ), and then to the remainder t(rzε, rνε )
of (4.1) which must satisfy:

(4.37) ∂τ

(
rzε
rνε

)
=
(
Rz

Rν
)(

ε, rzε; τ,
τ

ε
,
νaε
ε

+ εN−1 rνε

)
,

(
rzε
rνε

)
(0) = O(1),

where:
(Rz,Rν)(ε, r; τ, s, υ) := ε−N−2 [a(ε,Zε; s, υ)− a(ε,Zε + εN r; s, υ)

]
∂υ(Zε,νε)

+ ε−N−1 [(A, a)
(
ε,Zε + εN r; s, υ)− (A, a)

(
ε,Zε; s, υ)

]
− (Rz, Rν)(ε; τ, s, υ) .

Proposition 4.2. [justification of asymptotic expansions associated with the phase νε] For
all ε ∈ ]0, ε0], the lifespan Tε of the solution to (3.101) is such that Tε = T . Moreover, with
a precision in L∞ that is uniform with respect to τ ∈ [0, T ] and initial data z0 in a compact
set K as in (3.75), we can assert that:

(4.38)
(
zε
ε νε

)
(τ)−

(
Zε
ενε

)(
τ,
τ

ε
,
νε(τ)
ε

)
= O

(
εN
)
.
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Proof. Fix R ∈ [1,+∞[ large enough. Let T̃ε ∈ [0, Tε] be the maximum time such that:

(4.39) |r†ε(0)| ≤ R , |r†ε(τ)| ≤ 2 R , ∀ τ ∈ [0, T̃ε] , ∀ † ∈ {z, ν} .
Recall that ∂υZε = O(ε2) and that A0 ≡ 0. Thus, there is a constant C ∈ R∗+ such that:

sup
{
|Rz(ε, r; τ, s, υ)| ; (ε, r, τ, s, υ) ∈ ]0, ε0]×B(0, 2 R]× [0, T ]× T2 } ≤ C (|r|+ 1) .

By applying Gronwall’s lemma to the first line of (4.37), we find easily:

(4.40) sup
{
|rzε(τ)| ; (ε, τ) ∈ ]0, ε0]×]0, T̃ε]

}
≤ (R + 1) eC T < +∞ .

Since a0 6≡ 0, the control on Rν is not as good as for Rz. We can only assert that:
sup

{
|ε Rν(ε, r; τ, s, υ)| ; (ε, r, τ, s, υ) ∈ ]0, ε0]×B(0, 2 R]× [0, T ]× T2 } ≤ C (|r|+ 1) .

The right hand term of (4.37) depends on the component rνε through the fast variable υ,
whereas uniform estimates in υ ∈ T are available. This prevents to be faced with a finite
time blow-up of rνε (·) before T̃ε. As a matter of fact:
(4.41) sup

{
|ε rνε (τ)| ; (ε, τ) ∈ ]0, ε0]× [0, T̃ε]

}
≤ R + C (2 R + 1) T < +∞ .

If necessary, restrict T ∈ R∗+ in order to have:

(4.42) max
(

(R + 1) eC T ; R + C (2 R + 1) T
)
< 2 R .

By this way, we get a contradiction about the definitions of T̃ε or Tε, except if T̃ε ≡ Tε ≡ T
for all ε ∈ ]0, ε0]. Then, coming back to (4.40) and (4.41), we see that rzε and rνε are indeed
remainders, with a loss of precision by a fixed factor ε−1 concerning rνε . �

The sup norm estimate (4.38) compares the exact solution t(zε, νε) to the profile t(Zε,νε)
evaluated at the exact phase νε, that is with υ = νε but not with υ = νaε . The above
proof involves no linearization with respect to rνε . It furnishes some uniform bound on
the solution t(rzε, rνε ) to the nonlinear system (4.37). However, it says nothing about the
linearized equations issued from (4.37), which in this case are strongly unstable.
At this stage, the access to νε is achieved through the implicit relation which implies νε
at the level of (4.38). This is not very informative. The exact oscillating content of νε(·)
remains to be clarified. It would be better to work with a well identified phase. In view of
(4.2), a natural candidate is:

(4.43) ψνε (τ) := 〈ν̄−1〉(τ)
ε

+ ν̄0
(
τ,
τ

ε

)
.

Lemma 4.2. [description of the phase νε through an expansion involving a frozen phase]
There exist profiles νj(x, v; τ, s, υ) ∈ C∞(K × [0, T ]× T2;R) such that:

(4.44) νε(τ) = ψνε (τ) +
N−2∑
j=1

εj νj

(
τ,
τ

ε
,
ψνε (τ)
ε

)
+O(εN−1) , ν1 ≡ ν̄1 .

Proof. The function νε(·) can always be put in the form:

(4.45) νε(τ) = ψνε (τ) + ε νe
ε

(
τ,
τ

ε
,
ψνε (τ)
ε

)
.
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Then, in view of (4.33), the relation (4.1) on νε is equivalent to:

(4.46)
[
νe
ε − ν̄1 −

N−1∑
j=1

εj ν j+1(υ +νe
ε)
]
| υ=ψνε (τ)

ε

= εN−1 rνε .

First, consider the condition (4.46) in the absence of the remainder, that is:

(4.47) I(ε, τ, s, υ,νa
ε) :=νa

ε − ν̄1(τ, s)−
N−1∑
j=1

εj ν j+1(τ, s, υ +νa
ε) = 0 .

Since ∂νaεI = 1+O(ε), the Implicit function Theorem applied to (4.47) determines uniquely
the function νa

ε(τ, s, υ). It says that νa
ε(·) is smooth in (ε, τ, s, υ) ∈ [0, 1]× [0, T ]×T2. It

can be further expressed as a power series with respect to ε, namely:

(4.48) νa
ε(τ, s, υ) =

N−2∑
j=1

εj−1 νj(τ, s, υ) +O
(
εN−1) , ν1 ≡ ν̄1 .

Involved in the context of the relation (4.46) with the estimate (4.41 ) on rνε in mind, the
Implicit function Theorem also guarantees that νe

ε −νa
ε = O(εN−2). Looking at (4.45),

we get easily (4.44). �

It is worth mentioning that the asymptotic description (4.44) of νε arises from the implicit
function Theorem on equations on νε, which are written in the fast variables (s, υ). Most
importantly, the argument put forward to obtain a control on νε does not require to consider
derivatives with respect to (τ, x, v), but only with respect to ν. The error estimate inside
(4.44) does not come from a study of the evolution equation (3.101). As a matter of fact,
since ∂υa1 6≡ 0, the linearized equations issued from (3.101) imply some amplification factor
of size ε−1, which seems difficult to control.
The description (4.38) of zε is also not fully satisfactory since it involves the unknown νε.
However, with (4.44), this difficulty can easily be overcome.

Corollary 4.1. [description of zε through an expansion involving the frozen phase ψνε ]
There exist profiles Z̃j ∈ C∞([0, T ]× T2;R) such that:

(4.49) zε(τ) =
N−2∑
j=0

εj Z̃j
(
τ,
τ

ε
,
ψνε (τ)
ε

)
+O(εN−1) , Z̃0 ≡ 〈Z̄0〉 , Z̃1 ≡ Z̄1 .

Proof. It suffices to substitute at the level of (4.1) the phase νε with the content of (4.44).
The new profiles Z̃j are easily deduced inductively from the (Zj ,νj) through the identity:

(4.50)
N−2∑
j=0

εj Zj
(
τ, s, υ +

N−2∑
j=1

εj−1νj(τ, s, υ)
)

=
N−2∑
j=0

εj Z̃j(τ, s, υ) +O(εN−1) .

Recall (4.8). Since ∂υZ0 ≡ 0 and ∂υZ1 ≡ 0, the terms with ε0 and ε1 in factor yield
respectively Z̃0 ≡ 〈Z̄0〉 and Z̃1 ≡ Z̄1. For j ≥ 2, the expression Z̃j is a more complicated
function of the Zk and νk with k ≤ j. �
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4.2.2. The oscillating structure of the flow. Theorem 1 helps understand how turbulence
works in axisymmetric magnetically confined plasmas. It provides a wealth of information,
and it has multiple implications. One possible application is the development of simulation
methods. It would be interesting to derive from our asymptotic analysis efficient numerical
schemes allowing to capture the oscillating framework. Another line of research has been
identified in [13, 14].
The two articles [13] and [14] deal with space plasmas, inside magnetospheres. They contain
a version of Theorem 1 in a case where B(·) is the dipole model of earth’s magnetic field.
In this different and simpler framework, it has been shown that the geometrical structures
of the phases govern (time-space) mesoscopic caustics effects which are at the origin of
the intermittent production of electromagnetic waves (sferics, whistlers and hisses), and
beyond at the source of some non-diffusive transport [1, 16]. Similar phenomena should
appear in the present axisymmetric context. If so, they would be based on a detailed
analysis of the oscillating structures underlying (1.6). With this perspective in mind, we
now examine carefully the content of (1.6).
Scientific observations on fusion devices are carried out in the time variables t or τ , not
with s or τ. They imply the physical phase space variables (x, v) or (F , w), but certainly
not z or ν. It is therefore necessary to interpret the ansatz (4.2) in terms of (τ, x, v). As
explained before, the discussion depends heavily on the initial position (x, v) in the phase
space. Thus, we have to distinguish between the Ωj , for j ∈ {0, · · · ,m}.
Working with (x, v) becomes all the more important when the perturbation (E,B)(·) is
viewed as a self-consistent electromagnetic field. Indeed, this means to consider the full
Vlasov-Maxwell system. Now, the Maxwell part is expressed in macroscopic time-space
coordinates, like (τ, x). There is no possibility to perform at its level a change of variables
depending really on v, like in the lifting procedure. The passage from (τ, z, ν) to (τ, x, v)
reveals various types of oscillations. As a matter of fact, the description of t(xε, vε)(x0, v0; τ)
involves a multiscale and multiphase representation. It furnishes a deterministic access to
the turbulent behavior of the flow. Let us start by studying what is most apparent.
� Large amplitude oscillations inside zε at frequencies of the order ε−1. They are related to
the periodic behavior in s of the profiles. Since ∂sZ̄0 ≡ 0, they are not apparent at leading
order when dealing with (4.2). However, they are implemented when coming back to the
phase space variable z and also (x, v), as revealed by (4.12). To pass from τ to τ , we can
exploit (3.88) in order to obtain:

(4.51) τ = ε s
(
z0; τ

ε

)
= 2π τ
P (z0) + ε s?

(
z0; 2π τ

εP (z0)
)

= 2π τ
P (z0) +O(ε) .

Recall that z0 = t(ψ0, χ0,w0, ς0) with t(ψ0, χ0) as in (3.20a) and with t(w0, ς0) as in (3.21).
In view of these relations, the position z0 can be viewed as a function z(x0, v0) of (x0, v0).

Definition 4.1. [the phase ψl(·)] With P (·) as in (3.83), the phase ψl(·) is the function:

(4.52) ψl : [0, T ]× Ωj −→ R
(τ, x, v) 7−→ ψl(τ, x, v) := 2π τ/P(x, v) , P := P ◦ z .

http://www-fusion.ciemat.es/wiki/Non-diffusive_transport
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Of course, there are as many phases ψl(·) as there are indices j ∈ {0, · · · ,m}. The link
(4.51) between τ and τ introduces a smooth dependence on the initial data (x0, v0). It
makes the phase ψl(·) appear. Indeed, with (4.12) and (4.51), we get:

(4.53) zε(x0, v0; τ) = Ξ̄0
(
〈Z̄0〉

(
z0(x0, v0);ψl

)
; ψl
ε

+ s?
(
z0(x0, v0); ψl

ε

))
+O(ε) .

During intermediate times (t . 1), the influence of ψl(·) as an oscillation disappears. It is
not observable as such as long as t . 1. The reason is that ψl(·) is linear in τ so that:

(4.54) ψl(ε t, x, v)
ε

= 2π t
P(x, v) , τ = ε t .

On the contrary, in view of (4.53), during long times (τ ' 1), the propagation of the
oscillating singularities is at leading order completely driven by ψl(τ, x, v). The content of
ψl(·) is determined by B(·). It has a clear physical meaning. As indicated in Figure 4, it
represents the large amplitude oscillations between the turning points (case j ≤ m − 1 of
libration) or around the magnetic axis (case j = m of rotation). �
Let us now examine what occurs in terms of oscillations for contributions of size O(ε). In
this respect, the situation is far more complex.
� Small amplitude oscillations inside zε at frequencies of the order ε−2. They are associated
with the introduction of νε. They represent the cumulative and interconnected effects
during long times (τ ' 1) of the gyrations (τ ' ε2) and of the librations or rotations
(τ ' ε). Look at (4.45), and then at (4.44) and (4.49). These identities indicate that it is
no more necessary to resort to νε(τ). Indeed, with (4.43), it suffices to consider:

(4.55) νε(τ)
ε

= ε νε(τ)
ε2 = εψνε (τ)

ε2 +O(1) =
〈ν̄−1〉(τ) + ε ν̄0

(
τ, τε

)
ε2 +O(1) .

Again, the variable τ may be replaced as indicated in (4.51). This reveals new phases.

Definition 4.2. [the phase ψ0
s(·)] The phase ψ0

s(·) is the function:

(4.56) ψ0
s : [0, T ]× Ωj −→ R

(τ, x, v) 7−→ ψ0
s(τ, x, v) := 〈ν̄−1〉 ◦ ψl(τ, x, v) .

Note that a dependence of ψ0
s(·) on (z0, υ0) or on (x0, v0) is also introduced through the

(non indicated) dependence of 〈ν̄−1〉(·) on (z0, υ0) when solving (4.32). The same applies
to the function Ψ1

s(·) below.

Definition 4.3. [the profile phase Ψ1
s(·)] The profile phase Ψ1

s(·) is the function:

(4.57) Ψ1
s : [0, T ]× Ωj × T −→ R

(τ, x, v, s) 7−→ Ψ1
s(τ, x, v, s) ,

where we have introduced the profile:

(4.58)
Ψ1
s(τ, x, v, s) := ∂τ

[
〈ν̄−1〉

](
ψl(τ, x, v)

)
s?
(
z0(x, v); s

)
+ ν̄0

(
ψl(τ, x, v), s+ s?

(
z0(x, v); s

))
.
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The complete frozen phase ψsε(·) appears after substitution at the level of (4.55) of τ with
formula (4.51), and after elimination from (4.55) of the induced O(1)-contributions. It is
associated with frequencies of size ε−2. It belongs to the weakly nonlinear regime:

(4.59) ψsε(τ, x, v) := ψ0
s(τ, x, v) + ε Ψ1

s

(
τ, x, v, ψl(τ, x, v)/ε

)
= ε ψνε (τ) +O(ε2) .

It is interesting to consider what remains of ψsε(·) when τ ' ε t with t . 1.

Lemma 4.3. [the gyrophase] During intermediate times, when t ' 1, the small amplitude
oscillations related to ψsε(·) persist. More precisely, with z(·) viewed as a function of (x, v),
and with Z(·) as in (3.34), it involves a phase ψg(·) given by:

(4.60) ψsε(ε t, x, v)
ε2 = ψg(t, x, v)

ε
+O(1) , ψg(t, x, v) := c(w)

ˆ t

0
b ◦ Z(z; r) dr .

Proof. By construction, we have:

(4.61) ψsε(τ, x, v) =
[
〈ν̄−1〉(τ) + ε ν̄0

(
τ,
τ

ε

)]
| τ= 2π τ

P(x,v) +ε s?
(
z0; 2π τ

P(x,v)

) +O(ε2) .

Using (4.45), coming back to the time variable t, and exploiting (3.29), we can infer that:

(4.62) ε−1 ψsε(ε t, x, v) = νε(t) +O(ε) =
ˆ t

0
a0 ◦ Z

(
z(x, v); r) dr +O(ε) .

It suffices to look at (3.33a) to conclude. Clearly, the phase ψg(·) comes from the integration
along the magnetic field lines of the amplitude b(·) of B(·). �

The function ψg(·) is linear plus periodic in the sense of Definition 3.2, because:

(4.63) ψg(t, x, v) = 〈ψg〉(x, v) t+ψ?g(t, x, v) , 0 < 〈ψg〉(x, v) = 〈b◦Z
(
z(x, v); ·

)
〉 .

Example 8. [toy model] A dependence on χ ≡ θ of b(·) remains at the level of (2.14a),
through the function R(r, θ) = R0 + r cos θ of Paragraph 2.1. It follows that ψ?g(·) 6≡ 0.
This property, together with a decomposition similar to (4.63), plays a crucial role in [13]
in order to exhibit electromagnetic intermittency phenomena.

The expression zε(·) is entirely determined by (3.99) and (3.100). Using (4.49), (4.44) and
(4.51) to replace respectively zε, νε and τ, we can infer that:

(4.64) zε(τ, x, v) = Zε
(
τ,
ψl(τ, x, v)

ε
,
ψsε(τ, x, v)

ε2

)
+O

(
εN−1) , Zε =

N−2∑
j=0

εj Zj ,

where the profiles Zj(x, v; τ, s, υ) ≡ Zj(τ, s, υ) can be identified inductively through:

(4.65)

N−2∑
j=0

εj Zj = Ξ̄0
(N−2∑
j=0

εj Z̃j ; s+ s?
)

+ ε Ξ∗1
(N−2∑
j=0

εj Z̃j ; s+ s?, υ +
N−2∑
j=1

εj−1νj

)
.
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In (4.65), it must be understood that s? ≡ s?
(
z(x, v); s

)
and that:

(4.66) Z̃j ≡ Z̃j(ψl + ε s?, s+ s?, υ) , νj ≡νj(ψl + ε s?, s+ s?, υ) .
In particular, with (4.8), (4.44) and (4.49), we find:
(4.67) Z0 = Ξ̄0

(
〈Z̄0〉(ψl); s+ s?

)
, ∂υZ

∗
1 = ∂υΞ∗1

(
〈Z̄0〉(ψl); s+ s?, υ + ν̄1

)
.

In view of (4.3) and (4.8), we have ∂υZε = O(ε2). On the other hand, after applying the
transformation Ξ(·), we find ∂υZ∗0 ≡ 0 and ∂υZ∗1 6≡ 0. This implies ∂υZε = O(ε). At the
level of zε, the oscillations with respect to the phase ψsε remain of small amplitude. �
� Return to the original phase space variables t(xε, vε). So far, the component φε (toroidal
angle) has been set apart. From (3.84), it is easy to deduce that:

(4.68) φε(τ, x, v) =
N−2∑
j=0

εj Φj

(
τ,
ψl(τ, x, v)

ε
,
ψsε(τ, x, v)

ε2

)
+O

(
εN−1) , ∂υΦ0 ≡ 0 .

Since xε = Σc
f (ψε, χε, φε), the asymptotic expansions (4.64) and (4.68) lead directly to the

spatial part xε of (1.6), with as announced ∂υX0 ≡ 0 and ∂sX0 6≡ 0. As regards the velocity
part vε, the situation is less favourable. Indeed, large amplitude oscillations are introduced
by the filtering method of Paragraph 3.1.4. In any event, we find ∂υV0 6≡ 0 since:
(4.69) vε = wε

tOmcf (ψε, χε, φε) t( cos ςε cos(ε−1 νε) , cos ςε sin(ε−1 νε) , sin ςε
)
.

It should be noticed that, for all (ε, x0, v0) ∈ ]0, 1]× Ωj , the time behavior in τ of t(xε, vε)
can be periodic, quasiperiodic, almost periodic or even much more complicated. Not to
mention that these properties can vary with ε, x0 and v0. The inventory of the oscillations
is now exhaustive. Intuitively, the phase ψl is related to librations or rotations. As noted in
(4.54), it cannot be detected as an oscillation as long as t . 1. On the contrary, the phase
ψsε takes into account both the intermediate and long time effects of the gyrations around
the field lines. It appears already when t ' 1. Visually, the presence of ψl is probably most
easily recognizable since it takes place on the spatial part xε with a profile of size O(1).
However, from a physical standpoint, both ψl and ψsε are pertinent. They both provide
the same amount of energy in the following sense. Looking at the derivatives of zε(·) with
respect to τ , x or v, they can both give rise to contributions of size O(ε−1). �

4.2.3. Comments on the proof of Theorem 1. Our main statement 1 is a compilation of the
previous results. There was a long work of preparation (Sections 3 and 4) to formulate the
problem in terms of (z, ν). The asymptotic expansion was justified from the side of (z, ν)
at the level of Proposition 4.2. We have chosen to work with a fixed precision of the order
O(εN ). By this way, when we looked at the stability, we were able to keep track of the lost
in negative powers of ε. The case O(ε∞) follows from standard arguments [21, 23]. The
passage from the formal solution (4.49) to (1.6) has been sketched in Paragraph 4.2.2. It is
also important to verify that the estimate (4.38) is not too much destroyed when coming
back to (xε, vε). The return map is smooth. Difficulties can only arise at the level of the
transformations (3.99) and (4.69) , when replacing ε−1 νε by ε−1 νaε + εN−1 rνε . But again,
this results in the lost of a fixed power of ε.
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