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Spei�ation of dynami struturedisrete event systems using single pointenapsulated ontrol funtionsAlexandre Muzy*, Bernard P. Zeigler*** I3S UMR CNRS 7271, Bio-info team, CS 40121 - 06903 Sophia-AntipolisCedex, Frane, Email: alexandre.muzy�nrs.fr.** Chief Sientist, RTSyn Corp, 530 Bartow Drive Suite A Sierra Vista, AZ85635, United-States of Ameria, Email: zeigler�rtsyn.om.AbstratIn Disrete Event System Spei�ation (DEVS), the dynamis of anetwork is onstituted only by the dynamis of its basi omponents. Thestate of eah omponent is fully enapsulated. Control in the network isfully deentralized to eah omponent. At dynami struture level, DEVSshould permit the same level of deentralization. However, it is hard toensure struture onsisteny while letting all omponents ahieve struturehanges. Besides, this solution an be omplex to implement. To avoidthese di�ulties, usual dynami struture approahes ensure strutureonsisteny allowing struture hanges to be done only by the networkhaving new added dynamis hange apabilities. This is a safe and simpleway to ahieve dynami struture. However, it should be possible tosimply allow omponents of a network to modify the struture of theirnetwork, other omponents and/or their own struture - without havingto modify the usual de�nition a DEVS network. In this manusript it isshown that a simple fully deentralized approah is possible while ensuringfull modularity and struture onsisteny.1 IntrodutionIn systems theory tradition, the disrete event spei�ation has sought for manyyears to speify dynami struture sytems:
• Dynami Struture Disrete Event System Spei�ation (DSDEVS )[1℄:Where a single entral ontroller is in harge of exeuting struture hanges.Having a single lous of ontrol for struture hanges onstitutes a rela-tively simple way of ensuring both behavior and struture onsistenies.1



• DynamiDEVS [2℄: Where a sequential implementation allows loal anddeentralized internal struture hanges. Interfae struture hanges aswell as the addition/deletion of omponents are subsequently integratedat network level.
• Variable strutures[3℄: Contrary to the two previous works this is not aformal approah. However, it is an attempt to have many deentralizedloi of ontrol for ahieving struture hanges. Loal omponents are ableto sequentially1 modify the whole struture of other omponents, in thesame network.
• Continuous Flow System Spei�ation (CFSS )[4℄: Where the implemen-tation of multirate integration methods and dynami stuture models anbe ahieved. CFSS omponents sample diretly their in�ueners' states.To deal with the autonomy of struture hanges, the notion of single point ofontrol is introdued here. In a single point of ontrol, at eah time, only oneomponent is responsible of struture hanges. This omponent an always bethe same for the whole simulation (stati single point) or an hange (dynamisingle point).The sope of the present ontribution is twofold:1. To onstitute a oherent framework for usual dynami struture formalisms.This framework would allow the di�erent formalisms to be representedwith the same elements and mehanisms. This is of interest for the om-munity, e.g., to debate di�erenes between formalisms,2. To propose a fully deentralized modular approah loser to reality andDEVS thus opening new exiting researh perspetives.The manusript is organized as follows. In Setion 2, both stati and dynamistruture spei�ations of dynami systems are de�ned. In Setion 3, both �xedand dynami single points of ontrol of struture hanges are used to representusual formalisms. In Setion 4 a fully modular and autonomous approah is pro-posed. Finally, in Setion 5, onlusion and perspetives lose the manusript.2 Disrete event and dynami struture spei�-ations of dynami systemsStruture hanges are de�ned as based on disrete event transitions.2.1 Usual stati struture formalismThe struture of both network and basi disrete event systems is presentedhere.1In the Disrete Event System Spei�ation, onurrent events (hanges of states), our-ring at the same time, are exeuted one after the other. Eah hange of state in�uening otheronurrent state hanges, at urrent time. 2



2.1.1 Basi (Atomi) Disrete Event Spei�ationDe�nition 2.1. A basi Disrete Event System Spei�ation (DEVS ) is a stru-ture: DEVS = (X,Y, S, δext, δint, λ, ta)Where, X is the set of input events, Y is the set of output events, S is the setof partial states, δext : Q × X → S is the external transition funtion with
Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} the set of total states, δint : S → Sis the internal transition funtion, λ : S → Y is the output funtion, and
ta : S → R

0,+
∞ is the time advane funtion.2.1.2 Network strutureDe�nition 2.2. A DEV S network is a struture:

N = (X,Y,D, {Md}, {Id}, {Zi,d}, Select)Where X is the set of input events, Y is the set of output events, D is theset of omponent names, for eah d ∈ D, Md is a basi model (whose struturedi�ers from one DEVS -based formalism to another), for eah d ∈ D ∪ {N},
Id is the set of in�ueners of d suh that Id ⊆ D ∪ {N}, d /∈ Id and, for eah
i ∈ Id, Zi,d is a oupling funtion, the i− to −d output translation, de�ned for:(i) external input ouplings : Zself,d : Xself → Xd, with self the network name,(ii) internal ouplings : Zi,j : Yi → Xj , and (iii) external output ouplings :
Zd,self : Yd → Yself , and Select : 2D − {Ø} → D ∪ {Ø} is the sequential seletfuntion (to selet one omponent to exeute its transition/output funtions,among imminent omponents). Considering a set of omponents C andidatefor internal transition, the sequential selet funtion has onstraint Select(C) ∈
C ∪ {Ø}, i.e., only one omponent or no omponents an be seleted amongandidates.2.2 Dynami struture of dynami systems using a dis-rete event spei�ationBoth network and basi dynami struture systems are presented here.2.2.1 Basi dynami strutureDe�nition 2.3. Basi or atomi Dynami Struture Disrete Event SystemSpei�ation (DYS-DEVS) strutureDYS-DEVS = (M,S, τ)Where eah element M ∈ M is a struture DEVS = (X,Y, S, δext,, δint, λ, ta),
S = ∐M∈MSM is the disjoint union of their partial state sets, and
τ : M× S → M× S is the struture transition funtion. Struture funtionτtakes a basi DEVS and its state to a new basi DEVS' and a new state (ould3



be the same also): τ(M, s) = (M ′, s′). This represents a basi hange in stru-ture whih transforms a basi DEVS into a new basi DEVS', by hanging itsstruture in some way (one or many elements of (X,Y, S, δext, δint, λ, ta)) andinitializing the state of the new DEVS. To use this representation the setsM (ofDEVS, it an generate), S (of their states), and mapping τ (how the struturehange ours) are identi�ed after in the manusript.At network level, basi struture omponents are authorized to modify thewhole network. At loal level, for a basi struture omponent, modifying itsinterfae requires modifying related ouplings (in the network) and related in-puts/outputs (in another omponent). The impat of interfae struture hangesgoes a little beyond the frontiers of the omponent. To aount for these im-pats, the onept of external and internal models is de�ned here.De�nition 2.4. In a basi DYS-DEVS = (M,S, τ) a model M ∈ M an bedeomposed into an external model part Mext and into an internal model part
Mint, and struture transition funtion τ an be deomposed into an exter-nal struture transition funtion τext and into an internal struture transitionfuntion τint, where:

• Mext = (X,Y ) is hanged by the external struture transition funtion
τext(Mext, δext(s, e, x)), and

• Mint = (S, δext, δint, λ, ta) is hanged by internal struture transition fun-tion τint(Mint, δint(s)).Example 2.1. Internal struture hanges of a basi DYS-DEVS .Assume basi omponent DYS-DEVS = (M,S, τ) is in state (M, s), with
Mint = (S, δext, δint, λ, ta) its internal model, when it reeives input x = changefrom another omponent. Then, a new state is obtained as
δext(s, e, x) = changeInternalStructure. New strutureM ′

int = (S′, δ′ext, δint, λ, ta
′)is obtained as τint(Mint, s) = (M ′

in, s
′). Notie that di�erenes between stru-tures Mint and M ′

int onsist in new sets S′, new external transition funtion
δ′ext, and new time advane funtion ta′.2.2.2 Dynami struture networkDe�nition 2.5. Dynami Struture Disrete Event Network System (DYS-DEN) struture DYS-DEN = (N ,S, τ)Where N = {(X,Y,D, {Md}, {Id}, {Zi,d}, Select)} is the set of network stru-tures, where eah omponent d ∈ D is an atomi dynami struture modelMd =
(Md,Sd, τd), S = ∐N∈NSN is the disjoint union of partial state sets of networkstrutures, with
SN = Πd∈DSd the partial state set of a network N ∈ N is the rossprodutof the partial state sets of its omponents, and τ : N × S → N × S is thestruture transition funtion of the network.4



Next example brie�y introdues the struture hanges at network level.Example 2.2. Simple hanges of network struture ( f. Figure 1)

Figure 1: A simple hange of network strutureConsider a simple network struture N = (D, {Md}, {Id}, {Zi,d}, Select),where
D = {a, b, c, d, e}, Ic = {a, b}, Id = {c}, Ie = {c}, and Za,c : Ya → Xc,
Zb,c : Yb → Xc, Zc,d : Yc → Xd, Zc,e : Yc → Xe. The state set of theomponents in the network is S = Sa × Sb × Sc × Sd × Se. Now assumethat eah omponent state set is {0, 1}. Then, the state set of the networkis S = {0, 1} × {0, 1} × {0, 1} × {0, 1} × {0, 1}, with, e.g., partiular states
(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), ..., where the �rst omponent is for omponent a, theseond omponent for omponent b, the third omponent for omponent c, et.At a partiular instant, omponent c is removed. Then, network struture Nde�ned as (D, {Md}, {Id}, {Zi,d}, Select) hanges to N' de�ned as (D′, {M ′

d}, {I
′
d}, {Z

′
i,d}, Select

′),where D′ = {a, b, d, e}, I ′c = I ′d = I ′c = {Ø}, {Z ′
i,d} = {Ø}, and {M ′

d} =
{M ′

a,M
′
b,M

′
d,M

′
e}. The state set of the omponents in network N ′ is now

S′ = Sa × Sb × Sd × Se. Notie that omponents a, b and omponents d, eare impated by the deletion of omponent c having respetively their output andinput sets removed.Now suppose that these struture hanges an be ahieved by network stru-ture transition funtion τ(N, s) = τ(N, (1, 1, 0, 0, 0)) = N ′. Assume also thatvalue 0 means �no hange intention� and value 1 means �hange intention�. Fi-nally, τ(N, (1, 1, 0, 0, 0)) means that both omponents a and b have both intentionto make the network struture hange to N ′ at the same time. It will be seenhereafter how this kind of simultaneous loal hanges of struture in the networkan be serialized.Generally speaking, we will show that,Proposition 2.1. A network N = (X,Y,D, {Md}, {Id}, {Zi,d}, Select), wherefor eah d ∈ D, Md is a basi DYS-DEVSd = (Md,Sd, τd), is equivalent to aresultant DYS-DEVS = (M,S, τ). 5



3 Representation of usual formalismsIn DSDEV S formalism, there is only one omponent in every instane of Mthat makes the deision for the next instane. Struture transition funtion τ isde�ned by mimiking the hanges ahieved by the exeutive in one transition.On the other hand, DynamicDEV S formalism allows multiple loal deisionpoints but hanges of network struture are done only at network level.DYS-DEVS uses the usual dynami mehanisms of DEVS, using stateshanges for synhronizing dynami struture transitions. Serialization of stru-ture hanges is based on the notions of stati and dynami single points ofontrol for struture hanges.De�nition 3.1. A stati single point of ontrol onsists of having only onedynami struture omponent, always the same, in the whole network.De�nition 3.2. A dynami single point of ontrol onsists of having manydynami struture omponents in the whole network. However, at eah timestep, only one omponent an be authorized to ahieve struture hanges.DSDEVS formalism is represented as a stati point of ontrol, while Dyn-DEVS formalism is represented as a dynami point of ontrol. More generally,it is shown that,Proposition 3.1. Di�erent existing formalisms for dynami struture DEV San be represented in the Dynami Struture Formalism Framework (DYS-F)by di�erent hoies of M, S and τ .3.1 Equivalene of basi dynami struture omponentand basi disrete event omponentTheorem 3.1. An atomi DYS-DEVS = (M,S, τ) is equivalent to an atomiDEVS = (X,Y, S, δext, δint, λ, ta), where the state set is S = M× S, with Ma set of basi DEV S models and S is the disjoint union of their state sets:
S = ∐M∈MSM .Proof. We desribe the dynamis of both DYS-DEVS and DEVS de�ning theelements of a DEVS in terms of the elements of a DYS-DEVS.The internal transition funtion of a DYS-DEVS is

δint(M, s) = τ(M, δint,M (s))i.e., �rst apply the internal transition funtion of the urrent struture M ∈ Mto state s ∈ SM to get new state δint,M (s), then apply the struture transfor-mation to this pair to get a new struture and a new state (M ′, s′).Similarly, the external transition funtion is de�ned by:
δext(M, s, e, x) = τ(M, δext,M (s, e, x))6



The output funtion is de�ned by:
λ(M, s) = λM (s)i.e., output funtion of the urrent struture M ∈ M sends urrent state s ∈ S.The time advane funtion is
ta(M, s) = taM (s)i.e., time advane of the urrent struture M ∈ M is applied to its state, s ∈ S,to ompute the ourrene time of next state hange.Based on struture transition funtion τ , a basi DYS-DEVS hanges astruture M ∈ M, using partial state s ∈ S. A new state is obtained bythe exeution of one of the two usual transition funtions: δext,M (s, e, x) or

δint,M (s). Then, struture hange depends on total state (s, e) ∈ S ×R
0,+
∞ , andpossibly on external input event x ∈ X .3.2 Stati single pointCentralized ontrol of struture hanges is investigated here. Struture hangesare ontrolled only by one omponent. No other omponent an hange thenetwork struture.Lemma 3.1. Considering an initial network N = (X,Y,D, {Md}, {Id}, {Zi,d}),where the set of omponent indexes D = {1, 2, ..., p} and the state set of thenetwork is S = S1×S2×...×Sp, where S1 is the state set of the �rst omponent,

S2 is the state set of the seond omponent, et., If a single point of ontrol is at�rst omponent DYS-DEVS1 = (M1,S1, τ1), while eah other omponent i ∈ D,with i > 1 is a basi omponent DEV Si, the set of networks N is equivalent toa resultant DYS-DEVS = (M,S, τ).Proof. A single point of ontrol at �rst omponent DYS-DEVS1, would bethat τ always aounts for the state of DYS-DEVS1 to make its deision; so
τ(s1, s2, ..., sp) = τ1(s1) for some τ1. Then, the image of τ depends on the newomponents added to the network or not (beause the states of new omponentshave to be initialized).Denoting new strutures as N ′ = (X ′, Y ′, D′, {M ′

d}, {I
′
d}, {Z

′
i,d}), struturetransition funtion τ : M×S → M×S redues to one of the two maps:1. For eah non-reated omponent d ∈ D ∩D′, τ : S1 → M, with

τ(. . . ,sd, . . . ) = τ1(s1) = N ′,2. For eah new omponent i ∈ (D′ − D) (reated), ini-tialized to initial state s0,i, τ : S1 → M × S, with
τ(. . . ,si, . . . ) = τ1(s1) = (N ′, (. . . ,s0,i, . . . )).De�nition 3.3. A DSDEV S network[1℄ is a struture DSDEN = (χ,Mχ),with exeutive model Mχ = (Xχ, Yχ, Sχ, γ,Σ

∗, δχ, λχ, taχ), where a nework7



struture Σ ∈ Σ∗ is given by Σ = γ(sχ) = (D, {Md}, {Id}, {Zi,d}) and γ :
Qχ → Σ∗, with χ /∈ D.Corollary 3.1. A DSDEV S network is equivalent to a DYS-DEVS = (M,S, τ)having a single point of ontrol DYS-DEVS1 in harge of the struture hangesin a network N = (X,Y,D, {Md}, {Id}, {Zi,d}), where D = {1, 2, ..., p} and foreah omponent i ∈ D, with i > 1, Mi is a basi DEV S model.Single point of ontrol DSP-DEVS1 an be desribed in terms of exeutivemodel Mχ with: M1 = Σ∗, S1 = Sχ, Dχ = projD(γ(sχ) ∪ {χ}, and τ1 = γ.In Continuous Flow System Spei�ation (CFSS )[4℄, omponents samplediretly their in�ueners' states (in a one-step proess) while usual DEVS om-ponents have to request and reeive their in�ueners' states (in a two-stepproess)[5℄. Therefore, transforming a CFSS network into a DEVS one on-sists of mapping eah original oupling into two ouplings (one for request, onefor answer). Another soution would be, ontrary to CFSS, to break ompo-nents' modularity through the multiomponent approah[6℄. In the dynamistruture ontext, DYS-DEVS equivalene an be ahieved preserving modu-larity (at dynami struture network ontroller level) adding extra oupling (f.Barros' desription[5℄ for details).3.3 Dynami single pointExample 3.1. Dynami struture authorization by �token� passingConsider now a single point of ontrol �passing� around, ativating, the om-ponents - just like a �token� in network where eah node gets a hane to sendwhen it has the token. In this example the state set of Example 2.2 would be
S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} with the token (authorization) going from a to
b to c bak to a, and so on in a yle. Instead of "sending" the node with thetoken an do any struture hange with the global state being initialized to thenext triple in the yle. Here, only one omponent among the omponents ofthe network, an be ativated at a time.Theorem 3.2. Consider an initial network N = (X,Y,D, {Md}, {Id}, {Zi,d}),where for eah d ∈ D, Md is a basi dynami struture DYS-DEVSd and thestate set of the network is S = S1 × S2 × ... × Sp, where S1 is the state set ofthe �rst omponent DYS-DEVS1, S2 is the state set of the seond omponentDYS-DEVS2, et. If a dynami single point of ontrol is assigned sequentiallyand ylially to eah omponent DYS-DEVSd for struture hanges on theomponents of the network, the set of networks N is equivalent to a resultantDYS-DEVS = (M,S, τ).Proof. Extending Lemma 3.1, it is simple to onsider that a yle of dynamisingle points of ontrol is reursively de�ned by global and loal struture tran-sition funtions: 8









































τ : (1, 0, 0, ..., 0) 7→ (N ′, (0, 1, 0, ..., 0))
with τ1(1, 0, 0, ..., 0) = (N ′, (0, 1, 0, ..., 0))

τ : (0, 1, 0, ..., 0) 7→ (N ′′, (0, 0, 1, ..., 0))
with τ2(0, 1, 0, ..., 0) = (N ′′, (0, 0, 1, ..., 0))

...
τ : (0, 0, 0, ..., 1, 0) 7→ (Np, (0, 0, 0, ..., 1))

with τp(0, 0, 0, ..., 1, 0) = (Np, (0, 0, 0, ..., 1))Then, the resultant DYS-DEVS = (M,S, τ) is de�ned with M = N ,
S = {(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), (0, 0, 1, ..., 0), ..., (0, 0, 0, ..., 1)}, τ(s) = s+1modp,with p the number of omponents and state s = {0, 1}p.Remark 3.1. This is di�erent from DSDEV S, whih does not allow expliitlyhanging a dynami single point of ontrol.De�nition 3.4. A DynamicDEV S network is a struture

DynNDEV S = (X,Y, ninit,N (ninit))Where X,Y are input and output event sets, ninit ∈N (ninit) is the initial stru-ture, andN (ninit) the least (minimum) set having the struture{(D, ρN , {dynDEV Si}, {Ii}, {Zi,j}, Select)},with:
• D, {Ii}, {Zi,j} as de�ned previously,
• ρN : S → N (ninit) is the network transition funtion with

S = Πi∈D(∐m∈dynDEV Si
Sm), with dynDEV Si the dynam-iDEVS model i ∈ D,

• dynDEV Si = (Xi, Yi,minit,i,Mi(minit,i) , with:� Xi, Yi the input and output event sets,� minit,i ∈Mi(minit,i) the initial model, and� Mi(minit,i) the least (minimum) set of internal struture
{(Si, δext,i, δint,i, ρα,i, λi, tai)} of usual atomiDEV S, exept
ρα,i : Si → Mi(minit,i) the model transition funtion.

• Select : 2D − {Ø} → D is the sequential selet funtion.Corollary 3.2. Using a single dynami point of ontrol, a network DynNDEV S =
(X,Y, ninit,N (ninit)) an be represented by an initial network N = (X,Y,D, {Md}, {Id}, {Zi,d})where D = {1, 2, ..., p}, M1 is a dynami struture network DYS-DEN1 and eahother omponent d ∈ D, with d > 1 is a basi dynami struture omponentDYS-DEVSd.A DynNDEV S network operates along two sequential steps: (i) Loally,basi omponents dynDEV Si an hange only their internal model aordingto their model transition funtion ρα,i : Si → Mi(minit,i), then (ii) Dyn-NDEVS network an hange its struture (interfaes (Xi, Yi) and D, {Ii}, {Zi,j},9



adding/removing omponents) through the network transition funtion ρN : S →
N (ninit), with S = Πd∈D(∐m∈dynDEV Si

Sm).Eah basi dynDEV Si = (Xi, Yi,minit,i,Mi(minit,i) an be represented bya DYS-DEVSd = (Md,Sd, τd) with orrespondenes: Md = Mi(minit,i), with
Md ∈ Md restrited to internal model Mint,d = (Sd, δext,d, δint,d, λd, tad), Sd =
Si, τd = ρα,i restrited to τd : Si → Mi(minit,i). DynNDEV S is representedby dynami struture network DYS-DEN 1 = (N1,S1, τ1), with orrespondenes:
N1 = N (ninit), S1 = ∐N∈NSN with SN = Πi∈DSi = S1, τ1 = ρN restrited to
τ1 : S1 → N (ninit).Remark 3.2. The Dynami Struture Formalism Framework allows representinga DynamicDEV S network, limitating: (i) loal struture hanges to be onlyinternal struture hanges of atomi models, and (ii) global struture hangesto be ahieved only by the dynami struture network.Another lass of dynami struture systems onsists of mobile agents. Mod-eling mobile agents has been done using the Heterogeneous Flow System Spe-i�ation (HFSS ) formalism, whih ombines with the Continuous Flow SystemSpei�ation (CFSS ) to represent ontinuous �ow systems and DEVS[7℄. Aset of onneted networks (eah one embedding an exeutive) sequentially add,transmit, and then destroy a single migrating agent. It an be easily shownthat this is equivalent to a dynami sequential single point of ontrol, eah pointahieving only self-hanges of struture. For the same lass of mobile agents,a DEVS -based formalism has been proposed: Mobile DEVS (MDEVS )[8℄. Inthis formalism, many agents an be �added, transmitted, and then destroyed�in the networks. It an be shown that this formalism is also equivalent to thease of dynami single points of ontrol.4 Deentralization of struture hange operationsUsing a dynami single point of ontrol allows enhaning deentralization at twolevels:1. Globally: Having eah dynami struture omponent operating at networklevel. This is already a step toward deentralization with respet to usualdynami struture formalisms (whih are entralizing network operations).However, we will see that this approah an be onsiderered as partiallymodular.2. Loally: Having eah dynami struture omponent operating at interfaeand ouplings levels (here with in�uenee permission). This new approahan be onsiderered as fully modular.4.1 Counter-arguments to usual dynami struture mod-ularityThe hierarhy of systems spei�ation[6℄ is grounded on omponentsmodularity :The state of omponents an only be hanged: (i) externally by another ompo-10



nent, through interfae interations, or (ii) internally by the omponent itself. Inomputer programming this is alled enapsulation. In dynami struture sys-tems, hanging other-struture remains a major issue. Changing self-struturean impat the struture of the network and of other omponents (e.g., deletingself-output requires deleting orresponding oupling and other-input of in�u-enee omponents). Then, beause of struture hange propagation it is hardto ensure struture onsisteny at omponent and network level.As depited in previous setion, one solution is to have only one (network)omponent in harge of oupling hanges (DynDEVS ) or all struture hanges(DSDEVS ). Authors' philosophy ould be sum up by argument: �only the net-work an hange the interfae strutures of its omponents to ensure modular-ity�. However, it an be argued a major ounter-argument:Allowing networks to ahieve struture/state hange is a holistihange of perspetive while the usual hierarhy of systems spei-�ation is purely redutionnist (the network having no ability tohange struture/state being merely a omposition of dynamiomponents).Then, allowing networks to hange the struture/state of omponents ouldalso be onsidered as a violation of the modularity onept simply beause thenomponents are not the only ones to hange their state.Having a stati point of ontrol is a simpli�ation of purely autonomous sys-tems only interating through interfaes. Allowing many omponents to hangeeah-other struture requires de�ning synhronization interation protools thatan rapidly beome omplex to implement. In the next subsetions we de�nesuh protools for elementary struture hange operations. These mehanismsan be automated and ombined to ahieve multiple struture hanges. Nowlet's �rst ahieve a �rst step towards deentralization having eah dynami stru-ture omponent being able to operate at network level.4.2 Global struture hange operationsTheorem 3.2 already showed that onsidering an initial network
N = (X,Y,D, {Md}, {Id}, {Zi,d}), where eah omponent d ∈ D is a basi dy-nami struture omponent DYS-DEVSd, eah network struture N ∈ N anbe reahed by a resultant DYS-DEVS = (M,S, τ). However, the global stateof omponents is used loally for omponent seletion thus dereasing ontrolautonomy.Here, the whole system is simpli�ed ensuring network struture onsistenyand having more autonomy at omponent level. Eah omponent d ∈ D of thenetwork is a dynami struture network omponent DYS-DEN d = (Nd,Sd, τint,d)with τint,d : Sd → Nd. Notie that stuture transition funtions τint,d are inter-nal ones, i.e., based on internal state transitions.11



Theorem 4.1. Consider an initial network N = (X,Y,D, {Md}, {Id}, {Zi,d}),where for eah d ∈ D, Md is a dynami struture networkDYS-DEVNd = (Nd,Sd, τint,d), the state set of the network is S = S1 × S2 ×
... × Sp, where S1 is the state set of the �rst omponent DYS-DEVN1, S2 isthe state set of the seond omponent DYS-DEVN2, et. If a dynami singlepoint of ontrol is suessively assigned to only one omponent DYS-DEVNd =
(Nd,Sd, τint,d), the set of networks N is equivalent to a resultant DYS-DEVS =
(M,S, τint).Proof. The main di�erene with Theorem 4.1 is that there is no yle of dynamisingle points of ontrol. Remember now that the exeution of eah internal stu-ture transition τint,d is driven by an internal state transition τint,d(δint,d(sd)). Aomponent andidate for a struture hange is thus andidate �rst for an internaltransition. And here is the interesting point in usual DEVS, at eah global statetransition, only one omponent, among andidates for internal transitions2, ishosen by Selet funtion. Therefore, only one andidate for struture hangeis hosen at eah global state transition avoiding struture on�its.Finally, eah resultant struture hange transition onsists of the exeutionof one dynami struture network omponent d∗ = Select(IMM), i.e.,1. For eah non-reated omponent i ∈ D ∩ D′,

τ(. . . ,si, . . . ) = τd∗(sd∗) = N ′.2. For eah new omponent i ∈ (D′ −D), initialized to initial state
s0,i, τ(. . . ,si, . . . ) = τd∗(sd∗) = (N ′, (. . . ,s0,i, . . . )).4.3 Loal struture hange operationsHere ome the triky struture hange operations ahieved by basi omponents.To ensure struture onsisteny, at both loal and global levels, synhronizationmehanisms are de�ned.4.3.1 Dynami struture synhronizationTo ensure modularity, omponents annot hange other-interfaes. As for statehanges, struture hanges an only be asked through interfae interations andahieved by the omponent itself. Speial input �query� and speial output�done� of basi dynami struture omponents are used for hange synhroniza-tion.De�nition 4.1. Struture hange synhronization onditions:2Candidates for internal transition ompose the imminent set IMM = {σd | d ∈ D ∧ σd =

ta(s)}, with σd the time remaining to the next event σd = tad(sd)− ed, and tad(sd) the timeadvane of a omponent model.
12



• Eah dynami struture omponent has extra struture query/done inter-fae.
• Eah dynami struture in�uener has query outgoing oupling and doneinoming oupling with all its in�uenees.
• Dynami struture omponents an:� hange its external struture and orresponding outgoing ouplingsafter request/done protool (querying orresponding in�uenee toadd/remove orresponding input),� hange its internal struture,� reate/remove other omponents,� query its in�uenees to perform struture hanges.Proposition 4.1. Changing other-struture an only be ahieved through in-terfae interations. This respets totally modularity onept as de�ned in thehierarhy of systems spei�ation[6℄.However, hanging the external struture of a omponent as well as adding/removinga oupled omponent requires the ompliane of impated in�uenees as well asupdating network struture while ensuring that this whole struture hangesequene annot be interrupted. To ahieve this goal, a synhronization meh-anism an be used.De�nition 4.2. Lok synhronization of struture hanges is depited in Fig-ure 2 for two omponents. Component a aims at ahieving a struture hangeimpating the struture of in�uenee omponent b. This follows the sequene:1. Component a sends a query message to omponent b to hangestruture,2. Component b hanges self-struture to omply with the new stru-ture aimed by omponent a,3. Component b sends a done message to omponent a,4. Finally, omponent a hanges self-struture and updates networkstruture.
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Figure 2: UML interation diagram for request/done synhronization protoolfor dynami struture hange between omponent a and omponent b.In the next setions this synhronization protool is applied to addition anddeletion operations.4.3.2 Addition operationsExample 4.1. A omponent a adds query/done oupling with a omponent b.There are no query/done ouplings between omponent a and omponent b.However, as all dynami struture omponents, omponents a and b have ex-isting query/done interfaes. As desribed in Figure 3, omponent a needs �rstto self-add a query outgoing oupling with omponent b. After, omponent arequests omponent b to self-add a done outgoing oupling. Finally, omponentb on�rms the addition operation sending a done on�rmation to omponent a.
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Figure 3: UML interation diagram for request/done oupling addition betweenomponent a and omponent b.Example 4.2. A omponent a adds an outgoing state oupling with a ompo-nent b.As desribed in Figure 4, omponent a needs �rst to request omponent bto add orresponding state input. After, omponent b on�rms the additionoperation sending a done on�rmation to omponent a. Finally, omponent aself-adds orresponding output and outgoing state oupling with omponent b.
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Figure 4: UML interation diagram for outgoing state oupling addition betweenomponent a and omponent b.4.3.3 Deletion operationsExample 4.3. Mutual deletion of query/done outgoing ouplings between om-ponents a and b.As desribed in Figure 5, As for outgoing state oupling addition, omponenta needs �rst to request omponent b to delete orresponding input. One om-ponent a reeives the done on�rmation from omponent b, it self-deletes its out-put and outgoing oupling to omponent b. For symmetry reasons, omponentb self-deletes orresponding done output and outgoing ouplings to omponentb.
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Figure 5: UML interation diagram for mutual request/done oupling deletionbetween omponent a and omponent b.Example 4.4. A omponent b deletes itself.As desribed in Figure 6, omponent b queries �rst all its in�uenees (om-ponent a) to self-delete their inputs from omponent b. After this deletion,omponent a sends a done message after whih omponent b deletes all its out-going ouplings and outputs to omponent a. After, omponent a follows thesame protool to remove its outputs and outgoing ouplings to omponent b.Finally, omponent b deletes itself.
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Figure 6: UML interation type diagram of request/response protool for om-ponent b self-deletion.4.3.4 Independene of loal struture hangesProposition 4.2. Based on a query/done message exhange protool, a stru-ture hange lok is a synhronization mehanism ensuring: (i) no interferenesbetween external struture hanges, and (ii) struture onsisteny at networklevel.Lemma 4.1. Loal external struture hanges do not interfere.Proof. At eah global transition, only one imminent omponent is seleted:
d∗ = Select(IMM), with imminent omponents IMM = {σd | d ∈ D ∧ σd =
ta(s)}. The basi lok synhronization mehanism between two dynami stru-ture omponents (f. Figure 2) follows a zero time advane sequene. First,imminent omponent i∗ is seleted to send a query message to an in�uenee
j ∈ Ii∗ . The latter ahieves an external struture hange transition
(M ′

ext,j, s
′
j) = τext,j(Mext,j , δext,j(sj , ej, xj)) and shedules an internal transi-tion δint,j(sj). At the same time, if omponent j reeives another query mes-sage, as in lassi DEV S, δext,j(δint,j(sj), 0, xj), internal transition δint,j(sj)is exeuted �rst, and omponent j∗ sends the done message to initial query-ing omponent i ∈ Ij∗ , whih exeutes its external struture transition fun-tion. The latter �rst hanges the external struture of omponent i ∈ D as

(M ′
ext,i, s

′
i) = τext,i(Mext,i, δext,i(si, ei, xi)) and �nally updates network stru-ture based on new struturesM ′

ext,i andM ′
ext,j , i.e., N ′ = τext,i(N, δext,i(si, ei, xi)).18



Lemma 4.2. Loal internal struture hanges do not interfere.Proof. Obvious from the de�nition of internal models (f. De�nition 2.4).Theorem 4.2. Loal dynami struture hanges do not interfere.Proof. Obvious from Lemma 4.2 and Lemma 4.1.Theorem 4.3. Considering an initial network
N = (X,Y,D, {Md}, {Id}, {Zi,d}, Select), where eah omponent d ∈ D is abasi dynami struture omponent DYS-DEVSd, and where there are dynamisingle loal points of ontrol of struture hanges of modelsMd = (Mext,d,Mint,d), the set of networks N is equivalent to a resultant DYS-DEVS = (M,S, τ).Proof. As loal struture hanges do not interfere (f. Theorem 4.2),1. For eah non-reated omponent d ∈ D ∩ D′,

τ(...,Md, sd, . . . ) = (..., τd(Md, sd), ...) = N ′,2. For eah new omponent d ∈ (D′ −D), initialized to initial state
s0,d: τ(...,Md, sd, . . . ) = (..., τd(Md, sd), ...) = (N ′, (..., s0,d, ...)).4.3.5 Closure under ouplingTheorem 4.4. DYS-DEVS formalism is losed under oupling, i.e., onsid-ering an initial network N = (X,Y,D, {Md}, {Id}, {Zi,d}, Select),where eahomponent d ∈ D is a basi dynami struture omponent DYS-DEVSd, andwhere there are dynami single points of ontrol of struture hanges, the set ofnetworks N is equivalent to a resultant DEVS = (X,Y, S, δext, δint, λ, ta).Proof. Let the time remaining to the next event σd = tad(sd)− ed, with tad(sd)the time advane of a omponent model Md, sd its urrent state, ed its timeelapsed time sine the last event. Then, the time advane of the resultant is

ta(s) = min{σd , | d ∈ D}.External transitions s′ = δext(s, e, x) at resultant level an be expressed atomponent level by:
s′d =







δext,d(sded, xd) if d ∈ D ∩D′, N ∈ Id, xd 6= Ø
sd,0 if d ∈ (D −D′)
sd otherwiseInternal transitions s′ = δint(s) at resultant level an be expressed at om-ponent level by:

s′d =















δext,d(sded, xd) if d ∈ D ∩D′, d ∈ Id∗ , xd 6= Ø
δint,d(sd) if d ∈ D ∩D′, d∗ = d

sd,0 if d ∈ (D −D′)
sd otherwise
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4.3.6 LegitimayGeneral losure under oupling yields aDEVS whih is not neessarily legitimate- there ould be a loop of omponents that ativate eah other without advaningtime (eah having a transient (zero-time) state to output and then waiting forinput). Hene, the same situation an hold for the non dynami struture partof a DYS-DEVS, onsidering dynami struture operations at network level.Therefore, onditions of DYS-DEVS legitimay have to be exposed.Theorem 4.5. A DYS-DEN = (N ,S, τ) is legitimate (i.e., orresponding dy-nami struture operations always terminate) if eah network N ∈ N is legiti-mate, the resultant being also legitimate.Proof. A DEVS M is legitimate under following onditions[6℄:1. M is �nite (partial state set S is �nite): Every yle in thestate diagram of internal transitions δint ontains a non-transitory state ta(s) > 0 (neessary and su�ient ondi-tion).2. M is in�nite: There is a positive lower bound on the timeadvanes, i.e., ∃b ∀s ∈ S, ta(s) > b (su�ient ondition).Although, it has been proved in Theorem 4.2 that on�uent dynami stru-ture operations do not interfere, for sake of simpliity it is assumed here thatthere are no on�uent dynami struture operations for eah network N ∈ N .Then, at eah time, eah omponent an be onerned by only one dynamistruture operation.Also, it is assumed that eah network N ∈ N is legitimate, i.e., eah orre-sponding resultant does not get stuk in time and spei�es a well-de�ned dynamisystem.In a network, among basi dynami struture operations, self-deletion (f.Example 4.4) onsists of 9 onseutive internal and external transitions. It isthe longest sequene of basi dynami struture operations. Eah other basidynami struture operation terminates in fewer (zero-time) transitions. Toshow this, both internal and external dynami struture hanges an be onsid-ered. Being independent, for one omponent d ∈ D, hanging its internal model
Mint,d onsists merely of 1 transition: (M ′

int,d, s
′
d) = τint,d(Mint,d, δint,d(sd)).Depending on the interation of one requesting omponent i ∈ D and one an-swering omponent j ∈ D, hanging external model Mext,i implies hangingexternal model Mext,j. This onsists of a basi lok synhronization messageexhanges (f. Figure 2), i.e.:
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1. Two transitions for omponent i ∈ D:(a) δint,i(request),(b) (M ′
ext,i, s

′
i) = τext,i(Mext,i, δext,i(request, 0, done)).2. Two transitions for omponent j ∈ D:(a) δint,j(done),(b) (M ′

ext,j , done) = τext,j(Mext,j , δext,j(sj , ej, request)).Hene, hanging external models onsists of 4 zero-time transitions. Finally,self-deletion of a omponent i ∈ D onsists of summing the following steps:1. Mutually hanging both external models Mext,j with i ∈ Ij (re-moving orresponding input/output of omponent j ∈ D and out-going ouplings to omponent i ∈ D) and external model Mext,i(removing orresponding input/output of omponent i ∈ D andoutgoing ouplings to omponent j ∈ D) - 8 zero-time transitions;2. Self-deletion �nally onsisting of the deletion of internal model
Mint,i (inluding the update of network struture) - 1 zero-timetransition.Considering a DYS-DEN = (N ,S, τ), where eah network N ∈ N is legiti-mate, orresponding dynami struture operations always terminate individuallyin less than 9 zero-time transitions, then the resultant is legitimate.5 Conlusion and perspetiveUsing single point enapsulated ontrol funtions this artile proves that a fullymodular deentralization of dynami struture systems is possible while keepingthe approah simple enough. Futhermore, a new way of integrating formalismsand speifying dynami struture disrete event systems is proposed.The goal of this work is really to preserve and to partiipate to the diversityof the dynami struture researh �eld. Modeling the interations betweenstruture and state dynamis is not easy. However, this should not be an exusefor onstraining too muh the ontrol mehanisms. Otherwise, it is well knownthat too muh onstraints kills diversity and usually leads to the sterilizationof a �eld. It is hoped that this ontribution will be the oasion to share newperspetives.A �rst perspetive onerns the implementation of abstrat simulators toautomate request/done message exhange protool. A seond perpetive on-erns the generalization of single points of ontrol to multiple points of ontrolallowing many struture hanges to our in parallel.Referenes[1℄ F. J. Barros. Modelling Formalisms for Dynami Struture Systems. ACM21
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