N
N

N

HAL

open science

Specification of dynamic structure discrete event
systems using single point encapsulated control functions

Alexandre Muzy, Bernard P. Zeigler

» To cite this version:

Alexandre Muzy, Bernard P. Zeigler. Specification of dynamic structure discrete event systems us-
ing single point encapsulated control functions. International Journal of Modeling, Simulation, and

Scientific Computing, 2014, 5 (3), 10.1142/51793962314500123 . hal-01315167

HAL Id: hal-01315167
https://hal.science/hal-01315167
Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01315167
https://hal.archives-ouvertes.fr

Specification of dynamic structure
discrete event systems using single point
encapsulated control functions

Alexandre Muzy™, Bernard P. Zeigler™*

* I3S UMR CNRS 7271, Bio-info team, CS 40121 - 06903 Sophia-Antipolis
Cedex, France, Email: alexandre.muzy@cnrs.fr.

** Chief Scientist, RT'Sync Corp, 530 Bartow Drive Suite A Sierra Vista, AZ
85635, United-States of America, Email: zeigler@rtsync.com.

Abstract

In Discrete Event System Specification (DEVS), the dynamics of a
network is constituted only by the dynamics of its basic components. The
state of each component is fully encapsulated. Control in the network is
fully decentralized to each component. At dynamic structure level, DEVS
should permit the same level of decentralization. However, it is hard to
ensure structure consistency while letting all components achieve structure
changes. Besides, this solution can be complex to implement. To avoid
these difficulties;, usual dynamic structure approaches ensure structure
consistency allowing structure changes to be done only by the network
having new added dynamics change capabilities. This is a safe and simple
way to achieve dynamic structure. However, it should be possible to
simply allow components of a network to modify the structure of their
network, other components and/or their own structure - without having
to modify the usual definition a DEVS network. In this manuscript it is
shown that a simple fully decentralized approach is possible while ensuring
full modularity and structure consistency.

1 Introduction

In systems theory tradition, the discrete event specification has sought for many
years to specify dynamic structure sytems:

e Dynamic Structure Discrete Event System Specification (DSDEVS)[1]:
Where a single central controller is in charge of executing structure changes.
Having a single locus of control for structure changes constitutes a rela-
tively simple way of ensuring both behavior and structure consistencies.

e DynamicDEVS|[2]: Where a sequential implementation allows local and
decentralized internal structure changes. Interface structure changes as
well as the addition/deletion of components are subsequently integrated
at network level.

e Variable structures[3]: Contrary to the two previous works this is not a
formal approach. However, it is an attempt to have many decentralized
loci of control for achieving structure changes. Local components are able
to sequentially® modify the whole structure of other components, in the
same network.

e Continuous Flow System Specification (CFSS)[4]: Where the implemen-
tation of multirate integration methods and dynamic stucture models can
be achieved. CFSS components sample directly their influencers’ states.

To deal with the autonomy of structure changes, the notion of single point of
control is introduced here. In a single point of control, at each time, only one
component is responsible of structure changes. This component can always be
the same for the whole simulation (static single point) or can change (dynamic
single point).
The scope of the present contribution is twofold:
1. To constitute a coherent framework for usual dynamic structure formalisms.
This framework would allow the different formalisms to be represented

with the same elements and mechanisms. This is of interest for the com-
munity, e.g., to debate differences between formalisms,

2. To propose a fully decentralized modular approach closer to reality and
DEYVS thus opening new exciting research perspectives.

The manuscript is organized as follows. In Section 2, both static and dynamic
structure specifications of dynamic systems are defined. In Section 3, both fixed
and dynamic single points of control of structure changes are used to represent
usual formalisms. In Section 4 a fully modular and autonomous approach is pro-
posed. Finally, in Section 5, conclusion and perspectives close the manuscript.

2 Discrete event and dynamic structure specifi-
cations of dynamic systems

Structure changes are defined as based on discrete event transitions.

2.1 Usual static structure formalism

The structure of both network and basic discrete event systems is presented
here.

'In the Discrete Event System Specification, concurrent events (changes of states), occur-
ring at the same time, are executed one after the other. Each change of state influencing other
conccurrent state changes, at current time.

2.1.1 Basic (Atomic) Discrete Event Specification

Definition 2.1. A basic Discrete Event System Specification (DEVS) is a struc-
ture:
DEVS = (X, K S, 5emt7 5int7)\, ta)

Where, X is the set of input events, Y is the set of output events, S is the set
of partial states, depr : Q X X — S is the external transition function with
Q = {(s,e)]s € 5,0 < e < ta(s)} the set of total states, djnr : S — S
is the internal transition function, A : S — Y 1is the output function, and
ta : S — R%F is the time advance function.

2.1.2 Network structure

Definition 2.2. A DEV S network is a structure:
N = (X,Y,D,{Mq},{Ia},{Zia}, Select)

Where X is the set of input events, Y is the set of output events, D is the
set of component names, for each d € D, M, is a basic model (whose structure
differs from one DEVS-based formalism to another), for each d € D U {N},
I, is the set of influencers of d such that Ip € DU{N},d ¢ I; and, for each
i € Ig, Z; 4 is a coupling function, the i— to —d output translation, defined for:
(i) external input couplings: Zseif.a: Xserf — Xa, with self the network name,
(ii) internal couplings: Z;; : Y; — X;, and (iii) external output couplings:
Zaself Ya = Yserf, and Select : 2P — {@} — DU {Q} is the sequential select
function (to select one component to execute its transition/output functions,
among imminent components). Considering a set of components C' candidate
for internal transition, the sequential select function has constraint Select(C') €
C U {Q@}, i.e., only one component or no components can be selected among
candidates.

2.2 Dynamic structure of dynamic systems using a dis-
crete event specification

Both network and basic dynamic structure systems are presented here.

2.2.1 Basic dynamic structure

Definition 2.3. Basic or atomic Dynamic Structure Discrete Event System
Specification (DYS-DEVS) structure

DYS-DEVS = (M, S, 1)

Where each element M € M is a structure DEVS = (X,Y, S, 6ext,, Oint, A, ta),
S = HpyemSy is the disjoint union of their partial state sets, and
T: MxS—= MxS is the structure transition function. Structure functionr
takes a basic DEVS and its state to a new basic DEVS’ and a new state (could

be the same also): 7(M,s) = (M’,s"). This represents a basic change in struc-
ture which transforms a basic DEVS into a new basic DEVS’, by changing its
structure in some way (one or many elements of (X,Y, S, dcut, dint, A, ta)) and
initializing the state of the new DEVS. To use this representation the sets M (of
DEVS, it can generate), S (of their states), and mapping 7 (how the structure
change occurs) are identified after in the manuscript.

At network level, basic structure components are authorized to modify the
whole network. At local level, for a basic structure component, modifying its
interface requires modifying related couplings (in the network) and related in-
puts/outputs (in another component). The impact of interface structure changes
goes a little beyond the frontiers of the component. To account for these im-
pacts, the concept of external and internal models is defined here.

Definition 2.4. In a basic DYS-DEVS = (M,S,7) a model M € M can be
decomposed into an external model part M., and into an internal model part
M;nt, and structure transition function 7 can be decomposed into an exter-
nal structure transition function T.,; and into an internal structure transition
function T;,:, where:
e M., = (X,Y) is changed by the external structure transition function
Text (Mewta 5emt(57 €, :E)); and

o Mint = (S, ext, Oint, A, ta) is changed by internal structure transition func-
tion Tint(Mint, Oint(s)).

Example 2.1. Internal structure changes of a basic DYS-DEVS.
Assume basic component DYS-DEVS = (M, S, 7) is in state (M, s), with
Mint = (S, Sext, dint, A, ta) its internal model, when it receives input = = change

from another component. Then, a new state is obtained as
Oext (S, €,2) = changelnternalStructure. New structure M/, , = (S',0.,;, Jint, A, ta’)

is obtained as Tint(Mint, s) = (M}, s’). Notice that differences between struc-
tures My, and M/ , consist in new sets S’, new external transition function
0! .+, and new time advance function ta’.

2.2.2 Dynamic structure network

Definition 2.5. Dynamic Structure Discrete Event Network System (DYS-
DEN) structure

DYS-DEN = (N, S, 1)

Where N = {(X,Y, D, {Mu},{1s},{Z:.a}, Select)} is the set of network struc-
tures, where each component d € D is an atomic dynamic structure model My =
(M, Sa,74), S = UnearSy is the disjoint union of partial state sets of network
structures, with
Sy = IlzepSq the partial state set of a network N € N is the crossproduct
of the partial state sets of its components, and 7 : N x & — N x § is the
structure transition function of the network.

Next example briefly introduces the structure changes at network level.

Example 2.2. Simple changes of network structure (cf. Figure 1)

Figure 1: A simple change of network structure

Consider a simple network structure N = (D,{Mga},{Ia},{Zia}, Select),
where
D = {a,b,c,d,e}, I. = {a,b}, I = {c}, I. = {c}, and Z,. : Yo — X,
Zye + Yy = X, Zeg @ Ye = Xa, Zee @ Yo = Xe. The state set of the
components in the network is S = S, X Sp X Se X Sg X Se. Now assume
that each component state set is {0,1}. Then, the state set of the network
is S = {0,1} x {0,1} x {0,1} x {0,1} x {0,1}, with, e.g., particular states
(0,0,0,0,0),(1,0,0,0,0), ..., where the first component is for component a, the
second component for component b, the third component for component c, etc.

At a particular instant, component ¢ is removed. Then, network structure N
defined as (D,{Ma},{la},{Zia}, Select) changes to N’ defined as (D', { My}, {13},{Z; 4}, Select’),
where D' = {a,b,d,e}, I; = I}, = I, = {0}, {Z],;} = {0}, and {M}} =
{M},M], My, M/}. The state set of the components in network N’ is now
S" = S, x 8, x 84 x S.. Notice that components a,b and components d,e
are impacted by the deletion of component ¢ having respectively their output and
input sets removed.

Now suppose that these structure changes can be achieved by network struc-
ture transition function 7(N,s) = 7(N,(1,1,0,0,0)) = N’. Assume also that
value 0 means “no change intention” and value 1 means “change intention”. Fi-
nally, 7(N, (1,1,0,0,0)) means that both components a and b have both intention
to make the network structure change to N' at the same time. It will be seen
hereafter how this kind of simultaneous local changes of structure in the network
can be serialized.

Generally speaking, we will show that,

Proposition 2.1. A network N = (X,Y, D, {My},{Ia},{Zia}, Select), where
for each d € D, My is a basic DYS-DEVS,; = (Mg, Sa,74), is equivalent to a
resultant DYS-DEVS = (M, S, 1).

3 Representation of usual formalisms

In DSDEV S formalism, there is only one component in every instance of M
that makes the decision for the next instance. Structure transition function 7 is
defined by mimicking the changes achieved by the executive in one transition.
On the other hand, DynamicDEV S formalism allows multiple local decision
points but changes of network structure are done only at network level.

DYS-DEVS uses the usual dynamic mechanisms of DEVS, using states
changes for synchronizing dynamic structure transitions. Serialization of struc-
ture changes is based on the notions of static and dynamic single points of
control for structure changes.

Definition 3.1. A static single point of control consists of having only one
dynamic structure component, always the same, in the whole network.

Definition 3.2. A dynamic single point of control consists of having many
dynamic structure components in the whole network. However, at each time
step, only one component can be authorized to achieve structure changes.

DSDEVS formalism is represented as a static point of control, while Dyn-
DEVS formalism is represented as a dynamic point of control. More generally,
it is shown that,

Proposition 3.1. Different existing formalisms for dynamic structure DEV S
can be represented in the Dynamic Structure Formalism Framework (DYS-F)
by different choices of M, S and T.

3.1 Equivalence of basic dynamic structure component
and basic discrete event component

Theorem 3.1. An atomic DYS-DEVS = (M, S, 1) is equivalent to an atomic
DEVS = (X,Y, S, 0cxt, Oint, A, ta), where the state set is S = M x S, with M
a set of basic DEV'S models and S is the disjoint union of their state sets:
S =pemSm.

Proof. We describe the dynamics of both DYS-DEVS and DEVS defining the
elements of a DEVS in terms of the elements of a DYS-DEVS.
The internal transition function of a DYS-DEVS is

Sint(M, s) = 7(M, §int pr(s))

i.e., first apply the internal transition function of the current structure M € M
to state s € Sy to get new state ;e ar(s), then apply the structure transfor-
mation to this pair to get a new structure and a new state (M, s').

Similarly, the external transition function is defined by:

5ezt(M7 S, €, .I) = T(M; 5ezt,M(Sa €, I))

The output function is defined by:
MM, s) = A (9)

i.e., output function of the current structure M € M sends current state s € S.
The time advance function is

ta(M,s) = tap(s)

i.e., time advance of the current structure M € M is applied to its state, s € S,
to compute the occurrence time of next state change. O

Based on structure transition function 7, a basic DYS-DEVS changes a
structure M € M, using partial state s € S. A new state is obtained by
the execution of one of the two usual transition functions: degeas(s,e,x) or
Sint.m (). Then, structure change depends on total state (s,e) € S x R%", and
possibly on external input event x € X.

3.2 Static single point

Centralized control of structure changes is investigated here. Structure changes
are controlled only by one component. No other component can change the
network structure.

Lemma 3.1. Considering an initial network N = (X, Y, D, {Ma},{1s},{Z:.a}),
where the set of component indexes D = {1,2,...,p} and the state set of the
network is S = S1 x 83 x...x Sy, where Sy is the state set of the first component,
So is the state set of the second component, etc., If a single point of control is at
first component DYS-DEVS; = (M, 81, 71), while each other componenti € D,
with i > 1 is a basic component DEV'S;, the set of networks N is equivalent to
a resultant DYS-DEVS = (M, S, 7).

Proof. A single point of control at first component DYS-DEVS,, would be
that 7 always accounts for the state of DYS-DEVS; to make its decision; so
7(81, 82, ..., Sp) = 71(s1) for some 71. Then, the image of 7 depends on the new
components added to the network or not (because the states of new components
have to be initialized).

Denoting new structures as N' = (X', Y", D" {M;},{I}},{Z] 4}), structure
transition function 7: M x § — M x S reduces to one of the two maps:

1. For each non-created component d € DN D', 7: & — M, with
T(...,Sd,...) = Tl(Sl) = N/,

2. For each new component ¢ € (D' — D) (created), ini-
tialized to initial state spo;, 7 : & — M x &, with

T(...,Si,...) :7'1(81) == (N/,(...,Soﬁi,...)).
O

Definition 3.3. A DSDEVS network[1] is a structure DSDEN = (x, M,),
with ezecutive model M, = (X,,Yy,Sy,7, L%, dy, Ay, tay), where a nework

structure ¥ € Xk is given by ¥ = ~(sy) = (D, { My}, {la}.{Zia}) and ~ :
Q, — o, with x ¢ D.

Corollary 3.1. A DSDEV S network is equivalent to a DYS-DEVS = (M, S, 1)
having a single point of control DYS-DEVS1 in charge of the structure changes
in a network N = (X,Y, D, {Ma},{Ia},{Zi.a}), where D = {1,2,....,p} and for
each component i € D, with i > 1, M; is a basic DEV'S model.

Single point of control DSP-DEVS; can be described in terms of executive
model M, with: M1 =%*, 81 = Sy, Dy = projp(v(sy) U{x}, and 74 = ~.

In Continuous Flow System Specification (CFSS)[4], components sample
directly their influencers’ states (in a one-step process) while usual DEVS com-
ponents have to request and receive their influencers’ states (in a two-step
process)[5]. Therefore, transforming a CFSS network into a DEVS one con-
sists of mapping each original coupling into two couplings (one for request, one
for answer). Another soution would be, contrary to CFSS, to break compo-
nents’ modularity through the multicomponent approach[6]. In the dynamic
structure context, DYS-DEVS equivalence can be achieved preserving modu-
larity (at dynamic structure network controller level) adding extra coupling (cf.
Barros’ description[5] for details).

3.3 Dynamic single point

Example 3.1. Dynamic structure authorization by “token” passing

Consider now a single point of control “passing” around, activating, the com-
ponents - just like a “token” in network where each node gets a chance to send
when it has the token. In this example the state set of Example 2.2 would be
S =1{(1,0,0),(0,1,0),(0,0,1)} with the token (authorization) going from a to
b to ¢ back to a, and so on in a cyle. Instead of "sending" the node with the
token can do any structure change with the global state being initialized to the
next triple in the cycle. Here, only one component among the components of
the network, can be activated at a time.

Theorem 3.2. Consider an initial network N = (X,Y, D, {My},{Is},{Zi q}),
where for each d € D, My is a basic dynamic structure DYS-DEVS, and the
state set of the network is S = S1 x Sp X ... X S}, where S is the state set of
the first component DYS-DEVSy, Sy is the state set of the second component
DYS-DEVS,, etc. If a dynamic single point of control is assigned sequentially
and cyclically to each component DYS-DEVS, for structure changes on the
components of the network, the set of networks N is equivalent to a resultant
DYS-DEVS = (M, S, 7).

Proof. Extending Lemma 3.1, it is simple to consider that a cycle of dynamic
single points of control is recursively defined by global and local structure tran-
sition functions:

with 71(1,0,0,...,0) = (N’,(0,1,0,...,0))
7:(0,1,0,...,0) — (N",(0,0,1, ..., 0)
with 75(0,1,0,...,0) = (N, (0,0,1,...,0))

Then, the resultant DYS-DEVS = (M,S,7) is defined with M = N,
S =1{(1,0,0,...,0),(0,1,0,...,0), (0,0, 1, ..., 0, ..., (0,0,0, ..., 1)}, 7(s) = s-+1mod,,
with p the number of components and state s = {0, 1}?. O

Remark 3.1. This is different from DSDFEV'S, which does not allow explicitly
changing a dynamic single point of control.

Definition 3.4. A DynamicDEV S network is a structure
DynNDEVS = (X, Y, Ninit, N (Ninit))

Where X, Y are input and output event sets, ninis €N (ninie) is the initial struc-
ture, and N (nip;:) the least (minimum) set having the structure{(D, pn, {dynDEV S;},{I;},{Z; ;}, Select)
with:

e D .{I;},{Z; ;} as defined previously,

e pny S — N(nini) is the network transition function with
S = ILep(Unmedynpevs,S™), with dynDEVS; the dynam-
icDEVS model i € D,

o dynDEV S; = (X;, Y, Minit,i Mi(Minit,s) , with:

— X,;,Y; the input and output event sets,
— Minit,i E./\/li(mmitﬁi) the initial model, and

— M;(Mingt,i) the least (minimum) set of internal structure
{(Sis0ewt,is Oint,is Pais Ni» ta;) } of usual atomic DEV'S, except
Pai Si — Mi(minit;) the model transition function.

o Select: 2P — {@} — D is the sequential select function.

Corollary 3.2. Using a single dynamic point of control, a network DynNDEV S =
(X, Y, ninit, N (ninit)) can be represented by an initial network N = (X, Y, D, {Ma},{14},{Z:.a})
where D = {1,2,...,p}, My is a dynamic structure network DYS-DEN; and each
other component d € D, with d > 1 is a basic dynamic structure component
DYS-DEVS,.
A DynNDEVS network operates along two sequential steps: (i) Locally,
basic components dynDEV S; can change only their internal model according
to their model transition function pa; : S; — Mi(Mini:), then (i) Dyn-
NDEVS network can change its structure (interfaces (X;,Y;) and D, {I,},{Z; ;},

adding/removing components) through the network transition function pn : S —
N (ninit), with S = Haep(Umedynpevs, S™).

Each basic dynDEV' S; = (X;,Yi, Minit.is Mi(Minit.i) can be represented by
a DYS-DEVS,; = (Mg, Sa,74) with correspondences: Mg = M;(Minit.i), with
Mg € My restricted to internal model Mini g = (Sd, Sext.ds Oint.d, N, tad), Sq =
Siy Td = pa,i restricted to Tq @ S; = Mi(Miniti). DynNDEVS is represented
by dynamic structure network DYS-DEN1 = (N7, 81, 71), with correspondences:
N1 = N(ninit), S1 = Uyen Sy with Sy = WiepS; = S1, 71 = pn restricted to
T 51 —>N(n1mt)

Remark 3.2. The Dynamic Structure Formalism Framework allows representing
a DynamicDEV S network, limitating: (i) local structure changes to be only
internal structure changes of atomic models, and (ii) global structure changes
to be achieved only by the dynamic structure network.

Another class of dynamic structure systems consists of mobile agents. Mod-
eling mobile agents has been done using the Heterogeneous Flow System Spec-
ification (HFSS) formalism, which combines with the Continuous Flow System
Specification (CFSS) to represent continuous flow systems and DEVS[7]. A
set of connected networks (each one embedding an executive) sequentially add,
transmit, and then destroy a single migrating agent. It can be easily shown
that this is equivalent to a dynamic sequential single point of control, each point
achieving only self-changes of structure. For the same class of mobile agents,
a DEVS-based formalism has been proposed: Mobile DEVS (MDEVS)[8]. In
this formalism, many agents can be “added, transmitted, and then destroyed”
in the networks. It can be shown that this formalism is also equivalent to the
case of dynamic single points of control.

4 Decentralization of structure change operations

Using a dynamic single point of control allows enhancing decentralization at two
levels:

1. Globally: Having each dynamic structure component operating at network
level. This is already a step toward decentralization with respect to usual
dynamic structure formalisms (which are centralizing network operations).
However, we will see that this approach can be considerered as partially
modular.

2. Locally: Having each dynamic structure component operating at interface
and couplings levels (here with influencee permission). This new approach
can be considerered as fully modular.

4.1 Counter-arguments to usual dynamic structure mod-
ularity

The hierarchy of systems specification|[6] is grounded on components modularity:
The state of components can only be changed: (i) externally by another compo-

10

nent, through interface interactions, or (ii) internally by the component itself. In
computer programming this is called encapsulation. In dynamic structure sys-
tems, changing other-structure remains a major issue. Changing self-structure
can impact the structure of the network and of other components (e.g., deleting
self-output requires deleting corresponding coupling and other-input of influ-
encee components). Then, because of structure change propagation it is hard
to ensure structure consistency at component and network level.

As depicted in previous section, one solution is to have only one (network)
component in charge of coupling changes (DynDEVS) or all structure changes
(DSDEVS). Authors’ philosophy could be sum up by argument: “only the net-
work can change the interface structures of its components to ensure modular-
ity”. However, it can be argued a major counter-argument:

Allowing networks to achieve structure/state change is a holistic
change of perspective while the usual hierarchy of systems speci-
fication is purely reductionnist (the network having no ability to
change structure/state being merely a composition of dynamic
components).

Then, allowing networks to change the structure/state of components could
also be considered as a violation of the modularity concept simply because then
components are not the only ones to change their state.

Having a static point of control is a simplification of purely autonomous sys-
tems only interacting through interfaces. Allowing many components to change
each-other structure requires defining synchronization interaction protocols that
can rapidly become complex to implement. In the next subsections we define
such protocols for elementary structure change operations. These mechanisms
can be automated and combined to achieve multiple structure changes. Now
let’s first achieve a first step towards decentralization having each dynamic struc-
ture component being able to operate at network level.

4.2 Global structure change operations

Theorem 3.2 already showed that considering an initial network
N = (X,Y,D,{Ma},{Ia},{Zia}), where each component d € D is a basic dy-
namic structure component DYS-DEVS,, each network structure N € A can
be reached by a resultant DYS-DEVS = (M, S, 7). However, the global state
of components is used locally for component selection thus decreasing control
autonomy.

Here, the whole system is simplified ensuring network structure consistency
and having more autonomy at component level. Each component d € D of the
network is a dynamic structure network component DYS-DEN ; = (Ny, Sa; Tint,d)
with Tineq @ Sq — Nj. Notice that stucture transition functions Tint,d are inter-
nal ones, i.e., based on internal state transitions.

11

Theorem 4.1. Consider an initial network N = (X,Y, D, {Ma},{1s},{Z:.a}),
where for each d € D, My is a dynamic structure network
DYS-DEVNy = (Ny, Sa, Tint.a), the state set of the network is S = S1 x Sg x
.. X S, where S1 is the state set of the first component DYS-DEVNy, Sy is
the state set of the second component DYS-DEVNs, etc. If a dynamic single
point of control is successively assigned to only one component DYS-DEVNy =
(N, Sd, Tint,a), the set of networks N is equivalent to a resultant DYS-DEVS =
(M, S, Tint)-

Proof. The main difference with Theorem 4.1 is that there is no cycle of dynamic
single points of control. Remember now that the execution of each internal stuc-
ture transition Tin: ¢ is driven by an internal state transition 7n: q(dinta(sq)). A
component candidate for a structure change is thus candidate first for an internal
transition. And here is the interesting point in usual DEVS, at each global state
transition, only one component, among candidates for internal transitions?, is
chosen by Select function. Therefore, only one candidate for structure change
is chosen at each global state transition avoiding structure conflicts.
Finally, each resultant structure change transition consists of the execution
of one dynamic structure network component d* = Select(IM M), i.e.,
1. For each non-created component i € D n D, O

T("'7Si7"'):Td*(Sd*) = N'.

2. For each new component ¢ € (D" — D), initialized to initial state
S0,is T(oo3Siyev) = Tax(Sax) = (N, (... ,80,i5--.)).

4.3 Local structure change operations

Here come the tricky structure change operations achieved by basic components.
To ensure structure consistency, at both local and global levels, synchronization
mechanisms are defined.

4.3.1 Dynamic structure synchronization

To ensure modularity, components cannot change other-interfaces. As for state
changes, structure changes can only be asked through interface interactions and
achieved by the component itself. Special input “query” and special output
“done” of basic dynamic structure components are used for change synchroniza-
tion.

Definition 4.1. Structure change synchronization conditions:

2 Candidates for internal transition compose the imminent set IMM = {oq|d € D AN oq =
ta(s)}, with ogq the time remaining to the next event oq = tay(sq) — eq, and taq(sq) the time
advance of a component model.

12

e Each dynamic structure component has extra structure query/done inter-
face.

e Each dynamic structure influencer has query outgoing coupling and done
incoming coupling with all its influencees.

e Dynamic structure components can:

— change its external structure and corresponding outgoing couplings
after request/done protocol (querying corresponding influencee to
add /remove corresponding input),

— change its internal structure,
— create / remove other components,

— query its influencees to perform structure changes.

Proposition 4.1. Changing other-structure can only be achieved through in-
terface interactions. This respects totally modularity concept as defined in the
hierarchy of systems specification[6].

However, changing the external structure of a component as well as adding /removing
a coupled component requires the compliance of impacted influencees as well as
updating network structure while ensuring that this whole structure change
sequence cannot be interrupted. To achieve this goal, a synchronization mech-
anism can be used.

Definition 4.2. Lock synchronization of structure changes is depicted in Fig-
uwre 2 for two components. Component a aims at achieving a structure change
impacting the structure of influencee component b. This follows the sequence:
1. Component a sends a query message to component b to change
structure,

2. Component b changes self-structure to comply with the new struc-
ture aimed by component a,

3. Component b sends a done message to component a,

4. Finally, component a changes self-structure and updates network
structure.

13

IComponent a IComponent b

guery {changeStructuredh))

P

________________________ changeStructure (b}

P

changeSelfAndMStructure (a, b)

Figure 2: UML interaction diagram for request/done synchronization protocol
for dynamic structure change between component ¢ and component b.

In the next sections this synchronization protocol is applied to addition and
deletion operations.

4.3.2 Addition operations

Example 4.1. A component a adds query/done coupling with a component b.

There are no query/done couplings between component ¢ and component b.
However, as all dynamic structure components, components ¢ and b have ex-
isting query/done interfaces. As described in Figure 3, component a needs first
to self-add a query outgoing coupling with component b. After, component a
requests component b to self-add a done outgoing coupling. Finally, component
b confirms the addition operation sending a done confirmation to component a.

14

IComponent a IComponent b

addGueryCoupling ¢a, by
guery (addDoneCoupling{a))

addDoneCoupling (a)

Figure 3: UML interaction diagram for request/done coupling addition between
component ¢ and component b.

Example 4.2. A component a adds an outgoing state coupling with a compo-
nent b.

As described in Figure 4, component a needs first to request component b
to add corresponding state input. After, component b confirms the addition
operation sending a done confirmation to component a. Finally, component a
self-adds corresponding output and outgoing state coupling with component b.

15

IComponent a IComponent b

guery (addStatelnput{a))

addStatelnput {a)

Pl

P

addStateGuthlCoupling (b)

Figure 4: UML interaction diagram for outgoing state coupling addition between
component a and component b.

4.3.3 Deletion operations

Example 4.3. Mutual deletion of query/done outgoing couplings between com-
ponents a and b.

As described in Figure 5, As for outgoing state coupling addition, component
a needs first to request component b to delete corresponding input. Once com-
ponent a receives the done confirmation from component b, it self-deletes its out-
put and outgoing coupling to component b. For symmetry reasons, component

b self-deletes corresponding done output and outgoing couplings to component
b.

16

IComponent a IComponent b

guery {deleteciueryinput{al)

deleteQueryinput {a)

deletecuernyOutputh Coupling (a, b)
guery {deleteDonelnputih))

deleteDonelnput (h)

?

eleteDoneCutputhl Coupling (b, a)

Figure 5: UML interaction diagram for mutual request/done coupling deletion
between component a and component b.

Example 4.4. A component b deletes itself.

As described in Figure 6, component b queries first all its influencees (com-
ponent a) to self-delete their inputs from component b. After this deletion,
component a sends a done message after which component b deletes all its out-
going couplings and outputs to component a. After, component a follows the
same protocol to remove its outputs and outgoing couplings to component b.
Finally, component b deletes itself.

17

IComponent a IComponent b

gquery {deleteAllinputs (b

deleteAllinputs (b

deleteAllQuthCouplings (a)

U

------------------------ deleteAlllputs (a)

o ?

deleteAllQuth Couplings ()

|

deleteComponent (selfy

Figure 6: UML interaction type diagram of request/response protocol for com-
ponent b self-deletion.

4.3.4 Independence of local structure changes

Proposition 4.2. Based on a query/done message exchange protocol, a struc-
ture change lock is a synchronization mechanism ensuring: (i) no interferences
between external structure changes, and (ii) structure consistency at network
level.

Lemma 4.1. Local external structure changes do not interfere.

Proof. At each global transition, only one imminent component is selected:
d* = Select(IM M), with imminent components IMM = {o4]|d € D N 04 =
ta(s)}. The basic lock synchronization mechanism between two dynamic struc-
ture components (cf. Figure 2) follows a zero time advance sequence. First,
imminent component ¢* is selected to send a query message to an influencee
j € Ii~. The latter achieves an external structure change transition
(M55 85) = Tewt,j(Mext,js Oext,j (55, €5, 7;)) and schedules an internal transi-
tion Jine,;(s;). At the same time, if component j receives another query mes-
sage, as in classic DEV'S, dept,j(0int,j(55),0,2;), internal transition ;¢ ;(s;)
is executed first, and component j* sends the done message to initial query-
ing component 7 € I;-, which executes its external structure transition func-
tion. The latter first changes the external structure of component i € D as

(M, 4,57) = Tewt,i(Mext i Ocat,i(5i, €i, x;)) and finally updates network struc-
ture based on new structures M/, ; and M_, ., i.e., N' = Tezr i (N, Oext,i(8i, €i, T4))-

O

18

Lemma 4.2. Local internal structure changes do not interfere.

Proof. Obvious from the definition of internal models (cf. Definition 2.4). [
Theorem 4.2. Local dynamic structure changes do not interfere.

Proof. Obvious from Lemma 4.2 and Lemma 4.1. O

Theorem 4.3. Considering an initial network
N = (X,Y,D,{My},{14},{Zi a}, Select), where each component d € D is a
basic dynamic structure component DYS-DEVS,, and where there are dynamic
single local points of control of structure changes of models My = (Megt.a, Mint,d)
, the set of networks N is equivalent to a resultant DYS-DEVS = (M, S, 7).

Proof. As local structure changes do not interfere (¢f. Theorem 4.2),
1. For each non-created component d € D n D, O
T(..., Md, Sdy - -) = (, Td(Md, Sd),) = NI,

2. For each new component d € (D' — D), initialized to initial state
50,d- T(..., Md, Sy) = (...,Td(Md, Sd),) = (NI, (, 50,d»))

4.3.5 Closure under coupling

Theorem 4.4. DYS-DEVS formalism is closed under coupling, i.e., consid-
ering an initial network N = (X,Y,D,{My},{Ia},{Zia}, Select),where each
component d € D is a basic dynamic structure component DYS-DEVS,, and
where there are dynamic single points of control of structure changes, the set of
networks N is equivalent to a resultant DEVS = (XY, S, §cut, Oint, A, ta).

Proof. Let the time remaining to the next event o4 = tagq(sq) — eq, with taq(sq)
the time advance of a component model M4, sq its current state, eq its time
elapsed time since the last event. Then, the time advance of the resultant is
ta(s) = min{oq,|d € D}.

External transitions s’ = d..¢(s, €, 2) at resultant level can be expressed at
component level by:

dewt,d(Saed; Ta) if deDND',Ne€lg, xq#0
Sld = Sd,0 Zf de (D — D/)
Sd otherwise

Internal transitions s’ = d;,+(s) at resultant level can be expressed at com-
ponent level by:

Ocat,d(Sd€d; Ta) if deDND,;delg, xq#0
r_ Sint,d(8a) if deDnD' d" =d -
Sa = 54,0 if de (D-D)
S4 otherwise

19

4.3.6 Legitimacy

General closure under coupling yields a DEVS which is not necessarily legitimate
- there could be a loop of components that activate each other without advancing
time (each having a transient (zero-time) state to output and then waiting for
input). Hence, the same situation can hold for the non dynamic structure part
of a DYS-DEYVS, considering dynamic structure operations at network level.
Therefore, conditions of DYS-DEVS legitimacy have to be exposed.

Theorem 4.5. A DYS-DEN = (N, S, 1) is legitimate (i.e., corresponding dy-
namic structure operations always terminate) if each network N € N is legiti-
mate, the resultant being also legitimate.

Proof. A DEVS M is legitimate under following conditions|6]:

1. M is finite (partial state set S is finite): Every cycle in the
state diagram of internal transitions d;,; contains a non-
transitory state ta(s) > 0 (necessary and sufficient condi-
tion).

2. M is infinite: There is a positive lower bound on the time

advances, i.e., 3bVs € S, ta(s) > b (sufficient condition).
Although, it has been proved in Theorem 4.2 that confluent dynamic struc-

ture operations do not interfere, for sake of simplicity it is assumed here that
there are no confluent dynamic structure operations for each network N € N.
Then, at each time, each component can be concerned by only one dynamic
structure operation.

Also, it is assumed that each network N € N is legitimate, i.e., each corre-
sponding resultant does not get stuck in time and specifies a well-defined dynamic
system.

In a network, among basic dynamic structure operations, self-deletion (cf.
Example 4.4) consists of 9 consecutive internal and external transitions. It is
the longest sequence of basic dynamic structure operations. Each other basic
dynamic structure operation terminates in fewer (zero-time) transitions. To
show this, both internal and external dynamic structure changes can be consid-
ered. Being independent, for one component d € D, changing its internal model
Mini,q consists merely of 1 transition: (i'nt)d,sil) = Tint,d Mint.d, Oint,a(Sd))-
Depending on the interaction of one requesting component ¢ € D and one an-
swering component j € D, changing external model M., ; implies changing
external model M. ;. This consists of a basic lock synchronization message
exchanges (cf. Figure 2), i.e.:

20

1. Two transitions for component i € D:

(a) Oine.i(request),
(b) (M,

ext,i’ S;) = Tewt,i (Memt,iu 6ewt,i(reque5tu 07 done)).

2. Two transitions for component j € D:

(a) 5int,j (done),

(b) (M, ;,done) = Text j(Mext, j, Oext,j (5, €, request)).
Hence, changing external models consists of 4 zero-time transitions. Finally,
self-deletion of a component ¢ € D consists of summing the following steps:
1. Mutually changing both external models M, ; with i € I; (re-
moving corresponding input/output of component j € D and out-
going couplings to component ¢ € D) and external model My ;
(removing corresponding input/output of component ¢ € D and

outgoing couplings to component j € D) - 8 zero-time transitions;

2. Self-deletion finally consisting of the deletion of internal model
Min,; (including the update of network structure) - 1 zero-time
transition.
Considering a DYS-DEN = (NS, 1), where each network N € N is legiti-
mate, corresponding dynamic structure operations always terminate individually
in less than 9 zero-time transitions, then the resultant is legitimate. O

5 Conclusion and perspective

Using single point encapsulated control functions this article proves that a fully
modular decentralization of dynamic structure systems is possible while keeping
the approach simple enough. Futhermore, a new way of integrating formalisms
and specifying dynamic structure discrete event systems is proposed.

The goal of this work is really to preserve and to participate to the diversity
of the dynamic structure research field. Modeling the interactions between
structure and state dynamics is not easy. However, this should not be an excuse
for constraining too much the control mechanisms. Otherwise, it is well known
that too much constraints kills diversity and usually leads to the sterilization
of a field. It is hoped that this contribution will be the occasion to share new
perspectives.

A first perspective concerns the implementation of abstract simulators to
automate request/done message exchange protocol. A second perpective con-
cerns the generalization of single points of control to multiple points of control
allowing many structure changes to occur in parallel.

References

[1] F. J. Barros. Modelling Formalisms for Dynamic Structure Systems. ACM

21

Transactions on Modelling and Computer Simulation (TOMACS), 7:501 —
515, 1997.

[2] Adelinde Uhrmacher. Dynamic structures in modeling and simulation: a
reflective approach. ACM Trans. Model. Comput. Simul., 11(2):206-232,
2001.

[3] Xiaolin Hu, Bernard P. Zeigler, and Saurabh Mittal. Variable structure in
devs component-based modeling and simulation. Simulation, 81(2):91-102,
February 2005.

[4] F. J. Barros. Modeling and simulation of dynamic structure heterogeneous
flow systems. SIMULATION, 78(1):18-27, January 2002.

[5] Fernando J. Barros and Bernard P. Zeigler. Model interoperability in the
discrete event paradigm: Representation of continuous models. Modeling
and Simulation Theory and Practice, pages 103-126, 2003.

[6] H. Praehofer B. P. Zeigler, T. G. Kim. Theory of Modeling and Simulation.
Academic Press, 2000.

[7] Fernando J. Barros. A formal representation of hybrid mobile components.
Simulation, 81(5):381-393, 2005.

[8] G.H. Kim and T.G. Kim. Framework for modeling/simulation of mobile
agent systems. In Proceedings of the 2000 Conference on Al Simulation
and Planning in High Autonomy Systems, pages 53—59, 2000.

22

