
HAL Id: hal-01315107
https://hal.science/hal-01315107

Submitted on 12 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Impact of Modal Depth in Epistemic Planning
(Extended Version)

Tristan Charrier, Bastien Maubert, François Schwarzentruber

To cite this version:
Tristan Charrier, Bastien Maubert, François Schwarzentruber. On the Impact of Modal Depth in Epis-
temic Planning (Extended Version). [Research Report] IRISA, équipe LogicA. 2016. �hal-01315107�

https://hal.science/hal-01315107
https://hal.archives-ouvertes.fr

On the Impact of Modal Depth in Epistemic Planning
(Extended Version)

Tristan Charrier ∗ Bastien Maubert † François Schwarzentruber ‡

April 2016

Abstract

Epistemic planning is a variant of automated planning in the framework of dynamic
epistemic logic. In recent works, the epistemic planning problem has been proved to be
undecidable when preconditions of events can be epistemic formulas of arbitrary complex-
ity, and in particular arbitrary modal depth. It is known however that when preconditions
are propositional (and there are no postconditions), the problem is between Pspace and
Expspace. In this work we bring two new pieces to the picture. First, we prove that the
epistemic planning problem with propositional preconditions and without postconditions is
in Pspace, and is thus Pspace-complete. Second, we prove that very simple epistemic pre-
conditions are enough to make the epistemic planning problem undecidable: preconditions
of modal depth at most two suffice.

1 Introduction
A key objective in artificial intelligence is to develop autonomous agents able to plan their
actions towards achieving their goals, and to reason about their own and other agents’ knowl-
edge. Planning, which consists in finding a sequence of actions to reach a given objective
from an initial situation, is a central research domain in artificial intelligence. Concerning
reasoning about knowledge, dynamic epistemic logic (DEL) is now recognised as a very
promising framework [1]. Recently, planning and dynamic epistemic logic have been com-
bined in the so-called epistemic planning problem [2].

In DEL, events can deal with high-order reasoning. For instance we may model the
following event:

“Anne receives a letter revealing that ϕ is true and Bob knows that Anne receives the
truth value of ϕ but Anne is unsure whether Bob knows that or not.”

In DEL, ϕ is called a precondition: ϕ needs to be true for this event to occur, and therefore
its occurence brings the information that ϕ is true. This event is purely informative, but
DEL also allows physical (ontic) effects on the world; these are referred to as postconditions.
One natural question is: how does the nesting of knowledge in pre- and postconditions
impact the complexity of the epistemic planning problem?

On the one hand, when only propositional preconditions are used, such as ϕ = “Bob is
married”, the problem is decidable if postconditions are also propositional [3]. In this case
it is in k-Exptime, where k is the maximal modal depth of goal formulas [4]; if there are no

∗Université de Rennes 1, IRISA
†University of Naples
‡ENS Rennes

1

⇓
⇓⇒

no postconditions with postconditions
d = 0 Pspace-complete Decidable
d ≤ 1 ? Undecidable [2]
d ≤ 2 Undecidable Undecidable

unbounded Undecidable [6] Undecidable

Table 1: Overview (d: modal depth; gray: this paper).

postconditions (events are purely epistemic), the problem is in Expspace [5]. On the other
hand, epistemic preconditions such as ϕ = “Bob considers it possible that Anne knows that
Bob does not know that it is raining” yield undecidability: if propositional postconditions are
allowed, then the problem is already undecidable with preconditions of modal depth one [2].
It is also known to be undecidable without postconditions, if we allow for preconditions of
unbounded modal depth [6]. See Table 1 for a summary of results about epistemic planning.

In this paper, our contribution is twofold:

1. With propositional preconditions and no postconditions, epistemic planning is in Pspace
(Theorem 1). The key point is that in this case events commute [7]. This allows for
a succinct representation of tuples of events, and we build upon a model checking
procedure from [8] to devise a polynomial space decision procedure.

2. Epistemic planning without postconditions is already undecidable with preconditions
of modal depth two (Theorem 2). The proof, by reduction from the halting problem
for two counter machines, refines the one given in [6], which requires preconditions
with unbounded modal depth. By designing more involved gadgets to code the con-
figurations and instructions of the machines, we manage to bound the modal depth of
preconditions.

We first recall the background on epistemic planning in Section 2. We establish our two
contributions, described above, in Section 3 and Section 4 respectively. We briefly discuss
future work in Section 5.

2 Background on epistemic planning
In this section, we recall the necessary background about dynamic epistemic logic and epis-
temic planning.

2.1 Dynamic epistemic logic
Let AP be a countably infinite set of atomic propositions, and let Ag = {1, . . . , n} be a finite
set of agents. The epistemic language LEL is the language of propositional logic extended
with one knowledge modality for each agent. Intuitively, Kaϕ reads as “agent a knows that
ϕ holds”. The syntax of LEL is given by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ where p ∈ AP and a ∈ Ag.

The semantics of LEL is given in terms of epistemic models that represent how the agents
perceive the world.

Definition 1 An epistemic model is a tupleM = (W, {Ra}a∈Ag, V) where:

• W is a non-empty finite set of possible worlds,
• Ra ⊆W ×W is an accessibility relation for agent a,
• V : AP → 2W is a valuation function.

2

We write w ∈ M for w ∈ W , |M| for |W |, and (M, w) is called a pointed epistemic
model. The intended meaning of wRaw

′ is that in world w agent a considers that w′ might
be the actual world.

The semantics of LEL is defined as follows:

• M, w |= p if w ∈ V (p);
• M, w |= ¬ϕ if it is not the case thatM, w |= ϕ;
• M, w |= (ϕ ∨ ψ) ifM, w |= ϕ orM, w |= ψ;
• M, w |= Kaϕ if for all w′ s.t. wRaw

′,M, w′ |= ϕ.

Dynamic epistemic logic (DEL) extends epistemic logic with modalities that represent
the occurrence of events. In DEL, events are represented by event models that we define
below. In general DEL events can bring information and modify the world, and such events
are called ontic events [9]; in this work however we focus on purely informative events, called
epistemic events [10].

Definition 2 An event model is a tuple E = (E, {→a}a∈Ag, pre) where:

• E is a non-empty finite set of possible events,
• →a⊆ E× E is an accessibility relation on E for agent a,
• pre : E→ LEL is a precondition function.

We write e ∈ E for e ∈ E, |E| for |E|, and (E , e) is called a pointed event model, where
e represents the actual event of (E , e). An event e can occur in a world w of an epistemic
modelM if, and only if, its precondition is verified, i.e.M, w |= pre(e), which leads to the
following definition:

Definition 3 GivenM = (W, {Ra}a∈Ag, V) an epistemic model and E = (E, {→a}a∈Ag, pre)
an event model, the update product ofM and E is the epistemic modelM⊗E = (W⊗, {R⊗a }a∈Ag, V

⊗)
where:

W⊗ = {(w, e) ∈W × E | M, w |= pre(e)},

R⊗a (w, e) = {(w′, e′) ∈W⊗ | wRaw
′ and e→a e

′},

V ⊗(p) = {(w, e) ∈W⊗ | M, w |= p}

The product of a pointed epistemic model (M, w) with a pointed event model (E , e) is
defined as (M, w)⊗ (E , e) := (M⊗E , (w, e)) ifM, w |= pre(e), otherwise it is undefined.

We now define the syntax and semantics of DEL. The syntax is given by the following
grammar:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Kiϕ | 〈E , e〉ϕ,

where p ∈ AP , i ∈ Ag and (E , e) is a pointed event model.
The semantics is the same as for LEL, with the following additional case:

• M, w |= 〈E , e〉ϕ ifM, w |= pre(e), and (M, w)⊗ (E , e) |= ϕ.

Example 1 Consider the pointed epistemic model (M, w) in Figure 1(a). Proposition p is
true in the actual world w but both agents a, b do not know that p holds: M, w |= ¬K1p ∧
¬K2p. Figure 1(b) shows a pointed event model (E , e) where the precondition of the actual
event e is p, and the one of event f is >. (E , e) represents the event where agent 1 learns
that p is true while agent 2 believes that nothing happens. Figure 1(c) shows the product
(M, w)⊗(E , e), which represents the situation after event (E , e). Observe that agent 1 knows
p and agent 2 does not.

Remark 1 We do not make any assumption on the nature of the accessibility relations in
epistemic and event models. In particular we do not assume S5.

3

w : p u :

1, 2

1, 2 1, 2

e : p

f : >

2

1

1, 2

(w, e) : p

(w, f) : p (u, f) :

2
2

1, 2

1

1, 2

1, 2

(a) (b) (c)

Figure 1: Example of a product.

2.2 Epistemic planning
Let C be a class of pointed event models. The epistemic planning problem restricted to C is
the following:

Definition 4 (Epistemic planning problem)
• Input: a pointed epistemic model (M, w), a finite set of pointed event models E ⊆ C,

and an epistemic goal formula ϕg;

• Output: yes if there exists a sequence of pointed event models (E1, e1), . . . , (Ep, ep) ∈ E
(a plan) such thatM, w |= 〈E1, e1〉 . . . 〈Ep, ep〉ϕg; no otherwise.

We now establish the precise complexity of this problem for propositional event models.

3 Propositional preconditions
Let C0 be the class of (pointed) epistemic event models where preconditions are propositional
formulas. For instance, the pointed event model depicted in Figure 1(c) is in C0 since both
p and > are propositional formulas. The epistemic planning restricted to C0 is known to be
Pspace-hard [5]. We establish that it is actually Pspace-complete.

As pointed out in [7], epistemic event models with propositional preconditions commute.
Formally:

Lemma 1 For all pointed epistemic models (M, w), for all pointed event models (E1, e1)
and (E2, e2) in C0, M⊗ E1 ⊗ E2, (w, e1, e2) exists iff M⊗ E2 ⊗ E1, (w, e2, e1) exists, and in
that case they are bisimilar.

As a consequence, in the rest of the section, the order in which events are applied in an
initial world is indifferent. Only the number of times each event occurs is relevant, and the
proof of our result heavily relies on this property.

We first establish a preliminary result on the model checking problem for a dedicated
language: we extend the dynamic epistemic language with iterations of event models in C0,
that is, constructions of the form 〈(E , e)`〉ψ where (E , e) is a pointed event model in C0 and
` is a positive integer. We suppose here that ` is written in binary so that this language,
called Lit

C0 , is exponentially more succinct than DEL. The size |ϕ| of a formula ϕ is defined
as usual, with the following additional inductive case: |〈(E , e)`〉ψ| = 1 + |E|+ dlog2 `e+ |ψ|
(by convention dlog2 0e = 0). Classically, the model checking problem for Lit

C0 is, given a
pointed epistemic model (M, w) and a formula Φ ∈ Lit

C0 , to decide whetherM, w |= Φ.

Proposition 1 Model checking Lit
C0 is in Pspace.

4

function mc(M, w, E , ~n, ϕ)
match ϕ

case p: return (p is true in w)
case ¬ψ: return not mc(M, w, E , ~n, ψ)
case (ψ1 ∨ ψ2) :

return mc(M, w, E , ~n, ψ1) or mc(M, w, E , ~n, ψ2)
case Kaψ :

for u ∈ Ra(w), ~̀ ∈ N|E| s.t.
∑|E|

i=1 `i =
∑|E|

i=1 ni

if

 preok(M, u, E , ~̀)
and succ(E , a, ~n, ~̀)
and not mc(M, u, E , ~̀, ψ)

 then

return false
return true

case 〈(E , ei)`〉ψ :
if pre(ei) is false in w then

return false
return mc(M, w, E , (n1, .., ni−1, ni + `, ni+1, .., nk), ψ)

Figure 2: Algorithm mc for model checking Lit
C0 .

Proof We design a deterministic algorithm that takes as an input a pointed epistemic
model (M, w0) and a formula Φ ∈ Lit

C0 , and decides whether M, w0 |= Φ. Without loss of
generality, we suppose that all event models appearing in the formula are the same, noted
E = (E,→, pre) (if not, we replace each one by their disjoint union). Let e1, . . . , e|E| be an
enumeration of the possible events in E . By Lemma 1, all permutations of events in a tuple
(w, ei1 , . . . , eip) are equivalent in the sense that either they all are worlds in M⊗ Ep and
they all are bisimilar, or none of them exists: only the number of times each event occurs
is relevant. For a world w and a vector ~n = (n1, . . . , n|E|), we thus let w•~n denote the
representative permutation (w, e1, . . . , e1︸ ︷︷ ︸

n1 times

, . . . , e|E|, . . . , e|E|︸ ︷︷ ︸
n|E| times

).

Let mc be the algorithm given in Figure 2, and let 0|E| denote the null |E|-vector. We
claim that mc(M, w0, E , 0|E|,Φ) returns true iffM, w0 |= Φ. To prove this claim we establish
that for all w ∈M, all integers n1, . . . , n|E| and all subformula ϕ of Φ, the following property
P holds:

IfM⊗E
∑|E|

i=1 ni , w•~n exists then mc(M, w, E , (n1, . . . , n|E|), ϕ) returns true iff

M⊗E
∑|E|

i=1 ni , w•~n |= ϕ.

Property P is proven by induction on ϕ. We omit the boolean cases and case 〈(E , ei)`〉ψ
which are trivial.

Case Kaψ: the algorithm has to check that ψ holds in all a-successors of w•~n inM⊗
E
∑|E|

i=1 ni . Every a-successor of w•~n is a permutation of some u•~̀ and is bisimilar to it.
We thus need to enumerate all worlds u and vectors ~̀ that represent some a-successor, and
verify that ψ holds in u•~̀. Given a tuple u•~̀, to check whether it is a permutation of
some a-successor of w•~n, we first check that it is an existing world inM⊗E

∑|E|
i=1 ni . Since

events are purely epistemic and propositional, preconditions of successive events can all be
checked in the initial world u. This is done by calling function preok(M, u, E , ~̀), which
checks that for all i ∈ {1, . . . , |E|}, if `i > 0 then pre(ei) is true in u. Next, we check that
some permutation of u•~̀ is indeed a-related to w•~n: we should first have u ∈ Ra(w); then,

5

it should be possible to map each occurrence of an event ei in w•~n to some occurrence of
some a-related event ej in u•~̀ so as to form a bijection. Deciding whether such a bijection
exists amounts to solving the following integer linear program: checking whether there exist
positive integers (xi,j)(i,j)∈{1,...,|E|}2|ej∈Ra(ei)

, where xi,j is the number of times ej is chosen
as a-successor for ei, such that:

(S)

{
ni =

∑
j|ej∈Ra(ei)

xi,j for all i ∈ {1, . . . , |E|}, and
`j =

∑
i|ei∈Ra(ej)

xi,j for all j ∈ {1, . . . , |E|}.

This is done by calling succ(E , a, ~n, ~̀).

Spatial complexity. We justify that mc can be implemented in polynomial space in the
size of the input (which is |M|+|Φ|). The maximal number of nested calls is bounded by |Φ|,
so that the number of local variables to be stored is polynomial in |Φ|. We now bound the
space needed to store vector ~n in each call, which is in O(

∑|E|
i=1dlog2 nie). Letting `1, . . . , `m

be an enumeration of the numbers appearing in Φ, it is clear that
∑k

i=1 ni ≤
∑m

i=1 `i, and
thus for all i ∈ {1, . . . , |E|}, ni ≤

∑m
j=1 `j . We obtain

|E|∑
i=1

dlog2 nie ≤ |E|dlog2(

m∑
i=1

`i)e.

Now, it can be proven by studying the variation of function f : (x1, . . . , xm) 7→ log2(
∑m

i=1 xi)−∑m
i=1 log2 xi − log2m, that since `i ≥ 1 for all i ∈ {1, . . . ,m}, we have

log2(

m∑
i=1

`i) ≤
m∑
i=1

log2 `i + log2m,

and because the ceiling of a sum is less than the sum of the ceilings, we get

kdlog2(

m∑
i=1

`i)e ≤ |E|(
m∑
i=1

dlog2 `ie+ dlog2me).

By definition of the size of Lit
C0 formulas, k = |E| ≤ |Φ|,

∑m
i=1dlog2 `ie ≤ |Φ| and dlog2me ≤

m ≤ |Φ|, so that the space used to store ~n is in O(|Φ|2). It only remains to note that
checking consistency of a system (S) can be done in non-deterministic time polynomial in
the number of bits needed to encode ~n and ~̀ [11], and therefore in deterministic space
polynomial in |Φ|. �

We now describe a (non-deterministic) algorithm for the epistemic planning problem,
which consists in guessing a plan and then model-check an Lit

C0 -formula to check that this
plan realizes the goal. The crucial points here are, first, that we can restrict to plans of
exponential length, second, that thanks to commutation of events they can be represented in
polynomial space, and third, that verifying whether a plan works can be done in polynomial
space (Proposition 1).

Theorem 1 The epistemic planning problem restricted to C0 is in Pspace.

Proof We adapt the algorithm given in [5, Theorem 5.8]. First it is proved in [12] that,
noting 'd the d-bisimulation1 for event models (see [1], [5], [12]), for every d ≥ 0, every
pointed event model (E , e) is 'd-stabilizing at iteration |E|d; formally, (E , ei)k 'd (E , ei)k+1

for all k ≥ |E|d.2 Secondly, by Lemma 1, event models with propositional preconditions
commute. Therefore, the following algorithm correctly solves the epistemic planning problem
for event models with propositional preconditions:

Given input 〈(M, w), {(E1, e1), . . . , (Em, em)}, ϕg〉:
1Bisimulation up to modal depth d.
2Actually a better bound is proved in [5].

6

1. Compute d, the modal depth of the goal formula ϕg;
2. For each i ∈ {1, . . . ,m}, non-deterministically guess ni ∈

{
0, . . . , |Ei|d

}
;

3. Accept ifM, w |= 〈(E1, e1)n1〉 . . . 〈(Em, em)nm〉ϕg.

This algorithm is non-deterministic. The first step is clearly performed in space poly-
nomial in the size of the input. Concerning the second point, each ni can be exponen-
tial in d and thus in |ϕg|, but its binary representation uses polynomial space. Since
〈(E1, e1)n1〉 . . . 〈(Em, em)nm〉ϕg is an Lit

C0 formula, it follows from Proposition 1 that the last
step can also be performed in polynomial space. The epistemic planning problem restricted
to C0 is therefore in NPspace and thus in Pspace by Savitch’s theorem [13]. �

We now turn to the case of modal preconditions with bounded modal depth.

4 Preconditions of bounded modal depth
Let C2 be the class of event models with preconditions of modal depth at most two. We
prove the following theorem by refining the reduction given in [6].

Theorem 2 The epistemic planning problem restricted to C2 is undecidable.

We first recall the halting problem for two-counter machines, known to be undecidable
[14], and then we reduce it to the epistemic planning problem restricted to C2.

4.1 Two-counter machines
We present two-counter machines as introduced in [14].

Definition 5 A two-counter machine M is a sequence of instructions (I0, . . . , IN) where

• For ` < N , I` is either inc(i), goto(`′) or gotocond(i, `′), with i ∈ {1, 2}, `′ ≤ N and
` 6= `′;

• IN = halt.

We call program line a pair k:Ik.

Example 2 The following four programs lines define a two-counter machine Mex:

0:inc(1)
1:gotocond(1, 3)
2:goto(0)
3:halt

A configuration of a two-counter machine M is a triple (`, c1, c2) where ` ∈ {0, . . . , N}
is the program counter and c1, c2 ∈ N are the two data counters.
Let CM = {0, . . . , N} × N× N be the set of all possible configurations.

The transition function →M on CM is defined as follows. For all (`, c1, c2) ∈ CM :

• If I` = inc(1), (`, c1, c2)→M (`+ 1, c1 + 1, c2);

• If I` = inc(2), (`, c1, c2)→M (`+ 1, c1, c2 + 1);

• If I` = goto(`′), (`, c1, c2)→M (`′, c1, c2) ;

• If I` = gotocond(1, `′), (`, c1, c2)→M

{
(`′, 0, c2) if c1 = 0;

(`+ 1, c1 − 1, c2) otherwise;

• If I` = gotocond(2, `′), (`, c1, c2)→M

{
(`′, c1, 0) if c2 = 0;

(`+ 1, c1, c2 − 1) otherwise.

7

PC ` = 1

c1 = 3 c2 = 2

a0 a1 aN

a1

. . .
a2

p1

q1
p1

p1

p1

p2

q2
p2

p2

Figure 3: Pointed epistemic model (M, w)(1,3,2).

PC ` = 0
c1 = 0 c2 = 0

a0 a1 aN

a0

. . .
p1 q1 p2 q2

Figure 4: Pointed epistemic model representing the initial configuration (0, 0, 0).

A two-counter machine M halts if there exist c1, c2 such that (0, 0, 0) →∗M (N, c1, c2),
where →∗M denotes the reflexive transitive closure of →M . For instance, the machine Mex

given in Example 2 above does not halt. The halting problem for two-counter machines
consists in deciding, given a two-counter machine, whether it halts or not. This problem is
well known to be undecidable [14].

4.2 The reduction
We define an effective reduction tr that, given a two-counter machine M , computes an
instance tr(M) of the epistemic planning problem restricted to C2. We fix M and the rest
of the section is devoted to defining tr(M) = 〈(M0, w0);E;ϕg〉 and justifying its correctness
(Proposition 2). As in [6], we only use one agent a (� stands for Ka and ♦ stands for
¬Ka¬), configurations of M are represented by pointed epistemic models, and the initial
pointed epistemic model represents the initial configuration (0, 0, 0). Each program line
`:I` is represented by one or two pointed event model(s), such that a plan corresponds to
a sequence of program lines. The goal formula expresses that the final pointed epistemic
model represents a halting configuration.

4.2.1 Pointed epistemic models

Let (`, c1, c2) be a configuration of M . We describe the pointed epistemic model
(M(`,c1,c2), w(`,c1,c2)) (shortened as (M, w)(`,c1,c2)) that represents (`, c1, c2). For instance,
Figure 3 shows (M, w)(1,3,2). It is a tree-like structure rooted at w(`,c1,c2). In each world
except the root, there is exactly one true atomic proposition, and we call p-world any world
where p holds. The root w(`,c1,c2) verifies no atomic proposition, and it has three groups of
children, one for each counter:

Program counter. For each program line `′ : I`′ , w(`,c1,c2) has one reflexive child labeled
by proposition a`′ . The a`-child of w(`,c1,c2) has a child also labeled by a`, without

8

a0 aN

a0

. . .
a2

p1

q1
p1

p1

p1

p2

q2
p2

p2

a0 a1 aN

a1

. . .
p2

q2
p2

p2

p2

(a) (b)

Figure 5: Examples of non valid epistemic models.

any outgoing edge: we say that there is an a`-strip. Intuitively, the a`-strip represents
the fact that I` is the next instruction to be executed.

Data counter ci. For each i ∈ {1, 2}, w(`,c1,c2) has a reflexive pi-child that has an irreflex-
ive qi-child, and is followed by a chain of irreflexive pi-worlds of length ci. Intuitively,
the number of irreflexive pi-children represents the value of ci.

We define the first component of tr(M): (M0, w0) := (M, w)(0,0,0) as depicted in Fig-
ure 4. We call configuration model a pointed epistemic model of the form (M, w)(`,c1,c2).

4.2.2 Pointed event models

For each program line `:I` ofM where I` is of the form goto(`′) or inc(i), we define a pointed
event model (E`:I` , e`:I`) (shortened as (E , e)`:I`) that mimics the semantics of `:I` (Figures
7 and 9). For each program line `:gotocond(i, `′) of M , we define two pointed event models
(E , e)`:gotocond(i,`′) and (E>0, e>0)`:gotocond(i,`′), respectively for the case ci = 0 and ci > 0
(Figure 10). These pointed event models form the second component of tr(M):

E := {(E , e)`:I` | ` < N} ∪ {(E>0, e>0)`:I` | ` < N and I` = gotocond(i, `′)}.
In the model (M, w)(`,c1,c2) where ` < N , the only pointed event model of E that should

be applied is the one representing the behavior of program line `:I` in configuration (`, c1, c2).
This event model is defined as follows:

E(`, c1, c2) :=


(E>0, e>0)`:I` if I` = gotocond(i, `′)

and ci > 0,
(E , e)`:I` otherwise.

The product with any other event model from E results in a model that is not valid
according to the following definition:

Definition 6 A pointed epistemic model (M, w) is valid if w has an a`-child for each
` ∈ {0, . . . , N} and a pi-child for each i ∈ {1, 2}.

Example 3 The model shown in Figure 3, corresponding to (M, w)(1,3,2), is valid. Note
that by definition, every configuration model is valid.

The two models shown in Figure 5 are not valid. Indeed:

• In the model shown in Figure 5(a), the root does not have a a1-child.
• In the model shown in Figure 5(b), the root does not have a p1-child.

Further down, we will define event models of E such that:

Lemma 2 For every configuration (`, c1, c2), it holds that

1. (M, w)(`,c1,c2) ⊗ E(`, c1, c2) is isomorphic3 to (M, w)(`′,c′1,c′2), where (`, c1, c2) →M

3More precisely, the reachable parts of the pointed epistemic models are isomorphic.

9

>

a0
. . .

a` ∧ ♦�⊥ a`′

a`′

.
aN

Figure 6: Event model portion repl(`, `′) for ` 6= `′.

(E , e)`:goto(`′)
>

repl(`, `′)
p1 q1 p2 q2

Figure 7: Event model for `:goto(`′).

(`′, c′1, c
′
2).

2. The product of (M, w)(`,c1,c2) with any other event model from E is defined but not
valid.

3. For any non-empty sequence of event models (E1, . . . ,En,En+1) in E, if the model
(M, w)(`,c1,c2)⊗E1⊗ · · · ⊗En is not valid, then (M, w)(`,c1,c2)⊗E1⊗ · · · ⊗En⊗En+1

is also not valid.

We now describe the event models in E and at the same time we prove Lemma 2. Each
of these models has three groups (from left to right on Figures 7, 9, 10), that update
respectively the program counter group, the data counter c1 group and the data counter c2
group of configuration models.

Event model for ` : goto(`′). The pointed event model (E , e)`:goto(`′), that mimics the
effect of `:goto(`′), is depicted in Figure 7. Portion repl(`, `′) concerns the program counter
group and is described in Figure 6. The two other groups leave the data counter groups c1
and c2 unchanged.

• The product (M, w)(`,c1,c2)⊗ (E , e)`:goto(`′) is isomorphic to (M, w)(`′,c1,c2): indeed, por-
tion repl(`, `′) removes the a`-strip and adds an a`′ -strip in the program counter group
(recall that ` 6= `′).

• The product (M, w)(`′′,c1,c2)⊗(E , e)`:goto(`′) with `′′ 6= ` is not valid. Indeed, as (M, w)(`′′,c1,c2)
does not have an a`-strip in its program counter group, its a`-world violates precondition
a` ∧♦�⊥ in portion repl(`, `′). As a consequence, (M, w)(`′′,c1,c2)⊗ (E , e)`:goto(`′) has no
a`-child at its root and is thus not valid.

Event model for ` : inc(i). Figure 9 shows (E , e)`:inc(1) that mimics the effect of
` : inc(1) (for inc(2), the construction is symmetric). Portion repl(`, ` + 1) is meant to
increment the program counter. Portion lengthen(1) (described in Figure 8) is meant to
increment the data counter c1. The intermediate event of precondition p1 ∧ ♦q1 duplicates
once the p1-child of the root: it adds one p1-world at the start of the p1-chain. The last
group leaves data counter c2 unchanged.

• The product (M, w)(`,c1,c2) ⊗ (E , e)`:inc(1) is isomorphic to (M, w)(`+1,c1+1,c2).

10

pi ∧ ♦qi qi

pi ∧ ♦qi

pi ∧ ¬♦qi

pi ∧ ♦qi ∧ ♦(pi ∧ �¬qi) qi

pi ∧ ¬♦qi ∧ ♦>

Figure 8: Event model portions lengthen(i) and shorten(i).

(E , e)`:inc(1)
>

repl(`, `+ 1)

lengthen(1)

p2 q2

Figure 9: Event model for `:inc(1).

• For the same reason as for (E , e)`:goto(`′), the product (M, w)(`′′,c1,c2) ⊗ (E , e)`:inc(1) with
`′′ 6= ` is not valid.

Event models for ` : gotocond(i, `′). Figure 10 describes models (E , e)`:gotocond(1,`′)

and (E>0, e>0)`:gotocond(1,`′). They mimic the effect of ` : gotocond(1, `′) in case c1 = 0 and
case c1 > 0, respectively (for ` : gotocond(2, `′), constructions are symmetric).

• (M, w)(`,0,c2) ⊗ (E , e)`:gotocond(1,`′) is isomorphic to (M, w)(`′,0,c2): indeed, the precondi-
tion
¬♦(p1 ∧ ¬♦q1) checks that the p1-chain in the data counter c1 group is of length 0.
Here it is the case, so that the data counter group c1 remains unchanged. However, when
c1 > 0, the p1-child of the root of (M, w)(`,c1,c2) violates this precondition. It is thus
removed, so that the product (M, w)(`,c1,c2) ⊗ (E , e)`:gotocond(1,`′) is not valid.

• (M, w)(`,c1,c2)⊗ (E>0, e>0)`:gotocond(1,`′) with c1 > 0 is isomorphic to (M, w)(`+1,c1−1,c2).
Indeed, portion shorten(1) (Figure 8) is meant to decrement data counter c1 by one:
precondition p1 ∧¬♦q1 ∧♦> checks that we are in the p1-chain (p1), but not at the start
(¬♦q1) nor the end (♦>) of the chain. The last world of the p1-chain is thus removed
when c1 > 0. When c1 = 0, precondition ♦(pi ∧ �¬qi) is violated by the p1-child of the
root of (M, w)(`,0,c2): indeed, this precondition checks that the length of the p1-chain is
at least 1. The product (M, w)(`,0,c2) ⊗ (E>0, e>0)`:gotocond(1,`′) is thus not valid.

• For `′′ 6= `, (M, w)(`′′,c1,c2)⊗(E , e)`:gotocond(1,`′) and (M, w)(`′′,c1,c2)⊗(E>0, e>0)`:gotocond(1,`′)

are not valid.

The explanations above can be shown by applying Definition 3. They prove points 1 and
2 of Lemma 2. We now prove point 3 of Lemma 2:

We first prove the following assertion An for all n ≥ 1: for all (`, c1, c2), for all E1⊗· · ·⊗
En, if (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En is not valid then there exists p ∈ {a0, . . . , aN , p1, p2}
such that there is no p-world in (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En. It is proven by recurrence
on n ≥ 1.

• A1: if (M, w)(`,c1,c2) ⊗ E1 is not valid, then:

– Either E1 contains a repl(`′′, `′) part such that `′′ 6= `, then there is no a`-world in
(M, w)(`,c1,c2) ⊗ E1, so we take p = a`;

– Or I` = gotocond(i, `) (with i ∈ {1, 2}) and E1 is (E , e)`:gotocond(i,`′) with ci > 0. In
this case, there is no pi-world in (M, w)(`,c1,c2) ⊗ E1, so we take p = pi.

11

(E , e)`:gotocond(1,`′) >

repl(`, `′)

¬♦(p1∧¬♦q1) q1
p2 q2

(E>0, e>0)`:gotocond(1,`′) >

repl(`, `+ 1)

shorten(1)

p2 q2

Figure 10: Event models for `:gotocond(1, `′).

– Or I` = gotocond(i, `) (with i ∈ {1, 2}) and E1 is (E>0, e>0)`:gotocond(i,`′) with ci = 0.
In this case, there is no pi-world in (M, w)(`,c1,c2) ⊗ E1, so we take p = pi.

In other cases, (M, w)(`,c1,c2) ⊗ E1 is valid by point 1 of Lemma 2.

• An ⇒ An+1: We supposeAn holds for a given n ≥ 1. For any En+1 ∈ E, if (M, w)(`,c1,c2)⊗
E1 ⊗ · · · ⊗ En+1 is not valid then:

– Either (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En is valid and by points 1 and 2 of Lemma 2, it is
isomorphic to some (M, w)(`′,c′1,c′2). We apply A1 to conclude.

– Either (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En is not valid, so by An there exists p such that
there is no p-world. By Definition 3, because there is no postcondition, there is no
p-world in (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En+1 either.

To conclude, we have proven that if (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En is not valid, by An

there is p ∈ {a0, . . . , aN , p1, p2} that is false in every world. Therefore, for any En+1, there
is no p-world in (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En+1, so (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En+1 is
not valid either. This concludes the proof of point 3 of Lemma 2.

4.2.3 Goal formula

The goal formula ϕg in tr(M) is ϕvalid ∧ ϕhalt, where:

• ϕvalid :=
∧N

`=0 ♦a` ∧ ♦p1 ∧ ♦p2, and

• ϕhalt := ♦(aN ∧ ♦�⊥).

Intuitively, formula ϕvalid forces the final pointed epistemic model of a plan to be valid
(and therefore, by Point 3 of Lemma 2, all intermediate pointed epistemic models of the
plan also are valid). Formula ϕhalt enforces the final pointed epistemic model to represent
a halting configuration (N, ∗, ∗).

Proposition 2 M halts iff there is a plan for tr(M).

Proof ⇒ If M halts, let (`t, ct1, c
t
2)t=0,...,T be the sequence of configurations of the halt-

ing execution. We build a plan for tr(M) by taking the sequence of pointed event models
(E(`t, ct1, c

t
2))t=0,...,T−1. One can prove by recurrence, using point 1 of Lemma 2, that

each intermediate product (M, w)(0,0,0) ⊗ E(0, 0, 0) ⊗ . . . ⊗ E(`t, ct1, c
t
2) is isomorphic to

(M, w)(`t,ct1,ct2). The final product is thus isomorphic to (M, w)(N,c1,c2) for some c1, c2, so
that (M, w)(N,c1,c2) |= ϕhalt. In addition, (M, w)(N,c1,c2) is valid, so that (M, w)(N,c1,c2) |=
ϕvalid.
⇐ Suppose that there is a plan (Et, et)t=0,...,T−1 for tr(M). As the final product

satisfies ϕvalid, it is valid. Using point 3 of Lemma 2 we can prove by backward recurrence
that all intermediate products are valid. By forward recurrence, using points 1 and 2 of
Lemma 2, we can prove that each intermediate model is isomorphic to a model of the form
(M, w)(`,c1,c2), and that the event model applied to it in the plan is E(`, c1, c2). We extract
a sequence of configurations (`, c1, c2)t=0,...,T that starts with (0, 0, 0) and that, by point 1

12

of Lemma 2, follows the transition function of M . As the final product satisfies ϕhalt, it is
isomorphic to (M, w)(N,c1,c2) for some c1, c2, so that the final configuration is (N, c1, c2).
Therefore, M halts. �

4.3 Comparison
In [6] the program counter as well as the data counters are represented with chains of
worlds, and incrementation, decrementation and replacement of a value by another one
are implemented on such chains. While the first two operations can be performed with
preconditions of modal depth two, repl(`, `′) requires unbounded nesting in general to be
implemented on chains. We observed that unlike data counters, the program counter is
bounded so that we can avoid chains for its representation, and provide an alternative gadget
for repl(`, `′) that only uses preconditions of modal depth two.

5 Future work
The natural continuation is to complete Table 1. First, is the epistemic planning problem
decidable for preconditions of modal depth one and no postconditions, or do modalities in
preconditions immediately bring about undecidability? Second, what is the exact complexity
of the problem with propositional pre- and postconditions? It is known to be decidable [3],
with a non-elementary upper bound [4] and a Pspace lower bound [5]; this a big gap that
should be bridged. We would also like to see how different axioms of knowledge affect the
picture. Indeed, our proof of undecidability does not work if accessibility relations must be
equivalences, but it can surely be adapted to obtain a similar result for preconditions of
modal depth three or four. Can we do better? Does the choice of axioms change the border
between decidability and undecidability?

Acknowledgment. We warmly thank anonymous reviewers that advised us to add
examples in the JELIA version and move a part of the technicalities to this technical report.

References
[1] H. van Ditmarsch, W. van der Hoek, and B. P. Kooi, Dynamic epistemic logic.

Springer Science & Business Media, 2007, vol. 337.

[2] T. Bolander and M. B. Andersen, “Epistemic planning for single and multi-
agent systems,” Journal of Applied Non-Classical Logics, vol. 21, no. 1, pp. 9–
34, 2011. doi: 10.3166/jancl.21.9-34. [Online]. Available: http://dx.doi.
org/10.3166/jancl.21.9-34.

[3] Q. Yu, X. Wen, and Y. Liu, “Multi-agent epistemic explanatory diagnosis via
reasoning about actions.,” in IJCAI, F. Rossi, Ed., IJCAI/AAAI, 2013, isbn:
978-1-57735-633-2. [Online]. Available: http://dblp.uni-trier.de/db/conf/
ijcai/ijcai2013.html#YuWL13.

[4] G. Aucher, B. Maubert, and S. Pinchinat, “Automata techniques for epistemic
protocol synthesis,” in SR, 2014, pp. 97–103.

[5] T. Bolander, M. H. Jensen, and F. Schwarzentruber, “Complexity results in
epistemic planning,” in Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, 2015, pp. 2791–2797. [Online]. Available: http://ijcai.
org/papers15/Abstracts/IJCAI15-395.html.

13

http://dx.doi.org/10.3166/jancl.21.9-34
http://dx.doi.org/10.3166/jancl.21.9-34
http://dx.doi.org/10.3166/jancl.21.9-34
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2013.html#YuWL13
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2013.html#YuWL13
http://ijcai.org/papers15/Abstracts/IJCAI15-395.html
http://ijcai.org/papers15/Abstracts/IJCAI15-395.html

[6] G. Aucher and T. Bolander, “Undecidability in epistemic planning,” in IJCAI
2013, Proceedings of the 23rd International Joint Conference on Artificial In-
telligence, Beijing, China, August 3-9, 2013, 2013. [Online]. Available: http:
//www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6903.

[7] B. Löwe, E. Pacuit, and A. Witzel, “DEL planning and some tractable cases,”
in Logic, Rationality, and Interaction - Third International Workshop, LORI
2011, Guangzhou, China, October 10-13, 2011. Proceedings, 2011, pp. 179–
192. doi: 10 . 1007 / 978 - 3 - 642 - 24130 - 7 _ 13. [Online]. Available: http :
//dx.doi.org/10.1007/978-3-642-24130-7_13.

[8] G. Aucher and F. Schwarzentruber, “On the complexity of dynamic epistemic
logic,” TARK 2013, vol. abs/1310.6406, 2013. [Online]. Available: http : / /
arxiv.org/abs/1310.6406.

[9] H. van Ditmarsch and B. Kooi, “Semantic results for ontic and epistemic change,”
Logic and the Foundations of Game and Decision Theory (LOFT 7), p. 87, 2006.

[10] A. Baltag, L. S. Moss, and S. Solecki, “The logic of public announcements, com-
mon knowledge, and private suspicions,” in Proceedings of the 7th conference on
Theoretical aspects of rationality and knowledge, Morgan Kaufmann Publishers
Inc., 1998, pp. 43–56.

[11] C. H. Papadimitriou, “On the complexity of integer programming,” J. ACM,
vol. 28, no. 4, pp. 765–768, 1981. doi: 10.1145/322276.322287. [Online].
Available: http://doi.acm.org/10.1145/322276.322287.

[12] T. Sadzik, “Exploring the Iterated Update Universe,” ILLC Publications PP-
2006-26, 2006, [Online]. Available: http://www.illc.uva.nl/Research/
Publications/Reports/PP-2006-26.text.pdf.

[13] W. J. Savitch, “Relationships between nondeterministic and deterministic tape
complexities,” J. Comput. Syst. Sci., vol. 4, no. 2, pp. 177–192, 1970. doi:
10.1016/S0022-0000(70)80006-X. [Online]. Available: http://dx.doi.org/
10.1016/S0022-0000(70)80006-X.

[14] M. L. Minsky, Computation: finite and infinite machines. Prentice-Hall, Inc.,
1967.

14

http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6903
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6903
http://dx.doi.org/10.1007/978-3-642-24130-7_13
http://dx.doi.org/10.1007/978-3-642-24130-7_13
http://dx.doi.org/10.1007/978-3-642-24130-7_13
http://arxiv.org/abs/1310.6406
http://arxiv.org/abs/1310.6406
http://dx.doi.org/10.1145/322276.322287
http://doi.acm.org/10.1145/322276.322287
http://www.illc.uva.nl/Research/Publications/Reports/PP-2006-26.text.pdf
http://www.illc.uva.nl/Research/Publications/Reports/PP-2006-26.text.pdf
http://dx.doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/10.1016/S0022-0000(70)80006-X

	Introduction
	Background on epistemic planning
	Dynamic epistemic logic
	Epistemic planning

	Propositional preconditions
	Preconditions of bounded modal depth
	Two-counter machines
	The reduction
	Pointed epistemic models
	Pointed event models
	Goal formula

	Comparison

	Future work

