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Abstract

The case of a rotating shaft with internal damping mounted either on elastic dissipative bearings or on infinitely rigid bear-
ings with viscoelastic suspensions is investigated in order to obtain the stability region. A Euler-Bernoulli shaft model is adopted,
in which the transverse shear effects are neglected and the effects of translational and rotatory inertia, gyroscopic moments, and
internal viscous or hysteretic damping are taken into account. The hysteretic damping is incorporated with an equivalent viscous
damping coefficient. Free motion analysis yields critical speeds and threshold speeds for each damping model in analytical form.
In the case of elastic dissipative bearings, the present results are compared with the results of previous studies on finite element
models. In the case of infinitely rigid bearings with viscoelastic suspensions, it is established that viscoelastic supports increase the
stability of long shafts, thus compensating for the loss of efficiency which occurs with classical bearings. The instability criteria
also show that the effect of the coupling which occured between rigid modes introducing external damping and shaft modes are
almost more important than damping factor. Lastly, comparisons between viscous and hysteretic damping conditions lead to the
conclusion that an appropriate material damping model is essential to be able to assess these instabilities.

1. Introduction

The use of driveshafts in the supercritical range has proved to be of great interest for many applications,
especially those involving long drivelines (helicopters, tiltrotors, etc). However, in the field of rotordynamics,
internal damping, which is also called rotating damping, is known to cause whirl instabilities in this speed
range. In particular, with long driveshafts consisting of materials which are more dissipative than metallic
materials (such as some carbon/epoxy laminates [1]]), these instabilities tend to occur more frequently. The
aim of the present study was to develop a theoretical model for determining these instabilities and to
establish the most decisive parameters.
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In the field of rotordynamic, internal damping is generally treated like viscous damping, because this
parameter can easily be introduced into rotor equations, and because viscous damping is reasonably realistic
to simulate external dissipation (roller bearings, hydrodynamic bearings, etc). However, most materials are
known to show vibratory damping behaviour which resembles hysteretic damping much more than viscous
damping, as in the case of metallic materials [2], carbon/epoxy materials [1] and in a more approximate
way, viscoelastic materials such as elastomers [3]. The main characteristics of hysteretic damping are as
follows: the corresponding hysteresis loop (stress-strain loop) is independent of the excitation frequencys;
the cyclic energy dissipation is independent of the excitation frequency and proportional to the square of
the deflection amplitude. In classical vibration mechanics, hysteretic damping is often used and generally
introduced using the complex stiffness. However, in rotordynamics, it is difficult to introduce complex
stiffness into the rotating reference frame except in some particular cases (such as that of forced motion
[4]). In most cases, it is therefore necessary to use an equivalent viscous damping coefficient. This procedure
still requires some care to be taken because of the multi-frequency excitation. In particular, whirl speeds in
the rotating reference frame differ from those occuring in the fixed reference frame. Wettergren has shown
both theoretically and experimentally that these hysteretic damping factors can be replaced by the equivalent
viscous damping even when multi-frequencies are involved [5]. The equations can therefore be treated using
a classical approach with an internal viscous damping term. An equivalent coefficient is then introduced into
the modal solutions.



Here it is proposed to show the differences between the stability results obtained with internal viscous
damping and internal hysteretic damping models, in the particular case of a continuous symmetrical dissi-
pative shaft without any disk. Since external damping is necessary to obtain a stable range in supercritical
motion, two cases are studied: a shaft mounted on elastic dissipative bearings, and a shaft with infinitely
rigid bearings mounted on viscoelastic supports.

In the first part, a Euler-Bernoulli beam model is adopted, which neglects the transverse shear effects but
takes the effects of translational and rotatory inertia, gyroscopic moments, and internal viscous or hysteretic
damping into account. Free motion analysis gives critical speeds and instability criteria for each damping
model in an analytical form. In the literature, these instabilities due to internal damping have generally been
obtained numerically using finite elements methods. The case of viscous damping can easily be dealt with
using finite elements methods, whereas the case of hysteretic damping is not so straightforward, and has
given rise to several errors in the literature which were collected by Genta [6]. Note that Genta himself
has proposed a finite element model that accounts satisfactorily for hysteretic internal damping [7]. The
main advantages of analytical solutions compared to numerical results are that they give a better control
over parameters affecting the stability, and a better understanding of instability processes, and that they lend
themselves to extremely fast implementation for optimization computations. Analytical solutions also provide
reference data, which can be used in particular to check the validity of finite element models including
hysteretic internal damping. On the other hand, finite element computations are suitable for studing more
complex rotor configurations.

In the second part of this paper, three applications of results presented in the first part will be described.
In the first case study, the validity of the model is confirmed by comparing the solutions obtained with
data previously published in the literature which were obtained using various finite element models including
a viscous internal damping parameter. The second case study deals with the effects of hysteretic damping.
Lastly, to determine the effects of the viscoelastic supports, comparisons are made between the two shaft
configurations.

2. Axisymmetric elastic shaft model with internal damping

When operating rotors in the supercritical range, it is necessary to introduce external damping to reduce
the unbalanced vibration response amplitudes and to increase the stability. Since classical rolling-element
bearings and hydrodynamic bearings do not generally provide sufficient damping, additional squeeze-film
dampers are generally fitted. The main disadvantages of these bearing supports are the complexity of their
installation, their limited operational range and their high cost [3]. Another means of increasing the external
damping consists in adding dampers directly between the shaft and the fixed frame [8]. Lastly, an economic
solution, which has been developing during the last few years, consists in adding viscoelastic materials such
as elastomers between the bearing and the fixed framework. Kirk and Gunter have established that these
viscoelastic supports improve the stability domain of the disk-shaft system [9]. In a study on the stability
of a Jeffcott rotor with elastic linear bearings mounted on viscoelastic supports and with an undamped
elastic non-massive shaft, Dutt and Nakra showed that by choosing the viscoelastic supports appropriately,
it is possible to greatly increase the stability domain of the system [10]. In another paper, these authors
reported that the unbalanced responses of the same system were greatly reduced by incorporating suitable
viscoelastic supports [L1]. Shabaneh and Zu studied a Jeffcott rotor with elastic dissipative bearings mounted
on viscoelastic supports, assuming the shaft to be elastic, massive and viscously damped [12]]. Based on a
Timoshenko beam theory and a hysteretic damping model for the viscoelastic supports, they obtained similar
effects on unbalanced responses. Note that in all these studies, the shaft damping is always assumed to be
viscous.

This part of the paper focuses on two very similar shaft configurations in terms of their equations. The
first configuration consists of a shaft mounted on flexible bearings which are assumed to be elastic and
viscously damped (Fig. [I). The second one consists of a shaft mounted on infinitely rigid bearings with
viscoelastic supports assumed to show complex stiffness, i.e. to be elastic and hystereticly damped (Fig. [2).
The two shaft configurations are governed by the same equations, only the mass of the bearings has to be
added in the second configuration. @~ We take a symmetric elastic shaft supported at both ends, as shown
in Fig. and Fig. where (O, %,7,7) is the inertial frame. A Euler-Bernoulli beam theory is adopted:
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Figure 1: Configuration 1: elastic shaft mounted on flexible dissipative bearings

A [ELLJ c.Sp¢]

Figure 2: Configuration 2: elastic shaft mounted on infinitely rigid massive bearings on viscoelastic supports

this theory is applicable to slender shafts, i.e. shafts with a small diameter in comparison with their length,
approximately I/r > 10. The Timoshenko beam theory is useful if the shear strains are large, i.e. in the case
of a stubby shaft or in the presence of disks. The shaft is defined by its Young’s modulus E, its length [,
its radius r and its mass density p. When the damping is assumed to be hysteretic, it is defined by its loss
factor 7;, but for convenience, it is necessary to define an internal viscous damping term per unit length c;.
The gyroscopic effect of the shaft is taken into account. The eccentricity of a shaft section is given by the
function &(x). This function defines the distance between the sectional center of inertia and the theoretical
axis of the shaft without any deformations with x € [0,[]. Gravity is neglected.

In the case of configuration 1, the isotropic bearing is modelled by a Kelvin-Voigt model consisting
of a stiffness parameter k.(= ky, = k;;) and a viscous damping parameter c.(= ¢,y = ¢;;). In the case of
configuration 2, each axisymmetric bearing, which is assumed to be infinitely rigid, is represented by its
mass m,, and each isotropic elastomer support is represented by a complex stiffness model consisting of a
stiffness k.(= ky, = k;;) and a loss factor 7n.(= n,, = 1;;). In the latter case, for convenience, an external
viscous damping term c, will be used in the equations.

Subsequently, displacements will be expressed in complex form. The rigid-body motion (unstrained shaft)
consists in a displacement parallel to the Og¥ axis and a rotation around the unstrained shaft center C,. This
displacement and this rotation are denoted u, (= upy + iup;) and 6, (= Oy, +i6p;), respectively. The deflection
of the shaft section centers C consists of a displacement relative to the unstrained shaft axle and is denoted
ug (= ugy +iug;). With these notations, the cross-sectional displacement, i.e. the displacement of C relative to
the fixed frame is:

u(x,t) = up(t) + (x - é) O,(1) + uy(x, t). (1)

The boundary conditions in terms of the displacement are: one null moment when x = {0,l}; one null
displacement between the shaft and the bearing when x = {0,[}. These conditions are expressed as follows:

u/(0,0=0, u;(,t)=0, u0,0)=0, usl,1)=0, 2
4



where ()’ = d/0x. Based on the above assumptions and without any internal damping, the local governing
equation of motion for the shaft is classically [7]:

I J EI :
i— =il +1Q=i" + —u'"" = ()% Vxe[0,1], 3)
S S pS

where (*) = 0/0t, S is the cross-section area of the shaft, I is the mass moment of inertia /¥ or /Z per

unit mass density and unit length equivalent to the diametric cross-section of inertia, J is the polar moment

of inertia /¥ per unit mass density and unit length, and Q is the spin speed. Internal damping is introduced

into this equation, noting that this dissipation appears in the rotational frame, and that it is relative to the
7" 1117

variable u; and not u. In that case, since u”” = u}”, the local governing equation of motion for the shaft
with internal damping is:

I J . EI ,. , A
i — =il Q=i+ et + (i1 — iQuy) = ()Y Yx € [0,1]. (4)
S s T oS oS

Finally, the boundary conditions give two supplementary equations of motion corresponding to the
equilibrium of the shaft-bearings system in terms of force and moment:

[ [
f pSiidx + 2myiiy, + 2¢,ity, + 2koup = f pS e(x)Qe Y dx, (5)
0 0
! l 2. P, P ! l ,
f(; oS (x - 5) iidx + ZmQZH;, + ZCQZQ;, + 2k619;, = L pS (x - 5) e(x)Q*e Y dx. 6)

Studies on the unbalanced motion of this system have been presented in [13| [14]. Let us therefore note
that by defining the stationary whirl it; = iQu and according to Eq. (@), the internal damping has no effect.

Studies on the free motion corresponding to solving the characteristic equation are not usually carried
out using analytical methods. The equations of interest here are the above Eqs. {@)-(6) without the second
member:

1 J EI i .
ii— —il” +1Q—-u" + —u)" + C—(zl‘Y —1Quy) =0 Vx e [0,1] @)
S S pS pS
I
f pSiidx + 2m,iip + 2c.ip, + 2koup = 0 (8)
% l 2. P, P
fOpS (x— E)i,idx+2m329;,+2€ez9b+2kez9;, =0 ©))

The shaft mode shapes are assumed to be proportional to the sinusoid function. Therefore, the displace-
ments and rotations, with the harmonic n € N*, can be expressed as follows:

uy(x, 1) = Uy, sin(’ilx)e“'l', (1) = Upne ™, 05(1) = Oppei™, (10)

where Ug,, Up, are complex displacements, 0, are complex rotations, and A, are complex eigenvalues.
The virtual work principle is applied and this yields strong formulation starting with the weak formulation

Eq. (7):

!

I J ., EI D

Vi € KAy f [u - i QS+ !+ ity — iQuy) | dx = 0. (1)
0 S S pS oS

The kinematically admissible (KA() displacement field is taken in the following form:

ut = sin(?)e”"’. (12)

Substituting Eqs. (I0) and (I2) into the equations of motion (B)—({0) and (II) yields, after some
5



calculations:

sn

2 l
|-11,2 + 1,24, + idin(Ay = Q) + W2, | Uy - 22— [(1 = (1" = (14 (=1)") 53| = 0.
nmw

1- (-1
—qmﬁMUm + =2 + daridy + w}y | Up = 0, (13)
nmw
(1 +(=1)") ’ . R
Do —— Uy + [-A2 + deaidy + ]y | 56m = 0.
with
?n = ﬂ (ﬁ)4 - @’ win = ng’ den = L’nr’
pSALTm Me ¥ TR Me ¥ TR
. s I 2 J 2
o=, dy=—" =1+ (T =5 (5 (14)
pS m, + Wil)") S\ S\

where wyg, is the a™ natural frequency of the shaft without any coupling effects (the exact eigenvalue of a

beam with a constant cross-section in bending, which is simply supported at both ends), ky, is the n" modal
stiffness of the shaft, w;; and wp, are the two natural frequencies of the rigid-body modes without any
coupling effects (the shaft is assumed infinitely rigid), d,, and d;, are the n™ external and internal viscous
damping parameters per unit mass, and @, is a ratio of mass between the mass of the shaft m,; and the
mass of the bearings. Therefore, if n is an odd number, by replacing suffix 1 by n, the system (I3) can be
expressed as follows:

4
[-17,A% + 1,92, + idin(Ay = Q) + W2, | Uy = 22— Upn,
nm

D,

[—Aﬁ + dopid, + wﬁn] Upp = — 22Uy, (15)
nm

Oy, = 0.

If n is an even number, by replacing suffix 2 by n, the system (I3) can be expressed as follows:

41
[-11,2 + 1,04, + idin(Ay = Q) + 0, | Uy = - 22— 5O
nir
Upn =0, (16)
[~ + denidy + ] ]lab = Pnpy,
n en-tn bn 2 n nr n sn-

The two previous systems have an equivalent form and can be expressed as a single characteristic fourth
order equation in terms of A,, which is suitable for all n e N*:

Vo s = (102 + i(UTyden + din)) A} = @2, + T}, + dinden = 1Q(Tden + din)| 22

+ (T}, + dinden)Q + i(din}, + dent?,)| An + (@3, - idin @}, = 0, (17)
with 4
¥, =11, - W@”' (18)

Let us express the eigenvalue solutions in complex form as follows:
A = Wy + id,. (19)

The real part w, and the imaginary part d, are an angular frequency term and a modal damping term,
respectively. Hence, assuming weak damping to occur in the rotor-system yields w,>>d,. It will be
assumed below that the angular frequencies are large in comparison with the modal damping, ie. w>>d
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and in particular {w,, W, Wp,, @} > {d,, dey, din}. This assumption makes it possible to calculate the real part
of Eq. (T7) at O order relative to d and the imaginary part of this same equation at first order relative to d:

Pwy — I, — (W2, + o}, Wi + T, w, + w},w?, = O(w’d) ~ (20)

(din + IT,dpy — dyAP)W] — (dig + dou Ty — 3A,T,) Q02
~(don?, + digw, = 2d, %, + IT,w} W, + dipw}, @ — d, T}, @ = O(w*d*) = 0. (21)

Eq. (20) has the advantage of being independent of d, and gives the four eigenvalues of the system
directly as a function of the spin speed. From this equation, it is then possible to directly obtain an
analytical expression for the critical speeds (noted w.,): when the shaft reaches a forward critical speed, the
spin speed is equal to w,, and Eq. (20) therefore becomes

Anlw (a) +An2wbn)a) +wbn 2 =0 with 4,=¥,-T,, 4,=11,-T,. (22)

In the case of the backward critical speeds, the spin speed is equal to —w.,, and Eq. (20) therefore
becomes:
Apwh — (W% + Al 2 + wp w2, =0 with A3 =, + T, Ay =10, + T, (23)

sn

Hence, the four critical speeds of the harmonic n are:

1
W+ A, [, + 2 = 2 )}, + Ay, |

bn
cn = R 24
WenF+ U, (24)
3
W2, + Ap? \/w“ + 22Uy = 2U) 02,2, + A
WepB+ = — By R s (25)

where + stands for the two equations with positive sign and negative sign, written in contracted form. The
angular frequencies w.5- and wp+ are the backward critical speeds, and the other two, w.r- and weps,
are the forward critical speeds.

Eq. (ZI) relates directly the modal damping d, to the angular frequencies w,:

) 3(1 + qu W) — (Wl + w Dw, + (wF, — wi(1 + %rﬂ))g o6
T @V - s T+ T, 38

sn

This equation therefore gives the stability of the system. An analytical solution for this expression can be
obtained if there exists an analytical solution for w,. Let us assume the gyroscopic effects to be insignificant
in comparison with the inertia effects, i.e. I, ~ 0. This assumption is particularly valid in the case of the
very first modes and that of thin tubes [I3]. Eq. (Z0) therefore becomes a biquadratic equation which is
independent of the spin speed. These directly gives the following four analytical solutions wypo:

1

2
W2+ T}, + o, + 2001, = 20wt w}, + [T,

bn
WpF+0 = —WpB+0 = Y2 5 (27)
wl, + Iw;, - \/a)4 +2(1, - 2V w2,w? + ITw)
WnF-0 = —WpB-0 = . (28)

2y,

The angular frequencies w,g-o and w,p+o are the backward whirl speeds, and the other two, w,r_o and
wnp+0, are the forward whirl speeds. Due to the assumption that there exist only weak gyroscopic effects,
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these are independent of the spin speed. Analysis of Egs. (27) and (28) gives the following relations
(for proof, see Appendix [Appendix A):

2 _ 2 2 > _ 2
Wyg-0 = Wip_g < Wp, < Wypyo = WyE40 (29)
2

w
2 _ 2 sn 2 _ 2
Wyg—o = Wyp—o < 11 < WyB+0 = WyF10- (30)
n

These inequalities show that the natural frequencies resulting from coupling effects between rigid-body
modes and flexural modes frame the uncoupled ones.

With the previous assumption that are the gyroscopic effects negligible, the modal damping of the np"
mode (n € N* and p € {B—,B+,F— F+}) is expressed according to Eq. (26) as follows:

den den
wipo (1 + IHH) - ( lzm + d—mwgn) Whpo + (wfm - wipo) Q

2 2
2wpp0(2 annp() - wl, — Iw; )

dnpO(-Q) =diy 31

Classically, the sign of this equation for n € {1,.N} and p € {B—,B+,F— F+} gives the stability of the
rotor system. When the modal damping d,, becomes negative, the shaft is unstable. To study the last
equation, it is necessary first to express the external and internal damping.

2.1. External damping

In configuration 1, the external modal damping d,, is assumed to be viscous and to be equal to
c.(4 +2(-1)")/m, according to Eq. (@]) since in this case my; = 0.

In configuration 2, the external modal damping d,, is assumed to be hysteretic. To introduce hysteretic
damping, it is convenient to use an equivalent viscous damping constant c.q as follows:

_nk

=—, (32)
|l

Ceq
where 7 is the loss factor, k is the stiffness and w is the excitation frequency. Problems arise when
the mechanical system is excited by several frequencies, as in the case of a rotor. The previously used
substitution procedure is not very suitable here, since w can take several values simultaneously. Wettergren
[5] has analysed this problem and shown both theoretically and experimentally that the critical speeds can
be handled separately. External damping of the np‘h mode can therefore be expressed as n.k./|w,,(Q)l.
Assuming the gyroscopic effects to be negligible, the frequency w,, is approximated by w,, (Egs. (27),
(28)) and the external modal damping can therefore be expressed as follows:
newin

|wnp0| )

den Q) =

(33)

Finally, with the above assumptions, the external modal damping is a constant in both configurations and
therefore does not depend on the spin speed.

2.2. Shaft with internal viscous damping

If the shaft damping is assumed to be viscous, the internal modal damping d;,, will be constant and can
be expressed according to Eq. (I4) as c;/pS. The external and internal damping therefore do not depend
on the spin speed. Assuming the gyroscopic effects to be negligible, the sign of Eq. (3I) can be studied
directly. Eqs. (9) and (30) show that (for details, see Appendix [Appendix B)): d,z—o and d,p.o are positive
at null speed and are strictly increasing quantities depending on the speed; d,p_o and d,pio are positive at
null speed and are also strictly decreasing quantities depending on the speed. It can thus be concluded that
only forward modes nF— and nF+ can be unstable. The instability threshold can be obtained by solving

8



dp-0 <0 and d,ps0 < 0. This shows that the shaft will be unstable if:

2 2
den H’lwnF+ —w
+0 sn
Q> wppso |1+ T 3 T Qths.visc.nFe- (34
in Wyprg T Wy

With these assumptions, the instability threshold have a similar form to that of the well known equation
obtained by Smith [15] for the Jeffcott rotor: Qugvise = ws(1 +%), where w; is the forward critical speed (see
also [7, [16]), i.e. the internal damping has a destabilizing effect on the forward whirl modes, the external
damping always has a stabilising effect, while the backward whirl modes are always stable. In addition, the

instabilities always take place in the supercritical field, since (HnwiF 10 —w%n)/(a)ﬁp 40 —a)gn) > (0 according to

Egs. 29) and (30).

2.3. Shaft with internal hysteretic damping

Shaft damping is now assumed to be hysteretic. Damping of this kind is introduced via the previous
equivalence (32). Internal damping has to be considered in the rotating frame of reference. The excitation
frequency therefore corresponds to |w,,(2) — Q|. In this case, equivalent internal damping can be written in
the following form:

niksn
Coq= ———————. (3%
T Jwnp(Q) - QI
Assuming the gyroscopic effects to be negligible, ie. ®,,(2) = w,y, and noting that W?, = kg /my,

din = Ceq/pS according to Eq. @]) and my; = pS/, the internal modal damping can be written in the
following form:

dn(Q) = YL (36)
" |a)npO - Q| .
Assuming Q > 0, the absolute value can be removed:
niw%n
din(Q)= —— for pe{B-,B+} or pe{F-,F+} and Q> w,ps 37
Q- Wnpo
w3,
diy(Q) = —— for pe{F— F+} and Q < w,p0. (38)
Wnpo — Q

These previous equations can be introduced into Eq. (3I). In the backward modes, the internal modal
damping is therefore

2,2 2 2 2
d (Q) _ _niwsn(wnBiO - whn) + denwnBtO(HnwnBio - wsn) (39)
nB+0 - )
2Q¥,wy, 0 — Wi, — IT,w! YwuB0
in the forward modes in the subcritical range (noted sub), it is
2,2 2 2 2
d (,Q) _ niwsn(wn]:io - wbn) + denwnFiO(HnwnFiQ — Wy, (40)
nF+0.sub - 5
2(2 Y’nwipio - w%n - Hnwin)wnFiO
and in the forward modes in the supercritical range (noted sup), it is
2,2 2 2 2
d (,Q) _ —inm(w,,pio - wbn) + denwnFiO(HnwnFio - (,L)M) (41)
nF+0.sup -
2% Wk, — W3, — I}, )Wapso

As shown by Egs. (39)-(@I), internal hysteretic damping yields a constant modal damping, contrary to
what occurs in the case of viscous damping. Note that the only difference between Eqs. {@0) and @I) is
the sign of the internal damping. If the internal damping is too large, the modal damping d,r.osp can
be negative and the system will tend to be unstable. From Egs. (39H4I), the following conclusion can be
reached, as in the case of the internal viscous damping (see Appendix [Appendix C): backward whirl modes
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are always stable and forward whirl modes can be unstable only in the supercritical range. This important
conclusion confirms the role of hysteretic damping in rotors described by Genta [6, [7]. Hysteretic damping
has sometimes been poorly understood, since it has been thought to result in unstable forward whirl modes
even at null speeds. This is physically impossible, because damping instabilities are due to forward modes
which rotate in the negative direction in the rotational frame of reference, i.e. when wgs. —Q < 0. This is
possible only in the supercritical range, whatever the damping model used (viscous, hysteretic or other). In
this case only, the dissipation force will tend to push the forward mode towards the outside, resulting in
instability.

Instability of the forward mode develops when d,riosyp < 0. Assuming the gyroscopic effects to be
negligible, the instability criterion can be expressed in the case of both configurations 1 and 2 as follows

(as shown in Appendix

2 2 2. 2 2 <0 = QushystnFr = WnF+0,
depwipso1,w - w5, — Niws, (W —w; ) 42)
en=n = nF+0 sn 5 s\ nF+0 bn >0 = stable

and

>0 = 'th hyst.iF— = WnF—0
da)F_ Ha)z_ —(‘)2 - 'a)2 (1)2_ —(1)2 s.hyst.n nF—05 43
enOn-0UTnip— = W) =MW @ik = Do)\ < 0 = spable (43)

these can be expressed in the case of configuration 2 as

2 2 2 2 <0 = QupshystnF+ = WnF+0s
Neke @yl Wy o — Wy,) = Niksn(Wyp, o — wbn){ >0 = stalilgh "+ e (44)

and

2 { >0 =  QumshystnF- = WuF-0, 5)

2 2 2
’Ieke Qn(nnwnF—O - a)sn) - Uikm(a)np_() - Wy, < 0 =— stable

In the case of configuration 2, this instability criterion has a similar form to that obtained by Genta
[7] for the Jeffcott rotor with internal and external hysteretic damping: “n.k. — ks < 0 = forward whirl is
unstable throughout the supercritical domain” (wWhere kg is the stiffness of the shaft).

Eqgs. @2}45) show that the stability depends greatly on the values of nk; and n.k., but less commonly,
that it also depends on the differences w’.,, - w? and 1,0, — w?,. When w,, and wy, are very different,
for example, assuming that w?, > win, the coupling effect between rigid-body modes and flexural modes
will be weak, i.e. “’ZF+0 — w? /¥, according to Eq. and ‘”iF—o - 17,10)%”/ ¥, according to Eq. ,
where 17, and ¥, are approximately equal to 1 when n is small. Consequently, when values of 5k, and
nek.®, are reasonably realistic, the external damping part of the nF— mode will be large (and negative)
according to Eq. (@3], whereas the internal damping part will be small, and it can therefore be concluded
that this mode will tend to be stable. On the other hand, when this analysis is carried out on the nF+
mode according to Eq. (@4), the results show that this mode will tend to be unstable. The stability therefore
depends on the level of hysteretic damping and likewise on the coupling between rigid-body modes and
flexural modes, i.e. on the similarity between the two mode frequencies.

Lastly, it should be noted, as in the case of viscous damping, that when no external damping is present,
ie. 1, =0, the supercritical range will always be unstable.

3. Numerical examples and discussion

3.1. Case study 1: shaft with viscous internal damping mounted on undamped and damped isotropic flexible bearings

Few studies have dealt so far with shafts without disks, taking the internal and external damping into
account. In order to confirm the validity of the above analysis and criteria, we first studied the case of
a continuous shaft with undamped and damped flexible isotropic bearings under viscous internal damping
conditions. This example has been studied by several authors [17-H19] with various finite element models.
Zorzi and Nelson [17] have studied a Euler-Bernoulli beam finite element model, for instance, while Ozgiiven
and Ozkan [18] have introduced the shear parameter a = 12E1/kGS 2 into the previous finite elements, and
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Ku [19] have developed a Timoshenko beam finite element model. All these models take the effects of
translational and rotatory inertia, the gyroscopic moments and the internal viscous damping into account.
The shaft and the bearings have the following physical parameters [17-H19]:

E=208x10"" Pa, p=7830 kgm™>, [=127 m, r=0.0508 m,

me=0 kg, k,=17512x10" Nm™, ¢, =1.7512x10°> Nsm™, g =0.0002 s

where u; is a viscous damping equal to c;l/k, with our notations. The modal damping is therefore
d;, = piw?,. The computation is carried out with n =2. From Eq (14), the characteristics of the uncoupled
system are:

wp; =659 rads™', wpy = 1142 rads™!, w, =801 rads™' and wg = 3204 rads”!.

In the present study, the natural whirl speeds and the logarithmic decrement, defined as 6 = 2ad/|w],
can be computed using three methods. The first method consists in solving the characteristic equation (I7)
using numerical methods. The second method corresponds to finding the numerical solutions of Egs. (Z0}ZI),
which take the gyroscopic effects into account but involve the assumption that w >> d. The third method
consist in calculating the approximate solutions 27}28 [3I), in which the gyroscopic effects is assumed
negligible and w >> d.

The Campbell diagram resulting from the solutions of Eq. (I7) is presented in Fig. [3(a) for the shaft
without external damping and in Fig. B{b) for the shaft with external damping. The logarithmic decrement
and the results obtained by Ku [19] are also given in these figures. The logarithmic decrement curves
obtained using the three methods mentioned above are presented in Fig. [f[a) in the case of the shaft
without any external damping and in Fig. f{b) in that of the shaft with external damping. Lastly, Tables [I]
and [2] present the whirl speeds and logarithmic decrements obtained with the same three methods at a spin
speed Q = 4000 rpm without any external damping, and these are compared with data available in the
literature [17H19].
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Figure 3: Campbell diagram and logarithmic decrement of a shaft supported on undamped isotropic bearings (a) and damped
isotropic bearings (b) with viscous damping x; = 0.0002 s in the case of a Euler-Bernoulli beam model (— and 6 from Eq. (T7))
and in the case of a Timoshenko beam finite element model (- - - and (6) from Ku [19])
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Figure 4: Logarithmic decrement of a shaft supported on undamped isotropic bearings (a) and damped isotropic bearings (b) with

viscous damping y; = 0.0002 s (— Eq. (T7); — — Eqgs. @O}Z1); - - - Eq. 3T))

Table 1: Whirl speed w (rad s™!) of a shaft supported on undamped isotropic bearings with viscous damping g; = 0.0002 s at a spin
speed 2 = 4 000 rpm using various models

Mode Present work Ref. [17] Ref. [18] Ref. [19]
Eqgs. @P, @P Eq. (20 Eq. (1ﬁ|)
1F- 521 522 522 521 520 521
1B- 521 521 523 523 522 522
1F+ 2303 2311 2287 2231 2223 2217
1B+ 2303 2294 2268 2214 2206 2201
2F- 1098 1098 1099 1097 1096 1095
2B- 1098 1098 1101 1097 1095 1095
2F+ 5217 5233 4588 4492 4447 4413
2B+ 5217 5201 4552 4454 4412 4379

In the case of the shaft without any external damping, the results given in Fig. [3[a) and Table [I] show
excellent agreement with previously published data in the case of whirl speeds denoted —. The difference
is more significant in the case of forward whirl speeds denoted +. Comparisons between results obtained
using Eq. (I7) and those obtained by Zorzi and Nelson show that whirl speeds 1F+ and 1B+ differ by
approximately 2.4 % and whirl speeds 2F+ and 2B+ by approximately 2.2%. In the case of the shaft with
external damping (Fig. 3] (b)), the differences are similar but whirl speeds 2F— and 2B-— also differ by
approximately 2.2 %. More significant differences are observed with results presented by Ozgiiven et al. and
Ku (between 3% and 4 %) and these are probably due to shear effects, whereas these effects are neglected
in the present study, as in the finite elements study by Zorzi et al.

As shown in Table [T} all the methods yielded the same results in the case of whirl speeds denoted —,
which are almost independent of the spin speed. These modes correspond mainly to the rigid-body modes,
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Table 2: Logarithmic decrement ¢ of a shaft supported on undamped isotropic bearings with viscous damping y; = 0.0002 s at a spin
speed ©2 = 4000 rpm using various models

Mode present work Ref. [17] Ref. [18] Ref. [19]
Egs. (Iﬁl), @I), (iﬁl) Egs. @I), (iﬁl) Eq. (1ﬁ|)
1F— 0.0254 0.0254 0.0254 0.0253 0.0252 0.0252
1B- 0.2330 0.2338 0.2303 0.2309 0.2321 0.2325
1F+ 0.7169 0.7178 0.7234 0.7250 0.7830 0.7187
1B+ 1.0357 1.0357 1.0502 1.0590 1.0540 1.0528
2F- 0.0335 0.0334 0.0329 0.0331 0.0341 0.0347
2B- 0.0748 0.0750 0.0691 0.0687 0.0709 0.0723
2F+ 2.7781 2.7990 3.1325 3.0480 2.9810 2.9409
2B+ 3.2632 3.2638 3.7690 3.6810 3.6070 3.5634

which are not very sensitive to gyroscopic effects. On the other hand, significant differences are found
to exist between the three methods in the case of whirl speeds denoted +, especially in modes 2F+ and
2B+. The difference between the solution of Egs. (20J2I) and the solution of Eq. (I7) is due to the weak
damping assumption (w > d), and this assumption is not true here (§ 2 3 ie. d 2 |w|/2, as shown in
Table [2). In this case, the damping c;l is equal to 2.064 x 10* Nsm™' with n =1 and 3.312x 10° Nsm™!
with n = 2. These values mean that the internal damping g; = 0.0002 s is extremely high, and not very
realistic or of purely academic interest. In addition, the whirl speeds given by Egs. (20[2I) and Egs. @27H28)
show a good agreement (Table [T). This confirms the assumption that the gyroscopic effects are negligible in
these first modes. More significant differences are likely to occur at higher spin speeds, since Eqs. (27}28)
are constant. However, it can be concluded that analytically calculated whirl speeds (Eqs. (27{28)) are
accurate.

The logarithmic decrements presented in Fig. [3] and Table [2] show good agreement. Comparison between
the results given by Eq. (I7) and those published by Zorzi etal. (Table [Z) show the existence of differences
of less than 3% in the modes 2F+ and 2B+ and less than 1% in the other modes. Moreover, based on
Fig. f] and Table [2] all the values obtained here are very similar in the modes 1F— to 2B—. On the other
hand, the logarithmic decrements obtained in modes 2F+ and 2B+ differ significantly. These differences are
mainly due to the difference in the whirl speed w, because the errors on the modal damping d = S|w|/2r
amounted to less than 1%. In addition, the logarithmic decrements obtained from Eqs. (20j2I) and Eqs. 7
show good agreement (dashed and dotted lines in Fig. f). As with the whirl speeds, this confirms
the assumption that the gyroscopic effects are negligible. Lastly, it can be seen by comparing Figs. [ (a)
and (b) that including the external damping in the model increases all the logarithmic decrements, which
tend to shift the instability threshold to a higher spin speed.

As far as stability is concerned, the present results are in good agreement with previously published data.
When there is no external damping, instability occurs only in the forward modes and the instability threshold
begins at the critical speed (Fig. [3] (a) and Fig. [ (a)). Under external damping conditions, the instability
threshold is shifted to a higher spin speed (Fig. [3] (b) and Fig. [] (b)). The instability threshold of the mode
IF— occurs at a spin speed of 8889rpm according to Eq. (17), 8862rpm according to Eqs. (20H21) and
8804 rpm according to the analytical criterion (Eq. (34)). Ku obtained an instability threshold in the same
mode at a spin speed of 8800rpm and Zorzi et al. obtained a value of 9200rpm. Comparisons between
these results show that the analytical instability criterion gives accurate results.

3.2. Case study 2: shaft with hysteretic internal damping with undamped and damped isotropic flexible bearings

The same shaft is studied here as in case 1, but the internal viscous damping is replaced by hysteretic
damping. Previous authors [17H19] have studied this case with the above physical parameters and a loss
factor 7; equal to 0.0002. This value is extremely low although Zorzi efal. and Ku [17, [19] reported
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that this hysteretic damping destabilized all the forward modes at any spin speed, even at null speed. As
previously established, this is physically impossible [6].

A more realistic loss factor value, in the case of steel for example, ranges between 0.002 and 0.004.
These values are low and they can be higher with other materials such as carbon/epoxy laminate materials
because of the epoxy resin (depending of course on the stacking sequence). To obtain more conspicuous
effects of the internal damping on the simulations presented here, it was therefore proposed to use a loss
factor n; = 0.04.

In this example, as in the viscous case, the whirl speeds and logarithmic decrements can be computed
using three methods. The first method consists in solving the characteristic equation (T7) numerically.
However, this computation is more complex than in the previous case because the internal modal damping
requires knowing the whirl speeds, which means using an iterative process. In addition, the hysteretic
damping model gives rise to convergence problems at the critical speeds: at these speeds, the internal modal
damping (37H38) tends to infinity because the whirl speed tends to zero in the rotating frame of reference.
Therefore, the computation of Eq. (T7) is first carried out without any internal damping, in order to obtain
an approximation of the whirl speed values, and several iterations are then carried out with the corresponding
internal damping values. Divergence occurs very quickly when a spin speed approaches a whirl speed. The
second method corresponds to finding the numerical solutions of Egs. (2042I), which involve the assumption
that w >> d. This method is a direct method because Eq. (20) does not include a damping term. The
third method consists in calculating the approximate solutions and instability criteria (27}28} B9}41), in which
gyroscopic effects are assumed to be negligible and w >> d.

The Campbell diagram and logarithmic decrement resulting from solution of Eq. (I7) are presented in
Fig. Bla) for the shaft without external damping and in Fig. [5[b) for the shaft with external damping. The
logarithmic decrement curves obtained using the three methods described here are presented in Fig. [6[a)
for the shaft without external damping and in Fig. [6(b) for the shaft with external damping. Lastly,
Tables [3| gives the whirl speeds and logarithmic decrements obtained using the three methods at a spin
speed 2 =4000 rpm, without any external damping.

Comparisons between Figs. |§] (a) and (b) show that whirl speeds are not affected by incorporating
external damping. The good agreement observed between the solutions of Eq. (20) and Eq. in Table [3]

————————————— —
oy | IE2 7.55E-2 TIE2Z 0362 0.361 0360 gy
1 9 _
7.62E-2 7.67E-2 77262 1BY 0.362 0.363 0.364 1B
20 1 20f ;o
Logarithmic decrement / Logarithmic decrement //
18r / 1 18r s/, 1
E 167 S 1 E 161 SF 1
& 5/ g £
) & s @
= Ur / 1214t / 1
N / N
Unstabl
s ]2 | nfta c | 3 12 | / |
-g 9!.84E-3 ;V9‘74E-3 -9.?1E—3 oF. E_ (?.328 }9.307 o.!309 IF.
& 1019853 /9.91E-3 09763287 % 100328 /" 0.328 0328 2B
= S
= = y
= 8r 12 8t / 1
Unstable
/ //
O 4.95E-2 -4.91E-2 489E2  -485E2 .| 6[0.149  5.02E-2 5.10E-2 516E2 ]
| v | | 1F- | Y X | 1F-
1 Vv 1 T 1B- t 7 t t IB-
4| 496E-2/ 4,982 501E-2 5.04E-2 1B 410149 /0149 0.149 0.149 1B-]
/ /
/ /
2 _// 12y ]
L 1 1 1 1 L 1 1 1 1 1 1 1 1 L 1 1 1 1 Il
0 2 4 6 8 1012 14 16 18 20 0 2 4 6 8 1012 14 16 18 20
(a) Spin speed  Q ( x10°rpm) (b) Spin speed Q ( x10°rpm)

Figure 5: Campbell diagram of a shaft supported on undamped isotropic bearings (a) and damped isotropic bearings (b) with
hysteretic damping 7; = 0.04 (— Eq. @ without internal damping; § corresponding to Eq. (IT_7I) with internal damping)
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Figure 6: Logarithmic decrement of a shaft supported on undamped isotropic bearings (a) and damped isotropic bearings (b) with

hysteretic damping 7; = 0.04 (— Eq. (T7); - - Egs. €O]21); - - Eqgs. BO}FT))

Table 3: Whirl speed and logarithmic decrement of a shaft supported on undamped isotropic bearings with hysteretic damping
n; = 0.04 at a spin speed 2 = 4 000 rpm

Mode w (rads™") o(-)

Egs. @I), (12_8|> Eq. (20, Eq. (Iﬁl) Egs. @I), (12_8|), @I)—qﬂl) Egs. @I)—(iﬁl} Eq. (iﬁl)
1F— 498 498 498 0.0496 0.0494 0.0494
1B— 498 498 498 0.0496 0.0498 0.0497
1F+ 2199 2207 2207 0.0761 0.0759 0.0759
1B+ 2199 2191 2191 0.0761 0.0763 0.0763
2F—- 1049 1049 1049 0.0099 0.0098 0.0098
2B- 1049 1049 1049 0.0099 0.0099 0.0099
2F+ 4982 4997 4997 0.1158 0.1155 0.1155
2B+ 4982 4966 4966 0.1158 0.1162 0.1162

confirms this finding. The assumption that weak damping was involved is therefore true. The approximate
solutions (27}28), yield exactly the same results in the modes denoted — and very similar results in the
modes denoted +, amouting to a difference of only about 0.3% at Q =4000rpm. The assumption that weak
gyroscopic effects were involved is therefore also true.

The logarithmic decrement curves in Fig. [6] (a) and (b) are typical hysteretic damping curves. Without
any external damping (Fig. [f] (a)), the logarithmic decrement curves of the backward modes are positive and
approximately constant, whereas those of the forward modes are positive and approximately constant until
the corresponding critical speed is reached and they suddenly shift to a negative sign, which makes the
system unstable. It can be noted that the logarithmic decrements obtained using all three methods proposed
here give very similar results (Fig. [6] and Table [3). When external damping is present (Fig. [6] (b)), the
logarithmic decrement curves are shifted upwards. In the speed range under consideration, the system is
stable since all the logarithmic decrements are positive. Here again, the results obtained with the three
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overestimated internal damping close to the 3F+ critical speed is magnified in the circles.

methods are found to be in good agreement, except near the critical speeds, where divergence occured in
the computation of Eq. (I7) (solid lines in Fig. [f] (b)).

The threshold speed was investigated at a spin speed greater than 20000rpm under external damping
conditions. The Campbell diagram and logarithmic decrement with n =3 are given in Fig. []] Whirl speeds
and corresponding logarithmic decrements was obtained by solving Eq. (I7) with the previously described
iterative method. This computation was carried out by performing 100 iterations. Similar results were
obtained when a larger number of iterations was performed. It can be seen from Fig. [7] that the results of
the hysteretic damping model are not physically relevant at spin speed close to any forward critical speed.
For example, when ©Q is close to wsp; (in the zone surrounded by a circle in Fig. |Z| (a)), it can be written
disp+ >> {W3p+, W3FL, Wp3Es, desps} then Eq. (]ﬂ[) divided by dispy at order O relatively to w/d can be written
as follows:

.13 . 2 .2 . 2 0.)4 . 0.)4
—id3g, +1QA55, + iwpsp, A3ps — 1QW) 5, = 0(7) + 10(7) ~ 0.

This equation has the obvious solution Aszg; = Q, which means that wsp, = Q and dsg; = 0. This result
corresponds to the zones surrounded by the circles in Fig. [/} and was also obtained in [6] without any
explanation being given by the author. However one must to be careful about this result since hysteretic
damping has no significance in the case of non-sinusoidal excitation and the excitation frequency tends here
to 0. The results obtained in this zone are obviously different from those obtained with the other two
methods, where weak damping was assumed to occur. However, the three methods including the instability
criterion (Eq. @2)) give the threshold speeds corresponding to the 3F+ critical speed i.e. at a spin speed
Q =73654rpm according to Eq. (24) and Q =73 681rpm according to Eq. (20). Finally, let us note that the
instability threshold was found to be in the same mode with a ten-fold lower hysteretic internal damping
value ie. 7; = 0.004. This point confirms the fact that differences w’.,, — w? and IT,w%.., — w?, decisively
determine the occurence of instability (Eq. (#2) and Eq. (43)).

All these results show that the instability criterion gives accurate results for determining the instability
threshold speed in the case of hysteretic internal damping.
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3.3. Case study 3: shaft with infinitely rigid bearings mounted on viscoelastic supports

It is now proposed to compare configuration 1 (case studies 1 and 2) with configuration 2 (Fig. [2),
i.e. isotropic damped flexible bearings with infinitely rigid bearings mounted on viscoelastic supports. These
comparisons were carried out with previous data and additional data in the case of configuration 2:

me=1kg, k. =2x10° Nm™, 75, =0.07.

On the other hand, the length of the shaft is now examined as a parameter. Let us note that the stiffness
of the bearings in configuration 1 is ten times greater than the stiffness of the supports in configuration 2.
This greatly affects the frequencies of the rigid-body modes.

With a given shaft length, the aim of this case study was to maximize the stability domain depending
on the choice of these low cost supports (classical bearings or viscoelastically supported bearings). This
study is quite simple, since the data on the bearings and supports are assumed to be independent of the
shaft length. However, the kind of support is variably decisive, depending on the shaft length. Fig. [§] (a)
and (b) give whirl and threshold speed maps for configurations 1 and 2, respectively. The critical speeds
were obtained from Eq. (24) and threshold speeds from Eq. (34) (with x; = 0.00002 s, ie. y; is ten times
lower than in case study 1) in the case of internal viscous damping and from Eqs. (@2J3) (with n; = 0.04)
in that of hysteretic internal damping. In configuration 1, the efficiency zone of the bearing with external
viscous damping is approximately in the /€ [1,2] m range. In the second configuration, the efficiency zone
of the viscoelastically supported bearing with external hysteretic damping is approximately in the / € [2,4] m
range. In each figure, coloured areas correspond to the instability domains predicted either by the viscous
internal damping model or by the internal damping hysteretic model or by both models.

The two figures show the stability zone located in the supercritical region with the two internal damping
models. It can be seen here that in configuration 1 (Fig. [§] (a)), the stability zone disappears at lengths
greater than 1.48 m with hysteretic damping and tends to disappear at lengths greater than 2m with viscous
damping. In configuration 2, a stability zone located in the supercritical region is again visible in the case
of both models. In particular, with the hysteretic model, this zone occurs between shaft lengths of 2.55m
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and 3.56m. These results show that viscoelastic supports are most efficient with very long shafts, which is
particularly useful in the case of some applications, such as the long drivelines of helicopters and tiltrotors.

In these two figures, it is worth noting that both damping models can be seen to delimit very different
zones, which shows the importance of determining the damping behaviour of the shaft material as well as
other dissipative process occurring in the rotating frame of reference, such as friction between rotating parts.

4. Conclusion

The case of a rotating shaft with either internal damping and dissipative bearings or infinitely rigid
bearings mounted on viscoelastic supports was investigated here using analytical methods. The aim of this
paper was to compare the results obtained with the two usual models for internal damping: the viscous
model and the hysteretic model. The latter model is classically held to simulate more closely the real
damping behaviour of the materials usually used to produce rotating shafts. A Euler-Bernoulli beam model
was proposed for the shaft, which neglects the shear effects but takes the effects of translational and rotatory
inertia, gyroscopic moments, and internal viscous or hysteretic damping into account. Hysteretic damping
was modelled by including an equivalent viscous damping term.

Assuming the damping to be weak and the gyroscopic effects to be negligible, this study focused mainly
on the analytical critical speeds and instability criteria resulting from the addition of internal damping. When
these assumptions did not give satisfactory results, the model was studied numerically. The form of the
criteria obtained in both the viscous and hysteretic cases was in good agreement with those available in the
literature on the Jeffcott rotor. These criteria clearly confirm the fact that internal damping instabilities can
only exist in the forward whirl modes in the supercritical range, whatever the damping model used. Here
we established in particular that the effects of the coupling between rigid-body modes introducing external
damping and flexural modes are as important as the effects of the damping level, i.e. the stability greatly
increases when a rigid-body frequency approaches a flexural frequency.

In the case of internal viscous damping, a comparative study showed that the results were in good
agreement with those obtained with several finite element models in previous studies. Studies on internal
hysteretic damping were carried out on the same example without making comparisons of this kind. The
results obtained in this case were in line with those published on Jeffcott rotor. The third case study carried
out here made it possible to determine the effects of viscoelastic supports on the stability in the supercritical
range. This study showed that viscoelastic supports provide stability when classical bearings are less efficient,
especially in the case of long shafts. Lastly, comparisons on the threshold speeds based on viscous and
hysteretic damping models showed the existence of large differences. Although the two models are difficult
to compare, since no real numerical correspondence exists between them, it is possible to conclude that the
determination of instabilities of this kind is highly dependent on the damping model used. Therefore, to
significantly improve the accuracy of threshold speed determinations, accurate material damping identification
is first required. This means that more complex damping models such as frequency dependent damping
models or combined viscous and hysteretic damping models are required. In this case, the model presented
here would make it possible to efficiently carry out this analysis with numerical methods.
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Appendix A. Proof of Eqs. ZIH30)

If n is an odd number, based on Eq. (I4), it can be written:
my
0<P,=2———<2. A.l
! 2m, + my (A-D
From previous equations, from several definitions in Eq. (I8) and noting that I7, > 1, the following
inequality can be obtained:

8 P, 4,
0<l-——<—=1-——<1. A2
n’n2Il, ~ II, n?m?ll, (A2)

Likewise, if n is an even number, it can be written

m
0<®,=6—— <6, A3
6m, + my (A-3)
therefore
24 Y, 4,
0<l-——<2L=1-—2<«1. A4
< n’n2ll, ~ 11, n?m?ll, (A4)

Finally, noting that 17, > 0, we obtain for all n

0< Y, <I, (A.5)
therefore
w2 < I1,%,, (A.6)
and consequently
492w} — 4%, 0w} < 0. (A7)

2

Adding the term (w2, + IT,w} )* — 4%,w} w2, to both sides of this inequality, the previous equation

becomes:

wfn + 21, — 25”,,)(1)%”(1)2 + H,%a)in + 4?’3(1)?;” - 45”,,17”(4)2"

bn
<, + 20T, — 2V, + T, &8
The left part of this inequality can be factorized as follows:
0 < (w2, + (T, = 2¥)w}i, )* < wh +2(1, = 2% 0t + T2}, . (A.9)

The square root of the above expression yields two inequalities:

W2+ (Ul = 200w}, <\, + 20T, = 2V, + 20,
" " (A.10)
—w, = ([T = 20}, < \Jwh, + 20T, — 2¥),w3, + T2,

These two expressions can be used to frame win as follows:

1 2 2 5 4
T [wm + 1w, — \/a)‘}n +2(1, - 2¥)wlw; + ITw,, ]

o (A.11)

2 2 4 2 )2 2,4
<@, < g |03, + 11}, + \Jwh, + 20T, = 20,0}, + T, ]

Finally, from Eqs. 7) and (28), the first inequality required (Eq. (29)) can be obtained:

2 _ 2 2 2 _ .2
Wy-0 = Wyr—o < Wy < WyB4o = WyE4o-
Likewise, upon multiplying Eq. 1' by 4%(1);‘", the inequality becomes:
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2

v, ¥,
41? —4— <. (A.12)

Adding the term w? +2(I1, - 2¥,)w? wfm Hzcu,m to both sides of this inequality, the previous equation
becomes

4 20T, - 2, + 1w 4¥/2 _gdn
Wy, + 21, - )w a)hn Why ﬁw ﬁn o (A.13)
4+ 2(IT, - 2¥,)W? wil Hza)bn
therefore
W?
0 < (w2, + MW}, -2, H”) <ol +201, - 2¥)0d 01, + 2w} . (A.14)

n

The square root of the above expression gives the second inequality required (Eq. (30)):

2

o2 2 2 2

W0 = Wypo < 77 H < WyBto = WyE+o-
n

Appendix B. Studies on the modal damping d,,;: the case of viscous internal damping

Damping of the modes nB+
Eq. 27) with w0 can be written:

2,020~ Wl — T}, = \Jwhy + 201, — 2P,)0207, + [T, > 0. (B.1)

Since w’,, > wi, (EBq. (29), mwls,, > w3, (Eq. ) and wypso < 0 (backward whirl), from the
expression for d,p+o in Eq. (31), the sign of d,p.o can be expressed as follows:

a = azerty + fert >0 (B.2)
—— —
w
>0
>0 >0 ————
W0 ~ W}
2 2 dey 2 2 nB+ n
WyB+0 ~ Wpy +d_,-,,(n’lwnB+0 - wsn) + — B0 Q
n
dnB+0(2) = djy 3 5 3 . (B.3)
202 yI’l(’L)nB+0 Wy — H’lwbn)

>0
It can then be concluded that d,p.o is positive at null spin speed and that it is a strictly increasing
function depending on Q. nB+ modes are therefore always stable.
Damping of the modes nB—
Eq. (28) with w,g—¢ can be written:

2¥,wr o — Wi — ), = — \/w‘ +2(1, - 2¥,)w?,w2, + 2w} <O. (B.4)

Since “)iB—o < win (Eq. ( ) 11 wnB 0 < «?, (BEq. ) and w,p_¢g < 0 (backward whirl), from the
expression for d,g_¢ in Eq. (31)), the sign of d,p_o can be expressed as follows:
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<0
<0 <0 ———

(1)2 _ 0)2
2 2 d, 2 2 nB-0 bn
WiB+0 ~ Wpp +ﬁ(nnwnB—0 - wsn) + Q
—WpB-0
. . . . (B.5)
22 annB—O - Wy — Hﬂwbn)

<0

dnB—O(Q) = din

It can then be concluded that d,g_o is positive at null spin speed and that it is a strictly increasing
function depending on 2. nB— modes are therefore always stable.

Damping of the modes nF+

Eq. 27) with w0 can be written:

2¥,w — Wh, — I}, = \/wg*n +2(1, - 2¥,)w?,w2, + 2w} > 0. (B.6)

Since ‘”iF+0 > win (Eq. ), Hn“’imo > w? (Eq. ) and w,py0 > 0 (forward whirl), from the
expression for d,pio in Eq. (31)), the sign of d,r.o can be expressed as follows:

<0
>0 >0 ——
(4)2 - (1)2
2 2 dep 2 2 nF+0 bn
WyF+0 ~ Wpn +E(HﬂwnF+O - wsn) + —WFs0 Q
nF+
dppi0(£) = dip 5 5 5 . B.7)
202 annF#—O T Wy T Hnwbn)
>0

It can then be concluded that d,p,o is positive at null spin speed and that it is a strictly decreasing
function depending on Q. nF+ modes can therefore be unstable. The threshold speed Qusviscnr+ can be
expressed by solving the equation: dp.0(Qts.visc.nFs) = 0.

Damping of the modes nF—

Eq. (28) with w,p—o can be written:

2V — Wh, — I, = — \/w;*n +2(1, - 2¥)w?,02, + 2w} <O. (B.8)

Since w’._, < w}, (Bq. Q9). Mw?_, < ?, (Eq. BO)) and wmro > O (forward whirl), from the

sn
expression for d,g_o in Eq. (31)), the sign of d,r_¢ can be expressed as follows:

>0
<0 <0 ——
2 2
w - W
2 2 dep 2 2 nF-0 bn
WyF+0 ~ Wpn +E(HnwnF—0 - wsn) + —WB—0 Q
nB—
dnp-0(£) = diy . (B.9)

202V = Wi = ntw},)

<0

It can then be concluded that d,p_ is positive at null spin speed and that it is a strictly decreasing
function depending on 2. nF— modes can therefore be unstable. The threshold speed Qg yiscnp-can be
expressed by solving the equation: d,p_o(Qs.visc.nr-) = 0.

Appendix C. Studies on the modal damping d,,;: the case of hysteretic internal damping

Damping of the modes nB+
Since wiB w0 > win (Eq. ), HnwiB 0> w%n (Eq. ) and wyp+o < 0 (backward whirl), based on Eqgs.
(@9 and (B.I), the sign of d,p.+o can be expressed as follows:
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>0

,—'2 %2 >0
w — W
2 nB+0 bn 2 2
NiWsy, W +d€" (H"wnB+O — Wy
—WnB+0
o 0(Q) = 0 . €
202 annB+0 - Wy, — Hnwbn)
>0

It can then be concluded that d,g.9 is always positive. nB+ modes are therefore always stable.

Damping of the modes nB—

Since w?p_, < wj, (Eq. ), Wk o < w3, (Eq. ) and w,g_o < 0 (backward whirl), based on Egs.
(39) and (B4), the sign of d,g_o can be expressed as follows:

<0
> > <0
Wi o~ W
B0 ~ %Y 2 2
niw?, "_w - = +dey (Tywip_ — W5,
dnp-o(Q) = = . (C2)
2 2 2
2% wip_ — wy, — Lwy,,)

<0

It can then be concluded that d,5_o is always positive. nB— modes are therefore always stable.

Damping of the modes nF+

Since w2, > w? (Eq. ), W%, , > w2, (Bq. ) and w,pso > 0 (forward whirl), the sign of d,po
in the subcritical range based on Eqs. (40) and can be expressed as follows

>0
>0
2 2 —_—
W —w
2 nF+0 bn 2 2
NiWsy, WnF+0 +den (HnwnF+0 - wsn)
nk+
dyp+0.5ub(£2) = > > 5 (C.3)
2(2 ylﬂwnF+O W — Hnwbn)
>0
and in the supercritical range based on Egs. @I) and (B.6)
<0
/—'2 %2 >0
w — W
2 nF+0 bn 2 2
niWs, —WFs0 +dﬂ’1 (H”wnF+O — Wy
_ nk+
anH).sup(Q) = 2(251/ B — 2 7 B ) . (C4)
'lwnF+O Wy, 'lwbn

>0

It can then be concluded that d,r,o is positive in the subcritical range and that it can become negative
in the supercritical range if

W’ g — W
niw?, —0 P g (T,wP, — @%,) < 0. (C.5)
—WpF+0
In this case, this nF+ mode will always be unstable in the supercritical range.
Damping of the modes nF—
Since ‘”iF—o < win (Eq. ), Hn‘”ﬁ}:_o < w?, (Eq. ) and wup-¢ > 0 (forward whirl), the sign of d,p_g
in the subcritical range based on Eqs. (@0) and (B-8) can be expressed as follows

<0
> > <0
w - W
2 nF-0 bn 2 2
NiWsy, w +den (HnwnF—O — Wy
nF-0
an—O.sub(Q) = > 5 > (C6)
2(2 annF—O Wy T Hnwbn)

<0
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and in the supercritical range based on Eqs. #I) and (B.8)

>0
> > <0
2 nF-0 bn 2 2
NNiWsy ) +den (Hnwn]:_() — Wy,
—WnF-0
an—O.sup(Q) = 3 ) 3 . (C.7)
202 Sy”(’L)nF—() —We — H"wbn)

<0

It can then be concluded that d,r_o is positive in the subcritical range and that it can become negative
in the supercritical range if

W - W
2 “ur-0 bn 2 2
mw”w— + den (I, Wp_y — w5,) > 0. (C.8)
—WnF-0

In this case, this nF— mode will always be unstable in the supercritical range.
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