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The Multi-Source Model
for Dimensioning Data Networks

T. Bonald!, C. Comte

Telecom ParisTech, Université Paris-Saclay, France

Abstract

Traffic modeling is key to the dimensioning of data networks. Usual models
rely on the implicit assumption that each user generates data flows in series,
one after the other, the ongoing flows sharing equitably the considered network
link. We relax this assumption and consider the more realistic case where users
may generate several data flows in parallel, these flows having to share the
user’s access line as well. We qualify this model as multi-source since each
user now behaves as an independent traffic source. Usual performance metrics
like mean throughput and congestion rate must now be defined at user level
rather than at flow level. We derive explicit expressions for these performance
metrics under the assumption that flows share bandwidth according to balanced
fairness. These results are compared with those obtained by simulation when
max-min fairness is imposed, either at flow level or at user level.

Keywords: Flow-level model, mean throughput, congestion rate, balanced
fairness, max-min fairness.

1. Introduction

Internet service providers need to predict the impact of traffic load on the
quality of service perceived by their customers. This is increasingly important
with the advent of high-speed internet access that tends to move congestion
from the access to the backhaul, where resources are shared by several users.

Internet traffic is most often modeled at flow level?, assuming some ideal
bandwidth sharing between ongoing flows [15, 3, 2, 1, 19, 27, 17]. Modeling
traffic at packet level proves too complex and is hardly effective, given that
users typically perceive quality of service at flow level [12]. In fact, the flow-level
models of data networks can be considered as the analogues for the Erlang model
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2A flow is here defined as the set of packets having the same 5-tuple: IP source and
destination addresses, IP source and destination ports, protocol.
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of telephone networks and its extensions to multi-rate circuit-switched networks
[5]. They have proved essential for both dimensioning [3, 6, 29, 25, 24, 16] and
traffic engineering [15, 23, 21, 28].

These models rely on the implicit assumption that each user generates data
flows in series, one after the other, so that bandwidth sharing occurs on the
considered backhaul link only, and not on the user’s access line. In this paper,
we relax this assumption and consider the more realistic case where users may
generate several data flows in parallel, these flows having to share both the
backhaul link and the user’s access line. It is not obvious how bandwidth is
shared by end-to-end congestion control in this context. Proportional fairness
is often considered as an adequate model [18, 26, 22]. It turns out to coincide
with max-min fairness in the networks considered in the present paper. Since
we look for closed-form expressions, we consider a slightly different allocation
known as balanced fairness [7]. While the resulting expressions have already
been presented in [4], we here resort to simulations to compare our results to
those obtained under max-min fairness. We also use simulations to assess the
impact of packet schedulers and buffer management schemes that impose max-
min fairness at user level on the backhaul link.

Existing models assume that flows are generated either according to a Pois-
son process (the so-called infinite-source model) or by n users, each alterning
between the active state and the idle state (the so-called finite-source model)
[5]; in both cases, each user has at most one flow in progress at any given time.
Our model consists of n users, each generating data flows according to a Poisson
process; in particular, there is no limit on the number of flows in progress com-
ing from the same user. We refer to this model as the multi-source model, since
each user can now be viewed as an independent source of flows, as opposed to
previous models where there is a unique source of flows, able to generate either
an infinite number or a finite number of flows in parallel.

Since the model allows each user to generate multiple flows in parallel, it is
not sufficient to focus on the flow level to evaluate user-level performance. In
particular, the throughput of each user is the total throughput of her flows in
progress. The corresponding performance results can differ significantly from
those obtained under the infinite-source model and the finite-source model.
They coincide only in the limit of an infinite number of access lines.

We consider a single backhaul link of fixed capacity (in bit/s) shared by a
population of n users. The total throughput of each user is also constrained
by the rate of her access line. The models apply equally to the uplink (from
the users to the Internet) and to the downlink (from the Internet to the users).
All traffic is elastic, meaning that each flow generated by a user corresponds to
some data transfer and remains active as long as the corresponding data have
not been fully transferred. Due to the insensitivity property, we do not specify
the flow size distribution beyond the mean, nor the distribution of the idle times
in the finite-source model [5]. We provide formulas that can be used in planning
tools or directly by network engineers to get insights into the impact of traffic
on user-level performance [16].

In the rest of the paper, we first review the results obtained with the infinite-



source model and the finite-source model. We then present the multi-source
model and compare numerically the results obtained with the three models in
some typical traffic scenarios. Finally, we present the simulation results obtained
under max-min fairness and conclude the paper.

2. Infinite-source model

Like the Erlang model for telephone networks, which relies on the assump-
tion of Poisson call arrivals [14], it is common practice to assume Poisson flow
arrivals in data networks. This is referred to as the infinite-source model since
it corresponds to the finite-source model (presented in the next section) in the
limiting case where the number of users n grows to infinity.

2.1. No access rates

We start with the simplest case where there is no rate limit at the access:
each user has full access to the backhaul link, which is assumed to be equitably
shared by ongoing flows. Flows arrive according to a Poisson process of intensity
A and have i.i.d. sizes of mean o bits, corresponding to a traffic intensity of
A = Ao bit/s. Denoting by C' the capacity of the backhaul link in bit/s, the
link load is p = A/C. Under the assumption of perfect fair sharing, the traffic
model corresponds to an M/G/1 processor-sharing queue of load p. It is stable
if and only if p < 1, in which case the stationary distribution of the number of
flows in progress X is given by:

m(x) = (1—p)p*.

Recall that this distribution is insensitive to the flow size distribution beyond
the mean [20, 2, 5].

It turns out that the stationary distribution seen by a user having a flow in
progress is different. Since there are x flows in progress in state x, which are
assumed to be generated by different users, each active user sees the size-biased
probability distribution of the random variable X,

7' (x) o< xm(x).

Observe that 7/(0) = 0. We will denote by P’ and E’ the corresponding prob-
ability measure and expectation, respectively. We derive two key performance
metrics on this basis.

Mean throughput. The first performance metric is the mean throughput experi-
enced by users. Assume there are x ongoing flows, with > 0. The throughput
of each flow is then C/x. Thus the mean throughput experienced by users,
normalized by the maximum throughput C, is given by

- (3)



Replacing E’ by its expression, we obtain

_ Zz>()ﬂ-(‘r) _ 14
TTTEX) T EX)

that is
7=1-p. (1)
Observe that the mean throughput decreases linearly with the link load.

Congestion rate. The second performance metric is the congestion rate, defined
as the probability that an active user gets a throughput less than the maximum
throughput C. Since there is no rate limit at the access, the congestion rate is
the probability seen by an active user that there are other active users:

n=P(X>1).

Replacing E’ by its expression, we obtain

D) 1 P(X =1)
" Ex) T B(X)
that is
n=p2-p). (2)

As expected, the congestion rate grows from 0 to 1 as the link load grows from
0 to 1.

2.2. Same access rates

We now consider the practically interesting case where each flow has a rate
limit » < C' corresponding to the capacity of the user’s access line in bit/s. For
convenience, we assume that the capacity of the backhaul link is some multiple
of this access rate, that is C = mr for some integer m > 1. We denote by
a = A/r the traffic intensity expressed in units of the access rate. This would
correspond to the mean number of flows if the backhaul link were of infinite
capacity. The model corresponds to an M/G/m processor-sharing queue of
load p = A/C. Under the stability condition p < 1, the stationary distribution
of the number of flows X is given by [5]:

1 { ot for x < m,
7'('("13‘):* Lin,
m:

e p®~™ for x > m,

where G denotes the normalization constant:
m T m
o « p
G = _—t —
Z x! + m!1l—p

x=0

Both performance metrics extend to this case.



2.8. Different access rates

Finally, we consider the general case of K different access rates r1,...,rx.
We denote by Ay, ..., Ak the respective traffic intensities in bit/s generated by
each class of users, and by oy = Ay /r1,...,ax = Ag/rk the traffic intensities
expressed in multiples of the access rates; these would correspond to the mean
number of flows of each class if the backhaul link were of infinite capacity. The
corresponding loads on the backhaul link are p; = A1/C,...,px = Ax/C, and
the total load is p = p1 + ... + pK-

Let X be the K-dimensional vector of the number of flows of each class in
progress. Denote by ¢y (x) the total throughput of class-k users in state z. The
capacity constraints are

Vk=1,...,K, ¢p(z)<xzry

and «
> érl(z) < C.
k=1

Now let r be the K-dimensional vector of access rates. Under balanced fair
sharing [7, 10], all users get their maximum throughput, in the sense that
op(x) = zpry for all k = 1,..., K, if and only if z.r < C (the access lines
are limiting); otherwise, no user gets her or his maximum throughput and the
total throughput is Zﬁil ¢r(z) = C (the backhaul link is limiting). The sta-
bility condition is p < 1 and the vector X has the stationary distribution:

1oft X
m(z) = G;p(l! o] for z.r < C,
Yoo Pem(x —ep) for xr > C,

where ej, is the unit vector on component k£ and GG denotes the normalization
constant. Here and in the rest of the paper, we adopt the convention that
m(x) = 0 for any = ¢ NX. Performance now depends on the user’s class. Both
metrics can be computed through a recursive formula [10], which is the analogue
of the Kaufmann-Roberts formula for circuit-switched networks.

3. Finite-source model

When the user population is relatively small, flow arrivals cannot be con-
sidered as Poisson. Each user is still assumed to generate flows in series, with
a random idle time between the end of a flow and the beginning of the next
flow. This is the analogue of the Engset model used for telephone networks
[13]. We only give the stationary distribution of the number of active users;
the corresponding performance metrics can be derived as for the infinite-source
model.



3.1. No access rates

Consider n users having full access to the backhaul link. Any idle user tends
to become active at rate v > 0, while any active user tends to become idle at
rate g = C'/o when no other users are active. We deduce that any user alone
in the system is active a fraction of time /(1 + 3), with 8 =v/pu.

Now assume active users share the backhaul link in a fair way. The stationary
distribution of the number of active users X is then given by [3, 9]:

Lt 8%, x<n
Gn—az)" "’ -

where G is the normalization constant:
n
n!
G = — ",
Z (n—x)! b
x=0

The infinite-source model corresponds to the case n — oo and 8 — 0, with
nB — p. A key difference with the infinite-source model is that traffic intensity
is no longer an exogenous parameter but given by A = CP(X > 0). We deduce
the link load:

w(z) =

G-1
p:P(X>O)=7G .

3.2. Same access rates

Now assume all users have the same access rate r. The link capacity is
C = mr for some integer m > 1, with n > m. Any active user tends to become
idle at rate u = r/o when no other users are active. The stationary distribution
of the number of flows X becomes [6]:

1 { (Z)BI for x < m,
= i’

7r(QC)ZG - form <z <n,

(n—ax)!m! mz—m

where 8 = v/p and G is the normalization constant. Traffic intensity is A =
E(min(X,m))r, corresponding to load
E(min(X,m))

- .

3.8. Different access rates

Finally, consider the general case of K different access rates ri,...,7xk.
There are nj users with access rate r,, mean flow size o, and mean idle time
1/vy, between two flows. Under balanced fair sharing, the stationary distribution
of the system state X is given by:

K n xr
m(x) = & iy (i) B3 for z.r < C,
?:1 %(nk —zp+ )m(z —eg) forzr>C,

where B8y = vi/pk, pe = Ti/or and G the normalization constant. Traffic
intensity is A = E(min(X.r, C)), corresponding to load:

_ E(min(X.r,C))

o C



4. Multi-source model

We now introduce the multi-source model where data flows must share both
the backhaul link and the user’s access line. We consider n users, with user
generating flows according to an independent Poisson process of intensity A;,
corresponding to the traffic intensity a; = A\;o in bit/s. We are interested in the
total throughput obtained by each user.

4.1. No access rates

As above, we first consider the case where each user has full access to the
backhaul link. Under fair sharing between flows in progress, the model reduces
to an M/G/1 multi-class processor-sharing queue. Denoting by p; = a;/C the
load due to user ¢ and by p = p1 + ... + p, the total load, the stationary
distribution of the number of flows of each user X is given by

ﬂ@»:(y_mcm+.”+av o

T1,...,Tp P1 - Pns
under the stability condition p < 1.
Now user ¢ sees the stationary distribution m;(z) « 7(z)1,,>0 when active.
We denote by P; and FE; the corresponding probability measure and expectation.

Mean throughput. The total throughput of user ¢ is proportional to the number
of ongoing flows of this user, that is (z;/>_; x;) x C in any state = such that
x; > 0. We deduce the mean throughput of user ¢, normalized by the maximum

throughput C,
X;
vi = Ei :
(ZJ Xﬂ')

X;
pi=FE| =<1x,50 |,
Z (Za‘ X; )

By work conservation,

so that
7':7[%
! P(Xl>0)
Since i
P(X;>0)= —"—o
(X; >0) Tp——s

we obtain 7; = 1 — p + p;. Note that the mean throughput is larger than that
obtained with the infinite-source model, given by (1), with equality when p; — 0
(in which case user i generates flows in series, as in the infinite-source model).
Observe also that the mean (normalized) throughput of user ¢ is larger than
the load p; generated by this user, with equality when p — 1 (in which case
the system is saturated and the throughput of each user corresponds to her
bandwidth share). For homogeneous traffic distribution, all users get the same
throughput, .

y=1-p+2>_
n n



Congestion rate. The congestion rate seen by user 7 is the probability that the
total throughput of this user is less than C, that is the probability that there
are other active users:

J

We get
P(X;>0,30,,,X;>0)
= P(X; > 0) '
Since )
P(X; >0, X;=0)= 7'01‘1(: fo),
i#i pi
we obtain o b
i=(2— L,
= (2-p)3 _—

This congestion rate is smaller than that obtained with the infinite-source model,
given by (2), with equality when p; — 0.

4.2. Same access rates

Now assume all users have the same access rate r, with C = mr for some
integer m such that 1 < m < n. We denote by g; = a;/r the load of user-i
access line. The load of user ¢ on the backhaul link is p; = a;/C = o;/m.

Let ¢;(z) be the total throughput of user ¢ in state x. The capacity con-
straints are

Vi=1,...,n, ¢x)<r

and

Z pi(z) < C.
=1

Let n(z) = Y1 | 14,50 be the number of active users in state . Under balanced
fair sharing, all active users get their maximum throughput, that is ¢;(z) = r
for all ¢ = 1,...,n such that a; > 0, if and only if n(z)r < C (the access
lines are limiting); otherwise, no user gets the maximum throughput and the
total throughput is Y1 | ¢;(z) = C (the backhaul link is limiting). Under
the stability condition p < 1 and p; < 1 for all ¢ = 1,...,n, the stationary
distribution of the network state X is
LTI, oF for n(z) < m,

i=1 &4

_J a
") { Yoo pim(z —e;) otherwise,

where G is the normalization constant. Since the network has a tree topology,
we deduce from [8] that

— Qi Qi D igr Oi
¢ = Z H1_9i+ Z Hl_Qim_Z?zlgi.

IC{1,...,n},[I|<m €1 IC{1,...,n},|I|=m i€l




Mean throughput. The mean throughput of user i, normalized by the maximum

throughput r, is given by
i (X
- <¢> ( )) |
r

By work conservation, E(¢;(X)) = a; so that

L Qi
BT P(X, > 0)
Now G
P(X; =0) = —,
( 0)=+%

where GG; denote the normalization constant in the absence of user i,
0j 0 2jgr#i
G = + .
D R T S e
sesn\{i}, [ I|<m jET Ic{1,...,n\{i},|[I]=m jel J

We deduce

_ Go;
YNi=aoa (3)

Congestion rate. The congestion rate seen by user 7 is

= Pi(¢i(X) < ).

We get
o P(Xl > O,Zj 1Xj>0 > m)
= P(X; > 0)
that is PR
i = - iv 4
Ulesre) (4)
with
05 ng 95
= > I
I1C{1,...,n},|I|=m j€I 1-gjm-— ZJ 105
and

F = Z H 0 2grj#if .

Il l=m el LT 9T X 0

4.8. Different access rates

We now consider the general case where user ¢ has access rate ;. The load
of user-i access line becomes p; = a;/r;. The capacity constraints are

Vi=1,...,n, ¢i(x)<mr

and



Under balanced fair sharing, all active users get their maximum throughput if
and only if

n
Z Tile,>0 < C.
i=1

Under the stability condition p < 1 and g; < 1foralli =1,...,n, the stationary
distribution of the network state X is

{ é H?:l Q;CL for Z?:l Ti]-mi>0 S 07

n(z) = Yo pim(z —e;) otherwise,

where G denotes the normalization constant [8]

Z H 0i Z Qi Zigzj riter.r>c Qili
G = + H — ’I{L 9
IC{1,...n},er.r<C i€l -0 IC{1,...n},er.r<C i€l l—oi C=3is, o

with e; the vector of ones on all components 7 € I and zeros elsewhere.

Mean throughput. The mean throughput of user ¢ normalized by the maximum
throughput r; of this user is
(X
Vi = E; <¢Z( )> .
T

We obtain the same expression (3), with

Gi= Z H lfjgj

Ic{1,....n}i¢ler.r<C jel

0 2ujglitirter.r>C OiTs
Y I -

. C =S, o
IC{1,.n},i@l,e;.r<C jEI g 2 j4i 05T
Congestion rate. The congestion rate seen by user 7 is

n = Pi(¢i(X) <mi),

that is (4) with

F = Z H Qj Zjefl,rj+e1.r>c Q575

IC{1,...,;n}er.r<C jeI C =250
and
F; = Z H 9j Zj€8j¢iyrj+€I.T>C 957 .
1=0 =D 07

Ic{1,...,n},i¢l,er.r<Cjel
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4.4. Different user classes

The previous formulas have exponential complexity in n. To keep the com-
plexity polynomial in n, we need to group users in some finite number of classes
K, as in the infinite-source model and the finite-source model. With some slight
abuse of notation, we denote respectively by 7y and g the rate and the load of
the access line of each class-k user. There are ny class-k users and we denote
by n the vector (ni,...,nk). The normalization constant is then given by

Ly

G_e<nzz:r<cwl_[1( )<1_Q’“>
O PR Ty e
Wj<ng l.ortr; >C\'Y] /83079
N I () e -

1<n:l.r<C k=1 C - Zkzl NEOkTk

The mean throughput of each class-k user is

_ _Gow
Tk G_Gka

where Gy, is the constant G with ny replaced by n; — 1. Similarly, letting

Ly Z (nlf[)g-r-
Jili<ng Lr+r;>C\'") 37307
Pe > T(0)(78,) x B ,

0<nl.r<C k=1 C - Zkzl NEOkTk

we obtain the congestion rate of class-k users

F—F

nk:m,

where F}, is the constant F' with nj replaced by ng — 1.
In the limit where the number of users tends to infinity with traffic intensities
nio1T, ..., NKOKTK tending to some fixed constants Ay, ..., Ax such that A;+
.+ Ag < C, the multi-source model reduces to the infinite-source model:
there is an infinite population of users, each user generating flows according to
a Poisson process of null intensity.

4.5. Numerical results

Figures 1 and 2 compare the performance metrics obtained with the three
considered models when all users have the same access rate r, C' = mr with

= 1,10,100, n = 2m and n = 10m, respectively. Traffic distribution is
homogeneous.

We observe that the infinite-source model is overly pessimistic while the
finite-source model is overly optimistic compared to the multi-source model,
especially for the mean throughput. For the congestion rate, the infinite-source
model is a good approximation of the multi-source model only for n = 10m
while the finite-source model is a very good approximation in both cases.

11
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Figure 1: Performance metrics under the three models for n = 2m.
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Figure 2: Performance metrics under the three models for n = 10m.

Figure 3 shows the results obtained for two classes of users, class-2 users
generating 10 times more traffic than class-1 users. There is the same number
of class-1 and class-2 users. All users have the same access rate r, C = mr
with m = 1,10,100, and there is a total of n = 10m users. We observe that
neither the infinite-source model nor the finite-source model is able to predict the
performance of both user classes: the underlying assumption of flows generated
in series by each user is not satisfactory.

The same conclusion can be drawn from Figure 4, showing the results for
two classes of users with different access rates, r1 = 1 and ro = 4. We take
n1 = 4ns and the same load for all access lines so that the total traffic intensity
is the same for each class. Here m = C/r; takes the values 5,50,500 and the
total number of users is n = 2m.

12
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Figure 4: Mean normalized throughput for m = 5,50,500 (from bottom to top), n = 2m,
n1 = 4no.

5. Imposing fairness

In this section, we study by simulation the impact of the sharing policy on
the performance results obtained with the multi-source model. Specifically, we
consider max-min fairness applied either at flow level or at user level.

Since the insensitivity property is no longer valid with max-min fairness [7],
we need to specify the flow size distribution. We assume that this distribution is
exponential so that the evolution of the network state is described by a Markov
process. The transitions rates are \; for user-i flow arrivals and ¢,(z)/o for
user-i flow departures in state x, where ¢(z) denotes the vector of bandwidth
shares in state x under max-min fairness at flow level or at user level. This
Markov process is ergodic under the usual stability condition p < 1 and g¢; < 1
foralli=1,...,n [11].

5.1. Flow-level fairness

We first consider the case of max-min fairness at flow level, which is repre-
sentative of the sharing achieved by TCP in the considered network. In practice,

13



the Internet service provider can enforce max-min fairness at flow level by iden-
tifying flows through the usual 5-tuple® in the IP header of each packet and by
applying some adequate packet scheduler and buffer management scheme.
Since there is no explicit expression for the stationary distribution of the
network state, we use simulations to get the corresponding performance metrics.

5.2. User-level fairness

When fairness is imposed at flow level, users having a large number of flows in
progress typically get a higher bandwidth share than other users. The Internet
service provider may rather impose fairness at user level to avoid this bias.
Since all packets generated by the same user generally share the same IP source
address on the uplink and the same IP destination address on the downlink, it
is sufficient to identify users through the corresponding field in the IP header
of each packet and to apply some fair packet scheduler and buffer management
scheme on this basis at the backhaul link.

Assuming for instance that the n users are active and indexed in increasing
order of their access rates, the bandwidth share of user ¢ in state x is given by
her access rate r; if ¢ < k and

C_Zlerj
n—=k

otherwise, where k is the highest index [ such that Zi:l ri+(n—10r <C.
Observe that the allocation is the same for all states x such that z; > 0 for
all ¢ = 1,...,n. Again, the corresponding Markov process does not have a
closed-form stationary distribution and we need simulations to estimate the
performance metrics.

5.3. Numerical results

Each result obtained by simulation is derived from the average of the consid-
ered performance metric over 10 independent runs of the corresponding Markov
process, each consisting of 5-10° jumps after a warm-up period of 5-10° jumps.
This allows us to get for each result a 95% confidence interval included in the
plotted value +0.02.

Figure 5 shows the results obtained when all users have the same access rate
r, C'=mr,m =1,10,100 and n = 10m. We observe that the simulation results
obtained with max-min fairness, either at flow level or at user level, are very
close to the analytical results derived under balanced fairness.

We now consider the heterogeneous scenario of Figure 3 with two classes
of users, class-2 users generating 10 times more traffic than class-1 users. The
results are presented in Figure 6. Balanced fairness still provides a very good
approximation of throughput performance under flow-level max-min fairness,

3IP source address, IP destination address, source port, address port, protocol.
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Figure 5: Impact of fairness on performance under the multi-source model for n = 10m.

but under-estimates the mean throughput of class-1 users under user-level max-
min fairness. This is due to the fact that class-2 users, who typically have a
larger number of flows in progress than class-1 users, are favored under both
balanced fairness and flow-level max-min fairness. Imposing fairness at user
level allows the Internet service provider to protect users generating less traffic.
Balanced fairness does not capture this phenomenon but provides conservative
estimates of performance and thus can be used for dimensioning purposes.
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Figure 6: Impact of fairness on throughput performance under the multi-source model for
m =1,10,100 (from bottom to top) and n1 = ne = 5m.

Finally, we give in Figure 7 the results corresponding to the scenario of
Figure 4, with two access rates. The throughput performance as estimated by
balanced fairness is slightly optimistic for class-2 users and very pessimistic for
class-1 users, especially under user-level max-min fairness. Again, this can be
explained by the fact that max-min fairness at user level tends to protect users
with low access rates, a phenomenon that is not captured by balanced fairness.
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Figure 7: Impact of fairness on throughput performance under the multi-source model for
m = 5,50,500 (from bottom to top), n = 2m, n; = 4nas.

6. Conclusion

We have proposed a new traffic model for evaluating user-level performance
in data networks. The key characteristic of this model is to account for band-
width sharing on the user’s access line. The results turn out to be very differ-
ent from those obtained with usual models in practically interesting cases, like
n = 100 users having different traffic profiles or access rates. They coincide
only for large values of n, say n > 1000. Simulations show that the results
are approximately the same under flow-level max-min fairness. When max-min
fairness is imposed at user level, the throughput performance of users with low
traffic or low access rate tends to be better than that estimated by balanced
fairness.

One of the key benefits of the proposed multi-source model is to account pre-
cisely for the number of access lines n without the complexity of the finite-source
model. For instance, traffic intensity (and thus link load) is an exogenous param-
eter of the multi-source model but an endogenous parameter of the finite-source
model. Moreover, the normalization constant is explicit in the multi-source
model, which greatly simplifies the computation of the performance metrics.

A drawback of the multi-source model compared to the infinite-source model
is the lack of a recursive formula for evaluating the normalization constant in the
presence of a large number of different access rates. We let this for future work.
Other interesting issues include the derivation of more accurate approximations
in case fairness is imposed at user level and extensions of the model to non-elastic
traffic (for instance, adaptive streaming traffic).
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