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SEGMENTATION AND LABELLING OF INTRA-OPERATIVE LAPAROSCOPIC IMAGES
USING STRUCTURE FROM POINT CLOUD

Nazim Haouchine and Stephane Cotin

Inria,Mimesis project-team, Strasbourg, France

ABSTRACT

We present in this paper an automatic method for segment-
ing and labelling the liver and its surrounding tissues in intra-
operative laparoscopic images. The goal is to distinguish be-
tween the different structures that compose a intra-operative
hepatic surgery scene to improve common registration tasks.
Our segmentation method considers the scene as a 3D struc-
tured point cloud to exploit powerful informations such as
curvature and normals, in addition to visual cues that permit
to efficiently classify the scene. Experiments performed on
challenging human hepatic surgery confirm that accurate seg-
mentation and labelling are possible using our approach.

Index Terms— Intra-operative image segmentation, min-
imally invasive surgery, scene understanding.

1. INTRODUCTION

The last decades have seen the emergence of Minimally In-
vasive Surgery (MIS). In this technique, the surgeon manipu-
lates instruments inserted in the the abdominal cavity by ob-
serving a display showing a video stream captured by an en-
doscopic camera inserted through the navel. The main ad-
vantage of the method is the reduction of pain, time recov-
ery and risks of infection. However, although the MIS proce-
dure is considered as a well-established technique, it remains
quite complex from the surgical standpoint mainly due to the
limited visual feedback and indirect manipulation. The pres-
ence of a camera has naturally led the research community to
investigate the use of Augmented Reality (AR) to guide the
surgeon during the procedure. Indeed, organ structures com-
puted from pre-operative scans can be superimposed onto the
intra-operative images to facilitate the orientation and naviga-
tion during the surgery.

Several approaches have been proposed to permit the use
of AR during surgery. Most of the time they rely on a regis-
tration step which is often performed between a pre-operative
model (usually a triangular 3D mesh) and points of interest
(2D or 3D features) extracted from laparoscopic images [1],
[2], [3]. Although these methods provide good results, the
registration process suffers from a lack of image information
and can hardly achieve the robustness needed by surgical ap-
plications. Recently, researchers have suggested the integra-

tion of contours and anatomical landmarks as additional con-
strains for the registration phase [2], [3]. These landmarks
represent powerful boundary conditions that can dramatically
decrease the registration error and resolve ambiguities where
no image information is provided.
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Fig. 1: Segementation and labelling of MIS hepatic scene:
(a) input laparocopic images, (b) 3D scene reconstruction, (c)
segementation and labelling of anatomical structures

2. RELATED WORKS

Detecting and extracting regions of interest in laparoscopic
images has first been dedicated to the localisation of surgi-
cal instruments. Being an important element of advanced
robotic and computer assisted interventions, several methods
have been proposed to address this problem [4], [5] with sig-
nificant results. However, when dealing with real organs and
tissues, the classification process become more challenging
due to the substantial intra-patient organ texture disparity.

Early works in that context were based on texture and
morphological similarity, using iterative mergin process
based on grey-level similarity [6] or watershed segmenta-
tion in HSI color space [7]. These methods do not guarantee
success and convergence since they are highly dependent on
the texture.

In order to counteract the sensitivity to color and texture,
learned models have been recently introduced. A cascaded
patient-specific segmentation method is proposed in [8]. This
method exploits both color and texture encoded using Support
Vector Machines to segment the uterus and Gaussian Mix-
ture Model to segment the tools. The results show that seg-
menting the uterine image can improve 3D reconstruction of
the uterus and its registration with pre-operative data. In a
similar context and towards the establishment of automatic



AR for uterine surgery, Prokopetc et al. [9] proposed to de-
tect the uterus and fallopian tube junction in laparoscopic im-
ages. This method is based on a learned contextual approach
that aims to predict the positions and orientations of the junc-
tions relative to the uterus using a statistical model (obtained
through a training phase). These approaches give good re-
sults using only single view images. However, the training
phase may be computationally expensive and requires a large
database, which makes the solution not easily reproducible
with other organs.

Using pre-operative data as well as endoscopic visual cues
Nosrati et al. [10] proposed a closed form solution to segment
multiple tissues of partial nephrectomy images. This method
makes use of multi-view endoscopic videos and the 3D seg-
mentation of the organ in pre-operative scans to formulate the
problem as a 3D pose search. The presented results as well as
the real-time achievement make this solution suitable for sur-
gical AR. Nevertheless, the use of a deformable model gener-
ated from a catalog of realistic 3D deformed shapes does not
represent the patient-specific tissue deformations, especially
when dealing with elastic organs such as the liver.

We propose in this work to automatically classify the
structures that compose an intra-operative hepatic surgery
scene. We use geometrical discontinuities to find the bound-
aries between each region and structural cues to label them.
In contrast to the state-of-the-art, our method does not rely
on learned or pre-operative models and is compatible with
mutiple organ scenes with intra-patient disparity.

3. METHODS

3.1. Intra-operative 3D Scene Reconstruction

The reconstruction of a three-dimensional intra-operative
scene can be performed in different ways depending on the
image modality [11]. In this work, we make no assumptions
about specific acquisition technologies available in the op-
erating room (such as intra-operative MR or CT scanner, or
depth camera), but we rely only on images provided by the
stereoscopic camera (pre-calibrated).

Let us assume the stereoscopic pair of images Il and Ir.
We extract from this stereo pair points of interest (features)
that are sufficiently reliable for 3D reconstruction using a
feature detector. This permits to obtain two sets of features
Fl = ( f1l , . . . , fkl ) and Fr = ( f1r , . . . , fmr) where it is neces-
sary to estimate for each feature fi = (ui,vi) the 3D point
pi = (Ui,Vi,Wi). This is done by establishing a correspon-
dence between image points fl ←→ fr, using a descriptor-
based matching method with the appropriate threshold ϕ .
Once a correspondence is found, a sparse set of 3D points,
denoted P = {pi ∈R3}, is reconstructed using a triangulation
algorithm [11].

The resulting point cloud P gives a sparse representation
of the intra-operative scene with possible noise measurement

coming mainly from calibration issue. We propose to use
Moving Least Square (MLS) surface approximation intro-
duced by [12] in order to build a dense surface from the
sparse reconstruction obtained form stereoscopic images.

MLS is a non-parametric method to approximate a sur-
face from a set of unstructured scattered point. This approach
relies on the idea that any given point could implicitly defines
a surface as the set of stationary points of a certain function
f : R3→ R3. This procedure is defined below.

Let consider the previous point cloud P, and a point r in
a neighborhood of P. The energy of the plane with normal ~a
passing through the point x = r+ t~a, where t is the distance
from r to the plane, is defined to be:

EMLS(~a, t) = ∑
pi∈P

(〈~a, pi〉−〈~a,r+ t~a〉)2
θ(p+ t~a, pi)

where the weighting function θ is any monotonic func-
tion, usually a Gaussian. The energy EMLS measures the qual-
ity of the fit of the plane to P, where pi is weighted by its
distance from x. The local minima of this energy function oc-
curs at a discrete set of inputs (~a, t), each corresponding to a
point x. Of these, f (r) is defined to be the x nearest to r. The
stationary points of this map f form the MLS surface S .

3.2. Segementation using structures from Point Cloud

The obtained surface S gives a 3D representation of the
whole intra-operative scene. In order to separate the different
component (regions) of the scene, we propose a classifica-
tion method based on geometrical surface bending given by
curvatures.

For each point on the surface S , we can locally approx-
imate the surface by its tangent plane, orthogonal to the nor-
mal vector n. Local bending of the surface is measured by
curvatures. For every unit direction eθ in the tangent plane,
the normal curvature kn(θ) is defined as the curvature of the
curve that belongs to both the surface itself and the plane con-
taining both n and eθ . The mean curvature kH is defined as
the average of the normal curvatures:

kH =
1

2π

2π∫
0

kn(θ)dθ (1)

Using this curvature information, and knowing the bend-
ing characteristic of the intra-operative scene, the idea is to
find strong bending discontinuities that represent the frontiers
between the regions using a region growing scheme.

Let us denote V = {vi ∈R3} the set of vertices of the sur-
face S . Region growing permits to classify the set of vertices
V starting from a set of seed points D = {di ∈ R3} and grow-
ing through neighbors based on curvature criterion. The seed
points are first chosen to be the points with the lowest curva-
tures kH , representing the flat regions. From the seed point,
the set of neighbours V∗= {v∗i ∈R3} are examined so that the



angle between the seed point di and its neighbor v∗j is below
a certain threshold ϑth following cos−1(|(ndi ,nv∗j

)|)< ϑth. In
this case, the neighbor v∗j is added to the current region. Once
all the neighbors are tested, if the curvature of a neighbor is
less than a curvature threshold kHth , this neighbor is added to
the set of seed points D while the seed point di is removed.

This process is first done using a strict matching thresh-
old ϕ which reduces the density of the point cloud P. This
permits to avoid ambiguities to delimit the regions. Indeed, a
dense point cloud P will produce a smooth MLS surface S
with smooth angles, and therefore will cause the growing to
build false regions. The growing is then repeated with more
tolerant values of ϕ while the propagation is constrained with
the initially detected regions. The process is iterated until all
the vertices are labelled.

3.3. Labelling with laparoscopic scene cues

Just as there are many ways to parameterize an image using
colors and texture of appearance, there are numerous ways
to parameterize a 3D point cloud. When dealing with intra-
operative scene, targeting hepatic resection, one will notice
that the main anatomical structures are: the ligament, the
liver, the diaphragm and the surrounding tissues (such as fat).
Each of these structures can efficiently be labelled using struc-
tural cues. We propose several structural cues, chosen to
be robust, intuitive and computationally cheap based on the
previously reconstructed surface and the segmented regions.
These cues are: distance to the camera tD, surface orientation
tO, angular disparity tA, and anatomical connectivity tC.

Fig. 3: Intra-operative scene cues with in (left) the connectiv-
ity template for the cue tC and in (right) the camera insertion
heading the lungs that permits to define tD, tO and tA.

Combining these cues permits to label each of the the
aformentionned regions. However they are only valid under
certain assumptions. First, we assume that the camera is in-
serted through the navel heading the lungs. Second, we sup-
pose that the camera can observe at least one lobe. Finally,
we assume that these structures are not significantly occluded
by surgical instruments. The two first assumptions are most
of time valid and the latter can be circumvented by taking
advantage of the recent works in surgical tools detection [5].
Moreover, the cues are defined as follows.

Distance to the camera tD. This cue is very intuitive
since it relates the distance in the world coordinates of the

anatomical structure to the camera position. The depth of
each vertex of the surface is compared to the camera cen-
ter’s z coordinate in world coordinates. This cue is particu-
larly useful to detect the ligament, which, in a classical intra-
operative hepatic scene, is located close to the camera and the
diaphragm, the deeper organ in the scene.

Surface orientation tO. The orientation of the surface
normals gives a powerful insight knowing the location of the
camera in the abdominal cavity (surrounded by the anatom-
ical structures). This orientation cue helps to distiguish be-
tween the liver lower and upper boundaries.

Angular disparity tA. Once can notice the ”convex”
bending of the organs (such as the liver, the kidney or the gal-
bladder) compared to the rest of the tissues. This geometry
makes the exploitation of the angular disparity useful where
a substantial angular disparity usually denotes the liver.

Anatomical connectivity tC. The connectivity between
the regions is an important cue, since several structures share
boundaries. Thus, the identification of one structure implies
the identfication of its neighbor. However, this cue is very
sensitive and a false identification can lead to false implica-
tions and is used as a validation criterion rather than a deci-
sionel criterion.

4. RESULTS

We conducted experiements on mutiple laparoscopic image
pairs from 3 different human patients showing the liver and
its surrounding structures. Laparoscopic images of 960×
540 resolution were acquired using the DaVinci Robot (In-
tuitive Surgical) with a stereoscopic camera inserted through
the navel heading the lungs. The images depict a classical
hepatic resection scene where at least 3 anatomical structures
are present. Our method was able to extract the liver countour
with an average Dice similarity of 81.33 % while the labelling
was able to detect it in all images as illustrated in Figure 2.
This detection can brings powerful information when target-
ing 3D reconstruction of only one organ.

Fig. 4: Detection of the liver upper boundaries.

The experiments show that the boundary between the liver
and the abdominal wall can be easily extracted when the di-
aphragm and the ligamenet are correclty detected (cf Figure
4). This separation represents a strong contour constraint
towards an automatic pre-operative to intra-operative point
cloud regisration.
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Fig. 2: Detection of liver, diaphragm, ligament and tissues on laparoscopic image pairs from haptic surgery on human patients.

The method however fails in certain cases to correclty sep-
arate the liver from its lower surrounding tissues such as fat
(cf Figure 2 (d)). This can be explained by the non-presence
of curvature discontinuities making the growing scheme fail
to distinguish between the two regions.

5. CONCLUSION

We have presented an automatic method for segmenting and
labelling intra-operative scene during liver surgery. This
method is able to segment and label the liver, the diaphragm,
the ligaments and surrounding tissues by considering the
scene as a 3D structured point cloud to exploit curvatures and
normals. Our approach can take as input sparse and noisy
point clouds, thanks to a surface approximation stage, and
unlike existing approaches, is independent of organs texture
making it applicable to different organs. The experiments
performed on real human hepatic surgery confirm that correct
segmentation and labelling are possible using 3D structure
information and appropriate visual cues. The major weakness
of our method is its large number of parameters, where an in-
appropriate tuning may lead to incorrect results. Future work
will investigate the automatic segmentation of instruments
and the use of image information to resolve possible ambigu-
ities and reduce the segementation and labelling errors.
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