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Abstract
The role of an Interactive Music System (IMS) is to accompany mu-

sicians during live performances, acting like a real musician. It must
react in realtime to audio signals from musicians, according to a timed
high-level requirement called mixed score, written in a domain specific
language. Such goals imply strong requirements of temporal reliability
and robustness to unforeseen errors in input, yet not much addressed by
the computer music community.

We present the application of Model-Based Testing techniques and
tools to a state-of-the-art IMS, including in particular: offline and on-the-
fly approaches for the generation of relevant input data for testing (in-
cluding timing values), with coverage criteria, the computation of the cor-
responding expected output, according to the semantics of a given mixed
score, the black-box execution of the test data on the System Under Test
and the production of a verdict. Our method is based on formal models
in a dedicated intermediate representation, compiled directly from mixed
scores (high-level requirements), and either passed, to the model-checker
Uppaal (after conversion to Timed Automata) in the offline approach, or
executed by a virtual machine in the online approach. Our fully automatic
framework has been applied to real mixed scores used in concerts and the
results obtained have permitted to identify bugs in the target IMS.

1 Introduction
Interactive Music Systems (IMS) [30] are involved in live music performances
and aim at acting as an electronic musician playing with other human musi-
cians. We consider such systems that work with a mixed score, written in a
∗This work has been partly supported by a DGA-MRIS scholarship and the project Inedit

(ANR-12-CORD-009)
†clement.poncelet@ircam.fr
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Figure 1: Highlights of our Score-based IMS testing workflows. Left: Online -
Right: Offline.

Domain Specific Language (DSL), which describes the input expected from hu-
man musicians, together with the electronic output to be played in response.
During a performance, a score-based IMS aligns in real-time the performance of
the human musicians to the score, handling possible errors, detects the current
tempo, and plays the electronic part. A popular example of this scenario is
automatic accompaniment [13].

A score-based IMS is therefore a reactive system, interacting with the out-
side environment (the musicians) under strong timing constraints: the output
(generally messages passed to an external audio application such as MAX [29])
must indeed be emitted at the right moment, not too late but also not too early.
This may be a difficult task since audio calculations often have an important
impact on the resource consumptions. In this context, it is important to be
able to assess the behavior of an IMS on a given score before its real use in a
concert. A traditional approach is to rehearse with musicians, trying to detect
potential problems manually, i.e. by audition. This tedious method offers no
real guaranty since it is not precise, not complete (it covers only one or a few
particular musician’s performances), and error prone (it relies on a subjective
view of the expected behavior instead of a formal specification).

In this paper, we present the application of Model Based Testing (MBT)
techniques to a score-based IMS called Antescofo, used frequently in world class
concerts in the contemporary repertoire. Roughly, our method proceeds with
the steps depicted in Figure 1. First, (1) a given mixed score is compiled into
an Intermediate Representation (IR). This formalism is an executable medium
level code modeling the behavior expected from the Implementation Under Test
(IUT), the IMS Antescofo, when playing the given mixed score. It has the
form of a finite state machine with delays, asynchronous communications and
alternations.

Based on this IR, we follow two main approaches for testing: In an offline
approach (the right side of the figure), the IR is transformed into a Timed
Automata (TA) network [3], for generation and simulation purposes (3). The
input test data (2) is generated either by tools from the Uppaal suite [21] for the
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generation of covering test suites (under restrictions), or either by adding to an
ideal trace of musician some fuzz of different kinds, or also by translation from
a musical performance. Once some timed input traces tin have been generated
(representing a musician’s performance on the score), the IR is used to compute
offline, by simulation (3), the corresponding output traces tout, expected from
the system in response to the input. Finally, every input trace tin is sent to the
IMS (4) and the real outcome of the IMS, t′out is compared (5) to the expected
output tout in order to produce a test verdict.

In an online approach (left side of the figure), the IR is executed by a Virtual
Machine, and the intput and output test data are generated on the fly, using an
adapter (Adt). In this approach, the generated input test data is also send on
the fly to the IUT, as the input of an artificial musician, and the real outcome
of the IUT is compared online to the expected output (5), event by event. The
use of virtual clocks permits to execute the tests (in both approaches) in a fast
forward fashion, without having to wait for the real duration of the score.

Our case study presents important originalities compared to other MBT
applications to realtime systems [15, 21]. On the one hand, the model supports
several time units, including the physical time (wall clock), measured in seconds,
and the musical time, measured in number of beats relatively to a tempo. This
situation raises several new problems for the generation of test suites and their
execution. On the other hand, the mixed scores specify completely the expected
timed behavior of the IMS, and therefore, the formal models on which our test
procedure are based can be constructed automatically from these scores, instead
of being written manually by an expert. This enables a fully automatic test
scenario fitting well in a music authoring workflow where scores in preparation
are constantly evolving.

Our main contributions are the design of an appropriate IR, the implemen-
tation of a compiler of Antescofo mixed score into IR, and the design of the
two above offline and online test procedures based on IR models. Our MBT
framework permits the test of the timing behaviors in addition to the out-
put correctness of a system. Applied to Antescofo, it allowed to detect tempo
computation errors and synchronization mistakes occurring during non-trivial
performances. It is also used to apply regression tests in order to ensure the
stability of the system during the development of new versions.

The paper is organized as follows: Section 2 introduces the system under test,
Antescofo, and the principles of our test method. The models and their con-
struction from mixed scores are formally defined in Section 3. The implemented
model-based testing framework is then described in Section 4. Interesting re-
sults, following several options are presented Section 5, and finally perspectives
in Section 6.

Related works
This paper extends an earlier version published in the proceedings of ACM-
SAC 2015, track SVT. The main additions compared to the former version are
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complete semantics of the IR, more details on the compilation of mixed scores
into IR and translation of IR into TA, and the presentation of a new online
MBT framework, in addition to the offline framework (based on Uppaal) which
was presented at ACM-SAC.

Some tools exists for automating the test of IMS, like for instance the MAX-
test package [25] for testing MAX patches through assertions. These systems
conveniently provide sophisticated tools for automating execution of test data
and reporting. But they generally do not offer procedures for generating test
data, hence the user must compute some input test data and the expected
corresponding output by other means. Our approach ([26, 27]) in contrast focus
on the generation of test data, based on formal models, and in this respect the
two approaches can be seen as complementary.

Other works have addressed the formal verification of multimedia systems
based on TA models, like for instance the verification of a lip-synchronisation
protocol (synchronization of audio and video streams) in [11]. Model checking
procedures have also been used for music improvisation [6]. TA, Uppaal, as
well as timed Petri nets, are used in i-Score [5], a framework for composition,
verification and real-time performance of Multimedia Interactive Scenarios. To
our knowledge, no other work has applied such formal models to the test of
IMS.

One drawback of MBT methods is that they generally require a manual con-
struction of models by experts. On the opposite, our MBT framework proposes
an automatic model construction, thanks to the existence of a pre-defined timed
scenario requirement (mixed score) written in a DSL. The model is constructed
during a traversal of an abstract syntax tree of the score, and using sequential
and concurrent composition operators for the IR, similar to the glue operators
in [8, 9]. This approach is modular in the sense that the model of several scores
can be combined into a larger model using the operators. Moreover, our IR
models are also executable, similarly to the E-code of [20, 19], which is obtained
by compilation of programs in the time-triggered programming Giotto language
and is used for static analysis of properties such as time-safety or schedulabil-
ity. An earlier version of the IR presented in this paper has also been used for
analysis of the robustness of Antescofo mixed scores [18].

Our approach for the offline generation of test input by fuzzing ideal per-
formances is inspired by fuzz testing. In [10] the fuzzing method is used in
a white box fashion in a large scale testing framework. Although we follow a
black-box testing approach, we use the same strategy which consist in starting
from a perfect input and mutating it. Note that, in contrast to most fuzz testing
approaches, we needed to deal with time values in this context, and applied for
this purpose models of music performance from the literature.

2 Principle of IMS Testing
This section introduces the main notions needed across the paper. We first
present the IMS Antescofo and a fragment of its companion Domain Specific
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Figure 2: Architecture of Antescofo

Language (DSL), through a running example. We recall next the principles of
Model-Based Testing (MBT), and their adaptation to our realtime IMS case
study.

2.1 The score-based IMS Antescofo
Antescofo, which stands for Anticipatory Score Following, is a software created
by Arshia Cont in 2007 for automatic accompaniment of human musician by
electronic instruments during live concerts. The software is constantly evolving
due to the feedbacks and requirements from a wide use in concert (by famous
orchestra and composers). The reader is invited to consult the Antescofo’s web
page1 for videos and examples of applications.

Figure 2 describes roughly the architecture of Antescofo, which is made of
two main modules. A listening machine (LM) decodes an audio or midi stream
incoming from a musician and infers in realtime: (i) the musician’s position in
the given mixed score, and (ii) the musician’s instantaneous pace (tempo, in
beats per minute) [12]. These values are sent to a reactive engine (RE) which
schedules the electronic actions to be played, as specified in a mixed score. For
Antescofo the actions are messages emitted on time to an audio environment. It
is important to note that the information exchanged between the LM and RE as
well as between the RE and the output environment of the system is composed
of discrete events.

2.2 DSL for Mixed Scores
A mixed score is required and parsed before Antescofo can start playing with
musician(s). The mixed scores used by Antescofo are written in a textual reactive
synchronous language enabling the description of the electronic accompaniment
in reaction to the detected instrumental events.

Example 1 Figure 3 displays our running example in common western music
notation. The part of the musician contains three notes: a quarter note e1
of pitch D]5 (its duration is one beat), and two eighths notes e2 and e3 of
respective pitches A4 and C]4 (both of duration half of a beat). The intention in

1Antescofo’s videos: http://repmus.ircam.fr/antescofo
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this example is to launch three pairs of actions (called t1, t2 and t3) controlling
external systems via two on/off messages. The first electronic part launches
ont1 immediately at the detection of the first event e1, and ont3 is launched
1.5 beats later (it is time-triggered). The messages offt1 and offt3 are launched
respectively 0.5 beat after ont1 and 0.25 beat after ont3 . The second electronic
part launches independently ont2 at the detection of the second event e2, and
launches offt2 0.25 beats after the detection of the last event e3. ♦

Abstract syntax We use here a simplified abstract syntax corresponding to
a fragment of Antescofo’s DSL in order to illustrate our test framework (see [16]
for a more complete description). This representation of a mixed score, defined
by the formal grammar in Figure 4, corresponds to the Abstract Syntax Tree
(AST) used in our test tools.

Let OM be a set of output messages (also called action symbols and denoted
a) which can be emitted by the system and let IS be a set of input event symbols
(denoted e) to be detected by the LM (i.e. positions in the score). An action
is a term act(d, s, al) where d is the delay to wait before starting the action
(see the next section regarding time units), s is either an atom in OM or a
finite sequence of actions (such a sequence is called a group), and al is a list
of attributes. A mixed score is a finite sequence of input events of the form
evt(e, d, s) where e ∈ IS , d is the duration of e and s is the top-level group
triggered by e. Sequences are denoted with square brackets [, ]. An important
feature of the semantics Antescofo’s DSL is that a priority is defined over actions,
following their order in the mixed score: if two actions can be started at the
same time, Antescofo gives the priority to the first action in the mixed score.

Example 2 Figure 5 presents the abstract syntax for our running example.
The curious readers can find the mixed score in Antescofo’s original concrete
syntax in A. The three events are listed first in the top-left side of Figure 5, after
the specification of the indicated tempo (in bpm). Each event ei is associated

Figure 3: Running example in common western music notation

6



score ::= ε | event score
event ::= evt(e, d, group) e ∈ IS
group ::= ε | action group
action ::= act(d, group, al) | act(d, a, al) a ∈ OM
al ::= sync? err?
sync ::= loose | tight
err ::= local | global

Figure 4: The grammar of the handled AST of the mixed score

with a top-level group of triggered actions, denoted by sei . The two groups se1
and se2 are only in charge of launching the two subgroups, respectively s1 and
s2, immediately at the detection of their related event. The group s1, specifying
the first electronic part, sends the messages for the pair t1 and a second sub-
group s3, which in turns sends the messages for the pair t3. The simultaneity
of the detection of e1 and the start of group s1 is specified by a null delay. The
detection of events is performed in concurrence with the execution of actions
groups. More precisely after the detection of e1, the group s1 is started and,
concurrently, the system waits for e2 meanwhile. At the detection of e2, the
group s2 is started concurrently to s1 (if the latter group has not terminated its
execution). ♦

Group Attributes The high-level attributes in the list al attached to an
action act(d, s, al) are indications regarding musical expressiveness [13]. We
consider here four attributes for illustration purpose (their interpretation will
be defined formally in Section 3.3): two attributes are used to express the syn-
chronization of the actions to the events in the musician’s part: loose (synchro-
nization on tempo) and tight (synchronization on events), and two attributes
describe strategies for handling errors in input: local (skip actions) and global
(play actions immediately at the detection of an error). An error in our case
is an event of the score missing during the performance, either because the
musician did not play it or because it was not detected by the LM.

bpm 120
evt(e1, 1, se1);
evt(e2, 1/2, se2);
evt(e3, 1/2, []) where
se1 = act(0, [s1], [loose; local])
se2 = act(0, [s2], [tight; global])

s1 = act(0, [ont1 ], [ ]);
act(1/2, [offt1 ], [ ]);
act(1, [s3], [ ])

s2 = act(0, [ont2 ], [ ]);
act(3/4, [offt2 ], [ ])

s3 = act(0, [ont3 ], [ ]);
act(1/4, [offt3 ], [ ])

Figure 5: Running example: The mixed score in abstract syntax.

7



Example 3 Figure 6 depicts the possible executions of the groups s1 and s3 in
our running example for the 4 combinations of error handling and synchroniza-
tion strategies. Here, the first event e1 is missing. Event-triggers are depicted
by vertical dashed lines and stars and time-triggers (the delays to wait after a
previous action following the musician pace) are depicted by horizontal arrows.
The actions striken through are not sent.

In the running example, the attributes of s1 are loose and local, hence the
actions ont1 and offt1 are just skipped (not sent) when it is detected that the
event e1 is missed (i.e. when e2 is detected instead of e1). Note that with the
attibute global, the actions would be sent without delay. Then, the actions ont3

and offt3 are also skipped (since s3 inherits the attributes of s1). ♦

2.3 Model-based Testing Embedded Systems
Model-Based Testing (MBT) is a general technique for testing an embedded
system called Implementation Under Test (IUT) with respect to a specification
of the good behavior of this system. It is a black box technique since the source
code of the IUT is not known and only its inputs and outputs are observed.

Following the Figure 7, the IUT receives input events (e) from an environ-
ment and reacts by sending output actions (a) to this environment. In our case,
Antescofo analyses the events received from the musicians and sends in reaction
atomic actions (messages to audio software). A first step in MBT consists in the
creation of a model M composed of a specification S of the IUT and a model
of the environment E . Specifying the environment of the system is convenient
in order to delimit the test sessions. For instance, E can be used to describe a
specific protocol or to prevent from impossible sequences of input events.

The conformance of the IUT to the specification S wrt E means informally
that every exchange of inputs and outputs that can be observed between the
IUT and its environment can be also simulated between their counterparts S
and E .

A big difference of our approach with the standard applications of MBT to

Figure 6: Interpretation of the running example when the first note is missed,
for various attributes of the group s1.
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critical systems, is the fully automatic construction of the model M. Indeed,
in generalM has to be written manually by a formal method’s expert, which is
both a tedious and error prone process. In Section 3, we describe a procedure
for constructing automatically the modelM from a given mixed score. In this
settings, the sub-model E represents the possible behaviors of the environment
(i.e. the events of the musician playing the mixed score, as detected by the
LM) and the specification S the behavior of the system according that same
mixed-score.

What makes possible the automatic construction of M in our case is the
existence of a mixed score of the form described in the above sections. Indeed,
the purpose of a music score is traditionally to specify the behavior expected
from the players, hence we assume that the information it contains is sufficient
in order to built the modelM.

2.4 Time Units
For realtime embedded systems, time is a critical semantic value, and not just
a measure of efficiency, as some output may be expected at a precise moment,
neither later nor earlier. This is in particular the case of Interactive Music Sys-
tems, where the electronic accompaniment produced by the system must follow
timely the human musicians. The mixed score given to the system contains
precise timing information on the reception of inputs and the emission of out-
puts in answer. This timing information is used during performances both by
the musicians and the system for coordination. Therefore this information must
also be taken into consideration in a testing procedure.

We consider here two time units for expressing delays and durations in mixed
scores: (i) the number of beats (default unit): a logical time unit traditionally
used in music scores that we call musical time, and (ii) milliseconds (ms), re-
ferred to as physical time. The reconciliation of the musical and physical times
is done through tempo values.

Let us assume a tempo curve τ associating an instant tempo value, in beats
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per minute (bpm), to each timestamp t (in physical time). The conversion of a
duration d from musical time into physical time is obtained by integration over
[0, d] of the inverse of τ .

In Antescofo, a new tempo value is inferred by the LM at the arrival of every
event, and the tempo stays constant between two events. In this sense, we shall
restrict ourselves to piecewise constant tempo curves here, and assume that they
can be defined in traces of events as described in the next section.

2.5 Timed Traces and Test Cases
The black-box testing conformance approach presented in this paper is based
on timed traces comparison. Let us describe in this section the format used for
traces and test suites. We assume a given mixed score with a default tempo
value. A timed trace is a sequence of triples 〈αi, ti, pi〉 made of:

a symbol αi ∈ IS ∪ OM ,

a timestamp ti ∈ R+, expressed in musical time, and

a tempo value pi in beat per minute (bpm).

Such that for all i, ti ≤ ti+1 and if ti = ti+1 then pi = pi+1. The tempo curve
τ associated to a trace tin as above is defined by τ(t) = pi iff ti ≤ t < ti+1. A
trace containing symbols exclusively in IS (resp. OM ) is called an input trace
(resp. an output trace). We denote below Tin (resp. Tout) the set of input (resp.
output) traces and the ideal trace (tidealin ∈ Tin) the projection of all events in the
mixed score such that ti = ti−1 + di−1 with t0 = 0, di−1 the last event duration
and pi the default tempo specified in the score.

Example 4 The ideal trace for our running example is the following:

tidealin = 〈e1, 0, 120〉 · 〈e2, 1, 120〉 · 〈e3, 1.5, 120〉.

♦

Remember that the second components ti are timestamps and not durations as
in the score. The durations, in musical time, from the score can be obtained by
di = ti+1− ti. By definition of music performance, traces of real executions can
be arbitrarily far from ideal traces: the tempo and durations can diverge from
the written values (the musician adding her/his own expressiveness values), and
moreover there can be errors during a performance (missing notes). In our case,
the model of environment E can be seen as a subset of Tin specifying all the
possible performances. The model of the system S can be seen as a function
from Tin into Tout. This asymmetry between E and S reflects our case study
(detailed Section 2.1), with on the one side the musician/LM and on the other
side the RE. Some additional descriptions of models of music performance from
the literature are given in Section 3.5.
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A test case is a pair 〈tin, tout〉 ∈ Tin×Tout where tin ∈ E and tout = S(tin). The
input trace tin is a fake performance and the output trace tout is the expected
behavior obtained by the simulation of tin on the specification S, denoted S(tin).
Some complementary approaches for the offline or “on-the-fly” generation of tin
are presented below in Sections 4.2 and 4.3.

2.6 Conformance
The execution of a test case 〈tin, tout〉 consists of several tasks summarized in
the following definition of conformance. First, we stimule the events of tin to the
IUT, i.e. the IMS Antescofo, respecting the timestamps. Second, we monitor
the outcome of the IUT in an output trace t′out, this monitored execution is
denoted as t′out = IUT(tin). Finally, we compare t′out to tout = S(tin). We define
the conformance of the IUT to S wrt E as:

∀tin ∈ E , IUT(tin) = S(tin).

This is a particular case of the relation rtioco considered in [15, 21].
However, this definition only makes sense if the timestamps of tout and t′out

are in the same time unit during the comparison. We will show how this im-
portant issue is addressed in practice in Section 4.2, with different options for
the conversion of all traces into physical time (thanks to the addition of tempo
values).

3 Abstract Model
In this section we present the formalism we designed for writing the modelsM
(E and S) used in our MBT framework. It is an intermediate representation
(IR) in the form of finite state machines with message passing, dynamic thread
creation (alternations) and durations (Section 3.1). We describe in Sections 3.2
and 3.3 a procedure for compiling a mixed score into an IR, and a translation of
IR into Timed Automata in Section 3.4, in order to use (in Section 4) tools of
the Uppaal suite for MBT. Related models of musical performance are discussed
in Section 3.5.

3.1 Intermediate Representation
Our IR has the form of an executable code modeling the expected behavior of
Antescofo on the given score. We present here a simplified version of Antescofo’s
IR suitable to our presentation, leaving features such as conditional branching
and variable handling outside of the scope of this paper.

Syntax An IR is a Finite State Machine (FSM) of the formA = 〈Σin,Σout, L, `0,∆〉
where Σin (resp. Σout) is the input (resp. output) local alphabet, L is a finite
set of locations, `0 ∈ L is the initial location, ∆ is a finite set of transitions,
partitioned into ∆ = ∆0]∆1, where ∆0 is the subset of urgent transitions, that
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must be fired without delay, and ∆1 is the subset of suspending transitions,
whose execution may require some time to flow.

The alphabets Σin and Σout are not assumed to be disjoint. We assume
moreover a total ordering ≺ over Σin ∪ Σout. This will be used for defining a
priority for the emission and reception of symbols in the FSM. We also assume
a partition of output symbols into: Σout = Σsig

out]Σext
out. The symbols of Σsig

out rep-
resent internal signals, emitted and captured by the FSM (i.e. they can be also
in Σin) whereas the symbols of Σext

out are destinated to the external environment:
they are emitted but not captured by the FSM (i.e. they are symbols of the
output test traces tout). Moreover, Σext

out∩Σin = ∅. The symbols of Σsig
out and Σext

out

will be emitted with different priorities by the FSM, to reflect the semantics of
Antescofo’s DSL.

There are two kinds of urgent transitions in ∆0 called emit-, and and -transitions:
1. an emit-transition, in L × Σout × L, is denoted by ` −−→σ! `′ with `, `′ ∈
L (respectively called source and target of the transition), and σ ∈ Σout. It
provokes the sending of an output symbol, followed by the change of current
control point from location ` to `′.
We say that a location ` emits a symbol σ ∈ Σout if there exists a transition of
the form ` −−→σ! `′ for some location `′.
2. an and -transition, or alternation, in L × L2, is denoted by ` −−−→and

`1‖`2,
with ` ∈ L (called source of the transition), and `1, `2 ∈ L (called targets of the
transition). It creates dynamically a new control point. Intuitively, the current
control point, initially in the source location `, is transferred to the first target
location `1 while a new concurrent control point is created at the second target
location `2. The source of this transition cannot have a non-singleton branch.

There are two kinds of suspending transitions in ∆1, called recv - and wait-
transitions:
1. a recv -transition, in L × Σin × L is denoted by ` −−→τ? `′, with `, `′ ∈ L
(respectively called source and target of the transition), and τ ∈ Σin. It waits
for the reception of an input symbol, and then changes the current control point
from location ` to `′.
2. a wait-transition, in L × R+

∗ × R+
∗ × L, is denoted by ` −−−−→[d,d′]

`′, where `,
`′ ∈ L (respectively called source and target of the transition), and d, d′ ∈ R+

∗ are
durations expressed in the same time unit (musical or physical) with 0 < d ≤ d′.
It waits for the expiration of a delay before changing the current control point
from location ` to `′. Such a transition can only be fired when the control point
has spent at least d time units in `. Moreover, it is required that when d′ time
units have been spent in `, then this transition, or another transition outgoing
from ` must be fired (it is the analogous of invariant in Time Automata).

We call branch of a location ` ∈ L the set of all transitions with source
location ` and exit locations the locations without outgoing transitions. A
branch is the dual of an and -transition, representing the passing of the control
point from the source location to one and only one of the target locations of the
branch (a branch could be called or -transition to this respect).
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A FSM is called deterministic iff it contains no branch with more than one
emit transition, and for every wait transition labeled [d, d′], it holds that d = d′

(in this case, we simply write d instead of [d, d]), and moreover it must not
contain two waits in a branch labeled with the same delay (i.e. there must be
no transitions ` −→d `′ and ` −→d `′′ with `′ 6= `′′).

Semantics Let us now define formally the runs of the above FSMs. We con-
sider a model of superdense time [24, 28] with superdense timestamps of the
form 〈t, n〉 ∈ R+ × N, where t ∈ R+ is a timestamp in physical time called log-
ical instant, and n ∈ N is a step number inside this logical instant. Intuitively,
several transitions may be executed during the same logical instant, at different
step numbers. The logical time will flow only when the control is in sources of
suspending transitions of ∆1.

A state of a FSM A = 〈Σin,Σout, L, `0,∆〉 is a tuple of the form 〈t, n,Γ, cp,Θ〉
where

〈t, n〉 is a superdense timestamp: t ∈ R+ and n ∈ N,

Γ is a vector of running locations of the form 〈`, γ, β〉 where ` is a location,
γ ∈ R+ is the time spent in `, and β ∈ {T,F} is a flag. When β = T, then
the running locations is called suspended,

cp is a natural number in [1...|Γ|], pointing the current running location in Γ,

Θ is a set of symbols of Σout.

The initial state ofA is s0 = 〈0, 0, 〈〈`0, 0,F〉〉, 1, ∅〉. In the following definition
ofmoves between states ofA, we denote by :: the operator of concatenation of an
element to the vector Γ (at the beginning or the end). By abuse of notation, we
also denote by :: the operator of addition of an element to the set Θ. Moreover,
to simplify notations, we underline the current running location in Γ (i.e. the
cpth element of Γ), and consequently the component cp will be omitted in states
below.

〈t, n,Γ :: 〈`, γ,F〉 :: Γ′,Θ〉 −−−→
and

〈t, n+ 1,Γ :: 〈`1, 0,F〉 :: Γ′ :: 〈`2, 0,F〉,Θ〉 (and)

if there exists ` −−−→and
`1‖`2 ∈ ∆0 (creation of a new thread, with starting location

`2).

〈t, n,Γ :: 〈`, γ,F〉 :: 〈`′, γ′, β′〉 :: Γ′,Θ〉 −−−→exit 〈t, n+ 1,Γ :: 〈`′, γ′, β′〉 :: Γ′,Θ〉
〈t, n, 〈`′, γ′, β′〉 :: Γ :: 〈`, γ,F〉,Θ〉 −−−→exit 〈t, n+ 1, 〈`′, γ′, β′〉 :: Γ,Θ〉

(exit)
if ` has no outgoing transition (` is popped from the vector of running locations).

〈
t, n,Γ :: 〈`, γ,F〉 :: Γ′,Θ

〉
−−−→
emit

〈t, n+ 1,Γ :: 〈`′, 0,F〉 :: Γ′, σ :: Θ〉 (emit)
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if there exists ` −−→σ! `′ ∈ ∆0 with σ ∈ Σsig
out (emission of an internal signal).

〈
t, n,Γ :: 〈`, γ,T〉 :: Γ′,Θ

〉
−−−→
send

〈t, n+ 1,Γ :: 〈`′, 0,F〉 :: Γ′, σ :: Θ〉 (send)

if all elements of Γ are suspended and there exists ` −−→σ! `′ ∈ ∆0, with σ ∈ Σext
out

and σ is the smallest symbol of Σext
out emitted by a location of Γ (emission of an

external symbol in a predefined order).

〈t, n,Γ :: 〈`, γ,F〉 :: Γ′,Θ〉 −−−→
expir

〈t, n+ 1,Γ :: 〈`′, 0,F〉 :: Γ′,Θ〉 (expir)

if (emit) is not applicable and there exists ` −−−−→[d,d′]
`′ ∈ ∆1 such that d ≤ γ ≤ d′

(expiration of delay for wait transition).

〈t, n,Γ :: 〈`, γ, β〉 :: Γ′,Θ〉 −−−→
recv

〈t, n+ 1,Γ :: 〈`′, 0,F〉 :: Γ′,Θ〉 (recv)

if none of (emit) or (expir) can be applied and there exists ` −−→τ? `′ ∈ ∆1 such
that τ is minimal (wrt ≺) in Θ ∩ {τ ′ | ∃` −−→τ

′?
`′′ ∈ ∆0} (reception of an

expected symbol or internal signal).

〈t, n,Γ :: 〈`, γ, β〉 :: 〈`′, γ′, β′〉 :: Γ′,Θ〉 −−−→susp 〈t, n,Γ :: 〈`, γ,T〉 :: 〈`′, γ′, β′〉 :: Γ′,Θ〉
〈t, n, 〈`′, γ′, β′〉 :: Γ :: 〈`, γ, β〉,Θ〉 −−−→susp 〈t, n, 〈`′, γ′, β′〉 :: Γ :: 〈`, γ,T〉,Θ〉

(suspend)
if none of (and), (exit), (emit), (send), (expir), (recv) can be applied and there
exists at least one runing location in Γ which is not suspended or emitting a
symbol of Σext

out.

〈t, n,Γ,Θ〉 −−−→
delay

〈t+ δ, 0,Γ + δ, ∅〉 (delay)

if no other move can be applied, where Γ+δ stands for {〈`, γ+δ,F〉 | 〈`, γ, β〉 ∈ Γ}
and δ is such that

1. δ > 0,

2. for all 〈`, γ, β〉 in Γ such that there exists ` −−−−→[d,d′]
`′ ∈ ∆1, it holds that

γ + δ ≤ d′,

3. there exists at least one 〈`, γ, β〉 in Γ and one ` −−−−→[d,d′]
`′ ∈ ∆1 such that

d ≤ γ + δ.

The principle of moves is the following. Every element of Γ represents a thread.
Threads run in cooperative scheduling: every thread executes until it gets sus-
pended, and then it hands over to the next thread in Γ – with a move (suspend).
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The urgent transitions are applied immediately – moves (and), (exit), (emit),
except for emit transitions which may be suspended when the symbol to emit
is in Σext

out.
The suspending transitions may be applied immediately when conditions

allow: a wait-transition is applied if the time already spent in the source location
(second component of the current element of Γ) is within the bounds defined
for the guard of the transition – move (expir), and a recv-transition is applied
if the expected symbol is present in Θ, because it was sent during the same
logical instant – move (recv). Failure of these conditions causes the suspension
of the thread, by the move (suspend) which changes the value of the flag to
T. Note that the steps (emit) and (recv) may loop in the same logical instant.
When all threads are suspended, the emit-transitions with symbols of Σext

out can
be executed, following the ordering ≺ – move (send). This strategy corresponds
to the semantics of Antescofo’s DSL which requires a predefined ordering for
the messages sent to the external environment.

The move (delay) lets a positive amount δ of time flow (in adequacy with
the upper bounds d′ in guards of active wait transitions) when all threads are
suspended and no symbol of Σext

out can be emitted. A new logical instant is then
started at the date timestamped at t+ δ (where t is the former logical instant),
the step counter is reset to zero, the threads of Γ are unsuspended and the list Θ
of sent symbols is flushed. Note that we impose that δ unlocks at least one wait
transition, in order to prevent consecutive applications of (delay). Moreover for
branches, the execution priority of transitions is, in decreasing order: emit then
expir then recv. These priorities follow the actual semantics of Antescofo [16].

Notice that the only non-deterministic choices are: the choice of the duration
δ in (delay) when d < d′, and the choice of a local input symbol to emit in a set
of Σsig

out, in (emit), when there are several emit-transitions in the same branch.
All the other moves are deterministic.

Runs A run ρ of an IR A is a sequence of the form s0 −−→m1
s1 . . . sk−1 −−−→mk sk

where s0, . . . , sk are states, s0 is the initial state, and for all 0 ≤ i < k, si+1 is
obtained from si by the move mi+1. We associate to the run ρ the output trace
tout defined as follows. For all 0 ≤ i ≤ k, let ti and Θi be respectively the first and
the last components of si (i.e. the timestamp of the logical instant of si and the
set of accumulated symbols sent during that instant). Let 1 ≤ i1 < . . . < ip ≤ k
be the subsequence of all steps in ρ such that for all 1 ≤ j ≤ p, mij = (send) and
Θij \ Θij−1 = {aj} ⊂ Σext

out (at the move ij , one output message aj ∈ Σext
out was

emitted). The trace tout contains the sequence of triples of the form 〈aj , tij , 60〉
for all 1 ≤ j ≤ p. Given an IR A, we denote by L(A) the set of traces tout such
that there exists a run ρ of A and tout is associated to ρ.

The timed transitions in this IR model are close to Timed Automata tran-
sitions [3] (see Section 3.4 below), whereas the accumulation of symbols during
a logical instant is inspired by the programming language Esterel for reactive
systems [7].
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3.2 Operators for the Composition of IR
From a mixed score given in the abstract syntax format, we construct an IR as
shown below. This construction is recursive, following the nested items defined
by the grammar in Section 2.2. In order to specify it, we define first two typed
operators for the composition of the above FSMs: a parallel composition ‖ and
a sequential concatenation +. For this purpose, we distinguish in every FSM
two sequences of locations, respectively called providers and seekers. The type
of a FSM A is the pair 〈n,m〉 where n is its number of providers and m is its
number of seekers. We shall sometimes write the type of a FSM in exponent,
as in A〈n,m〉, in order to make it explicit when needed. A FSM of type 〈0, 0〉
is called complete. In the graphical representation of FSMs, the provider and
seeker locations are marked respectively with i◦ and � i, where i is an index in
the sequence of providers, resp. seekers. Moreover, remark that the sources of
urgent transitions are filled in gray and the sources of suspending ones are in
white.

The binary operator ‖ : 〈n,m〉 → 〈n′, l〉 → 〈p, s〉 with p = max(n, n′)
and s = m + l is a parallel composition of FSMs defined as follows. Let
A = 〈ΣAin ,ΣAout, L

A, `A0 ,∆
A〉 and B = 〈ΣBin,ΣBout, L

B, `B0 ,∆
B〉, be two FSMs of

respective types 〈n,m〉 and 〈n′, l〉 and with respective sequences of providers
and seekers: pA1 , . . . , pAn , and sA1 , . . . , sAm ∈ LA, pB1 , . . . , pBn′ , and sB1 , . . . , sBl ∈ LB
(we assume LA and LB disjoint). Their parallel composition is defined by

〈ΣAin ∪ ΣBin,Σ
A
out ∪ ΣBout, L

A ] LB ] {`0, . . . , `p}, `0,∆A ]∆B ]∆〉

where `0, . . . , `p are new locations, the sequences of providers and seekers of
A‖B are respectively `0, . . . , `p, and sA1 , . . . , sAm, sB1 , . . . , sBl , and ∆ contains the
set of transitions of the form `i −−−→and

`Ai1‖`
B
i2
, with 1 ≤ i ≤ p, such that if i ≤ n

then i1 = i, and otherwise i1 = n, and if i ≤ n′ then i2 = i, and otherwise
i2 = n′.

Note that the set of input and output symbols of A and B are not required
to be disjoint, since these symbols are used for communication between the two
FSMs after composition. The Figure 8 exemplifies this composition, puting in
parallel two FSMs with different types.

We also define a binary operator + : 〈k, n〉 → 〈n′,m〉 → 〈k,m〉 for the se-
quential composition of FSMs. Let A = 〈ΣAin ,ΣAout, L

A, `A0 ,∆
A〉 and B =

〈ΣBin,ΣBout, L
B, `B0 ,∆

B〉, be two FSMs with respective types 〈k, n〉 and 〈n′,m〉 and
with respective sequences of providers and seekers: pA1 , . . . , pAk , and s

A
1 , . . . , s

A
n ∈

LA, pB1 , . . . , pBn′ , and sB1 , . . . , sBm ∈ LB. Their sequential composition is defined
by

〈ΣAin ∪ ΣBin,Σ
A
out ∪ ΣBout, (L

A \ {sA1 , . . . , sAn }) ] (LB \ {pB1 , . . . , pBn′}) ] {`1, . . . , `n′′}, `′0,∆〉

where `1, . . . , `n′′ are new locations, not in LA ∪ LB and n′′ = min(n, n′). The
sequences of providers and seekers of A + B are respectively pA1 , . . . , p

A
k and

sB1 , . . . , s
B
m. `′0 = `i if there exists i ≤ n such that `A0 = sAi , otherwise `′0 = `A0 .
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A〈1,1〉 = p11 s1 1
d τ1! B〈2,2〉 =

p11

p22

s1 1
d σ2!

s2 2
σ2!

C〈2,3〉 = A‖B =

p11

p22

`1 s1 1
d τ1!

`2

`3

s2 2
d σ2!

s3 3
σ2!

Figure 8: Example of parallel composition of two FSMs.

Finally the set of transitions ∆ is obtained by replacing in ∆A ∪ ∆B every
location sAi or pBi by `i for 1 ≤ i ≤ n′′.

Intuitively, every seeker of A is merged with the provider of B with the
same index. Note that if n > n′, then the seekers sAn′+1, . . . , s

A
n of A without

matching providers in B become exit locations in A + B. If n < n′, then the
providers pBn+1, . . . , p

B
n′ of B without matching seekers in A are deleted and

become standard locations in A+ B (not providers nor seekers).

A〈1,2〉 = `01

s1 1

s2 2

τ 1
?

τ
1 ?

B〈2,2〉 =

p11

p22

`2 s1 1
d σ2!

s2 2
σ2!

C〈1,2〉 = A+ B = `01

`1

`1

τ 1
?

τ
1 ?

`2 s1 1
d σ2!

s2 2
σ2!

Figure 9: Example of sequential composition of two FSMs.

An example of sequential composition is depicted in Figure 9.
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3.3 Compiling mixed scores into IR
We recall that we assume two sets OM and IS respectively of output messages
and input symbols (see Section 2.2). We moreover assume a set Sigs of internal
signals, containing in particular one internal signal e ∈ Sigs for each input event
e ∈ IS . The latter represents the fact that event e was detected as missing (that
defines an error following Section 2.2).

Inference Rules The construction is defined using rules of the following form:

〈aux 〉 : 〈AST〉 `rule 〈FSM〉

where 〈aux 〉 is a sequence of auxiliary arguments, 〈AST〉 is the element of the
mixed score currently parsed (in abstract syntax) and 〈FSM〉 is the correspond-
ing part of FSM constructed and returned.

T 〈1,2〉τ = `01

` 1

` 2

τ?

τ?

I〈2,2〉 =

`1 1

`2 2

F 〈2,0〉 =

`1

`2

Figure 10: An example of the FSM T , I and F .

Starting and Ending FSM We define three kinds of FSM commonly used
during the construction:

triggers T 〈1,2〉τ with τ ∈ IS ∪Sigs, for starting a FSM at the detection of some
input symbol τ . Every trigger FSM has one provider and two seekers,
corresponding to a start of the FSM in a normal or an error mode.

idlers I〈i,i〉 where each location is both a provider and a seeker,

enders F 〈i,0〉 with an empty list of seekers.

Some generic examples of these parts of FSM are depicted Figure 10.

Score processing The rule `all constructs the FSM associated to the parsed
mixed score.

: ∅ `all A∅
: ms `env E : ms `proxy P : ms `sys A

: ms `all E‖P‖A
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If the input score is empty the rule `all returns an empty FSM A∅ (FSM
with an empty set of locations). Otherwise three rules are applied to the score
ms:

`env to construct the environment model E ,

`sys in charge of creating A the model of the system’s behavior when playing
the mixed score ms given in argument.

`proxy which constructs the proxy FSM P (interface between E and A).

Hence we define M = E‖S with S = P‖A: the model M is the result of the
parallelization of the environment and the specification S, which is itself the
composition of the proxy P and the FSM A. All the FSMs E , P and A have
the same type 〈1, 0〉.

Environment FSM The environment FSM E is built with a single pass
through the score events. There are several options for constructing E : the
number nerr of consecutive events possibly missing, and κ, the percentage of
variation tolerated on the event’s durations. This second option permits the
creation of bounds of the form [d(1 − κ), d(1 + κ)] centered around the ideal
duration d specified in the score. It is used for the non deterministic choices of
durations in input traces by E (see Section 3.5).
Formally, E is a non-deterministic FSM of the form 〈OM , IS , LE , `E0 ,∆

E〉. We
present the construction of E for the value of nerr = 1. Moreover, notice that
the partition of the output alphabet Σout = IS is Σsig

out = IS and Σext
out = ∅.

: evt(e, d, s) `evt0 E
〈1,2〉
0 : ms ′ `env1 E〈2,0〉

: evt(e, d, s)::ms ′ `env E〈1,2〉0 + E〈2,0〉

: evt(e, d, s) `evt1 E
〈2,2〉
1 : ms ′ `env1 E〈2,0〉

: evt(e, d, s)::ms ′ `env1 E
〈2,2〉
1 + E〈2,0〉 : ∅ `env1 F 〈2,0〉

evt(e, d, s) `evt0 `1

2

`′ 1
e! [d(1− κ), d(1 + κ)]

evt(e, d, s) `evt1

`1

2
`2

`′ 1
e!

e!

[d(1− κ), d(1 + κ)]

Figure 11: The parts of the environment FSM corresponding to the first and
next events.
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`0 `1 `2 `3 `4 `5 `6
e1! e2! e3!

e2!
e3 !

[0.9, 1.1] [0.45, 0.55] [0.45, 0.55]

Figure 12: Running example: A FSM for the environment E , with nerr = 2 and
κ = 0.10.

The rule `evt0 initializes the FSM E , by playing the first event evt(e, d, s)
and waiting for a duration in the interval [d(1 − κ), d(1 + κ)]. The rule `evt

treats each following event of the score, with the possibility to play the current
event e from the previous step (provider 1) or the step before (provider 2). The
FSMs constructed by these two rules are depicted in Figure 11. The rules `env

and `env1 , assemble the FSMs for the first, respectively next, events. At the end
(the case of empty event sequence), an ender FSM terminates the construction
of the environment FSM.

Example 5 We present in Figure 12 the FSM E constructed for our running
example with nerr = 2 and κ = 0.10. ♦

Proxy FSM A FSM of the form P = 〈IS ,Sigs, LP , `P0 ,∆P〉 called proxy is
in charge of receiving detected events and signaling to other FSMs the missing
events, using signals of the form e. Recall (Section 2.2) that we define an error as
a missing event ei, detected at the arrival of a next event ei+k, with k > 0. This
modular approach with a proxy FSM permits to easily replace this definition
of error with alternative definitions, without changing the rest of the FSM. We
present the construction of P for nerr = 1.

evt(e, d, s) `pevt0 `1

2

`′ 1
e?

ei−1 : evt(ei, d, s) `pevt1
`1

2

`2

`′ 1
ei?

ei?

e
i−
1 !

Figure 13: The parts of the proxy FSM corresponding to the first and next
events.
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`0 `1 `2 `3

`1

`2 `3

e1? e2? e3?

e2? e1!
e3?

e1!
e
2 !

e 3
?

Figure 14: Running example: The proxy FSM P with nerr = 2.

: evt(e, d, s) `pevt0 P
〈1,2〉
0 e : ms ′ `proxy1 P

〈2,0〉

: evt(e, d, s)::ms ′ `proxy P〈1,2〉0 + P〈2,0〉

ei−1 : evt(ei, d, s) `pevt1 P
〈2,2〉
1 ei : ms ′ `proxy1 P

〈2,0〉

ei−1 : evt(ei, d, s)::ms ′ `proxy1 P
〈2,2〉
1 + P〈2,0〉 e : ∅ `proxy1 F

〈2,0〉

The rule `pevt0 initializes the FSM P, by waiting for the first event evt(e, d, s).
The rule `pevt1 treats each following event ei of the score. Provider and seeker
1 correspond to the case when this event ei is received after the previous event
ei−1 while provider and seeker 2 correspond to the case when ei is received
whereas ei−1 was not received. In the latter case, the signal ei−1 is emitted to
notify that the last event ei−1 is missing. The FSMs constructed by these rules
`pevt0 and `pevt1 are depicted in Figure 13.

Example 6 Figure 14 depicts the result for our running example with nerr =
2. ♦

FSM for the score reactions The rule `sys constructs a FSM of the form
A = 〈IS ∪Sigs,OM , LA, `A0 ,∆

A〉 specifying the behavior of the system in reac-
tion to the events of the environment, i.e. the automatic accompaniment.

0, evt(e′, d′,_)::ms ′, evt(e, d, s),F : s `loose,global
seq A〈2,0〉s

: evt(e′, d′,_)::ms ′ `sys A〈1,0〉

: evt(e, d, s)::evt(e′, d′,_)::ms ′ `sys (T 〈1,2〉e +A〈2,0〉s )‖A〈1,0〉

: ms ′ `sys A〈1,0〉

: evt(e, d, ε)::ms ′ `sys A〈1,0〉 : ∅ `sys F 〈1,0〉

The first part of the returned FSM is associated to evt(e, d, s), and describes the
behavior of a top level group containing the sequence of actions s, and triggered
by an event e. It is the sequential composition of Te, a trigger FSM labeled
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by e and the FSM associated to s, by a call to the rule `loose,global
seq , presented

below, where s is treated as a group with attributes loose, global. This part
is composed in parallel with the FSM A built by a recursive call of `sys on
evt(e′, d′,_)::ms ′, the rest of the score. When the end of score is reached, the
final FSM is constructed by adding an ender F 〈1,0〉 with 1 provider.

FSM for actions sequences We now define the rule `alseq for building the
FSM associated to an action sequence s, under the attributes in al . The rule
will parse the sequence s and build a FSM that will send these actions according
to the strategies in al . This rule will also traverses the list of events occurring
in the score, after the event e. Indeed, synchronization with these events is
required in some strategies.

Every call to this rule will have the form

δ,ms, evt , x : s `alseq A

where the second auxiliary argument ms is the list of events that remain to
be processed, the third auxiliary argument evt (called closest event) is the last
event before the action currently parsed (i.e. the first action of s), in the timeline
defined by the score. The first auxiliary argument δ is an accumulator: it is the
sum of delays of actions parsed so far in the given sequence, minus the durations
of the processed events. In other term, it is the duration between the closest
event and the action itself. Finally, the fourth auxiliary argument x is a flag
whose role is explained later.

The base case, when the list of actions is empty, simply returns an ender.

δ,ms, evt , x : ε `alseq F 〈i,0〉

where i depends on the attribute sequence al.
When the list of actions is not empty, a call to `alseq will first update the

accumulator δ by adding the delay d of the currently parsed action, and carry
on with a call to a second rule `alseq1

.

δ + d,ms, evt ,F : act(d, a, al ′)::s′ `alseq1
A

δ,ms, evt ,F : act(d, a, al ′)::s′ `alseq A

Note that the flag x must be F and keeps this value. The rule `alseq1
will look

for the closest event before the action currently parsed, in order to update the
third auxiliary argument.

δ − de,ms ′, evt(d′, e′, s′),T : s `alseq1
A

δ, evt(d′, e′, s′)::ms ′, evt(de, e, se), x : s `alseq1
A

if δ ≥ de.
If the closest event evt(de, e, se) finishes before the action currently parsed,

then the third auxiliary argument is updated to evt(d′, e′, s′) (the head of the
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secondary argument) which is removed from the list and the flag (fourth auxil-
iary argument) is set to T. Moreover, the duration de of che closest event e is
subtracted from the accumulator δ.

Otherwise, when the closets event e finishes after the action currently parsed,
it means that we have found the closest event before the currently parsed action.
Then we proceed by sending the current action.
We consider two cases. The first case is for an atomic action act(d, a, al ′), with
a ∈ OM ,

d, δ, e′, e, x : `aldelay A
〈n,m〉
d act(d, a, al ′) `alatom A〈m,m〉a

δ, evt(d′, e′, s′)::ms ′, evt(de, e, se),F : s `alseq A〈m,0〉

δ, evt(d′, e′, s′)::ms ′, evt(de, e, se), x : act(d, a, al ′)::s `alseq1
A〈n,m〉d +A〈m,m〉a +A〈m,0〉

if δ < de.
In order to treat `alseq with an atomic action, we call first `aldelay to specify

the management of the delay (when d > 0), according to the attribute list al .
The FSM Ad, returned by `aldelay, is concatenated with Aa, a FSM in charge of
sending the action a. Both Ad and Aa will be defined below according to the
attribute list al . Finally we call `alseq to iterate on the rest of the action sequence
s and concatenate the result to the FSM already computed. Note that the flag
is set to F in this recursive call.

The case of a compound action act(d, sa, al ′) is as follows.

d, δ, e′, e, x : `aldelay A
〈n,m〉
d

δ, evt(d′, e′, s′)::ms ′, evt(de, e, se),F : sa `al
′

seq A〈m
′,0〉

sa

δ, evt(d′, e′, s′)::ms ′, evt(de, e, se),F : s `alseq A〈m,0〉

δ, evt(d′, e′, s′)::ms ′, evt(de, e, se), x : act(d, sa, al ′)::s `alseq1
A

if δ < de,
where A = A〈n,m〉d + (I〈m,m〉‖A〈m

′,0〉
sa ) +A〈m,0〉 if m ≥ m′,

and A = A〈n,m〉d + (I〈m,m〉‖I〈2,2〉 +A〈m
′,0〉

sa ) +A〈m,0〉 otherwise.
The only difference with the case of an atomic action is the treatment of

the action itself, which is processed with a recursive call to `al′seq, applied to the
sequence of actions sa (the content of the compound action), and following the
attributes al ′.

It remains to consider the case where the second auxiliary argument is empty,
because we have reached the end of the event list on the score. In this case,
the sequence of actions is treated with the loose strategy (whatever the strategy
specified in the score). The case of an atomic action is then:

d, δ, e, e,F : `loose,err
delay A〈n,m〉d

act(d, a, al ′) `loose,err
atom A〈m,m〉a δ, ε, evt ,F : s `sync,errseq A〈m,0〉

δ, ε, evt , x : act(d, a, al ′)::s `sync,errseq1
A〈n,m〉d +A〈m,m〉a +A〈m,0〉

And the case of a compound action is treated similarly as above.
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FSM for action’s delays and atomic actions The attribute list will deter-
mine how to manage a delay d in the call of the rule `aldelay and how to treat an
atomic action a ∈ OM in the call of the rule `alatom. We detail in the following
the FSMs constructed for every combination of attributes al .

Case al = loose, local In this case, displayed Figure 15, the FSM build by `delay
waits for the delay d when in provider 1 (normal mode) and the FSM of `atom
sends the action a, with no care of event detections. In the error mode (provider
2), both `delay and `atom do nothing (the delay and action are skipped).

d, δ, e′, e, x : `loose,local
delay

`1

`2 2

`′ 1
d

act(d, a, al ′) `loose,local
atom

`1

`2 2

`′ 1
a

Figure 15: FSM managing the delay d (left) and the atomic action a (right) for
the attributes loose, local.

Example 7 Figure 16 depicts the FSM constructed for the group s1 of our
running example which has the attributes loose and local. The parts built at
each application of rule `alseq are framed and annotated with I〈2,2〉, for starting
the group, Aa (resp. As), for handling one atomic action a (resp. one sub-
sequence s) including the delay and the action emission, or F 〈2,0〉, for ending
the FSM. ♦

`

`

`1 `2 `3 `4 `5

s3

on1!
1
2 off1! 1

I〈2,2〉 Aon1 Aoff1 As3 F 〈2,0〉

Figure 16: Running example: The FSM for the group s1.

Case al = loose, global Figure 17 depicts the FSM constructed by `delay and
`atom for the combination of attributes loose and global, with different cases
according to the flag and the value of the accumulator δ.
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d, δ, e′, e,T : `loose,global
delay

if δ = 0

`1

`2

`′ 1

`′ 2

d

e?

e?

otherwise

`1

`2

`′ 1

`′ 2

`i

d

e?

δ

e?

d, δ, e′, e,F : `loose,global
delay

`1

`2 2

`′ 1
d

act(d, a, al ′) `loose,global
atom

`1

`2

`′ 1
a

`′ 2
a

Figure 17: FSMs managing a delay d and atomic action for the attributes loose,
global.

In the left part of the Figure 17 the FSM waits for d time units in normal
mode (provider 1) and does not wait in error mode (provider 2). In the top
right part, the expected closest event before the current action is detected, and
causes a transition from the error mode into the normal mode. The duration δ
is the delay between e and the action (computed in the accumulator of `seq1

).
For the treatment of an atomic action (bottom and right part), the action is
sent into the normal mode, however for the error mode the emission depends
on its proper attribute (al′), depicted with the notation a: it is sent for the
attribute global and not otherwise.

Example 8 Figure 18 shows the FSM for the group se1 of our running exam-
ple. This group waits for the detection of e1 or its erroneous signal and launches
the group s1 (without delay since d = 0). ♦

Case al = tight, local The case of the attribute tight is depicted in Figure 19
for the rule `delay. In the first case (left), when the flag is F, the FSM waits
(when in normal mode – provider 1) for the delay d before the current action.
Recall that the third auxiliary argument e′ is the event, next to the closest event
e (fourth auxiliary argument) before the current action. If this event e′ arrives
earlier than expected, i.e. before d, then the FSM switches from normal mode
(provider 1) to another mode called early mode (provider 3). If e′ is notified
missing (signal e′) before e′ was expected, then the FSM switches from normal
mode (provider 1) to a fourth mode called early error mode (provider 4). The
provider 2 corresponds to the error mode, as above.
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`0

`1

`1

`2

`2

s1

s1

e 1
?

e
1 ?

T 〈1,2〉e1
As1 F 〈2,0〉

Figure 18: Running example: The FSM of the group se1.

d, δ, e′, e,F : `tight,∗
delay

`1

`′e3 3

`′e4 4

`2 2

`′ 1
d

e ′?e ′?

if δ > 0
d, δ, e′, e,T : `tight,∗

delay

`1

`2

`i

3
`′e 3

`′e 4

`′

4

2

`′ 1
e?

e?

e?

e?

δ

e ′?

e ′?

d, 0, e′, e,T : `tight,∗
delay

`1

`2

`′

3

1

`′

4

2

e?

e?

e?

e?

Figure 19: FSM managing the delay for the attribute tight.

In the second case (middle), when the flag is T, the FSM synchronizes the
current action a to the closest event e, i.e. it waits first for the event e (transition
from the provider 1 – normal mode), and then waits for δ, the delay (computed
by `seq1

) between e and the current action. If, instead of receiving e, the FSM
receives a notification that e is missing (signal e) then it moves to the error mode
(provider 2). Moreover, if the next event e′ arrives (resp. is detected missing)
earlier than expected, then there is a move to the early mode – provider 3 (resp.
the early error mode – provider 4).

In the third case (right), the delay δ is null, hence it is just skipped.
Note that the composition of such FSMs with 4 providers and 4 seekers

is managed properly by the above rules, using appropriate idlers I〈m,m〉 and
enders F 〈m,0〉, with m = 2 or 4, for a correct type inference.

The case of the combination of the attributes tight and local for the rule
`atom is depicted in Figure 20 (left). The local strategy simply skips the action
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act(d, a, al ′) `tight,local
atom

`1

`2 2

`e3 3

`e4 4

`′ 1
a

act(d, a, al ′) `tight,global
atom

`1

`2

`e3

`e4

`′ 1
a

`′ 2
a

`′e 3
a

`′e 4
a

Figure 20: The part of a sequence FSM managing atomic action for the at-
tributes tight, local (left) and tight, global (right).

a when in early, early error or error modes (provider 3, 4, 2 respectively).

Example 9 Figure 21 depicts the group s2 of our running example for the
attributes tight and local. The first action is sent directly in case of normal
mode, and not if s2 is started in an error mode. The second action implies a
new closest event (e3) since the delay 3

4 is longer than e2 duration ( 12 ). It applies
so the second rule for managing the delay according to the attribute tight with
e′ = ε and δ = 3

4 −
1
2 = 1

4 . ♦

Case al = tight, global The case of the combination of the tight and global
attributes is depicted in Figure 19 for the rule `delay and Figure 20 for the rule
`atom.

The only difference with the case tight and local is for the missed mode
and the early detection of next events. If the second happens, all the not yet
handled actions are sent directly (until this next event) and not skipped as in
the previous case.

`

`

`1
on2!

`2 `3 `4

`4

e3?

e3?e3? e3?

0.25 off2!

I〈2,2〉 Aon2 Aoff2 F 〈2,0〉

Figure 21: Running example: The FSM for the group s2 for the attributes tight
and local.
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`

`

`1

`1

on2!

on2!

`2

`2

`3 `4

`4

e3?

e
3 ?

e 3
?

e3?

1
4 off2!

off2!

I〈2,2〉 Aon2 Aoff2 F 〈2,0〉

Figure 22: Running example: The FSM for the group s2.

Example 10 The FSM for the group s2 of the running example is depicted
Figure 22. It holds that e′ = ε and δ = 1

4 , as for the previous case for the
management of the atomic action off2. ♦

Example 11 To complete the IR of our running example, the FSM corre-
sponding to se3 and s3 are depicted Figures 23. ♦

Example 12 We present a simulation in order to show how a run of the com-
plete model can be performed. For this simulation the input trace tsimin =
〈e1, 0, 60〉 · 〈e3, 1.4, 60〉 is played (note that we have chosen a tempo of 60bpm to
simplify the conversions (a beat played with a tempo of 60bpm lasts 1 second)).

`0

`1

`1

`2

`2

s2

s2

e 2
?

e
2 ?

T 〈1,2〉e2
As2 F 〈2,0〉

`

`

`1 `2 `3
on3!

1
4 off3!

I〈2,2〉 Aon3 Aoff3 F 〈2,0〉

Figure 23: Running example: The FSM for the group se2 (left) and the FSM
for the group s3 (right).
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The initial state is 〈0, 0, {`M0 }, ∅〉 and we denote a control point on the location
i of the FSM A as `Ai which is colored in:

red when he can apply the moves (and), (exit), (emit),

green if the time spent in this location is sufficient to move via an (expir),

blue if the elements of Θ allow to run with the move (recv),

pink if it is suspended but can move thanks to the move (send),

black otherwise.

Note that E is not the environment given for the compilation example but a
simpler one following the input trace tsimin :

〈0, 0, {`M0 }, ∅〉 −−−→and 〈0, 1, {`E1 , `S0}, ∅〉 −−−−−−→emit e1

〈0, 2, {`E1 , `S0}, {e1}〉 −−−→and 〈0, 3, {`E1 , `P0 , `A0 }, {e1}〉 −−−−−→recv e1

〈0, 4, {`E1 , `P1 , `A0 }, {e1}〉 −−−→and 〈0, 5, {`E1 , `P1 , `Ase1
0 , `Ase20 }, {e1}〉 −−−−−→recv e1

〈0, 6, {`E1 , `P1 , `Ase1
1 , `Ase20 }, {e1}〉 −−−→and 〈0, 7, {`E1 , `P1 , `Ase1

2 , `Ase20 , `As1
0 }, {e1}〉 −−−−−−−→exit Ase1

〈0, 8, {`E1 , `P1 , `Ase20 , `As1
0 }, {e1}〉 −−−−−−→send on1 〈0, 9, {`E1 , `P1 , `Ase20 , `As1

1 }, {e1, on1}〉 −−−−−−−−→delay δ= 1
2

〈0.5, 0, {`E1 , `P1 , `Ase20 , `As1
1 }, ∅〉 −−−−→expir 〈0.5, 1, {`E1 , `P1 , `Ase20 , `As1

2 }, ∅〉 −−−−−−→send off1

〈0.5, 2, {`E1 , `P1 , `Ase20 , `As1
3 }, {off1}〉 −−−−−−−−→delay δ=0.9 〈1.4, 0, {`E1 , `P1 , `Ase20 , `As13 }, ∅〉 −−−−→expir

〈1.4, 1, {`E2 , `P1 , `Ase20 , `As13 }, ∅〉 −−−−−−→emit e3 〈1.4, 2, {`E3 , `P1 , `Ase20 , `As13 }, {e3}〉 −−−−−→exit E

〈1.4, 3, {`P1 , `Ase20 , `As13 }, {e3}〉 −−−−−→recv e3 〈1.4, 4, {`P
3
, `Ase20 , `As13 }, {e3}〉 −−−−−−→emit e2

〈1.4, 5, {`P3 , `Ase2
0 , `As13 }, {e2, e3}〉 −−−−−→exit P 〈1.4, 6, {`Ase2

0 , `As13 }, {e2, e3}〉 −−−−−→recv e2

〈1.4, 7, {`Ase2

1
, `As13 }, {e2, e3}〉 −−−→and 〈1.4, 8, {`Ase2

2
, `As13 , `As2

0
}, {e2, e3}〉 −−−−−−−→exit Ase2

〈1.4, 9, {`As13 , `As2

0
}, {e2, e3}〉 −−−−−−→send on2 〈1.4, 10, {`As13 , `As2

1
}, {on2, e2, e3}〉 −−−−−→recv e3

〈1.4, 11, {`As13 , `As2
2 }, {on2, e2, e3}〉 −−−−−−−−→delay δ=0.1 〈1.5, 0, {`As1

3 , `As22 }, ∅〉 −−−−→expir

〈1.5, 1, {`As1
4 , `As22 }, ∅〉 −−−→and 〈1.5, 2, {`As1

5 , `As22 , `As3
0 }, ∅〉 −−−−−−→exit As1

〈1.5, 3, {`As22 , `As3
0 }, ∅〉 −−−−−−→send on3 〈1.5, 4, {`As22 , `As3

1 }, {on3}〉 −−−−−−−−−→delay δ=0.15

〈1.65, 0, {`As2
2 , `As31 }, ∅〉 −−−−→expir 〈1.65, 1, {`As2

3 , `As31 }, ∅〉 −−−−−−→send off2

〈1.65, 2, {`As2
3 , `As31 }, {off2}〉 −−−−−−→exit As2 〈1.65, 3, {`As3

1 }, {off2}〉 −−−−−−−−−→delay δ=0.10

〈1.75, 0, {`As3
1 }, ∅〉 −−−−→expir 〈1.75, 1, {`As3

2 }, ∅〉 −−−−−−→emit off3

〈1.75, 2, {`As3
3 }, {off3}〉 −−−−−−→exit As3 〈1.75, 2, {}, {off3}〉

The expected output trace tout created from this simulation is: tsimout =
〈on1, 0, 60〉 · 〈off1, 0.5, 60〉 · 〈on2, 1.4, 60〉 · 〈on3, 1.5, 60〉 · 〈off2, 1.65, 60〉 · 〈off3, 1.75, 60〉
♦

3.4 Translating IR into TA
Once constructed, the IR model can be translated into a network of Timed
Automata (TA) [3] in a format that can be handled by tools of the Uppaal suite
for MBT [15]. Some graphical coordinates are computed during the translation
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and used for a nice display of the models under Uppaal, providing composers
with useful visual feedbacks of the low level control-flow in their mixed score.

In this section we present a procedure of translation of IR into an equivalent
TA. We shall first briefly present the TA variant used in Uppaal. Then, we intro-
duce an alternative semantics for the IR, called broadcast semantics. We denote
Lbst(A) the set of output timed traces of the IR A, following the broadcast se-
mantics. Every IR A can be straightforwardly converted into an equivalent TA
A′. Roughly, equivalence means that the sets of output timed traces of A′ coin-
cide with Lbst(A) (modulo some restrictions described below). However, it may
happen that Lbst(A) 6= L(A) (recall that the latter is the language of output
timed traces of the IR A following the semantics defined in Section 3.1), but this
problem can be avoided in the IR obtained by compilation of Antescofo mixed
scores, following the procedure presented in Section 3.3. Altogether, this gives
the wanted translation of IR obtained from mixed scores into equivalent TA.

Uppaal Timed Automata Let X be a set of variables in R≥0 called clocks,
G(X) be a set of guards on clocks, of the form x ./ c with x ∈ X, c ∈ N and
./ ∈ {≤, <,=, >,≥}, and U(X) be a set of updates of clocks of the form x := c.
Moreover let Σ a set of actions and Στ = Σ ∪ {τ}, where τ is an unobservable
action. A timed automaton [3] over Στ and clocks X is a tuple 〈L, `0, I, E〉
where:

- L is a set of locations and `0 ∈ L an initial location,

- I : L→ G(X) assigns invariants to locations and,

- E is a set of transitions such that E ⊆ L × G(X) × Στ × U(X) × L denoted
` −−−−→g,α,u

`′.

We distinguish two kinds of location in L, urgent and committed. The urgent
locations must be left without letting time pass, the committed location forces
the network to fire one of its outgoing transitions for the next move. The
semantics is defined over states s = 〈`, v̄〉, where ` ∈ L is a location and v̄ ∈ RX≥0
is a clock valuation satisfying the invariant I(`). A timed automaton can do
moves of the two following kinds.

〈`, v̄〉 −−−−−→α

discrete
〈`′, v̄′〉 (discrete)

if there exists a transition ` −−−−→g,α,u
`′, v̄ |= g, v̄′ |= I(`′) and for each x := c ∈ u,

x is updated with the value c in v̄′.

〈`, v̄〉 −−−→d
delay

〈`, v̄ + d〉 (delay)

where ` is not urgent nor committed, v̄ + d is obtained from v̄ by incrementing
all clock values by the amount of time d and for all 0 ≤ δ ≤ d, v̄ + δ |= I(`).

The move (delay) is the analogous of the IR move of the same name, whereas
(discrete) corresponds to all the other IR moves. Having many more discrete
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moves in IR than in TA was required for modeling priorities in Antescofo syn-
chronous semantics. We have introduced a dedicated IR for this reason, instead
of translating Antescofo code directly into TA [17].

A run of the automaton A is a finite sequence of the form

r = 〈`0, v̄0〉 −−−→d0delay
〈`0, v̄0 + d0〉 −−−−−→α0

discrete
〈`1, v̄1〉 −−−→d1delay

. . . −−−−−→αn

discrete
〈`n+1, v̄n+1〉

The trace associated to the run r is the sequence of triples 〈αi,
∑i
j=0 dj , 60〉 for

0 ≤ i ≤ n. Here, we assume that Σ = IS ∪OM ∪Sigs and consider the language
L(A) of output traces of A defined as the set of all projections on OM of traces
associated to a run of A.

The synchronized product TAs A1, . . . ,Am over respectively Σiτ and Xi,
denoted sync(A1‖ . . . ‖Am), is the timed automaton: A = 〈L, `0, I, E〉 over Στ
and X, where:

− Στ = ∪mi=1Σiτ

− L = L1 × · · · × Lm, `0 = `10 × · · · × `m0

− for every ` = 〈`1, . . . , `m〉 ∈ L, I(`) =
∧m
i=1 Ii(`i)

− X = ∪mi=1Xi

− E is the set of all the edges 〈`1, . . . , `m〉 −−−−→g,α,u 〈`′1, . . . , `′m〉 such that (where
for α ∈ Στ , Sα = {i|1 ≤ i ≤ m,α ∈ Σiτ} )

- for all 1 ≤ i ≤ m, if i /∈ Sα, then `′i = `i, if i ∈ Sα, then there exists gi and
ui such that (`i, gi, α, ui, `′i) ∈ Ei,

- g =
∧
i∈Sα gi,

- u = ∪i∈Sαui.

Hypotheses and equivalence The conversion of IR into TA, and hence
its application in offline MBT workflows involving Uppaal and described in
Section 4.2 works under the following restrictions for the IR:

(R1) Only one time unit is supported for the specification of delays: the musical
time.

(R2) There is no loop including an and -transition.

Moreover, let us define precisely the notion of equivalence for the translation.
Two output traces tout and t′out are equivalent, written tout

∼= t′out if the output
traces contain the same sets of actions at each logical instant (i.e. at the same
timestamps). It means that the equivalence is modulo logical instant and doesn’t
care of the order of actions with the same timestamp. This relation is extended
to sets of output traces as expected. This leads to the following third restriction
for the output traces:
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(R3) The output traces of Tout are considered modulo permutations of actions
with the same timestamp. The total ordering ≺ over Σin ∪Σout is ignored
during the comparison of output traces.

The purpose of the restriction (R3) is to fill the gap between the semantics
of TA, where there is only one kind of discrete move, and the IR semantics, with
several kind of discrete moves for dealing with symbol priorities.

Note that the above restrictions apply only to the offline test procedures
involving Uppaal, not to the online procedure.

Broadcast semantics of IR Let us consider first an alternative semantics
for IR, defined like the IR semantics of Section 3.1, except for the following
changes.

The move (emit) is replaced by the following move (broadcast):

〈t, n,Γ :: 〈`, γ,T〉 :: Γ′,Θ〉 −−−−−−→
broadcast

〈t, n+ k, Γ̃ :: 〈`′, 0,F〉 :: Γ̃′, σ :: Θ〉
(broadcast)

if all elements of Γ are suspended and there exists ` −−→σ! `′ ∈ ∆0 with σ ∈ Σsig
out,

there are k − 1 running locations 〈`i, γi, βi〉 in Γ ∪ Γ′ such that there exists
`i −−→σ? `′i ∈ ∆1 and each of them is replaced by 〈`′i, 0,F〉, giving Γ̃ ∪ Γ̃′.

The move (recv) is replaced by the following move (deadlock):

〈t, n,Γ :: 〈`, γ, β〉 :: Γ′,Θ〉 −−−−−−→
deadlock

〈t, n+ 1,Γ :: 〈`′, 0,F〉 :: Γ′,Θ〉 (deadlock)

if none of (broadcast) or (expir) can be applied and there exists ` −−→σ? `′ ∈ ∆1

with σ ∈ Θ.
The move (send) is replaced by the following move also called (send):〈
t, n,Γ :: 〈`, γ,F〉 :: Γ′,Θ

〉
−−−→
send

〈t, n+ 1,Γ :: 〈`′, 0,F〉 :: Γ′, σ :: Θ〉 (send)

if there exists ` −−→σ! `′ ∈ ∆0 with σ ∈ Σext
out.

A (broadcast) move is an asynchronous communication by rendez-vous, simi-
lar to the communication in the synchronized product of TA. Roughly, it gathers
one (emit) move of Section 3.1, with none, one or several (recv) moves of Sec-
tion 3.1. However, an important difference is that the running location 〈`, γ,T〉
enabling the (emit) and the (recv) must all be present in the current vector
Γ :: 〈`, γ,T〉 :: Γ′. At the opposite, in the synchronous semantics of Section 3.1,
the (recv) could occur later thanks to the use of the set Θ for storing all the
symbols sent during one logical instant.

A (deadlock) move is the reception of a symbol or internal signal σ that
cannot be received in a (broadcast), because this symbol was sent by an earlier
(broadcast) in the logical instant. Moreover a second (broadcast) would not be
able to check that this symbol is present in the set Θ. Intuitively, our goal in
this semantics is to avoid the (deadlock) as much as possible. For this purpose,
we give to the (broadcast) move the lowest priority (using the suspend flag), in
order to delay the use of (broadcast) as much as possible.

32



Finally, the new (send) move is the same as the (send) of Section 3.1, except
that it does not care of the order of symbols (restriction R3) and moreover, it
has priority over (broadcast) because it cannot be suspended.

The broadcast semantics of IR is the same as the alternative semantics,
without the (deadlock) move. We consider the same definition of runs as in
Section 3.1, and given an IR A, we denote by Lalt(A) (resp. Lbst(A)) the set of
traces tout such that there exists a run ρ of A following the alternative semantics
(resp. broadcast semantics) and tout is associated to ρ.

The alternative semantics is equivalent (wrt ∼=, i.e. under the restriction R3)
to the IR semantics. Indeed, the (broadcast) move is a sequence of successive
(emit) and (recv) moves for the same signal or symbol. In other terms, for all IR
A′ Lalt(A′) ∼= L(A′). However, this does not hold for the broadcast semantics:
there exists some IR A such that Lbst(A) 6∼= L(A).

0

1

1′

2

2′

3

3′

a! b?

b! a?

Figure 24: An IR such that Lbst(A) 6∼= L(A).

Example 13 Figure 24 displays an example of IR A such that Lbst(A) 6∼=
L(A). Indeed, when the running locations are 1 and 1′, the IR can send a,
with a (broadcast), and then send b (in 1′) and receive it (in 2), again with a
(broadcast). But then, the IR is stuck in 2′. In order to capture the already sent
a, a move (deadlock) would be required, looking in the set Θ of symbols sent in
the same logical instant. ♦

The above problem can also occur with the IR obtained by compilation of
Antescofo mixed scores, following the procedure of Section 3.3.

Example 14 Let us go back to our running example and consider the input
trace tsimin of Example 12. The event e2 is missing in tsimin , where e3 is emitted
by E directly after e1. The proxy P, after the reception of e3, will emit e2 (see
Figure 14) to signal the missing event e2. The group se2 starts the sub-group
s2 in error mode when receiving e2 and then s2 sends on2 and waits for e3 or e3
(see Figures 23 and 22).

In the IR semantics of Section 3.1, the event e3 is captured by (recv) because
it had been sent during the same logical instant (and hence is present in Θ).
However, in the broadcast semantics, e3 is not captured and off2 is never sent
(the FSM for the group s2 is stuck). The output trace under the broadcast
semantics is indeed

〈on1, 0, 60〉 · 〈off1, 0.5, 60〉 · 〈on2, 1.4, 60〉 · 〈on3, 1.5, 60〉 · 〈off3, 1.75, 60〉
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It differs from tsimout of Example 12. ♦

This problem can be solved for the IR obtained from mixed score compila-
tion, with an IR transformation procedure which roughly works as follows. We
dissociate the communications between E and P and between P and the rest of
the model. We introduce for this purpose a new and fresh signal sei ∈ Sigs for
each ei ∈ IS , signaling the detection of the event ei. We rename the signals ei
into sei since it is an error detection for ei. After this transformation, all the
symbols received in the IR model, with the exception for E and P, are in Sigs.
Moreover the proxy is modified in order to echo the reception of an event ei+1

that causes the emission of an error signal ei. The echo has the form of a signal
sei+1

emitted right after ei. This is illustrated in Figure 25 for the running
example.

`0 `1 `2 `3 `4 `5 `6

`1

`2 `3

e1? e2? e3?se1 ! se2 ! se3 !

e2? se1 !

e3
?

se1 !

s
e
2 !e 3

?

Figure 25: Running example: The proxy FSM transformed to prevent from
(deadlock).

This transformation has been implemented in the offline verification frame-
work presented in Section 4.2. It ensures the following property: for every IR
A′ obtained by compilation of Antescofo mixed scores, following the procedure
presented in Section 3.3, there exists an IR A′′ such that L(A′′) = L(A′) and
Lbst(A′′) ∼= L(A′′).

Translation of IR into TA Let A′ be an IR obtained by compilation of an
Antescofo mixed score and let A′′ be the IR obtained from A following the above
procedure. We show how to construct a corresponding TA A = 〈L, `0, I, E〉 over
Στ and X such that L(A) ∼= Lbst(A′′). Altogether, it holds that L(A) ∼= L(A′),
which is the wanted property.

The TA is constructed as the synchronized product of several TAs Ai built
from the IR. Each TA Ai will be over a single clock xi and over the alphabet
Στ = IS ∪ OM ∪ Sigs, with τ ∈ Sigs. The locations of the TAs Ai are
location of the IR A′′, plus some fresh locations added below. The transitions
and invariants of the TAs Ai are built during a traversal of the IR A′′. We
consider that the construction works on a current TA (one of the Ai’s), and
present below each step of the traversal.

For a transition recv -transition ` −−→σ? `′ or emit-transition ` −−→σ! `′ of the IR
A′′, we add to the current TA Ai a transition ` −−−−−−−−→T,σ,{xi:=0}

`′, with the action
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α the label σ emitted or waited in the IR, without guard and with a reset of
the local clock xi.

For every wait-transition ` −−−−→[d,d′]
`′ of A′′, we add to the current TA Ai a

transition ` −−−−−−−−−−→xi≥d,τ,{xi:=0}
`′ in E, and an invariant I(`) = xi ≤ d′. In this

translation, d′ is set as the maximum bound of the local clock xi in the invariant
of its previous location I(`). This prevents the automaton from staying on the
location more than d′. Then, d is set as the minimum bound of xi into the
guards of the transition (note that when d = d′ this combination forces the wait
for strictly d time unit).

We unfold the and -transitions of the IR model into several transitions of
concurrent TAs. An and -transition ` −−−→and

`1‖`2 contains two branches. For
the branch ` → `1, we add to the current TA Ai a transition of the form
` −−−−−−−−−−→T,λi+1,{xi:=0}

`1, where λi+1 is a fresh internal signal of Στ , used to trigger
another TA. Then we continue the construction of Ai starting with the location
`1. When the construction of Ai is terminated, we start with a new current TA
Ai+1 which contains initially a transition ` −−−−−−−−−−→T,λi+1,{xi:=0}

`2 (associated to the
second branch ` → `2) and we continue the construction of Ai+1 starting with
the location `2.

The unfolding terminates for all IR satisfying restriction (R2). It can be
observed that this is the case of every IR obtained by compilation of an Antescofo
mixed score, and that the property is preserved by the above transformation of
IR.

Finally for each urgent transition in A′′, we declare its source location ` as
an urgent location in the TA, if ` belongs to E or P, or as committed location
otherwise.

Example 15 The TA obtained by unfolding the IR of the running example is
depicted in Figure 26 for the group s2. ♦

Note that the above transformation of IR into equivalent TA is correct only
for the particular case of IR obtained from mixed scores by the compilation
procedure presented in Section 3.3. However, we do not propose a generic
translation from arbitrary IR into equivalent TA.

3.5 Model of Performances
A timed input trace tin is commonly seen as a sequence of input symbols e ∈ IS
timely separated by physical durations. In our case (as described Section 2.3)
it is a suite of triples 〈ei, ti, pi〉 of events with timestamps in musical time. In
this section, we present some related models of musical perfomance, which will
be useful for test generation in Section 4.

We recall that the tempo curve τ associated to a trace tin as above is defined
by τ(t) = pi for all t with ti ≤ t < ti+1. We can convert an input trace tin into a
musical performance, as follows. First, we extract from the third components of
the triples in tin a tempo curve τ . Second, we convert the durations, computed
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Figure 26: The translated TA for the group s2 in case of 2 or 4 providers. Each
transition resets x to 0.

from the musical timestamps in the second component of triples in tin, into real
durations, in physical time, using τ .

Some works in musical cognitive research have proposed more accurate rep-
resentation of musical performances. Time-maps by Jaffe [1], time-warps by
Dannenberg [2], or time-deformations by Anderson and Kuivila [4] are mono-
tonically non-decreasing functions mapping score durations (in musical time)
into performed durations (in physical time). In [14], Dannenberg gives two spe-
cial cases of such functions called shift and stretch operators. The first express
operations such as delay, rest or pause and the second deals with the tempo vari-
ations. In [22, 23], Honing proposes Timing Functions (TIF) which combine two
time-warps: a tempo curve f× and a time-shift function f+, defining variations
of events’ durations, independently of the tempo changes. Although tempo vari-
ations induce changes of durations and reciprocally, Honing outlines the interest
of considering independently tempo curves and time-shifts for defining musical
performances. They have indeed two well distinct musical significance. Roughly,
the first describes global continuous changes of durations, and the second local
changes (like swing notes).

Our work can take advantage of these functions and can explicitly describe
some interpretations of the input durations. A direct application can be done to
the ideal input trace using interesting time-functions for the generation phase.
In reverse, interesting input traces can be defined in this formalization to make
well understandable a specific composer or musician’s performance.
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4 Test Framework
This section presents the implementation of our MBT framework, and its ap-
plication to the score-based IMS Antescofo. We have developed different ap-
proaches of MBT: (a) an offline approach (Section 4.2), where test data is gen-
erated using the Uppaal suite, and then stored into files before being executed,
and (b) an online approach (Section 4.3), based on a VM interpreting IR, with an
on-the-fly generation and execution of test cases. Both approaches include the
preliminary phase of the compilation from mixed-scores into IR (Section 4.1).
We have developed testing solutions based on existing tools, and also developed
our own tools better suited to our case study.

4.1 Compiling mixed score into IR
Compiling mixed scores into IR has been implemented as a command line tool,
written in C++ on the top of the original Antescofo’s parser. The parsing
produces an Abstract Syntax Tree which is traversed using a visitor pattern in
order to build the IR following the approach presented in Section 3.3. Several
options are offered for the construction of the IR related to the environment E , in
particular to fix the values of nerr and κ from the Section 3.3. The most general
case (any note can be missed) results in a model E with a quadratic number (in
score’s size) of transitions and an exponential number of possible input traces.
The explosion can be controlled by choosing appropriate hypotheses on the
environment E .

4.2 Offline Testing

Mixed score + Performance info.

Model
Input
traces

Expected
output
traces

Antescofo

Real
output
traces

comparisonδ

Verdict

compilation
generation

simulation execution

Figure 27: Offline Score-based IMS testing workflow

Figure 27 outlines our implementation of the MBT framework with an offline
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generation of input traces. The workflow of Figure 27, following the principles
announced in Section 2, proceeds in several steps described below.

In a first step, after the construction of the IR models E and S from the given
mixed score, using the techniques and tools presented in Sections 3.3 and 4.1,
these IR are translated into TA networks, respectively AE and AS , as described
in Section 3.4. Consequently, this approach works under the restrictions R1−R3

needed in Section 3.4.

Covering Generation The model checker Uppaal [15] is a framework to vi-
sualize, create, simulate and verify Networks of Timed Automata. We use the
Uppaal extension called CoVer [21] in order to generate automatically suites of
input traces tin, in E , that cover the possible behavior of the specification S
according to some coverage criteria. These criteria are defined by a finite state
automaton Obs called observer monitoring the parallel execution of AE and AS ,
the TA associated to the IR E and S. Every transition of Obs is labeled by a
predicate checking whether a transition of AE or AS is fired. The model checker
Uppaal is used by CoVer to generate the set of input traces tin ∈ Tin resulting
from an execution of the synchronized product of AE and AS with Obs reaching
a final state of Obs.

For loop-free IR S and E , with an observer checking that all transitions of AE
and AS are fired, CoVer will return a test suite T complete for non-conformance:
if there exists an input trace tin ∈ E such that IUT(tin) and S(tin) differ, then
T will contain such an input trace. Note that the IR produced by the fragment
of the DSL of Section 2.1, using the procedure of Section 3.3, are loop-free.
However this is not true for the general DSL which allows e.g. jump to label
instructions.

In practice, we avoid state explosion with appropriate restrictions on E ,
using the parameters nerr (the number of successive missable events) and κ
(the allowed variation of events’ durations) presented in Section 3.3 for the
construction of E .

The main limitations of the offline approach are that (a) it does not scale
well for testing large real mixed scores and (b) the input traces are not musi-
cally relevant (because of CoVer which strictly follows the model constraints).
However, this approach is well suited for debugging the system Antescofo, using
small ad-hoc scores (see Section 5).

Test cases generation by fuzzing the ideal trace Trying to answer of
these limitations, an alternative method for the generation of relevant test data
is to start with the ideal trace associated to a mixed score (as defined in Sec-
tion 2.5) and add deformations of several kinds. For this purpose, we use the
models from the music cognition described in Section 3.5 in order to create
musically relevant performances for test purpose.

The implemented fuzzing function takes in input an ideal trace and param-
eters for bounding the deviations on the time-shifts, the tempo values and the
number of missing notes. It generates some random values within theses limits
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and applies them to return an input trace tin as a mutation of the ideal trace.
An interesting open question in this context is the definition of TIFs in [22, 23]
for the generation of covering test suites following criteria similar to those of
the above paragraph.

Generation from an audio file We have considered a third alternative for
the generation of test input traces, based on an audio recording. The developers
of the IMS Antescofo use to work with sound files in order e.g. to analyse a
specific performance that causes errors. Such sound files can be translated into
input traces simply by marking the timestamps of their event’s onsets. We can
do that manually or with a software, e.g. Antescofo itself, which can trace the
events triggered when the listening machine detects them from the audio file.

Simulation We describe now the procedure based on Uppaal that we follow
in order to compute the output trace tout corresponding to a given input trace
tin. It can be applied whatever the method was used to generate tin (with CoVer,
the fuzzing or the audio file processing fashion).

In the compilation procedure described in Section 3.3, we decorate the IR
generated with coordinates used for their visualization in Uppaal. It is useful
for manual exploration of the models and also for graphical simulation of their
execution in Uppaal.

For the computation of tout nevertheless, we use the command line tool
Verifyta in order to execute a given input trace tin and compute the corresponding
output trace tout = S(tin), according to the model S.

More precisely, given tin we first generate a deterministic IR Etin modeling an
environment which will strictly follow the input trace. This IR is converted into
a deterministic TA Atin . The simulation of the TA network is then performed
by traversing Atin , which will send event symbols to the rest of the model AS .
Uppaal offers options to trace the result, which is then translated in a tout in our
format of output traces with triples 〈a, t, p〉. We note here that the traces (tin
and tout) are in musical time (i.e. in Uppaal model time unit).

Tests case execution The execution computes the real output t′out by timely
sending to the IUT the suite of inputs present in the input trace tin. We have
developed several scenarios for the execution of a test case 〈tin, tout〉, correspond-
ing to several boundaries for the black box tested inside the whole system – see
Section 2.1.

Scenario 1 The first scenario is performed using a standalone version of An-
tescofo equipped with an internal test adapter module. The adapter iteratively
reads elements 〈ai, ti, pi〉 of tin in a file. The duration dmu

i = ti+1 − ti of the
event ei (in musical time) is converted into physical time by:

dph
i =

dmu
i .60

pi
(1)
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The adapter then waits for dph
i seconds before sending the event ei+1 and the

tempo value pi+1 to the RE. More precisely, it does not physically wait, but
instead notifies a virtual clock in the reactive engine RE that the time has flown
of dph

i seconds. This way the test needs not to be executed in realtime but can
be done in fast-forward mode. This is very important for batch execution of
huge suites of test cases. The messages sent by the RE are logged in t′out, with
timestamps in physical time (i.e. with a tempo of 60bpm).
Here, the blackbox is the RE (the LM is idle).

Scenario 2 In a second scenario, the tempo values are not read in tin but
detected by the LM. The rest of the scenario follows the first case.
Here, the blackbox is the RE plus the part of the LM in charge of tempo infer-
ence. Notice that the CoVer input traces are not well suited for this scenario
because of the second limitation (not musically relevant). It conduces to expo-
nential tempo fluctuations that can be controlled in scenario 1 with an added
tempo curve.

Scenario 3 A third scenario is executed in a version of Antescofo embedded
into the visual programming language MAX [29] (as a MAX patch). In this case,
the blackbox is the whole IMS Antescofo, and instead of sending discrete events
of tin to the IUT (like in scenarios 1 and 2), we convert them into MIDI data
and generate an audio stream with a MIDI synthesizer (in MAX).

Comparison and verdicts The verdicts are produced offline by a tool com-
paring the expected and monitored traces tout and t′out with an acceptable latency
δ (generally about 0.1 ms). The comparison is not totally obvious since we have
no clue a priori about missed or added actions/events in the traces and about
the order of items. Moreover we have to convert the expected output trace tout,
created in musical time from Uppaal, into physical time by applying the tempo
updated from the execution (with the equation (1)). This operation is executed
locally, using the tempo values associated to each event.

A verdict is pretty printed to inform the testers on the conformance of An-
tescofo to the models. We mark as errors unexpected or missed atomic actions
sent or not by the IUT and a delay more than 0.1 ms between the model and the
system time-stamps. The document is split in logical instants in order to visu-
alize clearly the sequence of actions related to an external event reception. The
verdicts also detail the variations between the input trace and the ideal trace in
order to outline early or late events, which are not always easy to detect.

4.3 Online Testing
Online MBT of realtime systems is a complementary method allowing non-
determinism and “on-the-fly” generation that prevents state explosions (but at
the price of loosing the exhaustiveness of the generated test suites). This testing
method is an important research topic, in particular for the Uppaal team [15]
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which designed an online MBT tool called TRON [21]. We have tried to apply
this tool to our case study, without success. The reason is that we need to
deal with multiple time units, in particular the musical time relative to a tempo
together with physical time. Roughly, TRON can manage several clocks rates
only when they are all defined as a constant factor of the wall clock. This
restriction does not comply with the notion of an evolving tempo (following
tempo curves), which is crucial in our case.

Mixed score

Model VM Adapter Antescofo
comparisonδ

Verdict

compilation
e e

a a′

Figure 28: Online Score-based IMS testing workflow

We have developed an online MBT framework dedicated to our case study,
based on a Virtual Machine (VM) implemented on purpose, for executing the
IR described Section 3, and managing the IR multi-rate clocks. Thanks to
this machine the online test framework runs directly on the IR obtained by
compilation of the mixed score (see Figure 28). The VM is linked via an adapter
to an instance of our IUT Antescofo. The test procedure works in several steps
performed online: the generation of input test data (dashed arrow in Figure 28),
the generation of the expected and real output test data corresponding to the
input and the comparison.

Unlike the offline approach of Section 4.2, the online procedure does not
need the restrictions of Section 3.4.

Generation Depending on the environment E , the IR may be non-deterministic.
Indeed we recall that E may contain wait-transitions of the form ` −−−−−−−−−−−→[d(1−κ),d(1+κ)]

`′ for some 0 ≤ κ ≤ 1, and branches with several emit-transitions representing
the possibility to miss events. The VM will choose appropriate values of du-
rations or symbols to emit for resolving this non-determinism. These choices
correspond to the “on-the-fly” generation of an input trace tin. As an example
we present the first strategy of choices implemented in our framework.

Assume that the VM is in state s = 〈t, n,Γ, pc,Θ〉 and that an (emit) move
can be applied. More precisely, assume that the running location Γ[pc] =
〈`, γ, β〉, where ` is a location of E , and that the branch at ` contains sev-
eral emit-transitions for symbols e1, . . . , en ∈ IS (remember that Σsig

out = IS in
the construction of E – see Section 3.3). Then the VM chooses randomly one of
e1, . . . , en and applies an (emit) move with it.
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Assume that a (delay) move can be applied to the state s = 〈t, n,Γ, pc,Θ〉 and
the running location Γpc = 〈`, γ, β〉. The VM will choose randomly a duration
δ following the conditions of the (delay) move. More precisely we compute the
bounds δmin and δmax using the bounds in the transition ` −−−−−−−−→[dmin,dmax] `′ as
follows: δmin = dmin − γ and δmax = dmax − γ. Then it chooses randomly δ in
[δmin, δmax] satisfying the conditions (2) and (3) of the (delay) move. To prevent
from the choice of a systematic δmax value, we randomly choose the expiration
of the wait-transition when δmin ≤ 0.

Note the two above cases are the only two possible cases of non-determinism,
according the definition of IR moves in Section 3.1.

Adapter The adapter catches all the output messages sent by the Virtual
Machine and Antescofo. More precisely, for the VM, the adapter catches the
moves (emit), (send) and (delay). When an event σ ∈ IS is emitted by the VM,
a corresponding stimulus is sent to Antescofo. For the emission of an action
σ ∈ OM , the adapter stores σ with the value of the current logical instant t.
When the time flows with a (delay) move, the corresponding duration is spent
in Antescofo. Note that, like in the offline framework, a virtual clock is used in
order to perform the tests in a fast forward mode and not in real time.

Comparison The comparison is done on-the-fly, when an action emitted by
the VM or the IUT Antescofo is received and stored in the adapter. In order to
detect missed and unexpected actions, a check is done after each logical instant
(when the move (delay) is executed by the VM). After each comparison, the
actions concerned are deleted from the store. During the on-the-fly generation,
the test procedure continues if no error is detected and stops at the first error
found. Moreover a third choice is possible during the generation consisting in
ending the test with a verdict: “pass”.

5 Experiments/Result
We present in this section some experiments with our framework whose purpose
are to evaluate its effectiveness and report the pros and cons of the different
approaches. We first recall the context before specifying the goal and the orga-
nization we chose to present this section.

We want to measure a black-box testing framework and thus assume that we
have no feedbacks in the coverage of the Implementation Under Test’s line codes
and specially don’t know the erroneous lines (even if we worked with the devel-
oper team for each error our framework raised). To measure the effectiveness of
our framework, we take as a metric of effectiveness:

• the size of the input score, to test if our framework is scalable for real
cases,

• the coverage (in the model IR) of the input traces set.
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The first criteria ensures a large use via the possibility to test real mixed-scores
and the second criteria allows us to fulfill the rtioco conformance [15, 21] which
is the most important goal for a Model-Based-Testing method.

Finally, because it is a young framework and is applied to a constantly im-
proving system, the accuracy of raised errors is sometimes difficult to assess.
However the errors raised by the framework are time-errors since they come
from a wrong output or a wrong timing of an output. Actually we reported
errors which came from a concurrency problem which disturbed the schedul-
ing of the outputs, a communication/synchronization problem regarding the
inputs/outputs, a wrong time computation (from the tempo updating function)
and a wrong management of the specified group’s attributes. Moreover several
of these errors happened for non trivial input cases, making them hard to find
by other means.

Following our goal to measure the coverage and the scalability of the frame-
work, we assess the methods implemented in a chronologic manner. We test the
CoVer generation method and the fuzzing generation to compare their pros and
cons wrt the scalability and coverage measures. We finally present our early
online testing framework and compare its first outcome to the offline results.

The results were performed on a laptop MacBook Pro Retina with a 2.3
GHz Intel Core i7 and 16Go 1600 MHz DDR3 of Memory. The laptop ran on
the Yosemite version of MAC OS X (10.10.4).

We have considered two case studies in out experiments:

1. a benchmark made of hundreds of little mixed scores, covering many fea-
tures of the IUT’s DSL

2. a real mixed score of the piece of Sonata in F major, HWV 369 third
movement: Alla Siciliana by Georg Friedrich Händel 2.

The first benchmark is useful for the development (debugging and regression
tests) of the system Antescofo. It aims at covering the functionality of the
system’s DSL and checking the reactions of the IMS. The second is a long real
test case, for evaluating the scalability of our test method. Its total size is
1018 events and 3237 actions gathered in a big group in order to do automatic
accompaniment by sending MIDI notes. This second case study is split into five
extracts: the first 5th bars (25 events and 84 actions), 8th bars (48-185), 10th

bars (74-264), 15th (122-444) and 40th bars (360-1218).
Each case study is processed with various values for nerr and κ (the numbers

of possible consecutive missed events and the bound on the variation of event’s
durations). During the next results, we used the VM developed for online testing
in order to evaluate the covertness of the sets of input traces generated for each
experiment.

2You can have a quick representation of the piece (with a description (in French) of
Antescofo) here:
https://interstices.info/jcms/c_17524/interaction-musicale-en-temps-reel-entre-musiciens-et-ordinateur
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XXXXXXXκ (%)
nerr 0 1 3 5 7

0 18,231 - 051 19,402 - 107 23,377 - 164 26,424 - 313 26,443 - 307
1 18,231 - 025 19,402 - 076 23,377 - 137 26,424 - 319 26,443 - 318
3 18,111 - 024 19,402 - 077 23,377 - 137 26,424 - 318 26,443 - 314
5 18,231 - 028 19,402 - 077 23,377 - 132 26,424 - 312 26,443 - 309
10 18,231 - 035 19,402 - 082 23,377 - 140 26,424 - 320 26,443 - 323
25 18,231 - 059 19,402 - 086 23,377 - 135 26,424 - 334 26,443 - 328
50 18,231 - 103 19,402 - 132 23,377 - 160 26,424 - 354 26,443 - 352

Table 1: CoVer on the Benchmark: The table depicts the total size in number
of state of the IR model and the time in seconds to perform the whole script.

XXXXXXXκ (%)
nerr 0 1 3 5 7

0 754 - 67.78% 1674 - 82.33% 2781 - 87.95% 3271 - 87.60% 3262 - 87.28%
1 612 - 67.79% 1471 - 81.56% 2615 - 87.75% 3183 - 88.16% 3152 - 87.44%
3 609 - 67.75% 1456 - 80.42% 2635 - 87.94% 3160 - 87.05% 3162 - 87.41%
5 613 - 67.97% 1468 - 81.54% 2633 - 87.81% 3140 - 87.07% 3124 - 86.06%
10 715 - 68.01% 1513 - 81.51% 2681 - 87.90% 3191 - 87.37% 3201 - 87.56%
25 994 - 68.18% 1720 - 82.36% 2691 - 87.60% 3243 - 88.29% 3277 - 88.02%
50 1623 - 69.22% 2301 - 83.41% 3006 - 88.82% 3577 - 88.34% 3553 - 88.54%

Table 2: CoVer on the Benchmark: The table depicts the number of tin generated
and the rate of coverage.

5.1 Covering generation
We evaluated the generation of test data with Uppaal/CoVer following the offline
method presented in Section 4.2, i.e. with a script which creates the IR models,
translates them into networks of TA, generates test suites using CoVer, executes
them according to the first scenario presented Section 4.2 and compares the
outcome to test cases.

Tables 1 and 2 report the results with different environment options for
all the scores in the benchmark. The first table details the total size of the
model part S in number of IR-states and the total time to execute the whole
benchmark. The second presents the number of input traces generated by CoVer
and the rate of coverage on S for the same scenarios as the first table.

The same script was ran for the extracts of the real mixed-score and the
results are reported Table 3. The table depicts the number of input traces
generated with their total coverage for each extract (characterized by its number
of bars). The size of the IR-model S is 328, 697, 1005, 1678 and 4668 states
for respectively the extract of 5, 8, 10, 15 and 40 bars of the mixed-score. In
Table 3, the crosses depict a failure in the generation of input traces, because
no output was returned or because a crash happened during one of the script
steps.

Feedbacks The advantages of the covering test suites generation of CoVer is
obvious for the first case study which contains a lot of small-sized mixed-scores
that is perfect in such a case. Moreover the time is correct since the scripts spent
352 seconds to generate and test 3553 input traces (an average of 10 seconds
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````````̀nerr -κ (%)
bars 5 8 10 15 40

0-00 1 - 43.59% 1 - 38.92% 1 - 39.01% 1 - 38.72% 1 - 38.72%
0-10 38 - 43.59% 74 - 38.92% 117 - 39.01% 262 - 38.72% x
0-25 95 - 43.59% 201 - 38.92% 427 - 39.01% x x
3-00 84 - 66.66% 130 - 86.48% x x x
3-10 85 - 66.66% 148 - 86.48% x x x
3-25 94 - 66.66% 159 - 86.48% x x x
7-00 113 - 96.94% x x x x
7-10 133 - 96.94% x x x x
7-25 147 - 96.94% x x x x

Table 3: CoVer on the Real-Case: Number of tin generated and their coverage.

per input trace) with a good coverage on 88.5% of the model. However the
inconvenient are also multiples. We have not a clear control on the coverage
according to the environment parameters. Here, the possibility of missing one
more event improves more the coverage than allowing more interpretation on
the durations. The real case shows clearly the lack of scalability where a score
of more than 10 bars (74 events and 264 actions) cannot be tested with missed
events which is unfortunately the parameter the most covering.

The CoVer generation is good for toy-examples where the mixed scores are
written in a purpose of debugging but cannot be satisfying for real cases. More-
over (and not shown here) the input traces are commonly generated with the
lower values in their durations (because of the guards in the model). That is not
musically relevant since when converting musical time into physical time, having
an input trace with shortest delays may result in a geometric progression of the
tempo inferred by Antescofo, leading to exponential accelerations and unrealis-
tic tempo values (like more than 300 bpm). These weaknesses encouraged us to
explore other approaches for test data generation and execution as the scenario
1 of the Section 4.2 (tempo generated) which can be used to circumvent this
problem.

5.2 Fuzzing generation
In the case of the fuzzing generation, the script creates the IR models without
environment model E , fuzzes the ideal trace to create a set of input traces,
translates the IR models, with a specific E for each input trace, into networks
of TA, simulates the TA using Verifyta (Uppaal model checker command tool)
to compute the expected traces, executes the input traces according to the first
scenario presented in Section 4.2 and compares the outcome to test cases.

The same values are depicted Table 4 for the real mixed-score. We do not
report time since we can’t compare a script doing an input generation against a
random fuzzing one (to have an idea the last case (7-25) lasted 750 seconds for
CoVer on the five bars extract, against 97 seconds for a test of one input trace
in the same extract using Verifyta).

The advantage of the fuzzing generation is the little deformations of the ideal
trace, that keeps the input traces musically relevant. Moreover in a musical
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point of view, we think that a little interpretation is sufficient to consider latter,
earlier or missed cases (i.e. cover all the performance cases). The method is fast
and can manage huge mixed-scores that is good for real cases. However since
the fuzz is done randomly we have no control on the coverage which is low for
a set of input traces.
````````̀nerr -κ (%)

bars 5 8 10 15 40

0-00 1 - 38.81% 1 - 14.67% 1 - 38.27% 1 - 38.05% 1 - 38.02%
0-10 10 - 38.81% 10 - 14.67% 10 - 38.27% 10 - 38.05% 10 - 38.04%
0-25 10 - 38.81% 10 - 14.72% 10 - 38.27% 10 - 38.11% 10 - 38.02%
3-00 10 - 37.65% 10 - 21.15% 10 - 34.21% 10 - 28.72% 10 - 23.21%
3-10 10 - 41.91% 10 - 34.69% 10 - 32.75% 10 - 32.59% 10 - 27.91%
3-25 10 - 28.05% 10 - 28.83% 10 - 28.48% 10 - 27.85% 10 - 25.89%
7-00 10 - 17.03% 10 - 17.21% 10 - 17.26% 10 - 16.37% 10 - 15.60%
7-10 10 - 17.68% 10 - 17.36% 10 - 16.76% 10 - 16.21% 10 - 15.90%
7-25 10 - 18.01% 10 - 18.09% 10 - 16.55% 10 - 16.53% 10 - 15.66%

Table 4: Fuzz on the Real-Case: Number of tin generated - coverage according
to each extract and different environment restrictions (nerr − κ).

number of tin 1 10 100 1000
percent of coverage 12.72% 15.78% 21.95% 32.35%

Table 5: Fuzz: Number of tin generated for 40 bars of the real mixed score with
7-25 values.

5.3 Evaluation of the coverage of fuzzing generation
Random test is an important strategy for the test input generations and is
widely used in the state-of-the-art. However, it lacks of precision since no con-
trol is possible in the randomized values. We add an experiment to evaluate
the covertness of our fuzzing script according to the number of input traces
generated with 7-25 values for the parameters nerr and κ respectively.

We present on Table 5 the results on the first 40th bars of the mixed score
of the Sonate used as the second case studies (see page 43). The rise of the
generated trace number improves as expected the coverage, but it is still very
low even for a thousand of traces (that lasts as long as a CoVer generation).
This experiment confirms that this second generation cannot be covering and
motivates for another strategy or targets addition for guiding the fuzz algorithm.

number of tin 10 50 100
percent of coverage 59.32% 62.09% 62.09%
time in seconds 24 114 249

Table 6: Online: Number of tin generated for the all mixed score (18,641 model’s
states) and with the generation described Section 4.3.

46



5.4 Online testing with VM
Finally we report Table 6 an evaluation of our online testing approach. For the
online experiment, we deployed a script running the model simulation and the
IUT Antescofo at the same time on the machine, the two softwares communicat-
ing via the protocol Open Sound Control (OSC). The simulation constructs the
model and simulates it via the method and the algorithm detailed Section 4.3.
The IUT is run with an online adaptor which waits an input stimulation (an
event or a duration) from the model. Remark that although the method is on-
line, we execute it in a fast-forward fashion, preventing from waiting for the real
durations.

The online framework is promising. Our first experiments succeeded in man-
aging the entire real mixed score (study 2) and performed a hundred of input
traces for 4 minutes. We are working on improving the online algorithm wrt
covertness of the test suite generation. It appears after evaluation that with
the first version algorithm, a hundred of inputs covers as many state locations
as fifty inputs. After a look at the inputs generated, the reason is on the du-
rations chosen for event durations that are not interpreted (because the move
delay badly managed the early wait-transitions firing).

5.5 Discussion
Finally we have two complementary test data generation methods, the former,
offline, ensuring a good quality of the test data via covering features, the latter,
online, scaling to big scores and the musical context of the generated traces.
Comparing these two methods is tedious since the advantage of the first is
the weakness of the second, (i.e. its covering feature). However the fuzzing
generation permits to manage real cases and is faster than the first generation.
Merging the two techniques is an interesting future work that can add a covering
feature in the fuzzing generation in, for example, targeting the fuzz in the action-
trigger-events.

Notice that the use of the standard TA model forces us to convert durations
with multiple time units (in particular the musical time unit in input traces
tin) into durations with a unique time unit (the Model Time Unit (mtu) used
in Uppaal). In our framework, we consider that the mtu for TA is the musical
time. It is the reason of our problem with the fact that CoVer tries to generate
systematically optimal test suites. This translation implies drastic restrictions
(R1 − R3 in Section 3.4) on the model and so restrict the possible mixed scores
the framework can test.

The development of a VM made possible our online framework for MBT.
At the opposite of the offline method, this framework is based directly on the
executable IR model (without translation into TA), and a maximum of coverage
by the generated input traces can be ensured. The first experiment is promis-
ing both on the scalability and the speed of the testing method. However as
for the fuzzing generation, the algorithm has to improve its covering abilities.
An interesting idea in the online generation method would be to compute an
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input trace with duration intervals ensuring the same behavior in S. From this,
relevant input suites could be generated with an objective of exhaustiveness.

6 Conclusion
We have developed a fully automatic Model-Based Testing framework dedicated
to a Realtime Interactive Music System for automatic accompaniment, with
offline and online procedures for the generation of covering test cases. This
framework is based on a dedicated Intermediate Representation for modeling
the implementation under test and its environment (i.e. the human musicians
accompanied). This IR was designed to model easily the semantics of Antescofo.
It borrows both from the Timed Automata model and the logic time semantics
of the synchronous programming languages for reactive systems Esterel [7].

One originality of the case study of IMS for MBT is that the models are
constructed automatically from the mixed scores (high-level requirements) fol-
lowed by the IMS, instead of being written manually by an expert. Moreover,
the models in IR can be converted (under restrictions) into Timed Automata
for using tools of the Uppaal suite. One technical difficulty is the necessity
to deal with the constraint of real time with different time units, in particular
the musical time relative to a tempo. This prevented us from using the online
testing tool Tron out of the box for our case study. Hence, we implemented
our own online MBT framework using a Virtual Machine interpreting directly
the IR without any restrictions. This newly method is yet promising since an
entire real mixed score passed successfully a first experiment using a non trivial
“on-the-fly” generation algorithm.

Besides the case of IMS, our approach could be applied to the test of other
realtime reactive systems involving pre-specified temporal scenarios, feedbacks
and timed interaction with humans. That includes in particular video games
and other entertainment systems, robotics, smart buildings or smart cities...
and more generally, cyber-physical systems coupling computing devices with
physical components and humans in the loop.

The offline test generation approach based on CoVer is a good first step
into applying some existing MBT tools to our case study, with a purpose of
exhaustiveness. It has however some limitations and cannot be considered as
the best way to generate our input traces (e.g restriction to shortest delays tin
that causes exponential accelerations, not scalable) presented in Section 5. A
way to bypass these problems could be to re-implement (in Uppaal) the algorithm
of CoVer with random choices of delays insides regions, instead of the systematic
choice of the shortest delays.

We are planing to extend the techniques of test cases generation by fuzzing
an ideal trace presented in Section 4.2 with a notion of coverage of the IR model
S similar to the approach of CoVer. The Virtual Machine can indeed compute
the coverage of the IR model S for a given set of tin (in the case of offline
generation). This information could be very useful in order to assess the quality
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of a set of input traces independently generated from the offline generation (e.g.
using the model of performances).

Our method is designed to test the behavior of the IMS on one given score,
by generating a covering set of input traces describing a range of musical per-
formance of the score. This approach is advantageous both for IMS debugging,
thanks to coverage criteria, and for user assistance to authors of mixed scores,
using the fuzz generation based on models of musical performance. A more
general perspective could be to test the behavior of the IMS on any score. This
would require a complete specification of the IMS (written manually) as e.g. an
hybrid system, and the automatic generation, as test input, of a covering set of
“extreme” scores and covering sets of performance traces for these scores.
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A Antescofo’s score
We present here the actual Antescofo mixed score for the running example. The
textual Antescofo’s DSL has keywords like bpm to give the expected tempo,
note to specify an event detection (with its pitch, its duration and its label)
and group to specify a sequence of actions (with its delay, its name and its
attributes).

bpm 120
note D]5 1 e1

0.0 group s1 @loose @local
{

0.0 ont1 @name on1
0.5 offt1 @name off1
1.0 group s3

{
0.0 ont3 @name on3
0.25 offt3 @name off3

}
}

note A4 0.5 e2
0.0 group s2 @tight @global
{

0.0 ont2 @name on2
0.75 offt2 @name off2

}
note C]4 0.5 e3
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