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DOUBLY-RESONANT SADDLE-NODES IN
(
C3, 0

)
AND THE FIXED

SINGULARITY AT INFINITY IN THE PAINLEVÉ EQUATIONS (PART II):
SECTORIAL NORMALIZATION

AMAURY BITTMANN

Abstract. In this work, following [Bit15], we consider analytic singular vector fields in C3 with an
isolated and doubly-resonant singularity of saddle-node type at the origin. Such vector fields come
from irregular two-dimensional differential systems with two opposite non-zero eigenvalues, and ap-
pear for instance when studying the irregular singularity at infinity in Painlevé equations (Pj)j=I...V

,
for generic values of the parameters. Under suitable assumptions, we prove a theorem of analytic nor-
malization over sectorial domains, analogous to the classical one due to Hukuhara-Kimura-Matuda
[HKM61] for saddle-nodes in C2. We also prove that the normalizing map is essentially unique and
weakly Gevrey-1 summable.

1. Introduction

As in [Bit15], we consider (germs of) singular vector fields Y in C3 which can be written in appro-
priate coordinates (x,y) := (x, y1, y2) as

Y = x2
∂

∂x
+
(
− λy1 + f1 (x,y)

) ∂

∂y1
+
(
λy2 + f2 (x,y)

) ∂

∂y2
,(1.1)

where λ ∈ C∗ and f1, f2 are germs of holomorphic functions in
(
C3, 0

)
of homogeneous valuation

(order) at least two. They represent irregular two-dimensional differential systems having two opposite
non-zero eigenvalues and a vanishing third eigenvalue. These we call doubly-resonant vector fields of
saddle-node type (or simply doubly-resonant saddle-nodes). We will impose more (non-generic)
conditions in the sequel.

Our main motivation is the study of the irregular singularity at infinity in Painlevé equations
(Pj)j=I...V

, for generic values of the parameters. These equations were discovered by Paul Painlevé [Pai02]

because the only movable singularities of the solutions are poles (the so-called Painlevé property).
Their study has become a rich domain of research since the important work of Okamoto [Oka77].
The fixed singularities of the Painlevé equations, and more particularly those at infinity, where no-
tably investigated by Boutroux with his famous tritronquées solutions [Bou13]. Recently, several
authors provided more complete information about such singularities, studying “quasi-linear Stokes
phenomena” and also giving connection formulas; we refer to the following (non-exhaustive) sources
[JK92, Kap04, KK93, JK01].

Stokes coefficients are invariant under local changes of analytic coordinates, but do not form a
complete invariant of the vector field. To the best of our knowledge there currently does not exist a
general analytic classification for doubly-resonant saddle-nodes. Such a classification would provide a
new framework allowing to analyze Stokes phenomena in that class of singularities. In this paper we
provide a theorem of analytic normalization over sectorial domain (à la Hukuhara-Kimura-Matuda
[HKM61] for saddle-nodes in

(
C2, 0

)
) for a specific class (to be defined later on) of doubly-resonant

saddle-nodes which contains the Painlevé case. In a forthcoming paper we use this theorem in order to
provide a complete analytic classification for this class of vector fields, based on the important work of
Martinet and Ramis [MR82, MR83] for saddle-nodes and resonant saddles in

(
C2, 0

)
. We would like

Key words and phrases. Painlevé equations, singular vector field, irregular singularity, resonant singularity, Gevrey-1
summability, normal form.
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to point out that our approach, using normal form theory, should allow to recover the computation of
quasi-linear Stokes coefficients without relying on the auxiliary study of isomonodromic deformations.
This will be the subject of a subsequent publication.

In [Yos84, Yos85] Yoshida shows that doubly-resonant saddle-nodes arising from the compactifica-
tion of Painlevé equations (Pj)j=I...V

(for generic values for the parameters) are conjugate to vector

fields of the form:

Z = x2
∂

∂x
+
(
− (1 + γy1y2) + a1x

)
y1

∂

∂y1

+
(
1 + γy1y2 + a2x

)
y2

∂

∂y2
,(1.2)

with γ ∈ C∗ and (a1, a2) ∈ C2 such that a1 + a2 = 1. One should notice straight away that this
“conjugacy” does not agree with what is traditionally (in particular in this paper) meant by conjugacy,
for Yoshida’s transform Ψ(x,y) = (x, ψ1 (x,y) , ψ2 (x,y)) takes the form

ψi (x,y) = yi


1 +

∑

(k0,k1,k2)∈N
3

k1+k2≥1

qi,k (x)

xk0
yk1+k0
1 yk1+k0

2


 ,(1.3)

where each qi,k is formal power series although x appears with negative exponents. This expansion
may not even be a formal Laurent series. It is, though, the asymptotic expansion along {x = 0} of a
function analytic in a domain

{
(x, z) ∈ S ×D (0, r) | |z1z2| < ν |x|

}

for some small ν > 0, where S is a sector of opening less than π with vertex at the origin and D (0, r) is

a polydisc of small poly-radius r = (r1, r2) ∈ (R>0)
2
. Moreover the (qi,k (x))i,k are actually Gevrey-1

power series. The drawback here is that the transforms are convergent on regions so small that taken
together they cannot cover an entire neighborhood of the origin in C3.

Several authors studied the problem of convergence of formal transformations putting vector fields as
in (1.1) into “normal forms”. Shimomura, improving on a result of Iwano [Iwa80], shows in [Shi83] that
analytic doubly-resonant saddle-nodes satisfying more restrictive conditions are conjugate (formally
and over sectors) to vector fields of the form

x2
∂

∂x
+ (−λ+ a1x) y1

∂

∂y1
+ (λ+ a2x) y2

∂

∂y2

via a diffeomorphism whose coefficients have asymptotic expansions as x → 0 in sectors of opening
greater than π.

Stolovitch then generalized this result to any dimension in [Sto96]. More precisely, Stolovitch’s
work offers an analytic classification of vector fields in Cn+1 with an irregular singular point, without
further hypothesis on eventual additional resonance relations between eigenvalues of the linear part.
However, as Iwano and Shimomura did, he needed to impose other assumptions, among which the
condition that the restriction of the vector field to the invariant hypersurface {x = 0} is a linear vector
field. In [BDM08], the authors obtain a Gevrey-1 summable “normal form”, though not as simple
as Stolovitch’s one and not unique a priori, but for more general kind of vector field with one zero
eigenvalue. However, the same assumption on hypersurface {x = 0} is required (the restriction is a
linear vector field). Yet from [Yos85] stems the fact that this condition is not met in the case of
Painlevé equations (Pj)j=I...V

.

In comparison, we merely ask here that the restricted vector field be orbitally linearizable (see
Definition 1.7), i.e. the foliation induced by Y on {x = 0} (and not the vector field Y|{x=0} itself) be
linearizable. The fact that this condition is fulfilled by the singularities of Painlevé equations formerly
described is well-known.
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1.1. Scope of the paper.
The action of local analytic / formal diffeomorphisms Ψ fixing the origin on local holomorphic vector

fields Y of type (1.1) by change of coordinates is given by

Ψ∗Y := DΨ (Y ) ◦Ψ−1 .

In [Bit15] we performed the formal classification of such vector fields by exhibiting an explicit universal
family of vector fields for the action of formal changes of coordinates at 0 (called a family of normal
forms). Such a result seems currently out of reach in the analytic category: it is unlikely that an
explicit universal family for the action of local analytic changes of coordinates be described anytime
soon. If we want to describe the space of equivalent classes (of germs of a doubly-resonant saddle-node
under local analytic changes of coordinates) with same formal normal form, we therefore need to find a
complete set of invariants which is of a different nature. We call moduli space this quotient space and
would like to give it a (non-trivial) presentation based on functional invariants à la Martinet-Ramis
[MR82, MR83].

The main ingredient to obtain such analytic invariant is to prove first the existence of analytic
sectorial normalizing maps (over a pair of opposite “wide” sectors of opening greater than π whose
union covers a full punctured neighborhood of {x = 0}). This is the main result of the present paper.
We have not been able to perform this normalization in such a generality, and only deal here with
x-fibered local analytic conjugacies acting on vector fields of the form (1.1) with some additional
assumptions detailed further down (see Definitions 1.1, 1.3 and 1.7). Importantly, these hypothesis
are met in the case of Painlevé equations mentioned above.

Our approach has some geometric flavor, since we avoid the use of fixed-point methods altogether to
establish the existence of the normalizations, and generalize instead the approach of Teyssier [Tey04,
Tey03] relying on path-integration of well-chosen 1-forms (following Arnold’s method of characteris-
tics [Arn74]).

As a by-product of this normalization we deduce that the normalizing sectorial diffeomorphisms are
Gevrey-1 asymptotic to the normalizing formal power series of [Bit15], retrospectively proving their
weak 1-summability (see subsection 2.3 for definition). When the vector field additionally supports
a symplectic transverse structure (which is again the case of Painlevé equations) we prove that the
(essentially unique) sectorial normalizing map is realized by a transversally symplectic diffeomorphism.

1.2. Definitions and main results.
To state our main results we need to introduce some notations and nomenclature.

• For n ∈ N>0, we denote by (Cn, 0) an (arbitrary small) open neighborhood of the origin in Cn.
• We denote by C {x,y}, with y = (y1, y2), the C-algebra of germs of holomorphic functions at

the origin of C3, and by C {x,y}× the group of invertible elements for the multiplication (also
called units), i.e. elements U such that U (0) 6= 0.
• χ

(
C3, 0

)
is the Lie algebra of germs of singular holomorphic vector fields at the origin C3. Any

vector field in χ
(
C3, 0

)
can be written as

Y = b (x, y1, y2)
∂

∂x
+ b1 (x, y1, y2)

∂

∂y1
+ b2 (x, y1, y2)

∂

∂y2

with b, b1, b2 ∈ C {x, y1, y2} vanishing at the origin.
• Diff

(
C3, 0

)
is the group of germs of a holomorphic diffeomorphism fixing the origin of C3. It

acts on χ
(
C3, 0

)
by conjugacy: for all

(Φ, Y ) ∈ Diff
(
C3, 0

)
× χ

(
C3, 0

)

we define the push-forward of Y by Φ by

(1.4) Φ∗ (Y ) := (DΦ · Y ) ◦ Φ−1 ,

where DΦ is the Jacobian matrix of Φ.
• Difffib

(
C3, 0

)
is the subgroup of Diff

(
C3, 0

)
of fibered diffeomorphisms preserving the x-

coordinate, i.e. of the form (x,y) 7→ (x, φ (x,y)).
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• We denote by Difffib

(
C3, 0, Id

)
the subgroup of Difffib

(
C3, 0

)
formed by diffeomorphisms tan-

gent to the identity.

All these concepts have formal analogues, where we only suppose that the objects are defined with
formal power series, not necessarily convergent near the origin.

Definition 1.1. A diagonal doubly-resonant saddle-node is a vector field Y ∈ χ
(
C3, 0

)
of the

form

Y = x2
∂

∂x
+
(
− λy1 + f1 (x,y)

) ∂

∂y1
+
(
λy2 + f2 (x,y)

) ∂

∂y2
,

with λ ∈ C∗ and f1, f2 ∈ C {x,y} of order at least two. We denote by SN diag the set of such vector
fields.

Remark 1.2. One can also define the foliation associate to a diagonal doubly-resonant saddle-node in
a geometric way. A vector field Y ∈ χ

(
C3, 0

)
is orbitally equivalent to a diagonal doubly-resonant

saddle-node
(
i.e. Y is conjugate to some V X , where V ∈ C {x,y}× and X ∈ SN diag

)
if and only if

the following conditions hold:

(1) Spec (D0Y ) = {0,−λ, λ} with λ 6= 0;
(2) there exists a germ of irreducible analytic hypersurface H = {S = 0} which is transverse to the

eigenspace E0 (corresponding to the zero eigenvalue) at the origin, and which is stable under
the flow of Y ;

(3) LY (S) = U.S2, where LY is the Lie derivative of Y and U ∈ C {x,y}×.

By Taylor expansion up to order 1 with respect to y, given a vector field Y ∈ SN diag written as in
(1.1) we can consider the associate 2-dimensional system:

(1.5) x2
dy

dx
= α (x) +A (x)y (x) + F (x,y (x)) ,

with y = (y1, y2), such that the following conditions hold:

• α (x) =

(
α1 (x)
α2 (x)

)
, with α1, α2 ∈ C {x} and α1, α2 ∈ O

(
x2
)

• A (x) ∈ Mat2,2 (C {x}) with A (0) = diag (−λ, λ), λ ∈ C∗

• F (x,y) =

(
F1 (x,y)
F2 (x,y)

)
, with F1, F2 ∈ C {x,y} and F1, F2 ∈ O

(
‖y‖2

)
.

Based on this expression, we state:

Definition 1.3. The residue of Y ∈ SN diag is the complex number

res (Y ) :=

(
Tr (A (x))

x

)

|x=0

.

We say that Y is non-degenerate (resp. strictly non-degenerate) if res (Y ) /∈ Q≤0 (resp.
ℜ (res (Y )) > 0).

Remark 1.4. It is obvious that there is an action of Difffib

(
C3, 0, Id

)
on SN diag. The residue is an

invariant of each orbit of SN diag under the action of Difffib

(
C3, 0, Id

)
by conjugacy (see [Bit15]).

The main result of [Bit15] can now be stated as follows:

Theorem 1.5. [Bit15] Let Y ∈ SN diag be non-degenerate. Then there exists a unique formal fibered

diffeomorphism Φ̂ tangent to the identity such that:

Φ̂∗ (Y ) = x2
∂

∂x
+ (−λ+ a1x+ c1 (y1y2)) y1

∂

∂y1

+(λ+ a2x+ c2 (y1y2)) y2
∂

∂y2
,(1.6)
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where λ ∈ C∗, c1, c2 ∈ C JvK are formal power series in v = y1y2 without constant term and a1, a2 ∈ C

are such that a1 + a2 = res (Y ) ∈ C\Q≤0.

Definition 1.6. The vector field obtained in (1.6) is called the formal normal form of Y . The

formal fibered diffeomorphism Φ̂ is called the formal normalizing map of Y .

The above result is valid for formal objects, without considering problems of convergence. The first
main result in this work states that this formal normalizing map is analytic in sectorial domains, under
some additional assumptions that we are now going to precise.

Definition 1.7.

• We say that a germ of a vector field X in
(
C2, 0

)
is orbitally linear if

X = U (y)

(
λ1y1

∂

∂y1
+ λ2y2

∂

∂y2

)
,

for some U (y) ∈ C {y}× and (λ1, λ2) ∈ C2.
• We say that a germ of vector field X in

(
C2, 0

)
is analytically (resp. formally) orbitally

linearizable if X is analytically (resp. formally) conjugate to an orbitally linear vector field.
• We say that a diagonal doubly-resonant saddle-node Y ∈ SN diag is asymptotically orbitally

linearizable if Y|{x=0} ∈ χ
(
C2, 0

)
is (analytically) orbitally linearizable.

Remark 1.8. Alternatively we could say that the foliation associated to Y|{x=0} is linearizable. Since

Y|{x=0} is analytic at the origin of C2 and has two opposite eigenvalues, it follows from a classical result
of Brjuno (see [Mar81]), that Y|{x=0} is analytically orbitally linearizable if and only if it is formally
orbitally linearizable.

Definition 1.9. We denote by SN diag,0 the set of strictly non-degenerate diagonal doubly-resonant
saddle-nodes which are asymptotically orbitally linearizable.

The vector field corresponding to the irregular singularity at infinity in the Painlevé equations
(Pj)j=I...V

is orbitally equivalent to an element of SN diag,0, for generic values of the parameters (see

[Yos85]).
We can now state the first main result of our paper (we refer to subsection 2.3 for the precise

definition of weak 1-summability).

Theorem 1.10. Let Y ∈ SN diag,0 and let Φ̂ (given by Theorem 1.5) be the unique formal fibered
diffeomorphism tangent to the identity such that

Φ̂∗ (Y ) = x2
∂

∂x
+ (−λ+ a1x+ c1 (y1y2)) y1

∂

∂y1
+ (λ+ a2x+ c2 (y1y2)) y2

∂

∂y2
=: Ynorm ,

where λ 6= 0 and c1 (v) , c2 (v) ∈ vC JvK are formal power series without constant term. Then:

(1) the normal form Ynorm is analytic (i.e. c1, c2 ∈ C {v}), and it also is orbitally linear, i.e.
c1 + c2 = 0;

(2) the formal normalizing map Φ̂ is weakly 1-summable in every direction θ ∈ R such that θ 6=
arg (λ) ( mod π);

(3) there exist analytic sectorial fibered diffeomorphisms Φ+ and Φ−, (asymptotically) tangent to
the identity, defined in sectorial domains of the form S+ ×

(
C2, 0

)
and S− ×

(
C2, 0

)
respec-

tively, where

S+ :=
{
x ∈ C | 0 < |x| < r and

∣∣∣arg
( x
iλ

)∣∣∣ <
π

2
+ ǫ
}

S− :=

{
x ∈ C | 0 < |x| < r and

∣∣∣∣arg
(−x
iλ

)∣∣∣∣ <
π

2
+ ǫ

}
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(for any ǫ ∈
]
0,
π

2

[
and some r > 0 small enough), which admit Φ̂ as weak Gevrey-1 asymptotic

expansion in these respective domains, and which conjugate Y to Ynorm. Moreover Φ+ and Φ−

are the unique such germs of analytic functions in sectorial domains (see Definition 2.2).

Remark 1.11. Item 3. above is a straightforward consequence of the weak 1-summability of Φ̂ (see
subsection 2.3).

Definition 1.12. We call Φ+ and Φ− the sectorial normalizing maps of Y ∈ SN diag,0.

They are the weak 1-sums of Φ̂ along the respective directions arg (iλ) and arg (−iλ). Notice that
Φ+ and Φ− are germs of analytic sectorial fibered diffeomorphisms, i.e. they are of the form

Φ+ : S+ ×
(
C2, 0

)
−→ S+ ×

(
C2, 0

)

(x,y) 7−→ (x,Φ+,1 (x,y) ,Φ+,2 (x,y))

and

Φ− : S− ×
(
C2, 0

)
−→ S− ×

(
C2, 0

)

(x,y) 7−→ (x,Φ−,1 (x,y) ,Φ−,2 (x,y))

(see section 2. for a precise definition of germ of analytic sectorial fibered diffeomorphism). The fact
that they are also (asymptotically) tangent to the identity means that we have:

Φ± (x,y) = Id (x,y) +O
(
‖(x,y)‖2

)
.

In fact, we can prove the uniqueness of the sectorial normalizing maps under weaker assumptions.

Proposition 1.13. Let ϕ+ and ϕ− be two germs of sectorial fibered diffeomorphisms in S+ ×
(
C2, 0

)

and S− ×
(
C2, 0

)
respectively, where S+ and S− are as in Theorem 1.10, which are (asymptotically)

tangent to the identity and such that

(ϕ±)∗ (Y ) = Ynorm .

Then, they necessarily coincide with the weak 1-sums Φ+ and Φ− defined above.

It is important to say that we will in fact begin with proving the existence of germs of sectorial
fibered diffeomorphisms Φ+ and Φ− in S+ ×

(
C2, 0

)
and S− ×

(
C2, 0

)
respectively, which are tangent

to the identity and conjugate Y ∈ SN diag,0 to its normal form (see Corollary 4.2). The proposition
above guarantees the uniqueness of such sectorial transforms. It is proved in a second step that Φ+

and Φ− admits the formal normalizing map Φ̂ as weak Gevrey-1 asymptotic expansion, which is thus
weakly 1-summable.

Remark 1.14. In this paper we prove a theorem of sectorial normalizing map analogous to the clas-
sical one due to Hukuhara-Kimura-Matuda for saddle-nodes in

(
C2, 0

)
[HKM61], generalized later by

Stolovitch in any dimension in [Sto96]. Unlike the method based on a fixed point theorem used by
these authors, we use a more geometric approach (following the works of Teyssier [Tey03, Tey04]) based
on the resolution of an homological equation, by integrating a well chosen 1-form along asymptotic
paths. This latter approach turned out to be more efficient to deal with the fact that Y|{x=0} is not
necessarily linearizable. Indeed, if we look at [Sto96] in details, one of the first problem is that in the
irregular systems that needs to be solved by a fixed point method (for instance equation (2.7) in the
cited paper), the non-linear terms would not be divisible by the “time” variable t in our situation. This
would complicate the different estimates that are done later in the cited work. This was the first main
new phenomena we have met.

In a forthcoming paper we prove that the sectorial normalizing maps Φ+,Φ− in Theorem 1.10 admit

in fact the unique formal normalizing map Φ̂ given by Theorem 1.5 as “true” Gevrey-1 asymptotic

expansion in S+ ×
(
C2, 0

)
and S− ×

(
C2, 0

)
respectively. This is done by studying Φ+ ◦ (Φ−)

−1
in

(S+ ∩ S−)×
(
C2, 0

)
(and more generally any germ of sectorial fibered isotropy of Ynorm in “narrow”

sectorial neighborhoods (S+ ∩ S−) ×
(
C2, 0

)
which admits the identity as weak Gevrey-1 asymptotic

expansion). In the cited paper we also:
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• prove that the formal normalizing map Φ̂ in Theorem 1.10 is in fact 1-summable (and not only
weakly 1-summable).
• provide a theorem of analytic classification, based on the study over “small” sectors S+∩S− of

the transition maps Φ+◦Φ−1
− (also called Stokes diffeomorphisms): they are sectorial isotropies

of the normal form Ynorm which are exponentially close to the identity.

The main difficulty is to establish that such a sectorial isotropy of Ynorm over the “narrow” sectors
described above is necessarily exponentially close to the identity. This will be done by a detailed
analysis of these maps in the space of leaves. In fact, this is the second main new difficulty we have
met, which is due to the presence of the “resonant” term

cm (y1y2)
m
log (x)

x

in the exponential expression of the first integrals of the vector field in normal form. In [Sto96],
similar computations are done in subsection 3.4.1. In this part of the paper, infinitely many irregular
differential equations appear when identifying terms of same homogeneous degree. The fact that
Y|{x=0} is linear implies that these differential equations are all linear and independent of each others.
In our situation this is not the case, which yields more complicated computations.

1.3. Painlevé equations: the transversally Hamiltonian case.
In [Yos85] Yoshida shows that a vector field in the class SN diag,0 naturally appears after a suitable

compactification (given by the so-called Boutroux coordinates [Bou13]) of the phase space of Painlevé
equations (Pj)j=I...V

, for generic values of the parameters. In these cases the vector field presents an

additional transversal Hamiltonian structure. Let us illustrate these computations in the case of the
first Painlevé equation:

(PI)
d2z1
dt2

= 6z21 + t .

As is well known since Okamoto [Oka80], (PI) can be seen as a non-autonomous Hamiltonian system





∂z1
∂t

= −∂H
∂z2

∂z2
∂t

=
∂H

∂z1

with Hamiltonian

H (t, z1, z2) := 2z31 + tz1 −
z22
2
.

More precisely, if we consider the standard symplectic form ω := dz1 ∧ dz2 and the vector field

Z :=
∂

∂t
− ∂H

∂z2

∂

∂z1
+
∂H

∂z1

∂

∂z2

induced by (PI), then the Lie derivative

LZ (ω) =

(
∂2H

∂t∂z1
dz1 +

∂2H

∂t∂z2
dz2

)
∧ dt = dz1 ∧ dt

belongs to the ideal 〈dt〉 generated by dt in the exterior algebra Ω∗
(
C3
)

of differential forms in variables
(t, z1, z2). Equivalently, for any t1, t2 ∈ C the flow of Z at time (t2 − t1) acts as a symplectomorphism
between fibers {t = t1} and {t = t2}.

The weighted compactification given by the Boutroux coordinates [Bou13] defines a chart near
{t =∞} as follows: 




z2 = y2x
− 3

5

z1 = y1x
− 2

5

t = x−
4
5 .
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In the coordinates (x, y1, y2), the vector field Z is transformed, up to a translation y1 ← y1 + ζ with

ζ =
i√
6
, to the vector field

Z̃ = − 5

4x
1
5

Y(1.7)

where

Y = x2
∂

∂x
+

(
−4

5
y2 +

2

5
xy1 +

2ζ

5
x

)
∂

∂y1
+

(
−24

5
y21 −

48ζ

5
y1 +

3

5
xy2

)
∂

∂y2
.

We observe that Y is a strictly non-degenerate doubly-resonant saddle-node as in Definitions 1.1 and
1.3 with residue res (Y ) = 1. Furthermore we have:






dt = −4

5
5

4
5x−

9
5 dx

dz1 ∧ dz2 =
1

x
(dy1 ∧ dy2) +

1

5x2
(2y1dy2 − 3y2dy1) ∧ dx

∈ 1

x
(dy1 ∧ dy2) + 〈dx〉

,

where 〈dx〉 denotes the ideal generated by dx in the algebra of holomorphic forms in C∗ × C2. We
finally obtain 



LY
(
dy1 ∧ dy2

x

)
=

1

5x
(3y2dy1 − (2ζ + 2y1)dy2) ∧ dx

LY (dx) = 2xdx
.

Therefore, both LY (ω) and LY (dx) are differential forms who lie in the ideal 〈dx〉, in the algebra of
germs of meromorphic 1-forms in

(
C3, 0

)
with poles only in {x = 0}. This motivates the following:

Definition 1.15. Consider the rational 1-form

ω :=
dy1 ∧ dy2

x
.

We say that vector field Y is transversally Hamiltonian (with respect to ω and dx) if

LY (dx) ∈ 〈dx〉 and LY (ω) ∈ 〈dx〉 .

For any open sector S ⊂ C∗, we say that a germ of sectorial fibered diffeomorphism Φ in S ×
(
C2, 0

)

is transversally symplectic (with respect to ω and dx) if

Φ∗ (ω) ∈ ω + 〈dx〉
(Here Φ∗ (ω) denotes the pull-back of ω by Φ).

We denote by Diffω

(
C3, 0, Id

)
the group of transversally symplectic diffeomorphisms which are

tangent to the identity.

Remark 1.16.

(1) The flow of a transversally Hamiltonian vector field X defines a map between fibers {x = x1}
and {x = x2} which sends ω|x=x1

onto ω|x=x2
, since

(exp (X))
∗
(ω) ∈ ω + 〈dx〉 .

(2) A fibered sectorial diffeomorphism Φ is transversally symplectic if and only if det (DΦ) = 1.

Definition 1.17. A transversally Hamiltonian doubly-resonant saddle-node is a transversally
Hamiltonian vector field which is conjugate, via a transversally symplectic diffeomorphism, to one of
the form

Y = x2
∂

∂x
+
(
− λy1 + f1 (x,y)

) ∂

∂y1
+
(
λy2 + f2 (x,y)

) ∂

∂y2
,

with λ ∈ C∗ and f1, f2 analytic in
(
C3, 0

)
and of order at least 2.
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Notice that a transversally Hamiltonian doubly-resonant saddle-node is necessarily strictly non-
degenerate (since its residue is always equal to 1), and also asymptotically orbitally linearizable (see
section 3). It follows from Yoshida’s work [Yos85] that the doubly-resonant saddle-nodes at infinity in
Painlevé equations (Pj)j=I...V

(for generic values of the parameters) all are transversally Hamiltonian.

We recall the second main result from [Bit15].

Theorem 1.18. [Bit15]
Let Y ∈ SN diag be a diagonal doubly-resonant saddle-node which is supposed to be transversally

Hamiltonian. Then, there exists a unique formal fibered transversally symplectic diffeomorphism Φ̂,
tangent to identity, such that:

Φ̂∗ (Y ) = x2
∂

∂x
+ (−λ+ a1x− c (y1y2)) y1

∂

∂y1
+ (λ+ a2x+ c (y1y2)) y2

∂

∂y2
=: Ynorm ,(1.8)

where λ ∈ C∗, c (v) ∈ vC JvK a formal power series in v = y1y2 without constant term and a1, a2 ∈ C

are such that a1 + a2 = 1.

As a consequence of Theorem 1.18, Theorem 1.10 we have the following:

Theorem 1.19. Let Y be a transversally Hamiltonian doubly-resonant saddle-node and let Φ̂ be the
unique formal normalizing map given by Theorem 1.18. Then the associate sectorial normalizing maps
Φ+ and Φ− are also transversally symplectic.

Proof. Since Φ̂ is weakly 1-summable in S±×
(
C2, 0

)
, the formal power series det

(
DΦ̂
)

is also weakly

1-summable in S±×
(
C2, 0

)
, and its asymptotic expansion has to be the constant 1. By uniqueness of

the weak 1-sum, we thus have det (DΦ±) = 1. �

1.4. Outline of the paper.
In section 2, we introduce the different tools we need concerning asymptotic expansion, Gevrey-1

series and 1-summability. We will in particular introduce a notion of “weak” 1-summability.
In section 3, we prove Proposition 3.1, which states that we can always formally conjugate a non-

degenerate doubly-resonant saddle-node which is also asymptotically orbitally linearizable to its normal
form up to remaining terms of order O

(
xN
)
, for all N ∈ N>0, and the conjugacy is actually 1-

summable.
In section 4, we prove that for all Y ∈ SN diag,0, there exists a unique pair of sectorial normalizing

maps (Φ+,Φ−) tangent to the identity which conjugates Y to its normal form Ynorm over sectors with
opening greater than π and arbitrarily close to 2π. The existence is given by Corollary 4.2, while the
uniqueness clause stated in Proposition 1.13 is proved thanks to Proposition 4.16. Moreover, we will
see that Φ+ and Φ− both admit the unique formal normalizing map Φ̂ given by Theorem 1.5 as weak
Gevrey-1 asymptotic expansion.
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2. Background

We refer the reader to [MR82], [Mal95] and [RS93] for a detailed introduction to the theory of
asymptotic expansion, Gevrey series and summability (see also [Sto96] for a useful discussion of these
concepts), where one can find the proofs of the classical results we recall (but we no not prove here).
We call x ∈ C the independent variable and y := (y1, . . . , yn) ∈ Cn, n ∈ N, the dependent variables.

As usual we define yk := yk1
1 . . . ykn

n for k = (k1, . . . , kn) ∈ Nn, and |k| = k1 + · · ·+ kn. The notions
of asymptotic expansion, Gevrey series and 1-summability presented here are always considered with
respect to the independent variable x living in (open) sectors

S (r, α, β) = {x ∈ C | 0 < |x| < r and α < arg (x) < β} ,
the dependent variable y belonging to poly-discs

D (0, r) := {y = (y1, . . . , yn) ∈ Cn | |y1| < r1, . . . |yn| < rn} ,

of poly-radius r = (r1, . . . , rn) ∈ (R>0)
n
. Given an open subset U ⊂ Cn+1 , we denote by O (U) the

algebra of holomorphic function in U .
The results recalled here are valid when n = 0. Some statements for which we do not give a proof

can be proved exactly as in the classical case n = 0, uniformly in the dependent multi-variable y.
Finally, we will present some classical results not in their original (and more general) form, but rather
in more specific cases which we will need.

2.1. Sectorial germs.
Let θ ∈ R, η ∈ R≥0 and n ∈ N.

Definition 2.1. (1) An x-sectorial neighborhood (or simply sectorial neighborhood) of the origin
(in Cn+1) in the direction θ with opening η is an open set S ⊂ Cn+1 such that

S ⊃ S
(
r, θ − η

2
− ǫ, θ + η

2
+ ǫ
)
×D (0, r)

for some r > 0, r ∈ (R>0)
n

and ǫ > 0. We denote by (Sθ,η,≤) the directed set formed by all
such neighborhoods, equipped with the order relation

S1 ≤ S2 ⇐⇒ S1 ⊃ S2 .

(2) The algebra of germs of holomorphic functions in a sectorial neighborhood of the origin in the
direction θ with opening η is the direct limit

O (Sθ,η) := lim−→O (S)
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with respect to the directed system defined by {O (S) : S ∈ Sθ,η}.
We now give the definition of a (germ of a) sectorial diffeomorphism.

Definition 2.2. (1) Given an element S ∈ Sθ,η, we denote by Difffib (S, Id) the set of holomorphic
diffeomorphisms of the form

Φ : S → Φ (S)
(x,y) 7→ (x, φ1 (x,y) , φ2 (x,y)) ,

such that Φ (x,y) − Id (x,y) = O
(
‖x,y‖2

)
, as (x,y)→ (0,0) in S. 1

(2) The set of germs of (fibered) sectorial diffeomorphisms in the direction θ with opening η, tangent
to the identity, is the direct limit

Difffib (Sθ,η, Id) := lim−→Difffib (S, Id)
with respect to the directed system defined by {Difffib (S, Id) : S ∈ Sθ,η}. We equip Difffib (Sθ,η, Id)
of a group structure as follows: given two germs Φ,Ψ ∈ Difffib (Sθ,η, Id) we chose correspond-
ing representatives Φ0 ∈ Difffib (S, Id) and Ψ0 ∈ Difffib (T , Id) with S, T ∈ Sθ,η such that
T ⊂ Φ0 (S) and let Ψ ◦ Φ be the germ defined by Ψ0 ◦ Φ0.

2

We will also need the notion of asymptotic sectors.

Definition 2.3. An (open) asymptotic sector of the origin in the direction θ and with opening η is an
open set S ⊂ C such that

S ∈
⋂

0≤η′<η

Sθ,η′ .

We denote by ASθ,η the set of all such (open) asymptotic sectors.

2.2. Gevrey-1 power series and 1-summability.

2.2.1. Gevrey-1 asymptotic expansions.
In this subsection we fix a formal power series

f̂ (x,y) =
∑

k≥0

fk (y)x
k =

∑

(j0,j)∈Nn+1

fj0,jx
j0yj ∈ C Jx,yK .

Definition 2.4.

• A function f analytic in a domain S (r, α, β) ×D (0, r) admits f̂ as asymptotic expansion in the
sense of Gérard-Sibuya in this domain if for all closed sub-sector S′ ⊂ S (r, α, β) and compact
K ⊂ D (0, r), for all N ∈ N, there exists a constant CS′,K,N > 0 such that:

∣∣∣∣∣∣
f (x,y) −

∑

j0+j1+...jn≤N

fj0,jx
j0yj

∣∣∣∣∣∣
≤ CS′,K,N ‖(x,y)‖N+1

for all (x,y) ∈ S′ ×K; here, ‖·‖ is a norm in Cn+1.

• A function f analytic in a domain S (r, α, β)×D (0, r) admits f̂ as asymptotic expansion
(with respect to x) if for all k ∈ N, fk (y) is analytic in D (0, r), and if for all closed sub-sector
S′ ⊂ S (r, α, β), compact subset K ⊂ D (0, r) and N ∈ N, there exists AS′,K,N > 0 such that:

∣∣∣∣∣∣
f (x,y) −

N∑

k≥0

fk (y) x
k

∣∣∣∣∣∣
≤ AS′,K,N |x|N+1

for all (x,y) ∈ S′ ×K.

1This condition implies in particular that Φ (S) ∈ Sθ,η.
2One can prove that this definition is independent of the choice of the representatives
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• An analytic (and bounded) function f in a sectorial domain S (r, α, β)×D (0, r) admits f̂ as
Gevrey-1 asymptotic expansion in this domain, if for all k ∈ N, fk (y) is analytic in D (0, r),
and if for all closed sub-sector S′ ⊂ S (r, α, β), there exists A,C > 0 such that:

∣∣∣∣∣f (x,y) −
N−1∑

k=0

fk (y) x
k

∣∣∣∣∣ ≤ AC
N (N !) |x|N

for all N ∈ N and (x,y) ∈ S′ ×D (0, r).

Remark 2.5.

(1) If a function admits f̂ as Gevrey-1 asymptotic expansion in S (r, α, β) ×D (0, r), then it also

admits f̂ as asymptotic expansion.

(2) If a function admits f̂ as asymptotic expansion in S (r, α, β)×D (0, r), then it also admits f̂
as asymptotic expansion in the the sense of Gérard-Sibuya.

(3) An asymptotic expansion (in any of the different senses described above) is unique.

2.2.2. Borel transform and Gevrey-1 power series.

Definition 2.6.

• We define the Borel transform B
(
f̂
)

of f̂ as:

B
(
f̂
)
(t,y) :=

∑

k≥0

fk (y)

k!
tk .

• We say that f̂ is Gevrey-1 if B
(
f̂
)

is convergent in a neighborhood of the origin in C × Cn.

Notice that in this case the fk (y) , k ≥ 0, are all analytic in a same polydisc D (0, r), of

poly-radius r = (rn . . . , rn) ∈ (R>0)
n
, so that B

(
f̂
)

is analytic in D (0, ρ)×D (0, r), for some

ρ > 0. Possibly by reducing ρ, r1, . . . , rn > 0, we can assume that B
(
f̂
)

is bounded in

D (0, ρ)×D (0, r).

Remark 2.7.

(1) If a sectorial function f admits f̂ for Gevrey-1 asymptotic expansion as in Definition 2.4 then

f̂ is a Gevrey-1 formal power series.
(2) The set of all Gevrey-1 formal power series is an algebra closed under differentiation.

2.2.3. Directional 1-summability and Borel-Laplace summation.

Definition 2.8. Given θ ∈ R and δ > 0, we define the infinite sector in the direction θ with opening
δ as the set

Aθ,δ :=

{
t ∈ C∗ | |arg (t)− θ| < δ

2

}
.

We say that f̂ is 1-summable in the direction θ ∈ R, if the following three conditions holds:

• f̂ is a Gevrey-1 formal power series;

• B
(
f̂
)

can be analytically continued to a domain of the form Aθ,δ ×D (0, r);

• there exists λ > 0,M > 0 such that:

∀ (t,y) ∈ Aθ,δ ×D (0, r) ,
∣∣∣B
(
f̂
)
(t,y)

∣∣∣ ≤M exp (λ |t|) .

In this case we set ∆θ,δ,ρ := Aθ,δ ∪D (0, ρ) and
∥∥∥f̂
∥∥∥
λ,θ,δ,ρ,r

:= sup
(t,y)∈∆θ,δ,ρ×D(0,r)

∣∣∣B
(
f̂
)
(t,y) exp (−λ |t|)

∣∣∣ .

If the domain is clear from the context we will simply write
∥∥∥f̂
∥∥∥
λ
.
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Remark 2.9. For fixed (λ, θ, δ, ρ, r) as above, the set Bλ,θ,δ,ρ,r of formal power series f̂ 1-summable in

the direction θ and such that
∥∥∥f̂
∥∥∥
λ,θ,δ,ρ,r

< +∞ is a Banach vector space for the norm ‖·‖λ,θ,δ,ρ,r. We

simply write (Bλ, ‖·‖λ) when there is no ambiguity.

Definition 2.10. Let g be analytic in a domain Aθ,δ and λ > 0,M > 0 such that

∀ (t,y) ∈ Aθ,δ ×D (0, r) , |g (t,y)| ≤M exp (λ |t|) .

We define the Laplace transform of g in the direction θ as:

Lθ (g) (x,y) :=
ˆ

eiθR>0

g (t,y) exp

(
− t
x

)
dt

x
,

which is absolutely convergent for all x ∈ C with ℜ
(

eiθ

x

)
> λ and is analytic with respect to (x,y).

Proposition 2.11. A formal power series f̂ ∈ C Jx,yK is 1-summable in the direction θ if and only

if there exists a germ of a sectorial holomorphic function fθ ∈ O (Sθ,π) which admits f̂ as Gevrey-
1 asymptotic expansion in some S ∈ Sθ,π. Moreover, fθ is unique

(
as a germ in O (Sθ,π)

)
and in

particular

fθ = Lθ
(
B
(
f̂
))

.

The function (germ) fθ is called the 1-sum of f̂ in the direction θ.

We recall the following well-known result.

Lemma 2.12. The set Σθ ⊂ C Jx,yK of 1-summable power series in the direction θ is an algebra closed
under differentiation. Moreover the map

Σθ −→ O (Sθ,π)
f̂ 7−→ fθ

is an injective morphism of differential algebras.

Definition 2.13. A formal power series f̂ ∈ C Jx,yK is called 1-summable if it is 1-summable in all
but a finite number of directions, called Stokes directions.

More generally, we say that an m−uple (f1, . . . , fm) ∈ C Jx,yKm is Gevrey-1 (resp. 1-summable
in direction θ) if this property holds for each component fj , j = 1, . . . ,m. Similarly, a formal vector
field (or diffeomorphism) is said to be Gevrey-1 (resp. 1-summable in direction θ) if each one of its
components has this property.

2.2.4. Composition of 1-summable power series.
We will use the following particular case of a classical result due to Ramis and Sibuya.

Theorem 2.14. (Ramis-Sibuya) Let S+ ∈ Sθ,π, S− ∈ Sπ−θ,π and (f+, f−) ∈ O (S+)×O (S−). Assume
that for all compact K ⊂ Cn and all sector S ⊂ C such that S ×K ⊂ S+ ∩ S−, there exists A,B > 0
such that:

|f+ (x,y)− f− (x,y)| ≤ A exp

(
− B|x|

)

for all (x,y) ∈ S ×K. Then, there exists a formal power series f̂ (x,y) ∈ C Jx,yK such that f+ ( resp.

f−) admits f̂ as Gevrey-1 asymptotic expansion in S+ ( resp. S−).

An important consequence of this theorem is the following.

Proposition 2.15. Let Φ̂ (x,y) ∈ C Jx,yK be 1-summable in directions θ and θ− π, and let Φ+ (x,y)

and Φ− (x,y) be its 1-sums directions θ and θ − π respectively. Let also f̂1 (x, z) , . . . , f̂n (x, z) be 1-
summable in directions θ, θ− π, and f1,+, . . . , fn,+, and f1,−, . . . , fn,− be their 1-sums in directions θ
and θ − π respectively. Assume that

(2.1) f̂j (0,0) = 0, for all j = 1, . . . , n .
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Then

Ψ̂ (x, z) := Φ̂
(
x, f̂1 (x, z) , . . . , f̂n (x, z)

)

is 1-summable in directions θ, θ − π, and its 1-sum in the corresponding direction is

Ψ± (x, z) := Φ± (x, f1,± (x, z) , . . . , fn,± (x, z)) ,

which is a germ of a sectorial holomorphic function in this direction.

Proof. Since f̂j (0,0) = 0 for all j = 1, . . . , n,

Ψ̂ (x, z) := Φ̂
(
x, f̂1 (x, z) , . . . , f̂n (x, z)

)

is well defined as formal power series. Since f̂j (0,0) = 0 for all j = 1, . . . , n, there exists (S+,S−) ∈
Sθ,π × Sθ−π,π and

(
S ′+,S ′−

)
∈ Sθ,π × Sθ−π,π such that:

• f1,+, . . . fn,+ (resp. f1,−, . . . , fn,−) are analytic and admit respectively f̂1, . . . , f̂n as Gevrey-1
asymptotic expansion in S+ (resp. S−);
• the image of S± by the map

(x, z) 7→ (x, f1,± (x, z) , . . . , fn,± (x, z))

is in S ′±,

• Φ+ (resp. Φ−) is analytic and admits Φ̂ as Gevrey-1 asymptotic expansion in S ′+ (resp. S ′−).

Consequently, the function defined as

Ψ± (x, z) := Φ± (x, f1,± (x, z) , . . . , fn,± (x, z))

is analytic in S±. Moreover, it is clear that Ψ± (x, z) admits Ψ̂ (x, z) as asymptotic expansion as
(x, z) → (0,0) in S+ (in the sense of Gérard-Sibuya). It remains to prove that |Ψ+ −Ψ−| is expo-
nentially small in all subset of S+ ∩ S− of the form S ×K, for some sector S ⊂ C and some compact
K ⊂ Cn (then the theorem of Ramis-Sibuya allows us to conclude).

Let us fix a sector S ⊂ C and a compact K ⊂ Cn such that S×K ⊂ S+ ∩S−. There exist A,B > 0
such that for all j = 1, . . . , n, for all (x, z) ∈ S ×K

|fj,+ (x, z) − fj,− (x, z)| ≤ A exp

(
− B|x|

)
.

The image of S ×K by the map

(x, z) 7→ (x, f1,± (x, z) , . . . , fn,± (x, z))

is in included in S ×K′ ⊂ S ′+ ∩S ′− for some compact K′ ⊂ Cn. By assumption, there exist A′, B′ > 0
such that for all (x,y) ∈ S ×K′

|Φ+ (x,y) − Φ− (x,y)| ≤ A′ exp

(
−B

′

|x|

)
.

Indeed, two functions admitting the same Gevrey-1 asymptotic expansion are exponentially close.
Finally, there exists C > 0 such that for all (x,y,y′) such that ((x,y) , (x,y′)) ∈ S ×K′,

|Φ+ (x,y)− Φ+ (x,y′)| ≤ C max
j=1,...,n

(∣∣yj − y′j
∣∣) .
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Hence, for all (x, z) ∈ S ×K:

|Ψ+ (x, z) −Ψ− (x, z)|
= |Φ+ (x, f1,+ (x, z) , . . . , fn,+ (x, z))− Φ− (x, f1,− (x, z) , . . . , fn,− (x, z))|
≤ |Φ+ (x, f1,+ (x, z) , . . . , fn,+ (x, z))− Φ+ (x, f1,− (x, z) , . . . , fn,− (x, z))|
+ |Φ+ (x, f1,− (x, z) , . . . , fn,− (x, z))− Φ− (x, f1,− (x, z) , . . . , fn,− (x, z))|

≤ C max
j=1,...,n

(|fj,+ (x, z)− fj,− (x, z)|) +A′ exp

(
−B

′

|x|

)

≤ CA exp

(
− B|x|

)
+A′ exp

(
−B

′

|x|

)

≤ A” exp
(
−B”

|x|

)

for a convenient choice of A”, B” > 0. �

Consider Ŷ a formal singular vector field at the origin and a formal fibered diffeomorphism ϕ̂ :

(x,y) 7→
(
x, φ̂ (x,y)

)
. Assume that both Ŷ and ϕ̂ are 1-summable in directions θ and θ− π, for some

θ ∈ R, and denote by Y+, Y− (resp. ϕ+, ϕ−) their 1-sums in directions θ and θ − π respectively. As a
consequence of Proposition 2.15 and Lemma 2.12, we can state the following:

Corollary 2.16. Under the assumptions above, ϕ̂∗

(
Ŷ
)

is 1-summable in both directions θ and θ−π,
and its 1-sums in these directions are ϕ+ (Y+) and ϕ− (Y−) respectively.

2.3. Weak Gevrey-1 power series and weak 1-summability.
We present here a weaker notion of 1-summability that we will also need. Let us fix a formal power

series which we write as

f̂ (x,y) =
∑

j∈Nn

F̂j (x)y
j ∈ C Jx,yK.

Definition 2.17.

• The formal power series f̂ is said to be weakly Gevrey-1 if for all j ∈ Nn, F̂j (x) ∈ C JxK is
a Gevrey-1 formal power series.
• A function

f (x,y) =
∑

j∈Nn

Fj (x)y
j

analytic and bounded in a domain S (r, α, β)×D (0, r), admits f̂ as weak Gevrey-1 asymp-
totic expansion in x ∈ S (r, α, β), if for all j ∈ Nn, Fj admits F̂j as Gevrey-1 asymptotic
expansion in S (r, α, β).

• The formal power series f̂ is said to be weakly 1-summable in the direction θ ∈ R, if the
following conditions hold:

– for all j ∈ Nn, F̂j (x) ∈ C JxK is 1-summable in the direction θ, whose 1-sum in the direction
θ is denoted by Fj,θ;

– the series fθ (x,y) :=
∑

j∈Nn

Fj,θ (x)y
j defines a germ of a sectorial holomorphic function in

a domain of the form

S
(
r, θ − π

2
− ǫ, θ + π

2
+ ǫ
)
×D (0, r) .

In this case, fθ (x,y) is called the weak 1-sum of f̂ in the direction θ.

As a consequence to the classical theory of summability and Gevrey asymptotic expansions, we
immediately have the following:
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Lemma 2.18. (1) The weak Gevrey-1 asymptotic expansion of an analytic function in a domain
S (r, α, β) ×D (0, r) is unique.

(2) The weak 1-sum of a weak 1-summable formal power series in the direction θ, is unique as a
germ in O (Sθ,π).

(3) The set Σθ,weak ⊂ C Jx,yK of weakly 1-summable power series in the direction θ is an algebra
closed under differentiation. Moreover the map

Σθ,weak −→ O (Sθ,π)
f̂ 7−→ fθ

is an injective morphism of differential algebras.

The following proposition is an analogue of Proposition 2.15 for weak 1-summable formal power
series, with the a stronger condition instead of (2.1).

Proposition 2.19. Let

Φ̂ (x,y) =
∑

j∈Nn

Φ̂j (x)y
j ∈ C Jx,yK

and
f̂ (k) (x,y) =

∑

j∈Nn

F̂
(k)
j (x)yj ∈ C Jx,yK ,

for k = 1, . . . , n, be n+1 formal power series which are weakly 1-summable in directions θ and θ − π,
and let us denote by Φ+, f

(1)
+ , . . . , f

(n)
+

(
resp. Φ−, f

(1)
− , . . . , f

(n)
−

)
their respective weak 1-sums in the

direction θ ( resp. θ − π). Assume that F̂
(k)
0 = 0 for all k = 1, . . . , n. Then,

Ψ̂ (x,y) := Φ̂
(
x, f̂ (1) (x,y) , . . . , f̂ (n) (x,y)

)

is weakly 1-summable directions θ and θ − π, and its 1-sum in the corresponding direction is

Ψ± (x,y) = Φ±

(
x, f

(1)
± (x,y) , . . . , f

(n)
± (x,y)

)
,

which is a germ of a sectorial holomorphic function in this direction with opening π.

Proof. First of all,

Ψ̂ (x,y) := Φ̂
(
x, f̂ (1) (x,y) , . . . , f̂ (n) (x,y)

)

is well defined as formal power series since for all k = 1, . . . , n, F̂
(k)
0 = 0. It is also clear that

Ψ± (x,y) := Φ±

(
x, f

(1)
± (x,y) , . . . , f

(n)
± (x,y)

)

is an analytic in a domain S+ ∈ Sθ,π (resp. S− ∈ Sθ−π,π), because f
(k)
± (x,0) = 0 for all k = 1, . . . , n.

Finally, we check that Ψ± admits Ψ̂ as weak Gevrey-1 asymptotic expansion in S±. Indeed:

Ψ± (x,y) = Φ±

(
x, f

(1)
± (x,y) , . . . , f

(n)
± (x,y)

)

=
∑

j∈Nn

(Φj)± (x)
(
f
(1)
± (x,y)

)j1
. . .
(
f
(1)
± (x,y)

)jn

=
∑

j∈Nn

(Φj)± (x)




∑

|l|≥1

(
F

(1)
l

)

±
(x)yl




j1

. . .

. . .




∑

|l|≥1

(
F

(n)
l

)

±
(x)yl




jn

=
∑

j∈Nn

(Ψj)± (x)yj
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where for all j ∈ Nn, (Ψj)± (x) is obtained as a finite number of additions and products of the

(Φk)±,
(
F

(1)
k

)

±
,. . . ,

(
F

(n)
k

)

±
, |k| ≤ |l|. The same computation is valid for the associated formal power

series, and allows us to define the Ψ̂j (x), for all j ∈ Nn. Then, each (Ψj)± has Ψ̂j as Gevrey-1
asymptotic expansion in S±. �

As a consequence of Proposition 2.19 and Lemma 2.18, we have an analogue version of Corollary
(2.16) in the weak 1-summable case. Consider Ŷ a formal singular vector field at the origin and a

formal fibered diffeomorphism ϕ̂ : (x,y) 7→
(
x, φ̂ (x,y)

)
such that φ̂ (x,0) = 0. Assume that both Ŷ

and ϕ̂ are weakly 1-summable in directions θ and θ − π, for some θ ∈ R, and denote by Y+, Y− (resp.
ϕ+, ϕ−) their weak 1-sums in directions θ and θ − π respectively.

Corollary 2.20. Under the assumptions above, ϕ̂∗

(
Ŷ
)

is weakly 1-summable in both directions θ and

θ − π, and its 1-sums in these directions are ϕ+ (Y+) and ϕ− (Y−) respectively.

2.4. 1-summability implies weakly 1-summability.
Any function f (x,y) analytic in a domain U ×D (0, r), where U ⊂ C is open, and bounded in any

domain U ×D (0, r′) with r′1 < r1, . . . , r
′
n < rn, can be written

(2.2) f (x,y) =
∑

j∈Nn

Fj (x)y
j ,

where for all j ∈ Nn, Fj is analytic and bounded on U , and defined via the Cauchy formula:

Fj (x) =
1

(2iπ)
n

ˆ

|z1|=r′1

. . .

ˆ

|zn|=r′n

f (x, z)

(z1)
j1+1

. . . (zn)
jn+1

dzn . . . dz1 .

Notice that the convergence of the function series above is uniform in every compact with respect to
x and y.

In the same way, any formal power series f̂ (x,y) ∈ C Jx,yK can be written as

f̂ (x,y) =
∑

j∈Nn

F̂j (x)y
j ,

and then:

B
(
f̂
)
(t,y) =

∑

j∈Nn

B
(
F̂j

)
(t)yj .

The next lemma is immediate.

Lemma 2.21.

(1) The power series B
(
f̂
)
(t,y) is convergent in a neighborhood of the origin in Cn+1 if and only

if the B
(
F̂j

)
, j ∈ Nn, are all analytic and bounded in a same disc D (0, ρ), ρ > 0, and if there

exists B,L > 0 such that for all j ∈ Nn, sup
t∈D(0,ρ)

∣∣∣B
(
F̂j

)
(t)
∣∣∣ ≤ L.B|j|.

(2) Moreover, in the previous case, B
(
f̂
)

can be analytically continued to a domain Aθ,δ×D (0, r)

if and only if for all j ∈ Nn, B
(
F̂j

)
can be analytically continued to Aθ,δ and if for all compact

K ⊂ Aθ,δ, there exists B,L > 0 such that for all j ∈ Nn, sup
t∈K

∣∣∣B
(
F̂j

)
(t)
∣∣∣ ≤ L.B|j|.

(3) Moreover, in the latter case, there exists λ,M > 0 such that:

∀ (t,y) ∈ Aθ,δ ×D (0, r) ,
∣∣∣B
(
f̂
)
(t,y)

∣∣∣ ≤M. exp (λ |t|)
if and only if there exists λ, L,B > 0 such that for all j ∈ Nn,

∀t ∈ Aθ,δ,
∣∣∣B
(
F̂j

)
(t)
∣∣∣ ≤ L.B|j| exp (λ |t|) .
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Remark 2.22. The third point gives the link between 1-summability in some direction and weak 1-
summability in the same direction, and can be reformulated as follows:

Corollary 2.23. Let

f̂ (x,y) =
∑

j∈Nn

F̂j (x)y
j ∈ C Jx,yK

be a formal power series. Then, f̂ is 1-summable in the direction θ ∈ R, of 1-sum f ∈ O (Sθ,π), if and
only if the following two conditions hold:

• f̂ is weakly 1-summable in the direction θ, i.e. there exists λ, δ, ρ such that ∀j ∈ Nn,
∥∥∥F̂j

∥∥∥
λ,θ,δ,ρ

<∞

• the power series
∑

j∈Nn

∥∥∥F̂j

∥∥∥
λ,θ,δ,ρ

yj is convergent in some polydisc D (0, r).

Proof. This is an immediate consequence of Lemma 2.21. �

2.5. Some useful tools on singular linear differential equations.
For future reuse, we give here two results on the 1-summability of formal solutions to some singular

linear differential equations with 1-summable right hand side, which generalize a similar result proved
in [MR82] (Proposition p. 126).

Proposition 2.24. Let b̂ be a formal power series 1-summable in the direction θ, such that
∥∥∥b̂
∥∥∥
β
< +∞

with the associated domain ∆θ,δ,ρ as in Definition 2.8 for some β, δ, ρ > 0 , and let bθ be its 1-sum.
Let also α, k ∈ C.

(1) Assume that k ∈ C\ {0} is such that dk := dist (−k,∆θ,δ,ρ) > 0 and

βdk > |1− αk| .

Then, the differential equation

(2.3) x2
da

dx
(x) + (1 + αx) ka (x) = b̂ (x)

has a unique formal solution â such that â (0) = 1
k
b̂ (0). Moreover, â is 1-summable in the

direction θ, and

(2.4) ‖â‖β ≤
β

βdk − |1− αk|
∥∥∥b̂
∥∥∥
β

.

Finally, the 1-sum aθ of â in the direction θ is the only solution to

x2
daθ
dx

(x) + (1 + αx) kaθ (x) = bθ (x)

which is bounded in some Sθ,π ∈ Sθ,π.
(2) Assume that ℜ (k) > 0. Then the regular differential equation

(2.5) x
da

dx
(x) + ka (x) = b̂ (x)

admits a unique formal solution a (x) =
∑

j≥0

ajx
j ∈ C JxK which is also 1-summable in the

direction θ, of 1-sum aθ. Moreover, aθ is the only germ of solution to the differential equation

x
da

dx
(x) + ka (x) = bθ (x)

which is bounded in some Sθ,π ∈ Sθ,π.

Proof.
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(1) Since b̂ is 1-summable in the direction θ, we can choose ρ > 0 and δ such that B
(
b̂
)

can be

analytically continued to (and is bounded in) any domain of the form ∆θ,δ,ρ ∩D (0, R), R > 0.
Let us apply the Borel transform to equation (2.3): we easily obtain

(2.6) (t+ k)B (â) (t) + (αk − 1)

ˆ t

0

B (â) (s)ds = B
(
b̂
)
(t) .

The derivative with respect to t of this equation shows that B (â) is solution of a linear dif-
ferential equation, with only one (regular) singularity at t = −k (but this singularity is not in
∆θ,δ,ρ by assumption):

(t+ k)
dB (â)

dt
(t) + αkB (â) (t) =

dB
(
b̂
)

dt
(t) .

Since B
(
b̂
)

can be analytically continued to ∆θ,δ,ρ, the same goes for
dB
(
b̂
)

dt
(t) and then for

B (â). Since B (â) (0) = â (0) =
b̂ (0)

k
, we can write:

B (â) (t) = (t+ k)−αk



b̂ (0) .kαk−1 +

ˆ t

0

dB

(

b̂

)

ds
(s) . (s+ k)αk−1

ds





= (t+ k)−αk

(

b̂ (0) .kαk−1 + B

(

b̂

)

(t) . (t+ k)αk−1
−B

(

b̂

)

(0) .kαk−1

− (αk − 1)

ˆ t

0

B

(

b̂

)

(s) . (s+ k)αk−2
ds

)

= (t+ k)−αk

(

B

(

b̂

)

(t) . (t+ k)αk−1

− (αk − 1)

ˆ t

0

B

(

b̂

)

(s) . (s+ k)αk−2
ds

)

B (â) =
B

(

b̂

)

(t)

(t+ k)
− (αk − 1) . (t+ k)−αk

ˆ t

0

B

(

b̂

)

(s) . (s+ k)αk−2
ds .

The fact that B
(
b̂
)

is bounded in any domain of the form ∆θ,δ,ρ ∩ D (0, R), R > 0, implies

that the same goes for B (â). Let us prove inequality (2.4). For all R > 0, for all Gevrey-1

series f̂ ∈ C Jx,yK such that B
(
f̂
)

can be analytically continued to ∆θ,δ,r, we set:

∥∥∥f̂
∥∥∥
β,R

:= sup

t∈∆θ,δ,ρ∩D (0, R)

{∣∣∣B
(
f̂
)
(t) exp (−β |t|)

∣∣∣
}
∈ R ∪ {∞} .

Notice that
∥∥∥f̂
∥∥∥
β
= sup

R>0

{∥∥∥f̂
∥∥∥
β,R

}
for all f̂ as above, and that for all R > 0, ‖â‖β,R < +∞,

since B (â) is bounded in any domain of the form ∆θ,δ,ρ ∩ D (0, R). Fix some R > 0, and let

t ∈ ∆θ,δ,ρ ∩D (0, R). From equation (2.6) we obtain

(t+ k)B (â) (t) . exp (−β |t|) + (αk − 1) . exp (−β |t|) .
ˆ t

0

B (â) (s)ds = B
(
b̂
)
(t) . exp (−β |t|) .
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Since −k /∈ ∆θ,δ,ρ, we have

B (â) (t) . exp (−β |t|) =
1

(t+ k)

[
B
(
b̂
)
(t) . exp (−β |t|)

− (αk − 1) . exp (−β |t|) .
ˆ t

0

B (â) (s)ds

]
,

and so

|B (â) (t) . exp (−β |t|)| ≤ 1

|t+ k|

[∥∥∥b̂
∥∥∥
β
+ |αk − 1| . ‖â‖β,R exp (−β |t|) .

ˆ |t|

0

exp (βu)du

]

≤ 1

dk

[∥∥∥b̂
∥∥∥
β
+ |αk − 1| . ‖â‖β,R .

1

β
(1− exp (−β |t|))

]

≤ 1

dk

[∥∥∥b̂
∥∥∥
β
+
|αk − 1| . ‖â‖β,R

β

]
.

Finally,

‖â‖β,R ≤ 1

dk

[∥∥∥b̂
∥∥∥
β
+
|αk − 1| . ‖â‖β,R

β

]
,

and then:

‖â‖β,R ≤
β

βdk − |1− αk|
∥∥∥b̂
∥∥∥
β

.

As a consequence we have:

‖â‖β ≤
β

βdk − |1− αk|
∥∥∥b̂
∥∥∥
β

.

(2) Let us write b̂ (x) =
∑

j≥0

bjx
j . A direct computation shows that the only formal solution to

equation (2.5) is â (x) =
∑

j≥0

ajx
j where for all j ∈ N, aj =

bj
j + k

: it exists since k /∈ Z≤0, and

then k + j 6= 0. In particular, we see immediately that â is Gevrey-1, because the same goes

for b̂. In other words, the Borel transform B (â) is analytic in some disc D (0, ρ), ρ > 0. In
D (0, ρ), B (â) satisfies:

t
dB (â)

dt
(t) + kB (â) (t) = B

(
b̂
)
(t) .

The general solution near the origin to this equation is

y (t) =
c

tk
+

1

tk

ˆ t

0

B
(
b̂
)
(s) sk−1ds , c ∈ C.

In particular, the only solution analytic in D (0, ρ) is the one with c = 0, i.e.

B (â) (t) = 1

tk

ˆ t

0

B
(
b̂
)
(s) sk−1ds .

Since B
(
b̂
)

can be analytically continued to an infinite domain that have denoted by ∆θ,δ,ρ

bisected by R+e
iθ (because b̂ is 1-summable in the direction θ), B (â) can also be analytically

continued to the same domain. Moreover, there exists β > 0 such that
∥∥∥b̂
∥∥∥
β
< +∞, i.e.

∀t ∈ ∆θ,δ,ρ: ∣∣∣B
(
b̂
)
(t)
∣∣∣ ≤

∥∥∥b̂
∥∥∥
β
exp (β |t|) .
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Thus, for all t ∈ ∆θ,δ,ρ, we have:

|exp (−β |t|)B (â) (t)| ≤ 1

|tk|

ˆ |t|

0

|exp (−β |t|)|
∣∣∣B
(
b̂
)(

sei arg(t)
)∣∣∣
∣∣∣sk−1ei(k−1) arg(t)

∣∣∣ ds

≤ 1

|t|ℜ(k)

ˆ |t|

0

|exp (−βs)|
∣∣∣B
(
b̂
)(

sei arg(t)
)∣∣∣ sℜ(k)−1ds

≤

∥∥∥b̂
∥∥∥
β

|t|ℜ(k)

ˆ |t|

0

sℜ(k)−1ds

=

∥∥∥b̂
∥∥∥
β

ℜ (k)
.

Thus, â is 1-summable in the direction θ.

�

3. 1-summable preparation up to any order N

The aim of this section is to prove that we can always formally conjugate a non-degenerate doubly-
resonant saddle-node, which is also asymptotically orbitally linearizable to its normal form up to a
remainder of order O

(
xN
)

for every N ∈ N>0. Moreover, we prove that this conjugacy is in fact
1-summable in every direction θ 6= arg (λ) ( mod π).

Proposition 3.1. Let Y ∈ SN diag be a non-degenerate diagonal doubly-resonant saddle-node which is
asymptotically orbitally linearizable, with D0Y = diag (0,−λ, λ), λ 6= 0. Then, for all N ∈ N>0, there
exists a formal fibered diffeomorphism Ψ(N) tangent to the identity and 1-summable in every direction
θ ∈ R with θ 6= arg (λ) ( mod π) such that:

(
Ψ(N)

)

∗
(Y ) = x2

∂

∂x
+
((
−
(
λ+ d(N) (y1y2)

)
+ a1x

)
+ xNF

(N)
1 (x,y)

)
y1

∂

∂y1

+
((
λ+ d(N) (y1y2) + a2x

)
+ xNF

(N)
2 (x,y)

)
y2

∂

∂y2

=: Y (N) ,

where λ ∈ C∗, (a1 + a2) = res (Y ) ∈ C\Q≤0, d
(N) (v) ∈ C {v} is vanishing at the origin, and F

(N)
1 , F

(N)
2 ∈

C Jx,yK are 1-summable in the direction θ, and of order at least one with respect to y. Moreover, one
can choose d(2) = · · · = d(N) for all N ≥ 2.

Remark 3.2.

(1) Observe that this result does not require the more restrictive assumptions of being “strictly
non-degenerate” (i.e. ℜ (a1 + a2) > 0) defining the set SN 0 ⊂ SN diag.

(2) As a consequence of Corollary 2.16, the 1-sum Ψ
(N)
θ of Ψ(N) in the direction θ is a germ of

sectorial fibered diffeomorphism tangent to the identity, i.e. Ψ
(N)
θ ∈ Difffib (Sθ,π, Id), which

conjugates Y to the 1-sum Y
(N)
θ of Y (N) in the direction θ.

In order to prove this result we will proceed in several steps and use after each step Proposition
2.15 and Corollary 2.16 in order to prove the 1-summability in every direction θ 6= arg (λ) ( mod π)
of the different objects. First, we will normalize analytically the vector field restricted to {x = 0}.
Then, we will straighten the formal separatrix to {y1 = y2 = 0} in suitable coordinates. Next, we will
simplify the linear terms with respect to y. After that, we will straighten two invariant hypersurfaces
to {y1 = 0} and {y2 = 0}. Finally, we will conjugate the vector field to its final normal form up to
remaining terms of order O

(
xN
)
.

3.1. Analytic normalization on the hyperplane {x = 0}.
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3.1.1. The transversally Hamiltonian case.

Proposition 3.3. If Y ∈ SN diag is transversally Hamiltonian, then Y is asymptotically orbitally
linearizable.

Proof. Let us consider more generally a diagonal doubly-resonant saddle-node Y ∈ SN diag such that
Y|{x=0} is a Hamiltonian vector field with respect to dy1 ∧ dy2 (this is the case if Y is transversally

Hamiltonian): there exists a Hamiltonian H (y) = λy1y2 +O
(
‖y‖3

)
∈ C {y}, such that

Y = x2
∂

∂x
+

((
−∂H
∂y2

+ xF1 (x,y)

)
∂

∂y1
+

(
∂H

∂y1
+ xF2 (x,y)

)
∂

∂y2

)
,

where F1, F2 ∈ C {x,y} are vanishing at the origin. If we define J :=

(
0 −1
1 0

)
∈M2 (C) and

∇H := t (DH), then Y|{x=0} = J∇H. According to the Morse lemma for holomorphic functions,

there exists a germ of an analytic change of coordinates ϕ ∈ Diff
(
C2, 0

)
given by

y = (y1, y2) 7→ ϕ (y) =
(
y1 +O

(
‖y‖2

)
, y2 +O

(
‖y‖2

))
,

such that H̃ (y) := H
(
ϕ−1 (y)

)
= y1y2. Let us now recall a trivial result from linear algebra.

Fact. Let J :=

(
0 −1
1 0

)
∈M2 (C), and P ∈M2 (C). Then, PJ tP = det (P )J .

As a consequence we have:

Corollary 3.4. Let H ∈ C {y} be a germ of analytic function at 0, Y0 := J∇H the associated
Hamiltonian vector field in C2 (for the usual symplectic form dy1∧dy2), and an analytic diffeomorphism
near the origin denoted by ϕ. Then:

ϕ∗ (Y0) :=
(
Dϕ ◦ ϕ−1

)
·
(
Y0 ◦ ϕ−1

)
= det

(
Dϕ ◦ ϕ−1

)
J∇H̃ ,

where H̃ := H ◦ ϕ−1.

As a conclusion we have proved that Y is asymptotically orbitally linearizable. �

3.1.2. General case.
Now, we consider a vector field of the form:

Y = x2
∂

∂x
+ (− (λ+ h (y)) y1 + xF1 (x,y))

∂

∂y1
+ ((λ+ h (y)) y2 + xF2 (x,y))

∂

∂y2
,

with h (y) ∈ C {y} vanishing at the origin of C2, and F1, F2 ∈ C {x,y} also vanishing at the origin of
C3.

Proposition 3.5. Let Y0 be a germ of analytic vector field in
(
C2, 0

)
of the form

Y0 = (λ+ h (y))

(
−y1

∂

∂y1
+ y2

∂

∂y2

)
,

with h ∈ C {y} vanishing at the origin. Then there exists φ ∈ Diff
(
C2, 0, Id

)
such that

φ∗ (Y0) = (λ+ d (v))

(
−y1

∂

∂y1
+ y2

∂

∂y2

)
,

with v := y1y2 and d ∈ vC {v}.
Proof. We claim that φ can be chosen of the form

φ (y) =
(
y1e

−γ(y), y2e
γ(y)

)
,
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for a conveniently chosen γ ∈ C {y}. Indeed, let us study how such a diffeomorphism acts on Y0. Let

us write U := (λ+ h (v)) and L :=
(
−y1 ∂

∂y1
+ y2

∂
∂y2

)
, such that Y0 = UL. An easy computation

shows:

φ∗ (Y0) = φ∗ (U.L)

=
(
[U · (1− LL (γ))] ◦ φ−1

)
L ,

where LL is the Lie derivative of associate to L. We want to to find γ such that the unit

D := [U (1− LL (γ))] ◦ φ−1

is free from non-resonant terms, i.e. is of the form

D = λ+ d (y1y2) = λ+
∑

k≥1

dk (y1y2)
k
.

Notice that if a unit W =
∑

k≥0

Wk (y1y2)
k
C {y}

×
is free from non-resonant terms, then:

{
W ◦ φ−1 =W

LL (W ) = 0 .

Thus, let us split both U and γ in a “resonant” and a “non-resonant” part:
{
U = Ures + Un−res

γ = γres + γn−res

where 



Un−res =
∑

k1 6=k2

Uk1,k2y
k1
1 yk2

2

Ures =
∑
k

Uk,k (y1y2)
k

γn−res =
∑

k1 6=k2

γk1,k2y
k1
1 yk2

2

γres =
∑
k

γk,k (y1y2)
k

.

Then the non-resonant terms of U (1− LL (γ)) are

(Un−res − (Un−res + Ures)LL (γn−res)) ◦ φ−1 .

Hence, the partial differential equation we want to solve is:

LL (γ) =
Un−res

Ures + Un−res
.

One sees immediately that this equation admit an analytic solution (and even infinitely many solutions)
γ ∈ C {y}, since the unit U ∈ C {y} is analytic. �

Finally, we can assume that Y is in fact of the form:

Y = x2
∂

∂x
+ (− (λ+ d (v)) y1 + xT1 (x,y))

∂

∂y1
+ ((λ+ d (v)) y2 + xT2 (x,y))

∂

∂y2
,

with v := y1y2, d (v) ∈ vC {v} vanishing at the origin of C, and T1, T2 ∈ C {x,y} both vanishing at
the origin of C3.
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3.2. 1-summable simplification of the “dependent” affine part.
We are concerned by studying vector fields of the form

(3.1) Y = x2
∂

∂x
+ (−λy1 + f1 (x,y))

∂

∂y1
+ (λy2 + f2 (x,y))

∂

∂y2
,

with {
f1 (x,y) = −d (y1y2) y1 + xT1 (x,y)

f2 (x,y) = d (y1y2) y2 + xT2 (x,y) ,

where d (v) ∈ vC {v} and T1, T2 ∈ C {x,y} are of order at least one.

Proposition 3.6. Let Y ∈ SN diag be a doubly-resonant saddle-node of the form

Y = x2
∂

∂x
+ (−λy1 + f1 (x,y))

∂

∂y1
+ (λy2 + f2 (x,y))

∂

∂y2
,

where f1, f2 ∈ C {x,y} are such that f1 (x,y) , f2 (x,y) = O
(
‖(x,y)‖2

)
. Then there exists ŷ1, ŷ2, α̂1,

α̂2, β̂1, β̂2 ∈ xC JxK which are 1-summable in every direction θ 6= arg (λ) ( mod π), such that the
formal fibered diffeomorphism

Φ̂ : (x, y1, y2) 7→
(
x, ŷ1 (x) + (1 + α̂1 (x)) y1 + β̂1 (x) y2, ŷ2 (x) + α̂2 (x) y1 +

(
1 + β̂1 (x)

)
y2

)
,

(which is tangent to the identity and 1- summable in every direction θ 6= arg (λ) ( mod π)) conjugates
Y to

Φ̂∗ (Y ) = x2
∂

∂x
+
(
(−λ+ a1x) y1 + F̂1 (x,y)

) ∂

∂y1
+
(
(λ+ a2x) y2 + F̂2 (x,y)

) ∂

∂y2
,

where a1, a2 ∈ C and F̂1, F̂2 ∈ C Jx,yK are of order at least 2 with respect to y.

Remark 3.7. Notice that F̂1, F̂2 are 1-summable in every direction θ 6= arg (λ) ( mod π). Moreover,

Φ̂|{x=0} = Id, so that F̂i (0,y) = fi (0,y) for i = 1, 2. Finally, the residue of Φ̂∗ (Y ) is a1 + a2.

Proof. The proof is a trivial successive use of the three following lemmas in this order ( and of Corollary
2.16 to obtain the 1-summability). �

Lemma 3.8. There exists a pair of formal power series (ŷ1 (x) , ŷ2 (x)) ∈ (xC JxK)
2

which are 1-
summable in every direction θ 6= arg (λ) ( mod π), such that the formal diffeomorphism given by

Φ̂1 (x, y1, y2) = (x, y1 − ŷ1 (x) , y2 − ŷ2 (x)),
(which is 1-summable in every direction θ 6= arg (λ) ( mod π)) conjugates Y in (3.1) to

(3.2) Ŷ1 (x,y) = x2
∂

∂x
+ (−λy1 + ĝ1 (x,y))

∂

∂y1
+ (λy2 + ĝ2 (x,y))

∂

∂y2
,

where ĝ1, ĝ2 are formal power series of order at least 2 such that ĝ1 (x,0) = ĝ2 (x,0) = 0.

Remark 3.9. Notice that ĝ1, ĝ2 are 1-summable in every direction θ 6= arg (λ) ( mod π).

In other words, in the new coordinates, the curve given by (y1, y2) = (0, 0) is invariant by the flow
of the vector field.

Proof. This is an immediate consequence of an important theorem by Sibuya on the summability of
formal solutions to irregular differential systems [Sib90] (p.233). This theorem proves the existence
and the 1-summability in every direction θ 6= arg (λ) ( mod π), of ŷ1 and ŷ2: (ŷ1 (x) , ŷ2 (x)) is defined
as the unique formal solution to




x2
dy1
dx

= −λy1 (x) + f1 (x, y1 (x) , y2 (x))

x2
dy2
dx

= λy2 (x) + f2 (x, y1 (x) , y2 (x))
,

such that (ŷ1 (0) , ŷ2 (0)) = (0, 0). The 1-summability of ĝ1 and ĝ2 comes from Proposition 2.15. �
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The next step is aimed at changing to linear terms with respect to y in “diagonal” form.

Lemma 3.10. There exists a pair of formal power series (p̂1, p̂2) ∈ (C JxK)
2

which are 1-summable in
every direction θ 6= arg (λ) ( mod π), such that the formal fibered diffeomorphism given by

Φ̂2 (x, y1, y2) = (x, y1 + xp̂2 (x) y2, y2 + xp̂1 (x) y1) ,

(which is tangent to the identity and 1-summable in every direction θ 6= arg (λ) ( mod π)) conjugates

Ŷ1 in (3.2), to

Ŷ2 (x,y) = x2
∂

∂x
+
(
(−λ+ xâ1 (x)) y1 + Ĥ1 (x,y)

) ∂

∂y1

+
(
(λ+ xâ2 (x)) y2 + Ĥ2 (x,y)

) ∂

∂y2
,(3.3)

where â1, â2, Ĥ1, Ĥ2 are formal power series and Ĥ1, Ĥ2 are of order at least 2 with respect to y.

Remark 3.11. Notice that â1, â2, Ĥ1, Ĥ2 are 1-summable in every direction θ 6= arg (λ) ( mod π).

Proof. Let us write
{
ĝ1 (x,y) = xb̂1 (x) y1 + xĉ1 (x) y2 + Ĝ1 (x,y)

ĝ2 (x,y) = xĉ2 (x) y1 + xb̂2 (x) y2 + Ĝ2 (x,y)
,

where b̂1, b̂2, ĉ1, ĉ2, Ĝ1, Ĝ2 are formal power series 1-summable in the direction θ 6= arg (λ) ( mod π),

such that Ĝ1 and Ĝ2 are of order at least 2 with respect to y. Let us consider the following irregular
differential system naturally associated to Ŷ1:

(3.4) x2
dz

dx
(x) = B̂ (x) z (x) + Ĝ (x, z (x)) ,

where

B̂ (x) =

(
−λ+ xb̂1 (x) xĉ1 (x)

xĉ2 (x) λ+ xb̂2 (x)

)
, Ĝ (x, z (x)) =

(
Ĝ1 (x, z (x))

Ĝ2 (x, z (x))

)
.

We are looking for

P̂ (x) =

(
1 xp̂2 (x)

xp̂1 (x) 1

)
∈ GL2 (C JxK) ,

where p̂1, p̂2 are 1-summable formal power series in x every direction θ 6= arg (λ) ( mod π), such that

the linear transformation given by z (x) = P̂ (x)y (x) changes equation (3.4) to

x2
dy

dx
(x) = Â (x)y (x) + Ĥ (x,y (x)) ,

with

Â (x) =

(
−λ+ xâ1 (x) 0

0 λ+ xâ2 (x)

)
, Ĥ (x,y (x)) =

(
Ĥ1 (x,y (x))

Ĥ2 (x,y (x))

)
,

where â1, â2, Ĥ1, Ĥ2 are 1-summable formal power series in x every direction θ 6= arg (λ) ( mod π).
We have

x2
dy

dx
(x) = P̂ (x)

−1

(
B̂(x)P̂ (x)− x2 dP̂

dx
(x)

)
y (x) + P̂ (x)

−1
Ĝ
(
x, P̂ (x)y (x)

)

and we want to determine Â (x) and P̂ (x) as above so that

B̂(x)P̂ (x)− x2 dP̂

dx
(x) = Â (x) .
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This gives four equations:

(3.5)





â1 (x) = b̂1 (x) + xĉ1 (x) p̂1 (x)

â2 (x) = b̂2 (x) + xĉ2 (x) p̂2 (x)

x2
dp̂1
dx

(x) =
(
2λ+ xb̂2 (x)− x− xb̂1 (x)

)
p̂1 (x) + ĉ2 (x)− x2ĉ1 (x) p̂1 (x)2

x2
dp̂2
dx

(x) =
(
−2λ+ xb̂1 (x)− x− xb̂2 (x)

)
p̂2 (x) + ĉ1 (x)− x2ĉ2 (x) p̂2 (x)2

.

Thanks to the theorem by Sibuya on the summability of formal solutions to irregular systems [Sib90],
we have the existence and the 1-summability in every direction θ 6= arg (λ) ( mod π), of p̂1 and p̂2:
(p̂1 (x) , p̂2 (x)) is defined as the unique formal solution to





x2
dp̂1
dx

(x) =
(
2λ+ xb̂2 (x)− x− xb̂1 (x)

)
p̂1 (x) + ĉ2 (x)− x2ĉ1 (x) p̂1 (x)2

x2
dp̂2
dx

(x) =
(
−2λ+ xb̂1 (x) − x− xb̂2 (x)

)
p̂2 (x) + ĉ1 (x)− x2ĉ2 (x) p̂2 (x)2

such that

(p̂1 (0) , p̂2 (0)) =

(−ĉ2 (0)
2λ

,
ĉ1 (0)

2λ

)
.

Notice that â1 and â2 are defined by the first two equations in (3.5). Finally, Ĥ is defined by

Ĥ (x,y) := P̂ (x)
−1

Ĝ
(
x, P̂ (x)y

)
,

and it is 1-summable in every direction θ 6= arg (λ) ( mod π), by Proposition 2.15. �

The goal of the last following lemma is to transform â1 (x) and â2 (x) in (3.3) to constant terms.

Lemma 3.12. There exists a pair of formal power series (q̂1, q̂2) ∈ (C JxK)
2

with q̂1 (0) = q̂2 (0) = 1,
which are 1-summable in every direction θ 6= arg (λ) ( mod π), such that the formal fibered diffeomor-
phism of the form

Φ̂3 (x, y1, y2) = (x, q̂1 (x) y1, q̂2 (x) y2) ,

(which is tangent to the identity and 1-summable in every direction θ 6= arg (λ) ( mod π)) conjugates

Ŷ2 in (3.3), to

Ŷ3 (x,y) = x2
∂

∂x
+
(
(−λ+ a1x) y1 + F̂1 (x,y)

) ∂

∂y1

+
(
(λ+ a2x) y2 + F̂2 (x,y)

) ∂

∂y2
,

where F̂1, F̂2 are formal power series of order at least 2 with respect to y and (a1, a2) = (â1 (0) , â2 (0)).

Remark 3.13. Notice that F̂1, F̂2 are 1-summable in every direction θ 6= arg (λ) ( mod π).

Proof. We can associate to Ŷ2 the following irregular differential system:

x2
dz

dx
(x) = Â (x) z (x) + Ĥ (x, z (x)) ,

and we are looking for a change of coordinates of the form z (x) = Q̂ (x)y (x), where

Q̂ (x) =

(
q̂1 (x) 0
0 q̂2 (x)

)
∈ GL2 (C JxK)

with q̂1 (0) = q̂2 (0) = 1, such that the new system is

x2
dy

dx
(x) = A (x)y (x) + F̂ (x,y (x)) ,

with

A (x) =

(
−λ+ a1x 0

0 λ+ a2x

)
, F̂ (x,y (x)) =

(
F̂1 (x,y (x))

F̂2 (x,y (x))

)
,
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and (a1, a2) = (â1 (0) , â2 (0)).
We have

x2
dy

dx
(x) = Q̂ (x)−1

(
Â (x) Q̂ (x)− x2 dQ̂

dx
(x)

)

︸ ︷︷ ︸
y(x) + Q̂(x)−1Ĥ

(
x, Q̂(x)y(x)

)

=(
−λ+ a1x 0

0 λ+ a2x

)

so that

x2
dQ̂

dx
(x) = Â(x)Q̂(x) − Q̂(x)

(
−λ+ a1x 0

0 λ+ a2x

)

and we obtain:





x2
dq̂1
dx

(x) = xq̂1(x) (â1 (x) − a1)

x2
dq̂2
dx

(x) = xq̂2(x) (â2 (x) − a2)

⇐⇒






dq̂1
dx

(x) = q̂1(x)

(
â1 (x) − a1

x

)

dq̂2
dx

(x) = q̂2(x)

(
â2 (x) − a2

x

)

⇐⇒





q̂1(x) = exp

(
ˆ x

0

â1 (s)− a1
s

ds

)

q̂2(x) = exp

(
ˆ x

0

â2 (s)− a2
s

ds

) , if we set q̂1 (0) = q̂2 (0) = 1 ,

and the expression

ˆ x

0

âj (s)− aj
s

ds, for j = 1, 2, means the only anti-derivative of
âj (s)− aj

s
without

constant term. Since â1 and â2 are 1-summable in every direction θ 6= arg (λ) ( mod π), the same

goes for q̂1 and q̂2, and then for F̂1 and F̂2 by Proposition 2.15. �

3.3. 1-summable straightening of two invariant hypersurfaces.
For any θ ∈ R, we recall that we denote by Fθ the 1-sum of a 1-summable series F̂ in direction θ.
Let θ ∈ R with θ 6= arg (λ) ( mod π) and consider a formal vector field Ŷ , 1-summable in the

direction θ of 1-sum Yθ, of the form

(3.6) Ŷ = x2
∂

∂x
+
(
λ1 (x) y1 + F̂1 (x,y)

) ∂

∂y1
+
(
λ2 (x) y2 + F̂2 (x,y)

) ∂

∂y2
,

where:

• λ1 (x) = −λ+ a1x
• λ2 (x) = λ+ a2x
• λ 6= 0
• a1, a2 ∈ C

• for j = 1, 2,

F̂j (x,y) =
∑

n∈N2, |n|≥2

F̂ (j)
n (x)yn ∈ C Jx,yK

is 1-summable in the direction θ of 1-sum

Fj,θ (x,y) =
∑

n∈N2, |n|≥2

Fj,n,θ (x)y
n .
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In particular, there exists A,B, µ > 0 such that for all n ∈ N2, |n| ≥ 2, for j = 1, 2:

∀t ∈ ∆θ,ǫ,ρ,
∣∣∣Bx

(
F̂j,n

)
(t)
∣∣∣ ≤ A.B|n| exp (µ |t|) ,

for some ρ > 0 and ǫ > 0 such that (R.λ) ∩ Aθ,ǫ = ∅ (see Definition 2.8 for the notations).
Notice that Fj,θ is analytic and bounded in some sectorial neighborhood S ∈ Sθ,π of the origin
.

Proposition 3.14. Under the assumptions above, there exists a pair of formal power series
(
φ̂1, φ̂2

)
∈

(C Jx,yK)
2

of order at least two with respect to y which are 1-summable in every direction θ 6=
arg (λ) ( mod π), such that the formal fibered diffeomorphism

Φ̂ (x,y) =
(
x, y1 + φ̂1 (x,y) , y2 + φ̂2 (x,y)

)
,

(which is tangent to the identity and 1-summable in every direction θ 6= arg (λ) ( mod π)) conjugates

Ŷ in (3.6) to

Ŷprep = x2
∂

∂x
+
(
(−λ+ a1x) + R̂1 (x,y)

)
y1

∂

∂y1
+
(
(λ+ a2x) + R̂2 (x,y)

)
y2

∂

∂y2
,

where R̂1, R̂2 ∈ C Jx,yK are of order at least one with respect to y.

Remark 3.15. Notice that R̂1, R̂2 are 1-summable in every direction θ 6= arg (λ) ( mod π).

Proof. We follow and adapt the proof of analytic straightening of invariant curves for resonant saddles
in two dimensions in [MM80].

We are looking for

Ψ̂ (x,y) =
(
x, y1 + ψ̂1 (x,y) , y2 + ψ̂2 (x,y)

)
,

with ψ̂1, ψ̂2 of order at least 2, and R̂1, R̂2 as above such that:

Ψ̂∗

(
Ŷprep

)
= Ŷ ,

i.e.

DΨ̂ · Ŷprep = Ŷ ◦ Ψ̂ .(3.7)

Then, we will set Φ := Ψ−1. Let us write

T̂1 := y1R̂1 =
∑

|n|≥2

T̂1,n (x)y
n

T̂2 := y2R̂2 =
∑

|n|≥2

T̂2,n (x)y
n

ψ̂1 =
∑

|n|≥2

ψ̂1,n (x)y
n

ψ̂2 =
∑

|n|≥2

ψ̂2,n (x)y
n ,

so that equation (3.7) becomes:

x2
∂ψ̂1

∂x2
+

(
1 +

∂ψ̂1

∂y1

)(
λ1 (x) y1 + T̂1

)
+
∂ψ̂1

∂y2

(
λ2 (x) y2 + T̂2

)

= λ1 (x)
(
y1 + ψ̂1

)
+ F̂1

(
x, y1 + ψ̂1, y2 + ψ̂2

)
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and

x2
∂ψ̂2

∂x2
+
∂ψ̂2

∂y1

(
λ1 (x) y1 + T̂1

)
+

(
1 +

∂ψ̂2

∂y2

)(
λ2 (x) y2 + T̂2

)

= λ2 (x)
(
y2 + ψ̂2

)
+ F̂2

(
x, y1 + ψ̂1, y2 + ψ̂2

)
.

These equations can be written as:

(3.8)





∑

|n|≥2

(
δ1,n(x)ψ̂1,n (x) + x2

dψ̂1,n

dx
(x) + T̂1,n (x)

)
yn

= F̂1

(
x, y1 + ψ̂1 (x,y) , y2 + ψ̂2 (x,y)

)
− T̂1(x)

∂ψ̂1

∂y1
(x,y) − T̂2(x)

∂ψ̂1

∂y2
(x,y)

=:
∑

|n|≥2

ζ1,n(x)y
n

∑

|n|≥2

(
δ2,n(x)ψ̂2,n (x) + x2

dψ̂2,n

dx
(x) + T̂2,n (x)

)
yn

= F̂2

(
x, y1 + ψ̂1 (x,y) , y2 + ψ̂2 (x,y)

)
− T̂1(x)

∂ψ̂2

∂y1
(x,y) − T̂2(x)

∂ψ̂2

∂y2
(x,y)

=:
∑

|n|≥2

ζ2,n(x)y
n

where δj,n(x) = λ1(x)n1 + λ2(x)n2 − λj(x), j = 1, 2. Notice that we are looking for T̂1, T̂2 such that
{
T̂1,n = 0 , if n1 = 0

T̂2,n = 0 , if n2 = 0
,

and that ζj,n, for j = 1, 2 and |n| ≥ 2, depends only on the ψ̂i,k’s and the F̂i,k’s, for i = 1, 2, |k| < n.

We can then determine the coefficients ψ̂j,n and T̂j,n, j = 1, 2, |n| ≥ 2, by induction on |n|, setting





T̂1,n = 0 , if n1 = 0

T̂2,n = 0 , if n2 = 0

ψ̂1,n = 0 , if n1 ≥ 1

ψ̂2,n = 0 , if n2 ≥ 1

,

and solving for each n = (n1, n2) ∈ N2 with |n| ≥ 2, the equations





δ1,n(x)ψ̂1,n (x) + x2
dψ̂1,n

dx
(x) = ζ1,n (x) , if n1 = 0

δ2,n(x)ψ̂2,n (x) + x2
dψ̂2,n

dx
(x) = ζ2,n (x) , if n2 = 0

.

Lemma 3.16. There exists β > 0,M > 0 such that for all n ∈ N2 with |n| ≥ 2, and for j = 1, 2,
‖ζj,n‖β < +∞ and: ∥∥∥ψ̂j,n

∥∥∥
β
≤M. ‖ζj,n‖β ,

where the norm corresponds to the domain △θ,ǫ,ρ.

Proof. For n = (n1, n2) ∈ N2 with n1 + n2 ≥ 2 we want to solve:
{
δ1,n(x) = λ1(x) (n1 − 1) + λ2(x)n2 = λ (n2 + 1) + x (−a1 + a2n2) , if n1 = 0

δ2,n(x) = λ2(x) (n2 − 1) + λ1(x)n1 = −λ (n1 + 1) + x (−a2 + a1n1) , if n2 = 0
.

Notice that we are exactly in the situation of Proposition 2.24. In particular, using notation in this
definition, we respectively have:
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k = λ (n2 + 1) , α =

(−a1 + a2n2)

λ (n2 + 1)
,

dk = min {|λ (n2 + 1)| − ρ, |λ (n2 + 1)| |sin (θ + ǫ)| , |λ (n2 + 1)| |sin (θ − ǫ)|}
(when n1 = 0)

and





k = −λ (n1 + 1) , α =

(−a2 + a1n1)

−λ (n1 + 1)
,

dk = min {|λ (n1 + 1)| − ρ, |λ (n1 + 1)| |sin (θ + ǫ)| , |λ (n1 + 1)| |sin (θ − ǫ)|}
(when n2 = 0).

We can chose the domain ∆θ,ǫ,ρ corresponding to the 1-summability of F̂1 and F̂2 with 0 < ρ < |λ|, so
that dk > 0, since ǫ > 0 is such that (R.λ) ∩ Aθ,ǫ = ∅. Finally, we chose

β >
1 + |a1|+ |a2|

min {|λ| − ρ, |λ sin (θ + ǫ)| , |λ sin (θ − ǫ)|} > 0

such that
∥∥∥F̂1

∥∥∥
β
,
∥∥∥F̂2

∥∥∥
β
< +∞. This choice of β implies that βdk > |1− αk| as required in Proposi-

tion 2.24, in both considered situations. Since ζj,n, for j = 1, 2 and |n| ≥ 2, depends only on the ψ̂i,k

and the F̂i,k, for i = 1, 2, |k| < n, we deduce by induction that
{
‖ζ1,n‖β < +∞ , if n1 = 0

‖ζ2,n‖β < +∞ , if n2 = 0

and then, thanks to Proposition 2.24:




∥∥∥ψ̂1,n

∥∥∥
β
≤
(

β

β (|λ| − ρ)− (1 + |a1|+ |a2|)

)
. ‖ζ1,n‖β

∥∥∥ψ̂2,n

∥∥∥
β
≤
(

β

β (|λ| − ρ)− (1 + |a1|+ |a2|)

)
. ‖ζ2,n‖β

.

The lemma is proved, with

M =

(
β

βmin {|λ| − ρ, |λ sin (θ + ǫ)| , |λ sin (θ − ǫ)|} − (1 + |a1|+ |a2|)

)
.

�

In order to finish the proof of Proposition 3.14, we have to prove that for j = 1, 2, the series

ψ̂j :=
∑

n∈N2

∥∥∥ψ̂j,n

∥∥∥
β
yn is convergent in a poly-disc D (0, r), with r = (r1, r2) ∈ (R>0)

2
. We will prove

this by using a method of dominant series. Let us introduce some useful notations. If (B, ‖·‖) is a

normed vector space, for any formal power series f (y) =
∑

n

fny
n ∈ B JyK, we define f :=

∑

n

‖fn‖yn,

and f (y) := f (y, y). If g =
∑

n

gny
n ∈ B JyK is another formal power series, we write f ≺ g if for all

n ∈ N2, we have ‖fn‖ ≤ ‖gn‖. The main result needed is the following lemma.

Lemma 3.17. [MM80] For j = 1, 2, let fj =
∑

|n|≥2

fj,ny
n ∈ B JyK be two formal power series with

coefficients in a normed vector space (B, ‖·‖), and of order at least two. Consider also two other series
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gj =
∑

|n|≥2

gj,ny
n ∈ B {y}, j = 1, 2, of order at least two, which have a non-zero radius of convergence

at the origin. Assume that there exists σ > 0 such that for j = 1, 2:

σfj ≺ gj
(
y1 + f1, y2 + f2

)
.

Then, f1 and f2 have a non-zero radius of convergence.

Proof. The inequality above means implies that

f j ≺
1

σ
gj

(
y + f1 + f2, y + f1 + f2

)

and then

f1 + f2 ≺ 1

σ

(
g1

(
y + f1 + f2, y + f1 + f2

)
+ g2

(
y + f1 + f2, y + f1 + f2

))

=
1

σ

(
g1

(
y + f1 + f2

)
+ g2

(
y + f1 + f2

))
.

Since g1, g2 are convergent at the origin, and of order at least two, there exists A,B > 0 such that for
j = 1, 2:

1

σ

(
g1 + g2

)
≺ Ay2

1−By ,

and therefore

1

y

(
f1 + f2

)
≺ 1

y




A
(
y + f1 + f2

)2

1−B
(
y + f1 + f2

)




≺
Ay
(

1
y

(
y + f1 + f2

))2

1−By
(

1
y

(
y + f1 + f2

)) .

If we define u =
∑

n≥1

uny
n :=

1

y

(
f1 + f2

)
, we have just proved that

u ≺ Ay (1 + u)
2

1−By (1 + u)
.(3.9)

The idea is now to compare u with the solution v =
∑

n≥1

vny
n of

v =
Ay (1 + v)

2

1−By (1 + v)
.

It is easy to see that v is convergent at the origin, because is solution of a polynomial equation of
degree two:

− (A+B) v2 + (1− (2A+B) y) v −Ay = 0 .

Moreover, v1 = A, and for each n > 1, vn = Pn (v1, . . . , vn−1) , where

Pn (v1, . . . , vn−1) = (2A+B) vn−1 + (A+B)
n−1∑

k=1

vkvn−k

is a polynomial in the n−1 variables (v1, . . . , vn−1) with positive coefficients. If we choose A such that
A > u1, it follows from (3.9) that for all n > 1:

un ≤ Pn (u1, . . . , un−1)

and then, we see by induction on n and using the fact that Pn has positive coefficients, that:

un ≤ Pn (u1, . . . , un−1) ≤ Pn (v1, . . . , vn−1) = vn ,
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and finally u ≺ v. Since v has a positive radius of convergence, the same goes for u, and then for f1
and f2. The lemma is proved. �

It remains to prove that there exists σ > 0 such that for j = 1, 2:

σψ̂j ≺ F̂j

(
y1 + ψ̂1, y2 + ψ̂2

)
.

Remember that there exists M > 0 such that for j = 1, 2:
∥∥∥ψ̂j,n

∥∥∥
β
≤M. ‖ζj,n‖β

where 



ζ1 :=
∑

|n|≥2

ζ1,n(x)y
n

= F̂1

(
x, y1 + ψ̂1 (x,y) , y2 + ψ̂2 (x,y)

)
− T̂1(x)

∂ψ̂1

∂y1
(x,y) − T̂2(x)

∂ψ̂1

∂y2
(x,y)

ζ2 :=
∑

|n|≥2

ζ2,n(x)y
n

= F̂2

(
x, y1 + ψ̂1 (x,y) , y2 + ψ̂2 (x,y)

)
− T̂1(x)

∂ψ̂2

∂y1
(x,y) − T̂2(x)

∂ψ̂2

∂y2
(x,y) .

If we set σ := 1
M

, then we have





σψ̂1 ≺ ζ1 ≺ F̂ 1

(
x, y1 + ψ̂1 (x,y) , y2 + ψ̂2 (x,y)

)
+ T̂1(x)

∂ψ̂1

∂y1
(x,y) + T̂2(x)

∂ψ̂1

∂y2
(x,y)

σψ̂2 ≺ ζ2 ≺ F̂ 2

(
x, y1 + ψ̂1 (x,y) , y2 + ψ̂2 (x,y)

)
+ T̂1(x)

∂ψ̂2

∂y1
(x,y) + T̂2(x)

∂ψ̂2

∂y2
(x,y)

.

Moreover, we recall that 




T̂1,n = 0 , if n1 = 0

T̂2,n = 0 , if n2 = 0

ψ̂1,n = 0 , if n1 ≥ 1

ψ̂2,n = 0 , if n2 ≥ 1

,

so that we have in fact more precise dominant relations:




σψ̂1 ≺ ζ1 ≺ F̂ 1

(
x, y1 + ψ̂1 (x,y) , y2 + ψ̂2 (x,y)

)

σψ̂2 ≺ ζ2 ≺ F̂ 2

(
x, y1 + ψ̂1 (x,y) , y2 + ψ̂2 (x,y)

) .

It remains the apply the lemma above to conclude. �

Remark 3.18. In the previous proposition, assume that for j = 1, 2,

F̂j (x,y) =
∑

n∈N2, |n|≥2

F̂ (j)
n (x)yn

in the expression of Ŷ satisfies
{
F̂

(1)
n (0) = 0 , ∀n = (0, n2) | n2 ≥ 2

F̂
(2)
n (0) = 0 , ∀n = (n1, 0) | n1 ≥ 2

.

Then, the diffeomorphism Φ̂ in the proposition can be chosen to be the identity on {x = 0}, so that
{
R̂1 (x,y) = F̂1 (0,y) + xŜ1 (x,y)

R̂2 (x,y) = F̂2 (0,y) + xŜ2 (x,y) ,
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where Ŝ1, Ŝ2 are 1-summable in the direction θ and F̂1 (0,y) , F̂2 (0,y) ∈ C {y} are convergent in neigh-

borhood of the origin in C2. Indeed, we easily see by induction on |n| = n1 + n2 ≥ 2 that ψ̂1 and ψ̂2

can be chosen “divisible” by x, and that ζ1, ζ2 are such that ζj,n (x) is also “divisible” by x for j = 1
and n1 = 0, and for j = 2 and n2 = 0.

3.4. 1-summable normal form up to arbitrary order N .
We consider now a formal non-degenerate diagonal doubly-resonant saddle node asymptotically

orbitally linearizable, 1-summable in every direction θ 6= arg (λ) ( mod π), of the form

Ŷprep = x2
∂

∂x
+
(
−λ+ a1x− d (y1y2) + xŜ1 (x,y)

)
y1

∂

∂y1

+
(
λ+ a2x+ d (y1y2) + xŜ2 (x,y)

)
y2

∂

∂y2
,

where:

• λ ∈ C\ {0};
• Ŝ1, Ŝ2 ∈ C Jx,yK are of order at least one with respect to y and 1-summable in every direction
θ ∈ R with θ 6= arg (λ) ( mod π);

• a := res
(
Ŷprep

)
= a1 + a2 /∈ Q≤0 ;

• d (v) ∈ vC {v} is the germ of an analytic function in v := y1y2 vanishing at the origin.

As usual, we denote by Yprep,θ, S1,θ, S2,θ the respective 1-sums of Ŷ , Ŝ1, Ŝ2 in the direction θ. Let us
introduce some useful notations:

Ŷprep = Y0 +DC +RR ,

where

• C := −y1 ∂
∂y1

+ y2
∂

∂y2

• R := y1
∂

∂y1 + y2
∂

∂y2

• Y0 := λC + x
(
x ∂
∂x

+ a1y1
∂

∂y1
+ a2y2

∂
∂y2

)

• D (x,y) = d (y1y2) + xD(1) (x,y) = d (y1y2) + x

(
Ŝ2 − Ŝ1

2

)
is 1-summable in the direction θ

of 1-sum Dθ : it is called the “tangential ” part. Dθ is also dominated by ‖y‖ = max (|y1| , |y2|)
(D is of order at least one with respect to y).

• R (x,y) = xR(1) (x,y) = x

(
Ŝ2 + Ŝ1

2

)
is 1-summable in the direction θ of 1-sum Rθ: it is

called the “radial ” part. Rθ is also dominated by ‖y‖∞ = max (|y1| , |y2|) (R is of order at
least one with respect to y).

The following proposition gives a 1-summable normalization up to any order N with respect to x.

Proposition 3.19. Let

Ŷprep = Y0 +DC +RR
be as above.

Then for all N ∈ N>0 there exist d(N) (v) ∈ C {v} of order at least one and Φ(N) ∈ Difffib

(
C3, 0, Id

)

which conjugates Ŷprep ( resp. its 1-sums Yprep,θ in the direction θ) to

Y (N) = Y0 +
(
d(N) (y1y2) + xND(N) (x,y)

)
C + xNR(N) (x,y)R

(
resp. Y

(N)
θ = Y0 +

(
d(N) (y1y2) + xND

(N)
± (x,y)

)
C + xNR

(N)
θ (x,y)R

)
,
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where D(N), R(N) are 1-summable in the direction θ, of order at least one with respect to y, of 1-sums

D
(N)
θ , R

(N)
θ in the direction θ. Moreover, one can choose d(2) = · · · = d(N) for all N ≥ 2, and d(1) = d.

Proof. The proof is performed by induction on N .

• The case N = 1 is the initial situation here, and is already proved with Ŷprep = Y (1).
• Assume that the result holds for N ∈ N>0.

(1) We start with the radial part. Let us write

R(N) (x,y) =
∑

n1+n2≥1

R(N)
n1,n2

(x) yn1
1 yn2

2

and
R

(N)
res (0, u) =

∑

k≥1

R
(N)
k,k (0)uk .

We are looking for an analytic solution τ to the homological equations:

LY (N) (τ) = −xNR(N) +
(
xN+1R̃(N+1)

)
◦ Λτ(3.10)

L
Y

(N)
θ

(τ) = −xNR(N)
θ +

(
xN+1R̃

(N+1)
θ

)
◦ Λτ ,

for a good choice of R̃(N+1), R̃
(N+1)
θ , with

Λτ (x,y) := Φτ
R (x,y) = (x, y1 exp (τ (x,y)) , y2 exp (τ (x,y))) ,

and
τ (x,y) = xN−1τ0 (y1y2) + xNτ1 (y) ,

where τ1 (y) =
∑

j1 6=j2

τ1,j1j2y
j1
1 y

j2
2 . Λτ is the formal flow of R at formal time τ (x,y).

If we admit for a moment that such an analytic solution τ exists, then Λτ is a germ of
analytic diffeomorphism fixing the origin, and since it is fibered, its inverse Λ−1

τ is also

fibered. If we consider d(N) and D̃(N) such that

d(N+1) (z1z2) + xN D̃(N) (x, z) :=
(
d(N) (y1y2) + xND(N) (x,y)

)
◦ Λ−1

τ (x, z)

d(N+1) (z1z2) + xN D̃θ

(N)
(x, z) :=

(
d(N) (y1y2) + xND

(N)
θ (x,y)

)
◦ Λ−1

τ (x, z) ,

then the two equations given in (3.10) imply that

(Λτ )∗

(
Y (N)

)
= Y0 +

(
d(N+1) (z1z2) + xN D̃(N) (x, z)

)
C

+xN+1R̃(N+1) (x, z)R
(Λτ )∗

(
Y

(N)
θ

)
= Y0 +

(
d(N+1) (z1z2) + xN D̃

(N)
θ (x, z)

)
C

+xN+1R̃
(N+1)
θ (x, z)R .

Indeed:

DΛτ · Y (N) =




LY (N) (x)

LY (N) (y1 exp (τ (x,y)))
LY (N) (y2 exp (τ (x,y)))





=




x2

(LY (N) (y1) + y1 (LY (N) (τ))) exp (τ (x,y))
(LY (N) (y2) + y2 (LY (N) (τ))) exp (τ (x,y))





=
(
Y0 +

(
d(N+1) + xN D̃(N)

)
C + xN+1R̃(N+1)R

)
◦ Λτ (x,y) .

These computations are also true with the corresponding 1-sums of formal objects con-

sidered here, i.e. with Y
(N)
θ , D

(N)
θ , D̃

(N)
θ , R̃

(N+1)
θ instead of Y (N), D(N), D̃(N), R̃(N+1) re-

spectively. We use Proposition 2.15 to obtain the 1-summability of the objects defined by
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compositions.
Let us prove that there exists a germ of analytic function of the form

τ (x,y) = xN−1τ0 (y1y2) + xNτ1 (y) ,

of order ate least one with respect to y in the origin, with

τ1 (y) =
∑

j1 6=j2

τ1,j1j2y
j1
1 y

j2
2

satisfying equation (3.10). This equation can be written

x2
∂τ

∂x
+
(
−λ+ a1x− d(N) (y1y2)− xND(N) (x,y) + xNR(N) (x,y)

)
y1
∂τ

∂y1

+
(
λ+ a2x+ d(N) (y1y2) + xND(N) (x,y) + xNR(N) (x,y)

)
y2
∂τ

∂y2

= −xNR(N) +
(
xN+1R̃(N+1)

)
◦ Λτ ,

or equivalently

x2 ∂τ
∂x

+ a1xy1
∂τ
∂y1

+ a2xy2
∂τ
∂y2

+
(
λ+ d(N) (y1y2) + xND(N) (x,y)

)
LC (τ)

+
(
xNR(N) (x,y)

)
LR (τ) = −xNR(N) +

(
xN+1R̃(N+1)

)
◦ Λτ .

Let us consider terms of degree N with respect to x:

(N − 1) τ0 (y1y2) +
(
a1 + a2 + 2δN,1R

(N) (0,y)
)
y1y2

∂τ0
∂u

(y1y2)

+
(
λ+ d(N) (y1y2)

)
LC (τ1) = −R(N) (0,y)(3.11)

(here δN,1 is the Kronecker notation). So, considering separately the terms of the forms

yj11 y
j2
2 with j1 = j2 on the one hand, and with j1 6= j2 on the other hand, we have





v
(
a1 + a2 + 2δN,1R

(N)
res (0, v)

) dτ0
dv

(v) + (N − 1) τ0 (v) = −R(N)
res (0, v)

τ0 (0) = 0

and




LC (τ1) =
−1

λ+ d(N) (y1y2)

((
a1 + a2 + 2δN,1R

(N) (0,y)
)
y1y2

dτ0
du

(y1y2)

+R(N) (0,y) + (N − 1) τ0 (y1y2)

)

τ1 (0) = 0 .

Since R(N) is analytic with respect to y, R
(N)
res (0, v) is analytic near v = 0. Furthermore,

as R
(N)
res (0, 0) = 0 and a1+a2 /∈ Q≤0, the first of the two equation above has a unique for-

mal solution τ0 with τ0 (0), and this solution is convergent in a neighborhood of the origin.
Once τ0 is determined, there exists a unique formal solution τ1 to the second equation

satisfying τ1 (y) =
∑

j1 6=j2

τ1,j1j2y
j1
1 y

j2
2 , which is moreover convergent in a neighborhood of

the origin of C2 .
Therefore Λτ is a germ of analytic diffeomorphism fixing the origin, fibered, and conju-

gating Y (N)
(
resp. Y

(N)
θ

)
to Ỹ (N) := (Λτ )∗

(
Y (N)

) (
resp. Ỹ

(N)
θ := (Λτ )∗

(
Y

(N)
θ

))
.
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Equation (3.11) implies that
(
LY (N) (τ) + xNR(N)

)
and

(
L
Y

(N)
θ

(τ) + xNR
(N)
θ

)
are di-

visible by xN+1, so that we can define:

R̃(N+1) (x, z) :=

(LY (N) (τ) + xNR(N)

x2

)
◦ Λ−1

τ (x, z)

R̃
(N+1)
θ (x, z) :=



L
Y

(N)
θ

(τ) + xNR
(N)
θ

x2


 ◦ Λ−1

τ (x, z) .

By Proposition 2.15, R̃(N+1)
(
resp. D̃(N)

)
is 1-summable in the direction θ, of 1-sum

R̃
(N+1)
θ

(
resp. D̃

(N)
θ

)
.

Finally, notice that d(N+1) ◦ Λτ (0,y) = d(N) (y1, y2), τ (0,y) = 0 and then Λτ (0,y) =
(0, y1, y2) if N > 1, so that d(N+1) = d(N) when N > 1.

(2) No we deal with the tangential part. Let us write

D̃(N) (x, z) =
∑

n1+n2≥1

D̃(N)
n1,n2

(x) zn1
1 zn2

2

and

D̃
(N)
res (0, v) =

∑

k≥1

D̃
(N)
k,k (0) vk .

Again, we are looking for an analytic solution σ to the homological equations

LỸ (N) (σ) = −xN D̃(N) +
(
xN+1D(N+1)

)
◦ Γσ

L
Ỹ

(N)
θ

(σ) = −xN D̃(N)
θ +

(
xN+1D

(N+1)
θ

)
◦ Γσ ,(3.12)

for a good choice of D(N+1), D
(N+1)
θ , with

Γσ (x, z) := (x, y1 exp (−σ (x, z)) , y2 exp (σ (x, z)))

and

σ (x, z) = xN−1σ0 (z1z2) + xNσ1 (z) ,

where σ1 (z) =
∑

j1 6=j2

σ1,j1,j2z
j1
1 z

j2
2 . Γσ is the formal flow of C at formal time σ (x, z).

If we admit for a moment that such an analytic solution σ exists, then Γσ is a germ of
analytic diffeomorphism fixing the origin, and since it is fibered, its inverse Γ−1

σ is also

fibered. If we consider R(N+1) and R
(N+1)
θ such that

R(N+1) (x,y) := R̃(N+1) ◦ Γ−1
σ (x,y)

R
(N+1)
θ (x, z) := R̃

(N+1)
θ ◦ Γ−1

σ (x,y) ,

then the two equations given in (3.12) imply that

(Γσ)∗

(
Ỹ (N)

)
= Y0 +

(
d(N+1) (y1y2) + xN+1D(N+1) (x,y)

)
C

+xN+1R(N+1) (x,y)R
(Γσ)∗

(
Ỹ

(N)
θ

)
= Y0 +

(
d(N+1) (y1y2) + xN+1D

(N+1)
θ (x,y)

)
C

+xN+1R
(N+1)
θ (x,y)R .
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Indeed:

DΓσ · Ỹ (N) =




LỸ (N) (x)
LỸ (N) (z1 exp (−σ (x, z)))
LỸ (N) (z2 exp (σ (x, z)))




=




x2

(LỸ (N) (z1)− z1 (LỸ (N) (σ))) exp (−σ (x, z))
(LỸ (N) (z2) + z2 (LỸ (N) (σ))) exp (σ (x, z))




=
(
Y0 +

(
d(N+1) + xN+1D(N+1)

)
C + xN+1R(N+1)R

)
◦ Γσ (x, z) .

These computations are also true with the corresponding 1-sums of formal objects consid-

ered here, i.e. with Ỹ
(N)
θ , D̃

(N)
θ , R̃

(N+1)
θ , D

(N+1)
θ , R

(N+1)
θ instead of Ỹ (N), D̃(N), R̃(N+1), D(N+1), R(N+1)

respectively. We use Proposition 2.15 to obtain the 1-summability of the objects defined
by compositions.
Let us prove that there exists a germ of analytic function of the form

σ (x, z) = xN−1σ0 (z1z2) + xNσ1 (z) ,

of order ate least one with respect to y in the origin, satisfying equation (3.12), and such

that σ1 (z) =
∑

j1 6=j2

σ1,j1j2z
j1
1 z

j2
2 . This equation can be written

x2
∂σ

∂x
+
(
−λ+ a1x− d(N+1) (z1z2)− xN D̃(N) (x, z) + xN+1R̃(N+1) (x, z)

)
z1
∂σ

∂z1

+
(
λ+ a2x+ d(N+1) (z1z2) + xN D̃(N) (x, z) + xN+1R̃(N+1) (x, z)

)
z2
∂σ

∂z2

= −xN D̃(N) +
(
xN+1D(N+1)

)
◦ Γσ ,

or equivalently

x2 ∂σ
∂x

+ a1xz1
∂σ
∂z1

+ a2xz2
∂σ
∂z2

+
(
λ+ d(N+1) (z1z2) + xN D̃(N) (x, z)

)
LC (σ)

+
(
xN+1R̃(N+1) (x, z)

)
LR (σ) = −xN D̃(N) +

(
xN+1D(N+1)

)
◦ Γσ .

Let us consider terms of degree N with respect to x:

(N − 1)σ0 (z1z2) + (a1 + a2) z1z2
∂σ0

∂v
(z1z2)

+
(
λ+ d(N+1) (z1z2)

)
LC (σ1) = −D̃(N) (0, z) .(3.13)

Hence, we have




v (a1 + a2)

dσ0
dv

(v) + (N − 1)σ0 (v) = −D̃(N)
res (0, v)

σ0 (0) = 0

and




LC (σ1) =
−1

λ+ d(N+1) (z1z2)

(
D̃(N) (0, z) + (a1 + a2) z1z2

dσ0
dv

(z1z2)

+ (N − 1)σ0 (z1z2)

)

σ1 (0) = 0 .

Since D̃(N) is analytic with respect to z, D̃
(N)
res (0, v) is analytic near v = 0, and as

D̃
(N)
res (0, 0) = 0 and a1 + a2 /∈ Q≤0, the first of the two equation above has a unique

formal solution σ0 with σ0 (0), and this solution has a non-zero radius of convergence at
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the origin. Once σ0 is determined, there exists a unique formal solution σ1to the second

equation satisfying σ1 (y) =
∑

j1 6=j2

σ1,j1j2z
j1
1 z

j2
2 , which is moreover convergent in a neigh-

borhood of the origin in C2.
Therefore Γσ is a germ of analytic diffeomorphism fixing the origin, fibered, and conju-

gating Ỹ (N)
(
resp. Ỹ

(N)
θ

)
to Y (N+1) := (Γσ)∗

(
Ỹ (N)

) (
resp. Y

(N+1)
θ := (Γσ)∗

(
Ỹ

(N)
θ

))
.

Equation (3.13) implies that
(
LỸ (N) (σ) + xN D̃(N)

)
and

(
L
Ỹ

(N)
θ

(σ) + xN D̃
(N)
θ

)
are di-

visible by xN+1, so that we can define:

D(N+1) (x,y) :=

(
LỸ (N) (σ) + xN D̃(N)

x2

)
◦ Γ−1

σ (x,y)

D
(N+1)
θ (x,y) :=




L
Ỹ

(N)
θ

(σ) + xN D̃
(N)
θ

x2



 ◦ Γ−1
σ (x,y) .

By Proposition 2.15, D(N+1)
(
resp. R(N+1)

)
is 1-summable in the direction θ, of 1-sum

D
(N+1)
θ

(
resp. R

(N+1)
θ

)
.

�

3.5. Proof of Proposition 3.1.
We now give a short proof of Proposition 3.1, using the different results proved in this section.

Proof. (of Proposition 3.1)
We just have to use consecutively Proposition 3.5 (applied to Y0 := Y|{x=0}), Proposition 3.6,

Proposition 3.14 and finally Proposition 3.19, using at each time Corollary 2.16 in order to obtain the
directional 1-summability. �

4. Sectorial analytic normalization

The aim of this section is to prove that for any Y ∈ SN diag,0 and for any η ∈
[
π, 2π

[
, there exists

a pair

(Φ+,Φ−) ∈ Difffib

(
Sarg(iλ),η, Id

)
×Difffib

(
Sarg(−iλ),η, Id

)

whose elements analytically conjugate Y to its normal form Ynorm (given by Theorem 1.5) in sectorial
neighborhoods of the origin with wide opening. The existence of sectorial normalizing maps Φ+ and
Φ− in domains of the form S+ ∈ Sarg(iλ),η and S− ∈ Sarg(−iλ),η for all η ∈

[
π, 2π

[
, is equivalent

to the existence of a sectorial normalizing map Φθ in domains S ∈ Sθ,π, for all θ ∈ R such that
θ 6= arg (λ) ( mod π). At the end of this section we will also prove that Φ+ and Φ− both admit the

unique formal normalizing map Φ̂ (given by Theorem 1.5) as weak Gevrey-1 asymptotic expansion

in domains S+ ∈ Sarg(iλ),η and S− ∈ Sarg(−iλ),η respectively. In particular, this will prove that Φ̂ is
weakly 1-summable in every direction θ 6= arg (λ) ( mod π).

We start with a vector field Y (N) normalized up to order N ≥ 2 as in Proposition 3.1. First of all,
we prove the existence of germs of sectorial analytic functions α+ ∈ O (S+) , α− ∈ O (S−), which are
solutions to homological equations of the form:

LY (N) (α±) = xM+1A± (x,y) ,

where M ∈ N and A± ∈ O (S±) is the weak 1-sum of a weakly 1-summable formal power series (see
Lemma 4.6). In order to construct such solutions, we will integrate some appropriate meromorphic 1-
form on asymptotic paths (see subsection 4.4). Once we have these solutions α+, α−, we will construct
the desired germs of sectorial diffeomorphisms as the flows of some elementary linear vector fields at
“time” α± (x,y). After that, we will prove in subsection 4.5 that there exist unique germs of sectorial
fibered diffeomorphisms tangent to the identity which conjugate Y ∈ SN diag,0 to its normal form, by
studying the sectorial isotropies in sectorial domains with wide opening. Finally, we show in subsection
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4.6 that these unique germs of sectorial fibered diffeomorphisms tangent to the identity admits the
unique formal normalizing map Φ̂ given by Theorem 1.5 as weak Gevrey-1 asymptotic expansion.

We go on using the notations introduced in subsection 3.4, i.e.

• λ ∈ C∗

• a1 + a2 /∈ Q≤0

• C := −y1 ∂
∂y1

+ y2
∂

∂y2

• R := y1
∂

∂y1 + y2
∂

∂y2

• Y0 := λC + x
(
x ∂
∂x

+ a1y1
∂

∂y1
+ a2y2

∂
∂y2

)
.

We will, for ǫ ∈
]
0,
π

2

[
and r > 0, two sectors:

S+ (r, ǫ) := S
(
r, arg (iλ)− π

2
− ǫ, arg (iλ) + π

2
+ ǫ
)

and

S− (r, ǫ) = S
(
r, arg (−iλ)− π

2
− ǫ, arg (−iλ) + π

2
+ ǫ
)
.

Let us consider a 1-summable non-degenerate asymptotically orbitally linearizable doubly-resonant
saddle-node normalized up to an order N + 2 ≥ 2:

Y (N+2) = Y0 +
(
c (y1y2) + xN+2D(N+2) (x,y)

)
C + xN+2R(N+2) (x,y)R

(formal)

Y
(N+2)
± = Y0 +

(
c (y1y2) + xN+2D

(N+2)
± (x,y)

)
C + xN+2R

(N+2)
± (x,y)R

(analytic in S± (r, ǫ)×D (0, r))

whereD(N+2), R(N+2) are of order at least one with respect to y, and 1-summable in every direction θ ∈
R with θ 6= arg (λ) ( mod π): their respective 1-sums in the direction arg (±iλ) are D

(N+2)
± , R

(N+2)
± ,

which can be analytically extended in S± (r, ǫ) ×
(
C2, 0

)
. In order to have the complete sectorial

normalizing map, we have to assume now that our vector field is strictly non-degenerate, i.e.

ℜ (a1 + a2)>0 .

Proposition 4.1. Under the assumptions above, for all η ∈ ]π, 2π[, there exist two germs of sectorial
fibered diffeomorphisms {

Ψ+ ∈ Difffib

(
Sarg(iλ),η, Id

)

Ψ− ∈ Difffib

(
Sarg(−iλ),η, Id

)

of the form

Ψ± : (x,y) 7→
(
x,y + O

(
‖y‖2

))
,

which conjugate Y
(N+2)
± to its formal normal form

Ynorm = x2
∂

∂x
+ (−λ+ a1x− c (y1y2)) y1

∂

∂y1
+ (λ+ a2x+ c (y1y2)) y2

∂

∂y2
,

where c (v) ∈ vC {v} is the germ of an analytic function in v := y1y2 vanishing at the origin. Moreover,
we can choose Ψ± above such that

Ψ± (x,y) = Id (x,y) + xNP
(N)
± (x,y) ,

where P
(N)
± = (0, P1,±, P2,±) is analytic in S± (r, ǫ)×

(
C2, 0

)
(for some r > 0 and ǫ > η

2 ) and of order
at least two with respect to y.

By combining Propositions 3.1 (with N ≥ 2) and 4.1 we immediately obtain the following:
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Corollary 4.2. Let Y ∈ SN diag,0 be a strictly non-degenerate diagonal doubly-resonant saddle-node
which is asymptotically orbitally linearizable. Then, for all η ∈ ]π, 2π[, there exist two germs of sectorial
fibered diffeomorphisms {

Φ+ ∈ Difffib

(
Sarg(iλ),η, Id

)

Φ− ∈ Difffib

(
Sarg(−iλ),η, Id

)

tangent to the identity such that:

(Φ±)∗ (Y ) = x2
∂

∂x
+ (−λ+ a1x− c (y1y2)) y1

∂

∂y1
+ (λ+ a2x+ c (y1y2)) y2

∂

∂y2
=: Ynorm ,

where λ ∈ C∗, ℜ (a1 + a2) > 0, and c (v) ∈ vC {v} is the germ of an analytic function in v := y1y2
vanishing at the origin.

As already mentioned, we prove later in this section that Φ+ and Φ− are unique as germs (see

Proposition 1.13), and that they are the weak 1-sums of the unique formal normalizing map Φ̂ given
by Theorem 1.5.

4.1. Proof of Proposition 4.1.
We give here two consecutive propositions which allow to prove Proposition 4.1 as an immediate

consequence.

Proposition 4.3. Let Y
(N+2)
± = Y0 +D±C +R±R, where
{
D± (x,y) = c (y1y2) + xN+2D

(N+2)
± (x,y)

R± (x,y) = xN+2R
(N+2)
± (x,y)

,

with N ∈ N>0, c (v) ∈ vC {v} of order at least one, and D
(N+2)
± , R

(N+2)
± analytic in S± (r, ǫ)×

(
C2, 0

)

and dominated by ‖y‖∞. Assume that ℜ (a1 + a2) > 0.

Then, possibly by reducing r > 0 and the neighborhood
(
C2, 0

)
, there exist two germs of sectorial

fibered diffeomorphisms ϕ+ and ϕ− in S+ (r, ǫ) ×
(
C2, 0

)
and S− (r, ǫ) ×

(
C2, 0

)
respectively, which

conjugate Y
(N+2)
± to

YC,± := Y0 + C±C ,

where C± (x,y) = D± ◦ ϕ−1
± (x, z). Moreover we can chose ϕ± to be of the form

ϕ± (x,y) = (x, y1 exp (ρ± (x,y)) , y2 exp (ρ± (x,y))) ,

where ρ± (x,y) = xN+1ρ̃± (x,y) and ρ̃± is analytic in S± (r, ǫ)×
(
C2, 0

)
and dominated by ‖y‖∞.

Remark 4.4. Notice that ϕ−1
± is of the form

ϕ−1
± (x, z) =

(
x, z1

(
1 + xN+1ϑ (x, z)

)
, z2
(
1 + xN+1ϑ (x, z)

))
,

where ϑ is analytic in S± (r, ǫ)×
(
C2, 0

)
and dominated by ‖z‖∞. Consequently:

C± (x, z) = c (z1z2) + xN+1C
(N+1)
± (x, z) ,

where c is the same as above and C± is analytic in S± (r, ǫ)×
(
C2, 0

)
and dominated by ‖z‖∞.

Proposition 4.5. Let YC,± := Y0 + C±C, where

C± (x, z) = c (z1z2) + xN+1C
(N+1)
± (x, z) ,

with N ∈ N>0, c (v) ∈ vC {v} of order at least one, and C
(N+1)
± analytic in S± (r, ǫ) ×

(
C2, 0

)
and

dominated by ‖z‖∞ . Assume ℜ (a1 + a2) > 0.
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Then, possibly by reducing r > 0 and the neighborhood
(
C2, 0

)
, there exist two germs of sectorial

fibered diffeomorphisms ψ+ and ψ− in S+ (r, ǫ) ×
(
C2, 0

)
and S− (r, ǫ) ×

(
C2, 0

)
respectively, which

conjugate YC,± to

Ynorm := Y0 + c (v) C .

Moreover, we can chose ψ± to be of the form

ψ± (x, z) = (x, z1 exp (−χ± (x, z)) , z2 exp (χ± (x, z))) ,

where χ± (x, z) = xN χ̃± (x, z) and χ̃ is analytic in S± (r, ǫ)×
(
C2, 0

)
and dominated by ‖z‖∞.

If we assume for a moment the two propositions above, the proof of Proposition becomes obvious.

Proof. (Proposition 4.1)
It is an immediate consequence of the consecutive application of the previous two propositions, just

by taking Ψ± = ψ± ◦ ϕ± with the notations above. �

4.2. Proof of Propositions 4.3 and 4.5.
In order to prove Propositions 4.3 and 4.5, we will need the following lemmas. The first one gives

the existence of analytic solutions (in sectorial domains) to a homological equations we need to solve.

Lemma 4.6. Let Z± := Y0 + C± (x,y) C + xR
(1)
± (x,y)R, with C±, R

(1)
± analytic in S± (r, ǫ)×

(
C2, 0

)

and dominated by ‖y‖∞ and let also A± (x,y) be analytic in S± (r, ǫ) ×
(
C2, 0

)
and dominated by

‖y‖∞. Then for all M ∈ N>0, possibly by reducing r > 0 and the neighborhood
(
C2, 0

)
, there exists a

solution α± to the homological equation

(4.1) LZ±
(α±) = xM+1A± (x,y) ,

such that α± (x,y) = xM α̃± (x,y), where α̃± is a germ of analytic function in S± (r, ǫ)×
(
C2, 0

)
and

dominated by ‖y‖∞.

We will prove this lemma in subsection 4.4. The following lemma proves that ϕ± and ψ± constructed
in Propositions 4.3 and 4.5 are indeed germs of sectorial fibered diffeomorphisms in domains of the
form S± (r, ǫ)×

(
C2, 0

)
.

Lemma 4.7. Let f±, g± be two germs of analytic and bounded functions in S± (r, ǫ)×
(
C2, 0

)
, which

are moreover dominated by ‖y‖∞. Then

φ± : (x,y) 7→ (x, y1 exp (f± (x,y)) , y2 exp (g± (x,y)))

defines a germ of sectorial fibered diffeomorphism analytic in S± (r, ǫ) ×
(
C2, 0

)
(possibly by reducing

r > 0 and the neighborhood
(
C2, 0

)
).

Let us explain why these lemmas imply Propositions 4.3 and 4.5.

Proof. (Propositions 4.3 and 4.5)

It is sufficient to apply Lemma 4.6 with M = N + 1 , A± = −R(N+2)
± , α± = ρ± and Z± = Y

(N+2)
±

for Proposition 4.3, and with M = N , A± = −C(N+1)
± , α± = χ± and Z± = YC,± for Proposition 4.5.

Then we use Lemma 4.7 to see that ϕ± and ψ± are germs of sectorial fibered diffeomorphisms on the
considered domains, and we finally check that they do the conjugacy we want. With the notations
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above:

Dϕ± · Y (N+2)
± =




L
Y

(N+2)
±

(x)

L
Y

(N+2)
±

(y1 exp (ρ± (x,y)))

L
Y

(N+2)
±

(y2 exp (ρ± (x,y)))




=




x2(
L
Y

(N+2)
±

(y1) + y1

(
L
Y

(N+2)
±

(ρ±)
))

exp (ρ± (x,y))
(
L
Y

(N+2)
±

(y2) + y2

(
L
Y

(N+2)
±

(ρ±)
))

exp (ρ± (x,y))




=




x2

(−λ+ a1x−D± (x,y)) y1 exp (ρ± (x,y))
(λ+ a2x+D± (x,y)) y2 exp (ρ± (x,y))




(
we have used L

Y
(N+2)
±

(ρ±) = −xN+2R
(N+2)
±

)

= (Y0 + C±C) ◦ ϕ± (x,y)

= YC,± ◦ ϕ± (x,y) ,

so that (ϕ±)∗

(
Y

(N+2)
±

)
= YC,± and then

Dψ± · YC,± =




LYC,±

(x)
LYC,±

(z1 exp (−χ (x, z)))
LYC,±

(z2 exp (χ (x, z)))





=




x2(

LYC,±
(z1) + z1

(
LYC,±

(χ)
))

exp (−χ (x, z))(
LYC,±

(z2) + z2
(
LYC,±

(χ)
))

exp (χ (x, z))





=




x2

(−λ+ a1x− c (z1z2)) z1 exp (−χ (x, z))
(λ+ a2x+ c (z1z2)) z2 exp (χ (x,y))





(
we have used LYC,±

(χ±) = −xN+1C
(N+1)
±

)

= (Y0 + c (u)C) ◦ ψ± (x, z)

= Ynorm ◦ ψ± (x, z) ,

so that (ψ±)∗ (YC,±) = Ynorm . �

4.3. Proof of Lemma 4.7.

Proof. (Lemma 4.7)
We consider two germs of analytic functions f±, g± in S± (r, ǫ)×

(
C2, 0

)
which are dominated there

by ‖y‖∞, and we define

φ± : (x,y) 7→ (x, y1 exp (f± (x,y)) , y2 exp (g± (x,y))) .

Let us first prove that φ± is into. Let x = (x, y1, y2) and x′ = (x′, y′1, y
′
2) in S± (r, ǫ) ×

(
C2, 0

)
such

that φ± (x) = φ± (x′). Since φ± is fibered, necessarily x = x′. Then assume that (y1, y2) 6= (y′1, y
′
2),

such that

‖(y1 − y′1, y2 − y′2)‖∞ > 0

and for instance ‖(y1 − y′1, y2 − y′2)‖∞ = |y1 − y′1| > 0 (the other case can be done similarly). We
denote by Dy the derivative with respect to variables (y1, y2). According to the mean value theorem:

∣∣∣∣∣
ef±(x) − ef±(x′)

y1 − y′1

∣∣∣∣∣ ≤ sup
(z1,z2)∈[(y1,y2),(y′

1,y
′
2)]

∥∥Dy

(
ef±

)
(x, z1, z2)

∥∥
∞
.
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Consequently we have:

0 =
∣∣∣y1ef±(x) − y′1ef±(x

′)
∣∣∣

=
∣∣∣ef±(x)

∣∣∣ . |y1 − y′1| .
∣∣∣∣∣1 +

y′1
ef±(x)

.
ef±(x) − ef±(x′)

y1 − y′1

∣∣∣∣∣

≥
∣∣∣ef±(x)

∣∣∣ . |y1 − y′1| .
(
1−

∣∣∣∣
y′1

ef±(x)

∣∣∣∣ .
∣∣∣∣∣
ef±(x) − ef±(x′)

y1 − y′1

∣∣∣∣∣

)

≥
∣∣∣ef±(x)

∣∣∣ . |y1 − y′1| .


1−

∣∣∣∣
y′1

ef±(x)

∣∣∣∣ . sup
(z1,z2)∈[(y1,y2),(y′

1,y
′
2)]

∥∥Dy

(
ef±
)
(x, z1, z2)

∥∥
∞
.




Assume that we chose
(
C2, 0

)
= D (0, r) small enough such that f± is analytic in

S± (r, ǫ)×D (0, 3r1 + δ)×D (0, 3r2 + δ)

with δ > 0 small. Without lost of generality we can take r1 = r2. We apply Cauchy ’s integral formula
to z1 7→ ef±(x,z1,z2), for all fixed z2 , integrating on the circle of center 0 and radius 3r1 = 3r2. Similarly
we also apply Cauchy ’s integral formula to z2 7→ ef±(x,z1,z2), for all fixed z1, integrating on the circle
of center 0 and radius 3r2 = 3r1. Then we obtain

sup
(z1,z2)∈[(y1,y2),(y′

1,y
′
2)]

∥∥Dy

(
ef±
)
(x, z1, z2)

∥∥
∞
≤ 3

4r1
. exp

(
sup

x∈S±(r,ǫ)×D(0,r)

(|f± (x)|)
)

,

such that:

0 =
∣∣∣y1ef±(x) − y′1ef±(x

′)
∣∣∣

≥
∣∣∣ef±(x)

∣∣∣ . |y1 − y′1| .
(
1− 3

4
exp

(
sup

x∈S±(r,ǫ)×D(0,r)

(2 |f± (x)|)
))

.

Since f± (x) →
x→0

0, we can choose r, r1 and r2 small enough such that:

exp

(
sup

x∈S±(r,ǫ)×D(0,r)

(2 |f± (x)|)
)
≤ 5

4
<

4

3
.

Finally we obtain:

0 =
∣∣∣y1ef±(x) − y′1ef±(x

′)
∣∣∣

≥
∣∣∣ef±(x)

∣∣∣
|y1 − y′1|

16
> 0 ,

and so, if y1 6= y′1, 0 =
∣∣∣y1eρ(x) − y′1eρ(x

′)
∣∣∣ > 0, which is a contradiction.

Conclusion: (y1, y2) = (y′1, y
′
2) and then φ± is into in S± (r, ǫ)×

(
C2, 0

)
.

Since φ± is into and analytic in S± (r, ǫ)×
(
C2, 0

)
, it is a biholomorphism between S± (r, ǫ)×

(
C2, 0

)

and its image which is necessarily open (an analytic function is open), and of the same form. �

4.4. Proof of Lemma 4.6.
The goal of this subsection is to prove Lemma 4.6 by studying the existence of paths asymptotic

to the singularity and tangent to the foliation, and then to use them to construct the solution to the
homological equation (4.1).

For convenience and without lost of generality we assume λ = 1 during this subsection
(
otherwise

we can divide our vector field by λ 6= 0, make x 7→ λx and finally consider exp (−i arg (λ)) .S± (r, ǫ)

instead of S± (r, ǫ): these modifications do not change a1 and a2,
)
.
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4.4.1. Domain of stability and asymptotic paths.
We consider

Z± = Y0 + C± (x,y) C + xR
(1)
± (x,y)R

=




x2

y1

(
− (1 + C± (x,y)) + a1x+ xR

(1)
± (x,y)

)

y2

(
1 + C± (x,y) + a2x+ xR

(1)
± (x,y)

)




with ℜ (a1 + a2) > 0, and C±, R
(1)
± analytic in S± (r, ǫ) × D (0, r) and dominated by ‖y‖∞. More

precisely, we consider the Cauchy problem of unknown x (t) := (x (t) , y1 (t) , y2 (t)), with real and
positive time t ≥ 0, associated to

X± :=
±i

1 +
(
a2−a1

2

)
x+ C±

Z± ,

i.e.

(4.2)






dx

dt
= ±ix2

1+( a2−a1
2 )x+C±

dy1

dt
= ±iy1

1+( a2−a1
2 )x+C±

(
− (1 + C± (x,y)) + a1x+ xR

(1)
± (x,y)

)

dy2

dt
= ±iy2

1+( a2−a1
2 )x+C±

(
1 + C± (x,y) + a2x+ xR

(1)
± (x,y)

)

x (t) = x0 = (x0, y1,0, y2,0) ∈ S± (r, ǫ)×D (0, r) .

We denote by (t,x0) 7→ Φt
X±

(x0) the flow of X± at positive time t ≥ 0 and with initial point x0:

Φ0
X± (x0) = x0.
We will prove the following:

Proposition 4.8. For all ǫ ∈
]
0,
π

2

[
, there exists finite sectors S± (r, ǫ) , S± (r′, ǫ) with r, r′ > 0 and

an open domain Ω± stable by the flow of (4.2) at positive time t ≥ 0 such that

S± (r′, ǫ)×D (0, r′) ⊂ Ω± ⊂ S± (r, ǫ)×D (0, r) ,

for some 0 < r′1 < r1 and 0 < r′2 < r2. Moreover, if x0 ∈ Ω± then the corresponding solution
x (t) := Φt

X±
(x0) exists for all t ≥ 0 and x (t)→ 0 as t→ +∞.

Remark 4.9. This will prove that the solution x (t) to (4.2) exists for all t ≥ 0 and tends to the origin:
it defines a path tangent to the foliation and asymptotic to the origin.

Definition 4.10. We define the asymptotic path with base point x0 ∈ Ω± associated to X± the path

γ±,x0 :=
{
Φt

X±
(x0) , t ≥ 0

}
.

For convenience and without lost of generality we only detail the case where “± = +” (the case
where “± = −” is totally similar).

If we write a := a1 + a2 and b := a2−a1

2 , in the case “± = +” we have:





dx

dt
= ix2

1+bx+C+

dy1

dt
= iy1

(
−1 +

(
a
2+R

(1)
+ (x,y)

1+bx+C+(x,y)

)
x

)

dy2

dt
= ±iy2

(
1 +

(
a
2+R

(1)
+ (x,y)

1+bx+C+(x,y)

)
x

)

x (t) = x0 = (x0, y1,0, y2,0) ∈ S+ (r, ǫ)×D (0, r).
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We also consider the differential equations satisfied by |x (t)|, |y1 (t)|, |y2 (t)| and θ (t) := arg (x (t)):





d|x(t)|

dt
= |x (t)| ℜ

(
ix(t)

1+bx(t)+C+(x(t))

)

d|y1(t)|

dt
= |y1 (t)| ℜ

(
ix (t)

(
a
2+R

(1)
+ (x(t))

1+bx(t)+C+(x(t))

))

d|y2(t)|

dt
= |y2 (t)| ℜ

(
ix (t)

(
a
2+R

(1)
+ (x(t))

1+bx(t)+C+(x(t))

))

dθ(t)

dt
= ℑ

(
ix(t)

1+bx(t)+C+(x(t))

)
.

For any non-zero complex number ζ and positive numbers R,B > 0, we denote by Σ+ (ζ, R,B) the

sector of radius R bisected by iζR+ and of opening π − 2 arcsin
(

B
|ζ|

)
= 2 arccos

(
B
|ζ|

)
:

Σ+ (ζ, R,B) := {x ∈ D (0, R) | ℑ (ζx) > B |x|} .

For M,R > 0, we also denote by Θ+ (R,M)
(
resp. Θ− (R,M)

)
the sector of radius R bisected by R+(

resp. R−

)
and of opening 2 arccos (M):

Θ+ (R,M) := {x ∈ D (0, R) | ℜ (x) > M |x|}
Θ− (R,M) := {x ∈ D (0, R) | ℜ (x) < −M |x|} .

Since ℜ (a) > 0 by, we can chose ω′ ∈
]
0,ℜ

(
a
2

)[
, so that Σ+

(
a
2 , r, ω

′
)

contains iR>0. We also take

ω ∈
]
cos

(∣∣∣arg
(a
2

)∣∣∣+ arcsin

(
2ω′

|a|

))
, 1

[
,

so that Σ+ (1, r, ω) ⊂ Σ+

(a
2
, r, ω′

)
.

The fact that 0 < ω′ < ℜ
(
a
2

)
guaranties that

∣∣∣arg
(a
2

)∣∣∣+ arcsin

(
2ω′

|a|

)
<
π

2
, such that

cos

(∣∣∣arg
(a
2

)∣∣∣+ arcsin

(
2ω′

|a|

))
> 0

and then ω > 0. We also take µ ∈
]
0,
√
1− ω2

[
small enough so that

Θ+ (r, µ) ∩Σ+ (1, r, ω) 6= ∅
Θ− (r, µ) ∩Σ+ (1, r, ω) 6= ∅

and S+ (r, ǫ) ⊂ Σ+ (1, r, ω) ∪Θ+ (r, µ) ∪Θ− (r, µ).
More precisely, we need to have 0 < ǫ < arccos (µ). The idea is now to study the behavior of the
solution t 7→ x (t) on each of the domains Σ+ (1, r, ω) ,Θ+ (r, µ) ,Θ− (r, µ).
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Figure 1: representation of domains Σ+ (1, r, ω) ,Σ+

(
a
2 , r, ω

′
)
,Θ+ (r, µ) ,Θ− (r, µ) , S+ (r, ǫ), without

the appropriate radius.

We prove now the following result.

Lemma 4.11.

(1) There exists r, r1, r2 > 0 such that Σ+ (1, r, ω)×D (0, r) is stable by the flow of (4.2) at positive
time t ≥ 0. Moreover in this region |x (t)|, |y1 (t)| and |y2 (t)| decrease and go to 0 as t→ +∞.

(2) There exists 0 < r′ < r, 0 < r′1 < r1, 0 < r′2 < r2 and an open domain Ω+ stable under the
action flow of (4.2) at positive time t ≥ 0 such that

S+ (r′, ǫ)×D (0, r′) ⊂ Ω+ ⊂ S+ (r, ǫ)×D (0, r) .

Moreover, if x0 ∈ Θ+ (r′, µ)
(
resp. x0 ∈ Θ− (r′, µ)

)
, then θ (t) = arg (x (t)) , t ≥ 0 is

increasing ( resp. decreasing) as long as x (t) remains in Θ+ (r′, µ)
(
resp. Θ− (r′, µ)

)
. Finally,

there exists t0 ≥ 0 such that for all t ≥ t0, x (t) ∈ Σ+ (1, r, ω).
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Proof. 1. We fix δ ∈ ]0,min (ω, µ)[, δ′ ∈ ]0, ω′[ and we take r > 0 small enough such that for all
x = (x,y) ∈ S+ (r, ǫ)×D (0, r), we have






∣∣∣ 1
1+bx+C+(x) − 1

∣∣∣ < δ∣∣∣∣
a
2+R

(1)
+ (x)

1+bx+C+(x) − a
2

∣∣∣∣ < δ′ .

Consequently for all x ∈ S+ ×D (0, r) we have the following estimations:





− |x| (1 + δ) < ℜ
(

ix
1+bx+C+(x)

)
< |x| (1 + δ)

− |x|
(∣∣a

2

∣∣+ δ′
)
< ℜ

(
ix

(
a
2+R

(1)
+ (x,y)

1+bx+C+(x,y)

))
< |x|

(∣∣a
2

∣∣+ δ′
)

.

Moreover:

• if x ∈ Σ+ (1, r, ω) then

ℜ
(

ix

1 + bx+ C+ (x)

)
< − |x| (ω − δ) ;

• if x ∈ Σ+

(
a
2 , r, ω

′
) (

in particular if x ∈ Σ+ (1, r, ω)
)

then

ℜ
(
ix

(
a
2 +R

(1)
+ (x,y)

1 + bx+ C+ (x,y)

))
< − |x| (ω′ − δ′) ;

• if x ∈ Θ− (r, µ)
(
resp. Θ+ (r, µ)

)
then

ℑ
(

ix

1 + bx+ C+ (x)

)
< − |x| (µ− δ)

(
resp. ℑ

(
ix

1 + bx+ C+ (x)

)
> |x| (µ− δ)

)
.

Hence:

• for all t ≥ 0

− (1 + δ) |x (t)|2 < d|x(t)|

dt
< − (1 + δ) |x (t)|2

and then, as long as x (t) ∈ S+ (r, ǫ)×D (0, r), we have

|x (t)| > |x0|
1 + (1 + δ) |x0| t

;

• for all t ≥ 0, if x (t) ∈ Σ+ (1, r, ω), then

d |x (t)|
dt

< − (ω − δ) |x (t)|2(4.3)

and

(4.4)





d|y1(t)|

dt
< − (µ− δ) |y1 (t)| |x (t)|

d|y2(t)|

dt
< − (µ− δ) |y2 (t)| |x (t)|

so that |x (t)| , |y1 (t)| and |y2 (t)| are decreasing as long as x (t) ∈ Σ+ (1, r, ω);

• for all t ≥ 0, if x (t) ∈ Θ− (r, µ)
(
resp. Θ+ (r, µ)

)
then

dθ

dt
(t) < − (µ− δ) |x (t)| < − (µ− δ) |x0|

1 + (1 + δ) |x0| t(
resp.

dθ

dt
(t) > (µ− δ) |x (t)| > (µ− δ) |x0|

1 + (1 + δ) |x0| t

)
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so that t 7→ θ (t) is strictly decreasing (resp. increasing) as long as x (t) ∈ Θ− (r, µ)
(
resp.

Θ+ (r, µ)
)
. Moreover, if θ0 = θ (0) is such that x0 = x (0) ∈ Θ− (t, µ) \Σ+ (1, r, ω)

(
resp.

Θ+ (r, µ) \Σ+ (1, r, ω)
)
, then as long as x (t) ∈ Θ− (r, µ)

(
resp. Θ+ (r, µ)

)
we have:

θ (t) < θ0 −
(
µ− δ
1 + δ

)
ln (1 + (1 + δ) |x0| t)

(
resp. θ (t) > θ0 +

(
µ− δ
1 + δ

)
ln (1 + (1 + δ) |x0| t)

)
.

We see that x (t) ∈ Σ+ (1, r, ω) for all

t ≥ t0 :=

(
exp

(
1+δ
µ−δ

(
θ0 − π

2 − arccos (ω)
))
− 1
)

(1 + δ) |x0|

(
resp. t0 :=

(
exp

(
1+δ
µ−δ

(
π
2 − arccos (ω)− θ0

))
− 1
)

(1 + δ) |x0|

)
.

Notice that

(4.5) t0 ≤
exp

((
1+δ
µ−δ

)
(ǫ+ arcsin (ω))

)

(1 + δ) |x0|
.

On the one hand Σ+ (1, r, ω)×D (0, r) is stable by the flow of (4.2) at positive time t ≥ 0. Indeed in this
region |x (t)| , |y1 (t)| and |y2 (t)| are decreasing, and as soon as x (t) enters in Σ+ (1, r, ω) ∩Θ− (r, µ)(
resp. Σ+ (1, r, ω)∩Θ+ (r, µ)

)
, which is non-empty and contain a part of the boundary of Σ+ (1, r, ω)

with constant argument, θ (t) is decreasing (resp. increasing). Then, x (t) stays in Σ+ (1, r, ω).

On the other hand, as long as we are in Θ− (r, µ)
(
resp. Θ+ (r, µ)

)
we can re-parametrized the

solutions by (−θ) (resp θ):





d|x|

d(−θ)
= − |x|

ℜ
(

ix
1+bx+C+(x)

)

ℑ
(

ix
1+bx+C+(x)

) ≤ |x| . 1+δ
µ−δ

(
resp. d|x|

dθ
= |x|

ℜ
(

ix
1+bx+C+(x)

)

ℑ
(

ix
1+bx+C+(x)

) ≤ |x| . 1+δ
µ−δ

)

d|y1|

d(−θ)
= − |y1|

ℜ

(

ix

(

a
2
+R

(1)
+

(x,y)

1+bx+C+(x,y)

))

ℑ
(

ix
1+bx+C+(x)

) ≤ |y1| . |
a
2 |+δ′

µ−δ

(
resp. d|y1|

dθ
= |y1|

ℜ

(

ix

(

a
2
+R

(1)
+

(x,y)

1+bx+C+(x,y)

))

ℑ
(

ix
1+bx+C+(x)

) ≤ |y1| . |
a
2 |+δ′

µ−δ

)

d|y2|

d(−θ)
= − |y2|

ℜ

(

ix

(

a
2
+R

(1)
+

(x,y)

1+bx+C+(x,y)

))

ℑ
(

ix
1+bx+C+(x)

) ≤ |y2| . |
a
2 |+δ′

µ−δ

(
resp. d|y2|

dθ
= |y2|

ℜ

(

ix

(

a
2
+R

(1)
+

(x,y)

1+bx+C+(x,y)

))

ℑ
(

ix
1+bx+C+(x)

) ≤ |y2| . |
a
2 |+δ′

µ−δ

)
.
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Hence, if θ0 := θ (0) is such that x0 := x (0) ∈ Θ− (r, µ)
(
resp. Θ+ (r, µ)

)
, for t ≤ t0 we have:

(4.6)






|x (t)| ≤ |x0| exp
(

1+δ
µ−δ

(θ0 − θ (t))
)

(
resp. |x (t)| ≤ |x0| exp

(
1+δ
µ−δ

(θ (t)− θ0)
))

|y1 (t)| ≤ |y1,0| exp
(
| a2 |+δ′

µ−δ
(θ0 − θ (t))

)

(
resp. |y1 (t)| ≤ |y1,0| exp

(
| a2 |+δ′

µ−δ
(θ (t)− θ0)

))

|y2 (t)| ≤ |y2,0| exp
(
| a2 |+δ′

µ−δ
(θ0 − θ (t))

)

(
resp. |y1 (t)| ≤ |y1,0| exp

(
| a2 |+δ′

µ−δ
(θ (t)− θ0)

))
.

Definition 4.12. We define the domain Ω+ as the set of all x = (x, y1, y2) ∈ S+ (r, ǫ)×D (0, r)
such that:

• if ℑ (x) ≥ ω |x| then





|x| ≤ r exp
(

1+δ
µ−δ

(arg (x) − arcsin (ω))
)

|y1| ≤ r1 exp
(
| a2 |+δ′

µ−δ
(arg (x)− arcsin (ω))

)

|y2| ≤ r2 exp
(
| a2 |+δ′

µ−δ
(arg (x)− arcsin (ω))

) ;

• if ℑ (x) ≤ −ω |x| then






|x| ≤ r exp
(

1+δ
µ−δ

(π − arcsin (ω)− arg (x))
)

|y1| ≤ r1 exp
(
| a2 |+δ′

µ−δ
(π − arcsin (ω)− arg (x))

)

|y2| ≤ r2 exp
(
| a2 |+δ′

µ−δ
(π − arcsin (ω)− arg (x))

) .

We see that Ω+ is stable by the flow of (4.2) at positive time t ≥ 0. We have seen that for any initial
condition in Ω+, the solution exists for any t ≥ 0, stays in Ω+, and after a finite time t0 ≥ 0 enters
and remains in Σ+ (1, r, ω). Finally, we have:

S+ (r′, ǫ)×D (0, r′) ⊂ Ω+ ⊂ S+ (r, ǫ)×D (0, r) ,

where 



r′ = r exp
(
−
(

1+δ
µ−δ

)
(ǫ+ arcsin (ω))

)
< r

r′1 = r1 exp

(
−
(
| a2 |+δ′

µ−δ

)
(ǫ+ arcsin (ω))

)
< r1

r′2 = r2 exp

(
−
(
| a2 |+δ′

µ−δ

)
(ǫ+ arcsin (ω))

)
< r2 .

2. Let x0 = (x0,y0) ∈ Σ+ (1, r, ω)×D (0, r). From (4.3) and (4.4)we have for all t ≥ 0:

(4.7)






|x (t)| ≤ |x0|
1+(ω−δ)|x0|t

|y1 (t)| ≤ |y1,0|

(1+(1+δ)|x0|t)
µ−δ
1+δ

|y1 (t)| ≤ |y2,0|

(1+(1+δ)|x0|t)
µ−δ
1+δ

,

which proves that the solutions goes to 0 as t→ +∞. �

Remark 4.13. Another stable domain Ω− is defined similarly when dealing with the case “± = −”
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4.4.2. Construction of a sectorial analytic solution to the homological equation.

We consider the meromorphic 1-form τ := dx
x2 , which satisfies τ · (Z±) = 1. Let also A± (x,y) be

analytic in S± (r, ǫ)×
(
C2, 0

)
and dominated by ‖y‖∞, and M ∈ N>0. The following proposition is a

precision of Lemma 4.6.

Proposition 4.14. For all x0 ∈ Ω± (see Definition 4.12), the integral defined by

α± (x0) := −
ˆ

γ±,x0

xM+1A± (x) τ

is absolutely convergent. Moreover, the function x0 7→ α± (x0) is analytic in Ω±, satisfies

LZ±
(α±) = xM+1A± (x)

and α± (x,y) = xM α̃± (x,y), where α̃± is analytic on Ω± and dominated by ‖y‖∞.

Proof. We are going to use the estimations obtained in the previous paragraph.

• Let us start by proving that the integral above is convergent. We begin with:

α± (x0) = −
ˆ +∞

0

x (t)
M+1

A± (x (t))

x (t)
2

ix (t)
2

1 + bx (t) + C+ (x (t))
dt

= −i
ˆ +∞

0

x (t)
M+1

A± (x (t))

1 + bx (t) + C+ (x (t))
dt .

Since x (t) ∈ Ω± for all t ≥ 0 and A± (x,y) is dominated by ‖y‖∞, we have then:
∣∣∣∣∣
x (t)

M+1
A± (x (t))

1 + bx (t) + C+ (x (t))

∣∣∣∣∣ ≤ C |x (t)|M+1 ‖y (t)‖∞

where C > 0 is some constant, independent of x0 and t. For t ≥ 0 big enough, we deduce from
paragraph 4.4.1 that:
∣∣∣∣∣
x (t)

M+1
A± (x (t))

1 + bx (t) + C+ (x (t))

∣∣∣∣∣ ≤ C ‖y0‖
( |x0|
1 + (ω − δ) |x0| t

)M+1
1

(1 + (1 + δ) |x0| t)
µ−δ
1+δ

= O
t→+∞

(
1

tM+1

)

and then the integral is absolutely convergent.
• Let us prove the analyticity of α± in Ω±: it is sufficient to prove that it is analytic in every

compact K ⊂ Ω±. Let K be such a compact subset. Let L > 0 such that for all x ∈ K, we
have: ∣∣∣∣

A± (x)

1 + bx+ C+ (x)

∣∣∣∣ ≤ L.

There exists δ > 0 such that for all x = (x, y1, y2) ∈ K, we have δ < |x| < r. Finally, according
to the several estimates in paragraph 4.4.1, there exists B > 0 such that for all x0 ∈ K and
t ≥ 0, we have:

|x (t)| ≤ B |x0|
1 + (ω − δ) |x0| t

.

Hence: ∣∣∣∣∣
x (t)

M+1
A± (x (t))

1 + bx (t) + C+ (x (t))

∣∣∣∣∣ ≤ LBM+1 |x0|M+1

(1 + (ω − δ) |x0| t)M+1

≤ LBM+1rM+1

(1 + (ω − δ) δt)M+1
,

and the classical theorem concerning the analyticity of integral with parameters proves that
α± is analytic in any compact K ⊂ Ω±, and consequently in Ω±.
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• Let us write F (x) := ±ixM+1A±(x)
1+bx+C+(x) , so that

α± (x0) = −i
ˆ +∞

0

F
(
Φt

X±
(x0)

)
dt .

For all x0 ∈ Ω±, the function t 7→ x (t) = Φt
X±

(x0) satisfies:

∂

∂t

(
Φt

X±
(x0)

)
=

±i
1 + bx

(
Φt

X±
(x0)

)
+ C+

(
Φt

X±
(x0)

)Z±

(
Φt

± (x)
)
.

The classical theorem about the analyticity of integral with parameters tells us that we can
compute the derivatives inside the integral symbol:

(
LZ±

α±

)
(x0) = −

ˆ +∞

0

LZ±
(F ◦ Φs) (x0)ds

= −
ˆ +∞

0

DF
(
Φs

X±
(x0)

)
.DΦs

X±
(x0) .Z± (x0)ds

= −
ˆ +∞

0

DF
(
Φs

X±
(x)
)
.
∂

∂t

(
Φs+t

X±
(x0)

)

|t=0

(
±1 + bx0 + C± (x0)

i

)
ds

= −
(
±1 + bx0 + C± (x0)

i

)
.

ˆ +∞

0

DF
(
Φs

X±
(x0)

)
.
∂

∂t

(
Φt

X±
(x0)

)

|t=s
ds

= −
(
±1 + bx0 + C± (x0)

i

)
.

ˆ +∞

0

∂

∂s

(
F ◦ Φs

X±
(x0)

)
ds

= −
(
±1 + bx0 + C± (x0)

i

)
.
[
F ◦ Φs

X±
(x0)

]s=+∞

s=0

= −
(
±1 + bx0 + C± (x0)

i

)
. (−F (x0))

= xM+1
0 A± (x0) .

• Let us prove that α̃± (x,y) := α±(x,y)
xM is bounded and dominated by ‖y‖∞ in Ω±. The fact

that it is analytic in Ω± is clear because α± is analytic there and 0 /∈ Ω±. As above, there
exists there exists C > 0 such that for all x0 := (x0,y0) ∈ Ω± and for all t ≥ 0:

∣∣∣∣∣∣∣

x
(
Φt

X±
(x0)

)M+1

A±

(
Φt

X±
(x0)

)

(
1 + bx

(
Φt

X±
(x0)

)
+ C+

(
Φt

X±
(x0)

))

∣∣∣∣∣∣∣
≤ C

∣∣∣x
(
Φt

X±
(x0)

)∣∣∣
M+1 ∥∥∥y

(
Φt

X±
(x0)

)∥∥∥
∞

.

We will only deal with the case where x0 ∈ Θ± (r, µ) (the case where Σ± (1, r, ω) is easier and
can be deduced from that case). On the one hand from (4.6) we have for all t ≤ t0:




∣∣∣x
(
Φt

X±
(x0)

)∣∣∣ ≤ D |x0| , where D := exp
(

1+δ
µ−δ

(arccos (µ) + ǫ)
)

∥∥∥y
(
Φt

X±
(x0)

)∥∥∥
∞
≤ D′ ‖y0‖∞ , where D′ := exp

(
| a2 |+δ′

µ−δ
(arccos (µ) + ǫ)

)
.

On the other hand we have seen in (4.7) that for all t ≥ t0:





∣∣∣x
(
Φt

X±
(x0)

)∣∣∣ ≤
∣

∣

∣
x
(

Φ
t0
X±

(x0)
)
∣

∣

∣

1+(ω−η)
∣

∣

∣
x
(

Φt
X±

(x0)
)
∣

∣

∣
(t−t0)∥∥∥y

(
Φt

X±
(x0)

)∥∥∥
∞
≤ ‖y0‖∞ .
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Hence, we use the Chasles relation and the estimations above to obtain:

|α̃± (x0,y0)| ≤
|α± (x0,y0)|
|x0|M

≤ CDM+1D′ ‖y0‖∞ |x0|
M+1 |t0|

|x0|M

+
C ‖y0‖∞
|x0|M

ˆ +∞

t0

dt(
1 + (ω − η)

∣∣∣x
(
Φt

X±
(x0)

)∣∣∣ (t− t0)
)

≤ CDM+1D′ ‖y0‖∞ |x0| |t0|+
C ‖y0‖∞

∣∣∣x
(
Φt0

X±
(x0)

)∣∣∣
M+1

M (ω − δ) |x0|M
∣∣∣x
(
Φt0

X±
(x0)

)∣∣∣
;

and according to (4.5) we have

|α̃± (x0,y0)| ≤
(
D2D′

(1 + δ)
+

1

M (ω − δ)

)
CDM ‖y0‖∞ .

�

4.5. Sectorial isotropies in “wide” sectors and uniqueness of the normalizations.
We consider a normal form Ynorm as given by Theorem 1.10. We study here the germs of sectorial

isotropies of the normal form Ynorm in a domain S± ∈ Sarg(±iλ),η (sectorial neighborhood of the origin
with opening η ∈ ]π, 2π[ in the direction arg (±iλ)). As a consequence, we establish in Corollary 4.2
the uniqueness of the germs Φ± (see Proposition 1.13).

Definition 4.15. A germ of sectorial fibered diffeomorphism Φθ,η in the direction θ ∈ R with opening
η ≥ 0, is a germ of fibered sectorial isotropy of Ynorm (in the direction θ ∈ R with opening η ≥ 0) if
(Φθ,η)∗ (Ynorm) = Ynorm in S ∈ Sθ,η. We denote by Isotθ,η (Ynorm) the set of germs of sectorial fibered
isotropies of Ynorm in the direction θ ∈ R with opening η ≥ 0.

Proposition 1.13 is an immediate consequence of the following one.

Proposition 4.16. For all η ∈ ]π, 2π[:

Isotarg(±iλ),η (Ynorm) =

{
(x, y1, y2) 7→ (x, b1y1, b2y2) | (b1, b2) ∈ (C\ {0})2

such that c (b1b2v) = c (v)

}
.

In particular, the only germ of sectorial fibered isotropy of Ynorm in the direction arg (±iλ) with opening
η ∈ ]π, 2π[, which is tangent to the identity is the identity itself.

Proof. Let φ : (x,y) 7→ (x, φ1 (x,y) , φ2 (x,y)) be a sectorial fibered isotropy of Ynorm in S± ∈
Sarg(±iλ),η with η ∈ ]π, 2π[. Possibly by reducing our domain, we can assume that S± is bounded
and of the form S± ×D (0, r) (for some sector S± and some polydisc D (0, r)) and that φ is bounded
in this domain. We have

φ∗ (Ynorm) = Ynorm

i.e.

Dφ · Ynorm = Ynorm ◦ φ
which is also equivalent to:

(4.8)





x2 ∂φ1

∂x
+ (−1− c (y1y2) + a1x) y1

∂φ1

∂y1
+ (1 + c (y1y2) + a2x) y2

∂φ1

∂y2

= φ1 (−1− c (φ1φ2) + a1x)

x2 ∂φ2

∂x
+ (−1− c (y1y2) + a1x) y1

∂φ2

∂y1
+ (1 + c (y1y2) + a2x) y2

∂φ2

∂y2

= φ2 (1 + c (φ1φ2) + a2x) .
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Let us consider ψ := φ1φ2. Then

x2
∂ψ

∂x
+ (−1− c (y1y2) + a1x) y1

∂ψ

∂y1
+ (1 + c (y1y2) + a2x) y2

∂ψ

∂y2
= (a1 + a2)xψ .

By assumption we can write

ψ (x,y) =
∑

j1+j2≥2

ψj1,j2 (x) y
j1
1 y

j2
2 ,

where ψj1,j2 (x) is analytic and bounded in S± for all j1, j2 ≥ 0 and such that

∑

j1+j2≥1

(
sup
x∈S±

(|ψj1,j2 (x)|)
)
yj11 y

j2
2

is a convergent entire series in D (0, r) (possibly by reducing the radius of the polydisc). Consequently,
with an argument of uniform convergence we have for all j1, j2 ≥ 0:

x2
dψj1;j2

dx
(x) + (j2 − j1 + (a1 (j1 − 1) + a2 (j2 − 1))x)ψj1,j2 (x)

= (j1 − j2)
min(j1,j2)∑

l=1

ψj1−l,j2−l (x) cl .

For j1 = j2 = j ≥ 1, we have

ψj,j (x) = bj,jx
−(j−1)(a1+a2), bj,j ∈ C,

and since ℜ (a1 + a2) > 0, ψj,j (x) is bounded near the origin if and only if bj,j = 0 or j = 1. For
j1 > j2, we see recursively that ψj1,j2 (x) = 0. Indeed, we obtain by induction that

ψj1,j2 (x) = bj1,j2 exp

(
j2 − j1
x

)
x−(a1(j1−1)+a2(j2−1)) ,

and since it has to be bounded on S±, we necessarily have bj1,j2 = 0. Similarly, for j1 < j2, we see
recursively that ψj1,j2 (x) = 0. As a conclusion, ψ (x,y) = b1,1y1y2.

We can now solve separately each equation in (4.8):





x2 ∂φ1

∂x
+ (−1− c (y1y2) + a1x) y1

∂φ1

∂y1
+ (1 + c (y1y2) + a2x) y2

∂φ1

∂y2

= φ1 (−1− c (b1,1y1y2) + a1x)

x2 ∂φ2

∂x
+ (−1− c (y1y2) + a1x) y1

∂φ2

∂y1
+ (1 + c (y1y2) + a2x) y2

∂φ2

∂y2

= φ2 (1 + c (b1,1y1y2) + a2x) .

As above for i = 1, 2 we can write φi (x,y) =
∑

j1+j2≥1

φi,j1,j2 (x) y
j1
1 y

j2
2 , where φi,j1,j2 (x) is analytic

and bounded in S± for all j1, j2 ≥ 0 and such that

∑

j1+j2≥1

(
sup
x∈S±

(|φi,j1,j2 (x)|)
)
yj11 y

j2
2

is a convergent entire series in D (0, r) (possibly by reducing the radius of the polydisc). We obtain:





x2
dφ1,j1;j2

dx
(x) + (j2 − j1 + 1 + (a1 (j1 − 1) + a2j2)x)φ1,j1,j2 (x)

=

min(j1,j2)∑

l=1

φ1,j1−l,j2−l (x)
(
j1 − j2 − (b1,1)

l
)
cl

x2
dφ2,j1;j2

dx
(x) + (j2 − j1 − 1 + (a1j1 + a2 (j2 − 1))x)φ2,j1,j2 (x)

=

min(j1,j2)∑

l=1

φ2,j1−l,j2−l (x)
(
j1 − j2 + (b1,1)

l
)
cl .
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From this we deduce: {
φ1,1,0 (x) = p1,0 ∈ C\ {0}
φ2,0,1 (x) = q0,1 ∈ C\ {0}

with p1,0q0,1 = b1,1. Then, using the assumption that φi,j1,j2 (x) is analytic and bounded in S± for all
j1, j2 ≥ 0, one check easily by induction on j ≥ 1 that

∀j ≥ 1





φ1,j+1,j = 0

φ2,j,j+1 = 0

cj

(
1− (b1,1)

j
)
= 0

.

Indeed, if the result holds for an integer j ≥ 1, then we have:

x2
dφ1,j+2,j+1

dx
(x) + (j + 1) (a1 + a2)xφ1,j+2,j+1 (x) = p1,0cj+1

(
1− (b1,1)

j+1
)

and the general solution to this equation is:

φ1,j+2,j+1 (x) =






pj+2,jx
−(j+1)(a1+a2) +

p1,0cj+1

(
1− (b1,1)

j+1
)

(j + 1) (a1 + a2)− 1
x−1

(
if (j + 1) (a1 + a2) 6= 1

)

pj+2,j+1x
−(j+1)(a1+a2) + p1,0cj+1

(
1− (b1,1)

j+1
)
x−1 ln (x)(

if (j + 1) (a1 + a2) = 1
)

which is bounded near the origin if and only if pj+2,j+1 = 0 and cj+1

(
1− (b1,1)

j+1
)
, since ℜ (a1 + a2) >

0. The fact that cj

(
1− (b1,1)

j
)
= 0 for all j ≥ 1 means that c (b1,1y1y2) = c (y1y2) for all (y1, y2) near

the origin. The same arguments work for φ2,j,j+1, j ≥ 1. Consequently:





x2
dφ1,j1;j2

dx
(x) + (j2 − j1 + 1 + (a1 (j1 − 1) + a2j2)x)φ1,j1,j2 (x)

= (j1 − j2 − 1)

min(j1,j2)∑

l=1

φ1,j1−l,j2−l (x) cl

x2
dφ2,j1;j2

dx
(x) + (j2 − j1 − 1 + (a1j1 + a2 (j2 − 1))x)φ2,j1,j2 (x)

= (j1 − j2 + 1)

min(j1,j2)∑

l=1

φ2,j1−l,j2−l (x) cl .

We see recursively that for j1 > j2 + 1, we have φ1,j1,j2 (x) = 0. Indeed, we obtain by induction that

φ1,j1,j2 (x) = pj1,j2 exp

(
j2 − j1 + 1

x

)
x−(a1(j1−1)+a2j2) ,

and since it has to be bounded on S±, we necessarily have pj1,j2 = 0. Similarly, for j1 < j2 +1, we see
recursively that φj1,j2 (x) = 0. As a conclusion, φ1 (x,y) = p1,0y1, p1,0 6= 0.

By exactly the same kind of arguments we have φ2 (x,y) = q0,1y2, q0,1 6= 0. Moreover, we have
proved that p1,0q0,1 = b1,1 is such that c (b1,1v) = c (v) for all v near the origin. �

4.6. Weak 1-summability of the normalization.
Let us consider the same data as in Lemma 4.6. The following lemma states that an analytic

solution to the homological equation considered in S± ∈ Sarg(±iλ),η with η ∈
[
π, 2π

[
, admits a weak

Gevrey-1 asymptotic expansion in this sector. In other words, it is the weak 1-sum of a formal solution
the homological equation.
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Lemma 4.17. Let

Z := Y0 + C (x,y) C + xR(1) (x,y)R
be a formal vector field weakly 1-summable in S± ∈ Sarg(±iλ),η, with η ∈

[
π, 2π

[
and C,R(1) of order

at least one with respect to y. We denote by

Z± := Y0 + C± (x,y) C + xR
(1)
± (x,y)R

the associate weak 1-sums in S±. Let also A ∈ C Jx,yK be weakly 1-summable in S±, of 1-sum A±

and of order at least one with respect to y. Then, any analytic function α± (x,y) = xM α̃± (x,y), with
M ∈ N>0, α̃± analytic in S± and dominated by ‖y‖∞, which satisfies

LZ±
(α±) = xM+1A± (x,y) ,

has a weak Gevrey-1 asymptotic expansion in S±, denoted by α. Moreover, α is a formal solution to

LZ (α) = xM+1A (x,y) .

Proof. Let us write Z as follow:

Z = x2
∂

∂x
+ (− (λ+ d (y1y2)) + a1x+ F1 (x,y)) y1

∂

∂y1

+(λ+ d (y1y2) + a2x+ F2 (x,y)) y2
∂

∂y2
,

with F1, F2 weakly 1-summable in S± ∈ Sarg(±iλ),η, with η ∈
[
π, 2π

[
, of weak 1-sums F1,±, F2,±

respectively, which are dominated by ‖y‖, and with d (v) ∈ vC {v} without constant term. Consider
the Taylor expansion with respect to y of d,F1,F2,A and α:





d (y1y2) =
∑

k≥1

dky
k
1y

k
2

F1 (x,y) =
∑

j1+j2≥1

F1,j (x)y
j

F2 (x,y) =
∑

j1+j2≥1

F2,j (x)y
j

A (x,y) =
∑

j1+j2≥1

Aj (x)y
j

α (x,y) =
∑

j1+j2≥1

αj (x)y
j

(same expansions are valid in S± for the corresponding weak 1-sums). As usual, possibly by reducing
S±, we can assume that S± = S± × D (0, r) for some sector S± and some polydisc D (0, r). The
homological equation

LZ (α) = xM+1A (x,y)

can be re-write:

x2
∂α

∂x
+ (− (λ+ d (y1y2)) + a1x+ F1, (x,y)) y1

∂α

∂y1

+(λ+ d (y1y2) + a2x+ F2, (x,y)) y2
∂α

∂y2
= xM+1A (x,y) .

Using normal convergence in any compact subset of S±, we can compute the derivative of

α (x,y) =
∑

j1+j2≥1

αj (x)y
j

with respect to x, y1 or y2 term by term, in order to obtain after identification: ∀j = (j1, j2) ∈ N2,

x2
dαj,±

dx
(x) + (λ (j2 − j1) + (a1j1 + a2j2)x)αj,± (x) = Gj,± (x) ,
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where Gj,± depends only on dk, F1,k,±, F2,k,±, αk,± and Al,±, for k ≤ min (j1, j2), |k| ≤ |j| − 1 and
|l| ≤ |j|. We obtain a similar differential equation for the associated formal power series. Let us prove
by induction on |j| ≥ 0 that:

(1) Gj,± is the 1-sum of Gj in S±

(2) Gj,j (0) = 0 if j = (j, j)
(3) αj,± is the 1-sum αj in S±.

What will be important is the fact that for all j ∈ N2, αj,± is bounded in S±.

• For j = (0, 0), we obviously have G(0,0) = 0 and then α(0,0) = 0.

• Let j = (j1, j2) ∈ N2 with |j| = j1 + j2 ≥ 1. Assume the property holds for all k ∈ N2 with
|k| ≤ |j| − 1.
(1) Since Gj depends only on dk, F1,k, F2,k, αk and Al, for k ≤ min (j1, j2), |k| ≤ |j| − 1 and
|l| ≤ |j|, then Gj is 1-summable in S±, of 1-sum Gj,±.

(2) We also see that Gj,j (0) = 0 if j = (j, j).
(3) If j1 6= j2, then point 1. in Proposition 2.24 tells us that there exists a unique for-

mal solution αj (x) to the irregular differential equation we are looking at such that
αj (0) = 1

λ(j2−j1)
Gj (0) . Moreover, this solution is 1-summable in S± since the same

goes for Gj.

(4) If j1 = j2 = j ≥ 1, since G(j,j) (0) = 0, then we can write G(j,j) (x) = xG̃(j,j) (x) with

G̃(j,j) (x) 1-summable in S±, and then the differential equation becomes regular:

x
dα(j,j),±

dx
(x) + (a1 + a2) jα(j,j),± (x) = G̃(j,j),± (x) .

Since a1 + a2 /∈ Q≤0, according to point 2. in Proposition 2.24, the latter equation has a
unique formal solution α(j,j) (x), which is moreover 1-summable in S±, and its 1-sum is
the only solution to this equation bounded in S±. Thus, it is necessarily α(j,j),±.

�

As consequence, we have the following result.

Corollary 4.18. The sectorial normalizing maps Φ± in Corollary 4.2 are the weak 1-sums in S± ∈
Sarg(±λ),η of the formal normalizing map given by Theorem 1.5, for all η ∈

[
π, 2π

[
.

Proof. Let us recall the construction of the sectorial normalizing maps Φ± obtained in Corollary
4.2. Each sectorial diffeomorphism Φ± is obtained as the composition of three germs of sectorial
diffeomorphisms, using successively Propositions 3.1 and 4.1. The sectorial map obtained thanks to
Proposition 3.1 is 1-summable in any direction θ 6= arg (λ) ( mod π). The sectorial diffeomorphism
from Proposition 4.1 is built as the composition of two germs of sectorial diffeomorphisms, using
successively Propositions 4.3 and 4.5. These two latter sectorial maps are obtained by thanks to
the use of Lemma 4.6 (see subsection 4.2). Lemma 4.17 above allows to state that these sectorial
diffeomorphisms (obtained thanks to the homological equations in Lemmas 4.6 and 4.17) admit a
weak Gevrey-1 asymptotic expansion in domains S± ∈ Sarg(±λ),η, for all η ∈

[
π, 2π

[
. Consequently,

the same goes for the sectorial diffeomorphism of Proposition 4.1, and then for the one of Corollary
4.2 (we have used here Proposition 2.19 for the composition).

Using point 3 in Lemma 2.18, we deduce that the weak Gevrey-1 asymptotic expansion of the
sectorial normalizing map of Corollary 4.2 is a formal normalizing map, such as the one of Theorem
1.5. By uniqueness, it is the unique formal normalizing map. �

4.7. Proof of Theorem 1.10.

Proof. (Theorem 1.10) �

Theorem 1.10 is a summary of Corollaries 4.2 and 4.18.
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