
HAL Id: hal-01314910
https://hal.science/hal-01314910

Submitted on 12 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

An Item/User Representation for Recommender
Systems based on Bloom Filters

Manuel Pozo, Raja Chiky, Farid Meziane, Elisabeth Métais

To cite this version:
Manuel Pozo, Raja Chiky, Farid Meziane, Elisabeth Métais. An Item/User Representation for Recom-
mender Systems based on Bloom Filters. IEEE Tenth International Conference on Research Challenges
in Information Science (RCIS 2016), Jun 2016, Grenoble, France. �hal-01314910�

https://hal.science/hal-01314910
https://hal.archives-ouvertes.fr


An Item/User Representation for Recommender
Systems based on Bloom Filters

Manuel Pozo and Raja Chiky
LISITE-ISEP

28, rue Notre Dame des Champs
75006 Paris (France)

email: {name.surname}@isep.fr

Farid Meziane
University of Salford

The Crescent, Salford, Lancashire
M5 4WT, United Kingdom

email: f.meziane@salford.ac.uk

Elisabeth Métais
CNAM

292, rue Saint-Martin
75003 Paris (France)

email: elisabeth.metais@cnam.fr

Abstract—This paper focuses on the items/users representation
in the domain of recommender systems. These systems compute
similarities between items (and/or users) to recommend new items
to users based on their previous preferences. It is often useful
to consider the characteristics (a.k.a features or attributes) of
the items and/or users. This represents items/users by vectors
that can be very large, sparse and space-consuming. In this paper,
we propose a new accurate method for representing items/users
with low size data structures that relies on two concepts: (1)
item/user representation is based on bloom filter vectors, and (2)
the usage of these filters to compute bitwise AND similarities
and bitwise XNOR similarities. This work is motivated by three
ideas: (1) detailed vector representations are large and sparse,
(2) comparing more features of items/users may achieve better
accuracy for items similarities, and (3) similarities are not only
in common existing aspects, but also in common missing aspects.
We have experimented this approach on the publicly available
MovieLens dataset. The results show a good performance in
comparison with existing approaches such as standard vector
representation and Singular Value Decomposition (SVD).

I. INTRODUCTION

The large amount of information on the Internet makes
it difficult for users to find exactly what they need. Rec-
ommender Systems (RS) analyse the interests of users and
present first the information in which they might be more
interested [1]. This dramatically reduces the amount of infor-
mation presented to user and delivers the correct information
to the correct users [2]. Hence, it attracted the interest from
many fields, such as e-commerce, service providers and media
services, with the aim of personalizing the users’ experience.

In this paper we focus on improving items/users repre-
sentation in the domain of recommender systems and within
the context of very large datasets and multiple resources. As in
other data based applications, such as Information Retrieval,
these systems compute similarities among items/users based
on the resources they have access to. However, these resources
can be very large, thus making the representation and descrip-
tion of items/users difficult to deal with in terms of sparsity and
space-consumption. Typically, data analysis systems reduce
data representation into a lower space thus reducing both
the sparsity and space complexity. However, reducing the data
description may affect the accuracy of the similarity measure.

In this research, we use a compressed yet high quality
data representation for items/users based on Bloom Filters.

A Bloom Filter (BF) is a bit structure that allows to represent
a set of elements in very low space [3]. To the best of our
knowledge, these filters have not been used in the field of
recommender systems and we believe that their properties can
be very beneficial. In addition, we propose a similarity model
based on these structures in order to address high quality rep-
resentations, sparsity and space-consumption issues. The main
advantage of this approach is that it hardly affect similarities
matching. In fact, this idea may expand the representation of
items/users by adding all possible resources and making very
detailed representations at a very low space complexity. The
motivation and the three following contributions are applied
to a recommendation process:

1) Bloom filters highly reduce the size of item representa-
tions while having a great number of features. This fact
involves a detailed items/users descriptions in a lower
space complexity;

2) Bloom filters allow a fast bitwise AND operation to
compare common features of items that we use to
compute an accurate similarity measure;

3) Item and user similarities are not only in common
features, but also in common missing features. To ad-
dress this issue, a bitwise XNOR similarity operation is
proposed and takes into account both common features,
and common missing features.

In the recommender systems literature, recommendation
techniques are usually classified into collaborative filtering,
content-based and hybrid methods [1]. These techniques ex-
ploit the interest of users, a.k.a. feedback or preferences, in
order to learn and adapt the recommendations. Moreover,
they may also use the characteristics of items/users, a.k.a.
features or attributes. Collaborative filtering techniques group
users according to their feedback and recommend items that
people from the same group of preferences have already liked
in the past [4], [5]. Content-based techniques use the items
features to compute items similarities and to recommend
similar items to the ones that the user preferred in the past. Yet,
it has to deal with big and heterogeneous data. Hybrid methods
combine both techniques to alleviate their drawbacks and to
enhance recommendations [6]. Thus, it increases the complex-
ity of the system.



In content-based and hybrid systems specifically, there is
a similarity computation process. For instance, in a movie
application, the features of a movie (considered as an item) can
be the genres, the actors, the directors, etc. This set of features
may be represented as a vector of features or keywords,
and thus, vector similarity methods can be computed [1].
The accuracy of the similarity will depend on the selected
features for comparison and will affect the recommendation.
For example, comparing two movies only by their genre, such
as comedy and drama, is less accurate than involving also their
actors in the similarity process.

Indeed, the number of features affect the similarity measure,
and generally the more attributes are used the better the ac-
curacy of the similarity is. However, new features may not
appear in other items, for instance, a new actor that has played
only in one movie, and increasing the number of features
increases the size of vectors that will eventually become very
large and sparse. Furthermore, increasing vector sizes makes
similarity computations slower. New tendencies in the field of
recommender systems favour adding heterogeneous data from
external sources, such as open data, Twitter and Facebook, in
order to better describe items/users [1], [7], [8]. However, this
could create very large heterogeneous vector of features and
render computations more difficult to handle.

Expert systems, modeling topic analysis, explanatory anal-
ysis or dimensional reduction models (such as Singular Value
Decomposition or Principle Component Analysis) are often
used to alleviate this space complexity. Indeed, these analysis
identify the most relevant features of the items in order to
reduce the vectors’ size. However, reducing features may
yield to a loss of quality in the item representation, and
consequently, in items similarity. Besides, the enormous size
of the datasets involves big memory resources and a very large
time analysis while building these models.

In our experimentations we use the MovieLens dataset and
IMDb database, which are publicly available [9]. The tests
have been performed for: (1) analysing the pertinence of
bloom filters in recommender systems, (2) enhancing the usage
of a bitwise AND similarity instead of the common vector
cosine/jaccard similarities and (3) using a bitwise XNOR
similarity. We compare our bloom filter item representation
against two models: a vector similarity model that uses all
available features and a dimension reduction technique based
on Singular Value Decomposition (SVD). The results show
that our approach highly reduces the size of vector repre-
sentations (97% per vector) while keeping a high fidelity in
item similarity (accuracy of 98%). In addition, it outperforms
the results of SVD and using the same space complexity
the bloom model outperforms item similarity accuracy.

The structure of this paper is as follows: Section II gives
the related work in similarity processes applied to recom-
mender systems. Section III introduces the background and
the context for bloom filters and its application in rec-
ommender systems. In Section IV, the proposed similarity
model based on bloom filters is explained in details. In
Section V, the experimentation phase and the achieved results

are presented. We conclude and present the future work in
Section VI.

II. RELATED WORK

The most known recommendation techniques are collabora-
tive filtering, content-based and hybrid methods [1]. As men-
tioned previously, hybrid methods combine both techniques by
taking their advantages and alleviating their drawbacks [6]. In
fact, collaborative filtering has already demonstrated simplicity
and better accuracy than content-based, and thus, hybrid
methods may enhance these techniques by incorporating het-
erogeneous data.

The representation of items/users as a vector is very used
in content-based and hybrid method. This can be used also
in collaborative filtering methods. Indeed, in memory-based
collaborative filtering techniques, users are represented by
a vector of preferences where each dimension corresponds
to one item and each value is the degree of interest in this
item [4], [5], [10], [11]. Then in order to find out similar
users, correlations and similarities among these vectors are
performed. On the contrary, model-based collaborative fil-
tering is a new generation of techniques that makes vector
representation obsolete [5], [12]–[15]. Particularly, the Matrix
Factorization (MF) technique is widely extended due to its
accuracy, scalability and simplicity. It creates a reduced and
trained latent space model to explain future users’ preferences.
However, these techniques solely rely on the interest of users
in items. In content-based techniques, items are represented
by a vector of keywords/features [16]. Each dimension cor-
responds to one feature that the item may have or not.
For example, in the domain of movies an actor only plays
in a subset of movies. Hybrid methods may combine both
techniques to get stronger performance. Consequently, they
also exploit the feature of items/users and may use a vector
to represent them.

Some authors propose hybrid approaches to enhance rec-
ommender systems. In [17] authors propose a framework
to control the similarity (versus diversity) factor in a top-
K recommended items. They create ”trees of interests” that
allow creating a ”zoom-in” technique to see more items
of the same tree, which tend to be similar. Some other
tendencies in recommendations use semantic technologies,
like ontologies, to better describe users and items [7]. For
instance, in [18] and [19] the authors propose a hybrid method
to describe users and items through ontologies structures in
order to compute an inference similarity. In [6], the author
proposes to combine case-based reasoning recommendation
and a collaborative filtering technique. It studies the past items
and past user records to find, adapt or create new similar items
for the recommendation.

Other authors propose to incorporate more heterogeneous
data from external resources. In [20], authors use item-item
similarity based on the context in Wikipedia pages to compute
”artificial ratings” for an item. [21] characterizes economic
articles using attributes as keywords. Then, they compute arti-



cles cosine vector similarity regarding their keywords. Finally,
articles that match better with a user profile are recommended.

However, to deal with large number of features is com-
putationally expensive. In [22], authors propose to add de-
mographical and context information to the recommendation.
They create users and/or items demographic vectors in order
to represent information. If the dimension of these vectors is
too high, they reduce it by applying the SVD technique. A
cosine similarity method is later used to compute user and
item similarities. In [23] authors propose a different hybrid
method based on content-based and collaborative filtering. It
adds an item-similarity process to an item-based collaborative
filtering technique. This similarity uses semantic sources to
bring the attributes of items to the recommender context.
They create an item-attribute matrix where items express
the attributes they have. However, this matrix may be too noisy
and attributes may be correlated. Thus, the authors reduce it
by using SVD. This reduced matrix allows the creation of
an item-item matrix that represents items similarities. In [24]
the authors proposed a framework for collaborative filtering
that enhances the recommendation by analysing the implicit
interest of users in the features of the items. This approach
uses a Principle Component Analysis to reduce the features to
the relevant ones.

However, most similarity processes do not take all possible
or available attributes information into account. Larger number
of features may improve similarity, but computation might
become more expensive. In addition, approaches dealing with
space reduction or latent space models may lose information.
We propose to use a vector representation of items/users
based on bloom filters. This reduces the size of the vectors
and compute accurate and faster similarities. In addition, this
reduction may allow taking more features into consideration,
which helps to improve the similarity accuracy of the system.
Similar bloom filter usages have been implemented in other
applications. Recently, in [25] these filters have been applied to
create a fast, accurate and private plagiarism system that com-
pares the similarity among documents of different databases.
In [26] these filters have been used for web search field.
Typically web browsers return to users’ request top websites
which tend to be very similar. The authors propose to group
similar websites results in order to allow the return of other
diverse sites in the top results. In this paper we use these filters
in a real life application within the recommender systems
domain. In addition, we evaluate the accuracy of the bloom
filters representation by comparing it against vector similarity
methods and order reduction techniques.

III. BACKGROUND AND CONTEXT

The concept of bloom filter was first introduced by Burton
H. Bloom in 1970 [27]. It has been used in many different
applications, such as databases queries or computer networks,
due to its memory-efficiency and fast-capabilities [3]. To
the best of our knowledge, this structure has not been used yet
in the field of recommender systems. In this section we explain

Fig. 1. Example of bloom filter. Initially the bloom filter is empty (bits set
to ”0”). Elements X, Y are inserted by hashing them and by setting adequate
bits to ”1”. One membership query for element X returns true, while for
a non-inserted element Z returns false.

bloom filters and we develop the problem of applying them
to represent items/users in a recommender system context.

A. Bloom Filter

A bloom filter is a bit-structure, which represents ”n”-
elements of the same set ”S” in a lower space of ”m”-bits [3].
Initially, the m-bits are set to ”0” representing the absence of
elements in the filter. Then, ”k”-independent hash functions
efficiently distribute the insertion of elements among the bit-
structure. This modifies the status of ”k” bits in the structure
(one bit for each hash function used). In other words, to insert
an element it is hashed to get the ”k”-positions of the structure
to set to ”1”.

Bloom filter structure allows fast membership queries. It
works as follows: the requested element is hashed with the ”k”
hash functions and the ”k” resulted indexes are checked
in the bit-structure. If any of these indexes is set to ”0”,
the bloom filter assures that the element has not been inserted.
When all indexes are set to ”1”, one can assume that the el-
ement has been inserted with an error probability called false
positive probability ”fp”. A false positive is the situation in
which a membership query returns that the element belongs to
the set, yet it actually does not. Nevertheless, the estimation of
this false positive ratio is possible and near-optimal parameters
may be computed [3]. A bloom filter example is shown in
Figure 1.

In addition, the intersection and the union of two filters, A
and B, are possible under two conditions: (1) the bits number
of A is equal to the bits number of B, and (2) they both
use the same hash functions. i.e m and k are equal in both
bloom filters. These properties will allow us to perform filter
comparisons and to develop our approach.

1) Near Optimal False Positive: As explained above, one
may assure that an element has not been inserted in the filter
if any of the associated indexes is set to ”0”. On the other
hand, the probability of a false positive can be estimated.



Indeed, the false positive ratio depends on three parameters:
(1) the quantity of expected insertions ”n”, (2) the size of
the bit structure ”m”, and (3) the number of hash functions
”k”. After all the ”n” elements have been inserted, some bits
in the structure remain set to ”0” but others are set to ”1”.
The probability that a specific bit is still zero is given by
Equation 1 [3].

p(bit = 0) =

(
1− 1

m

)kn

≈
(
e−kn/m

)
(1)

Moreover, the probability that a specific bit is set to one is
given by q(bit = 1) = 1− p(bit = 0). Thus, the false positive
probability is defined through this probability and the number
of hash functions1, as in Equation 2.

fp = q(bit = 1)k =

(
1−

(
1− 1

m

)kn)k

≈
(
1− e−kn/m

)k
(2)

Further efforts to find out near-optimal values for the false
positive ratio can demonstrate the existence of a global

minimum [3] for ”k”, k =
m · ln2
n

. In addition, ”m” can

be estimated by: m ≥ −n · log2(fp)
ln2

. Note that in a real
application ”k”, ”m” and ”n” are integer numbers. These
equations are used to build and initialize any bloom filter.

2) Intersection property: The intersection of two bloom
filters, BFA and BFA, aims to find common elements of
two different sets, SA and SB . One bit will be set to one
if: (1) the element belongs to the intersection of BFA and
BFB : (BFA ∩ BFB), or (2) this bit is set simultaneously
to one in BFA − BFA ∩ BFB and BFB − BFA ∩ BFB .
Indeed, it represents the AND operation of the two filters
A and B, and the result is a new bloom filter containing
their common insertions. Thus, the probability that a specific
bit is set to one in both filters is given by the simplified
Equation 3 [3] and the false positive of this intersection is
given by fp = q(bit = 1)k.

q(bit = 1) = 1− (1− 1

m
)k·|SA| − (1− 1

m
)k·|SB |

+ (1− 1

m
)k·(|SA|+|SB |−|SA∩SB |) (3)

3) Union property: The union of two bloom filters, BFA

and BFA, aims to join two different sets, SA and SB . This is
the OR operation of these filters and results in a new bloom
filter joining both filters. Therefore, the resulted filter union
represents a new set SA ∪ SB . It is possible to approximate
the size of the expected total insertion in a bloom filter [28].
Equation 4 shows this approximation, where card(X) denotes
the number of bits set to ”1” in the bloom filter ”X”. By
considering both Equations 4 and 2, it is possible to know
the false positive ratio of the union of two bloom filters.

1Assuming perfectly random hash functions

n∗ = −
m · ln

(
1− card(X)

m

)
k

(4)

B. Bloom Filters in Recommender Systems

For simplicity reasons and explanation purposes, we will
consider items representations using a case study in the domain
of movies. However, our approach remains applicable to any
other representation and domain.

As explained in the introduction, the description of items
can be very large due to the numerous resources, e.g. movies
genre, actors, directors, writer, locations and social network
tags. This is especially relevant in content-based and hybrid
recommendations, and thus we will focus on such techniques.
The increasing number of features has three important conse-
quences: (1) the huge size of vectors, (2) the high sparsity in
vectors, and (3) the time carried to perform operations among
vectors. Indeed, the number of features changes this similarity,
and generally the more attributes are used the better the quality
of the similarity is. In this vector representation, adding
features is equal to adding new dimensions to the vector.
However, new features may not appear in other items, which
increases sparsity in vectors. And finally, large dimensional
vectors make similarity computations slower.

To deal with such quantity of features, some authors propose
to perform a features selection which can be supported by
domain experts or by using explanatory analysis, such as
topic modelling, singular value decomposition or principle
component analysis. These techniques look for the most
relevant features of items in order to reduce the vectors’
size, hence reducing vectors sparsity as well. This reduces
the vector representation of items [23]. However, the item
similarity measure might suffer from a loss of accuracy
since less features have been taken into consideration for this
comparison. For example, comparing two movies only by their
genre is less accurate than involving actors in the similarity. It
is possible to argue that there is an upper bound while adding
features to describe items and to compare their similarity.
Thus, the quantity and quality of features could be studied
by analysing them semantically.

In very large datasets contexts, bloom filters can be ex-
tremely beneficial for both representing big sparse vectors
and performing fast similarity computations. On the one
hand, bloom filter highly reduces the size of item represen-
tations while not reducing their description, i.e. the number
of features. Contrary to current tendencies, this fact invites
to increase the features used for representations instead of
selecting/reducing features. On the other hand, the union and
intersection bloom filter properties make it easier to perform
filter comparisons, and thus one can create a fast similarity
measure based on these operations. We propose to use a fast
bitwise AND operation to compare common features of items.
The reduced size of filters and the fast bitwise operation im-
plies a fast similarity comparison while keeping high fidelity in
similarity comparisons. In addition a bitwise XNOR similarity



operation is proposed and takes into account not only common
features, but also common missing-features.

In the next section the item representation model based on
bloom filters is presented. The bloom filter model, a.k.a. bloom
model, as well as the way we use it for computing items
similarities are also detailed.

IV. BLOOM FILTER SIMILARITY MODEL

In this section, we develop the idea of a similarity model
based on bloom filters, the Bloom Filter Similarity Model
(a.k.a. Bloom Model). As long as these filters behaviours are
based on some parameters and probabilities, we analyse how
they affect the similarity process. In addition, comparisons and
references to the simple vector similarity model are also given.

One approach to represent items/users is to use a vector
of keywords/values of their attributes. As explained before,
vectors are large and sparse in big datasets. Some approaches
explained in the state of the art deal with this fact by
reducing or selecting features. Although, this may lead into
a loss of accuracy. In large datasets contexts, we propose to
use the bloom filter representations. Therefore, we propose
the following context definition:

Definition 1. Let SN be the set of all possible items features in
a database used in a similarity comparison, so that |SN | = N
is the number of features in this set. Moreover, let Si be the set
of active features of an item ”i”, and |Si| = n the number of
features in this set. As a consequence, Si ⊂ SN . In addition,
within this context we assume that n� N .

For instance, ”N” can be the total number of actors,
directors, editors and tags in a database. However, a single
movie only has ”n” of these features, a.k.a. active features.
Normally increasing the features in the database has more
impact over ”N” than over ”n”. Indeed, incorporating external
information increases the value of N , but only few items will
increase their active entries ”n” significantly. Thus, vector
representations are larger and sparser.

Under these assumptions, we propose the usage of bloom
filters for representing items/users as a set of features. Indeed,
a bloom filter is a low-size hashed binary vector representing
a huge set of elements. Therefore, one item is only represented
by one bloom filter and this filter will contain all the ”n”
active features for this item. Figure 2 represents the difference
between the vector similarity model and the bloom model.

Knowing this context, it is possible to build the bloom
filters adequately. As explained in Section III-A, one has four
parameters to take into account while building a bloom filter:
the false positive ratio fp, the number of hash functions k,
the size of the bit-structure m and the number of expected
insertions n.

On the one hand, items and features are known a priori
in a recommender application (the dynamic and incremental
situations are later introduced in this section). In this case, as
one item is represented by one filter, the number of expected
insertions (active features) for this item is also known and
represented as n . On the other hand, in a bloom model all

Fig. 2. Vector Similarity Model versus Bloom Filter Similarity Model

the built filters need the same hash functions k and the same
size m. As explained in the last section, these conditions
allow to perform operations between bloom filters (OR/AND
operations). Thus, given n and fixed m and k: (1) the false
positive fp increases in each insertion of an element, and (2)
the maximum false positive fpmax is given by the maximum
insertions n.

However, the items may not have the same expected number
of active features. In order to keep the maximum desired false
positive fpmax in the bloom model, it is necessary to look
for the item which contains the maximum number of active
features nmax. Then, one builds every filter according to nmax,
m and k. This is the necessary condition to use a bloom
filter similarity model. In the following sections, we discuss
the operations to perform a similarity measure based on the
item bloom filter representations.

A. Trade-Offs

The bloom model clearly depends on the parameters of
bloom filters. In fact, the intersection and union of two filters
are bit-to-bit operations over which the parameters m (bloom
filter size) and k (number of hash functions) have relevant
impacts. Our similarity model relies on these properties, and
similarity matchings are affected by these parameters, and
in general, by the resulted false positive of filters. In this
section we explain the trade-offs of using different parameter
configurations and the impact on the false positive similarity.

The size m of a bloom filter affects the false positive
probability. Larger filter sizes reduce the probability of taking
a specific bit (1/m). Therefore, the false positive is reduced.
The number of hash functions k has also a great impact on
the false positive probability. Higher values may reduce rapidly
the false positive, but they will quickly fill up the bloom filter.
In addition, this parameter particularly affects a bit-to-bit sim-
ilarity. In fact, the number of shared bits per insertion (m/kn)
should be reduced. As long as insertions are associated to
k-bits in the bloom filter, higher values in a fixed filter size



Fig. 3. AND intersection of two bloom filters. BFA contains two inserted
elements: X1 and X3.BFB contains two inserted elements: X2 and X3. Thus,
the intersected filter contains only one inserted element: X3.

makes it easier for elements to share some bits positions. As
a result, a true similarity match is more complicated to find.

This m and k trade-off can be seen as a space-time trade-off.
Space is represented by the size of the filter. On the contrary,
k is the number of hash function to execute, and hence, higher
values entail more time-consumption. Thus, correctly choosing
these parameters is crucial in order to have a good performance
in a bloom similarity model. However, the choices depend on
the requirements of the application and the size of datasets.
One suggested approach may be to use larger filters with fewer
hash functions to improve similarity matchings in fast bit-to-
bit comparisons.

B. Bitwise AND Similarity

The intersection of two bloom filters performs a bitwise
AND operation between two filters (section III-A2) to find
out common insertions in both bloom filters. Intuitively, one
element which is inserted into two different bloom filters will
activate the same bits positions in both structures. Figure 3
gives an example to represent this fact. Thus, we define
a bitwise AND similarity as:

Definition 2. The AND similarity between two items, A and
B, represented by two bloom filters, BFA = ~a and BFB = ~b,
is given by:

sim(A,B) = card(~a ∩~b) = ~a ·~b

In our case, filters represent items and insertions are their
active features. Due to the fewer size of filter vectors and
the fast bitwise AND operation, one can rapidly compare
the similarity of two very large item descriptions. This measure
might replace the typical vector comparisons based on cosine
or jaccard measures in recommender systems.

Equation 3 represents the probability that a specific bit
is set to one in an intersected filter. Although, this can be
reduced by considering the condition for the bloom model:
every filter is built with same the parameters nmax, m and k.
Filter A represents a set SA, where |SA| = nA is the number
of inserted elements. Similarly, filter B represents a set SB ,
where |SB | = nB . Therefore, one may apply that we know
the maximum expected insertions: nmax = nA = nB . More-
over, this limits the maximum cardinality of the intersection,
since |SA ∩ SB | ≤ nmax. As a consequence, the probability
that a specific bit is set to one in both filters is given by :

Fig. 4. Negation of a Bloom Filter (BF). Element X1 is inserted in BFA.
Elements X2 and X3 are not inserted in BFA. The negation of BFA, BFA,
contains the element X2 and does not contain the element X1. Yet, X3 is not
inserted because it shares a bit with an element which is inserted in BFA.

q(bit = 1) =
(
1− (1− 1

m
)k·nmax

)
Thus, we define the maximum error in the similarity

(a.k.a false positive similarity) in Equation 5. Note that this
error highly depends on k, due to the bit-to-bit comparisons.

fp = q(bit = 1)k =
(
1− (1− 1

m
)k·nmax

)k

(5)

C. Negating a Bloom Filter

Negating a bloom filter will help us to perform and explain
the XNOR similarity measure. Theoretically, the negation of
a filter BFA (BFA) results in another filter where each entry
takes the complementary value of BFA. Thus BFA might
only contain the non-inserted elements of BFA. However,
due to the k hash functions, insertions may share at most
k-bits in the filter BFA. Therefore, negating a bloom filter
has two consequences: (1) inserted elements will appear as
non-inserted elements, and (2) non-inserted elements may
appear as inserted elements only if all their k indexes are
set to 0. Otherwise, non-inserted elements also appear as
non-inserted in the negated filter. This fact is represented
in Figure 4. However, this problem might be minimized by
reducing the number of shared bits per element (m/kn). In
addition, since the number of bits set to 1 has changed,
the false positive of A also changes. Yet, it is given by
the probability that a specific bit is zero in the original filter:
fp = p(bit = 0)k (Equation 1).

D. Bitwise XNOR Similarity

Typically, similarity methods measure the intersection of
elements. The AND intersection takes common-inserted el-
ements of two sets into account. That is, given two sets,
SA = {x1, x3} and SB = {x2, x3}, the intersection of both
sets is SA ∩ SB = {x3}. However, sets SA and SB have
more in common than this intersection. Actually, the element
x4 is not in any of these sets, and hence, x4 is a common
non-inserted element.

As a consequence, we propose to go further in the similarity
by considering also the common non-inserted elements. In
fact, this similarity in common-insertions and common



Fig. 5. XNOR intersection of two bloom filters BFA and BFB . BFA

contains two inserted elements: X1 and X3. BFB contains other two inserted
elements: X2 and X3. Thus, the XNOR operation will result in common
inserted elements and common non-inserted elements: X3 and X4.

Fig. 6. Representation of how the XOR and XNOR operations can be
extracted from AND and OR operations.

missing-insertions is the bitwise XNOR operation between
two filters. This bit operation sets to one the bits which
have similar bit-status. Notice that it is also necessary that
every filter is built with the same parameters nmax, m and k.
Figure 5 shows this operation.

Indeed, the XNOR operation between items A and B,
represented by two sets, SA and SB , is the union of two AND
operations: XNOR(A,B) = SA ∩ SB ∪ SA ∩ SB . Figure 6
graphically shows a set oriented XNOR and its complement
XOR operation.

We can observe that XNOR similarity is composed of
two AND similarities: common-inserted elements similarity
and common-non-inserted elements similarity. Thus, we can
compute separately these two AND similarities (explained in
the bitwise AND similarity) and merge them. In addition, we
propose to weight such similarities by using the weight α.

Definition 3. The XNOR similarity between two items, A and
B, represented by two bloom filters, BFA = ~a and BFB = ~b,
and with a weight of α is given by:

sim(A,B) = α · card(~a ∩~b) + (1− α) · card(~a ∩~b)

= α · ~a ·~b+ (1− α) · ~a ·~b

By varying α, one might avoid the effect of too many
common non-insertions in the second part of the similarity.
Note that if α = 1, this measure becomes the AND bitwise
similarity measure explained above.

It is possible to argue that two items may have infinite com-
mon non-inserted elements. For instance, a rock and a paper
do not have a priori common properties, hence the similarity
could be potentially infinite. However, it does not mean they
are as similar as an orange and a mandarin can be, and indeed
they also have infinitely uncommon features. Thus, a dataset
containing rock, paper, orange and mandarin may represent
a problem for this measure. Yet, this fact does not happen
when the domain of recommendation is fixed and the features
to use are limited. In case of multiple recommendation do-
mains, a semantic analysis can be performed in order to limit
the features.

The false positive similarity can be also computed.
For simplicity, let’s consider the complementary probability
P (XOR) = 1− P (XNOR) (fact shown in Figure 6):

P (XOR) = P (BFA) + P (BFB)− P (BFA ∩BFB)

Where P (BFA) and P (BFB) are the already known prob-
abilities that a specific bit is still one, q(bit = 1) = 1−p(bit =
0) in filters BFA and BFB , as explained in section III-A1.
Moreover, P (BFA∩BFB) is the probability that a specific bit
is set to one in both filters, explained in section III-A2. Taking
into account the bloom model condition n = nmax, one may
apply that q(bit = 1) = P (A) = P (B) = P (A ∩ B). Hence,
the probability that a specific bit is set to one in the final re-
sulted vector in the XOR operation is P (XOR) = q(bit = 1).
As a result, the probability that a specific bit is set to one in
the XNOR operation is:

P (XNOR) = 1− q(bit = 1) =

(
1− 1

m

)k·nmax

(6)

Thus, the false positive similarity is given by P (XNOR)k.
Operations between identical filters are a singular case. Since
all possible elements are represented, this operation results in
a totally full vector of 1 being the highest similarity. Hence,
membership queries return always true.

E. Shortcomings and solutions

In this section we have explained a very simple case of
representing items based on the standard definition of bloom
filters, where we have supposed a static dataset. In fact, when
new features need to be taken into consideration the number of
insertions raises. However, the current bloom filter parameters
(size ”m” and hash functions ”k”) can not face such raise
and yield to a false positive raise as well. Indeed, these
parameters cannot be modified, hence when new features are
added to the system all bloom filters need to be re-built
according to new parameters. In addition, standard bloom
filters do not count the number of insertions of the same
element, if necessary. Thus, these filters can not be compared
to frequency vectors.

In fact, these situations correspond to static versus dynamic
datasets and binary versus frequency vector representations.
In our model we use standard bloom filters for simplicity



and explanation, yet these drawbacks can be addressed by
other bloom filter approaches. On the one hand, dynamic
datasets are possible to model by using dynamic/scalable
bloom filters [29], [30]. The main idea is that a scalable bloom
filter is formed by one or more bloom filters. Thus, these
filters are built by blocks, and hence by adding new blocks to
the filter one may add a new set of features. As a consequence,
this avoid to re-build the bloom model when new features are
added. In addition, similar probability inductions given in this
section can be applied to scalable and dynamic probabilities,
and thus our bloom model remains possible in these cases. On
the other hand, counting insertions is possible as well by using
counting bloom filters [3]. These filters contains new bit-sets
to count the insertions performed. Thus, if one insertion has
been made several times, filters may approximate the counting.
As a result, one may compare counting filters to frequency
vectors, with more complexity. Other variances of bloom filters
deal with extra compression [3].

In this paper we consider using standard bloom filters due to
the nature of our dataset and experimentations, in order to have
an easy comparable dataset and reproducible experimentations.
This may be complicated in other dynamic circumstances, e.g.
bloom filters in very large datasets using multiple resources,
where non public datasets are accessible.

V. EXPERIMENTATION

In our experimentations, we use the publicly availables
MovieLens dataset and IMDb database, both used in the rec-
ommendation field. An already merged dataset is given by
GroupLens [9]. The dataset is composed of 2113 users, 10197
items, 855598 ratings, 6 features and 104957 possible different
values, which are all the available features used to describe
our items. In this experimentation we only focus on similarity
tasks. We aim at comparing the performance of the bloom
model against two other models namely: a vector model2 and
an order reduction model. The former uses a binary/boolean
representation of an item. It takes into account all available
features. The latter tries to reduce the size of features by
performing a SVD analysis. These three models are compared
taking four factors into consideration: (1) size, compression
or space complexity, (2) operation time and model time,
(3) the similarity fidelity of the AND measure, and (4)
the similarity accuracy of the XNOR measure. The results and
the bloom model may be used by recommenders to improve
item representations by reducing the size of vector descriptions
and by adding new features not taken yet into account.

This section goes through two kinds of tests. On the one
hand, we aim to prove that the filter similarities in bloom
model are close to the ones computed by vector similarities
(using cosine or jaccard measures) in the vector model.
On the other hand, we aim to prove the pertinence of bloom
filters in recommender systems. Hence, we compare the accu-
racy in the response of the system to several top-K similarities.

2We use typical vector definition. Highlight that sparse map implementation
of vectors may reduce space complexity, yet it increases programming and
time complexity in terms of vector similarities.

TABLE I
OPTIMAL BLOOM FILTERS.

Bloom Filter n fp k m
bloom 0.2 237 0.2 3 794
bloom 0.1 237 0.1 4 1136
bloom 0.01 237 0.01 7 2272
bloom 0.001 237 0.001 10 3408

For example, the system retrieves the top 5, 10, 20, 50, 100,
150, 200, 300 and 500 most similar elements to a given one.
Notice that a simple top 20 or top 50 is enough in most of
recommendation contexts. Then, we compare if the similarity
models return similar top-K items.

The results show that the bloom model reduces the size of
vectors up to 97%, keeping a similarity accuracy of 98%. In
addition, bloom model outperforms feature reduction methods
in terms of similarity fidelity and time performance.

A. Bloom Filter Representation

As explained before, items/users might be represented by
vectors of attributes. Typically, these vectors may become
too large and sparse depending on the available features.
Some authors deal with this problem by reducing the quantity
of features in the representation of items. Hence, a feature
selection or a dimensional reduction analysis are performed.
These choices might cause a loss of item description, and
thus, a loss of accuracy in item similarities. Bloom filters
have the capacity of representing large sets in low space. This
fact allows to fully describe items/users through all available
features by using a low space structure.

1) Trade-Off: Compression and Time Analysis: The exper-
imentation dataset has 104957 available features, hence item
vector size is N = 104957. However, the number of active
entries in these big vectors is very reduced. In fact, the item
3246 has the maximum number of active entries over all items,
n = nmax = 237 (notice that nmax << N ). This shows
the minimum sparsity of a vector and the worst bloom filter
case (due to the maximum inserted entries).

In order to reduce the size of the vectors and still keep items
representation and items similarities, we use bloom filters. The
goal is to get bloom filter sizes fewer than N , thus m < N .
Two different cases have been tested:

(1) Optimal bloom filters in Table I are built by fixing both
maximum insertions nmax and the desired false positive fp.
Notice that in the case of using a false positive of 0.001 we
obtained 3408 bits, which represents almost 3% of N , thus
around 97% of size reduction. This tiny false positive and
reduced space is given by the 10 hash functions.

(2) Non-Optimal bloom filters in Table II are built by fixing
insertions (n), filter size (m) and hash functions (k). In this
case, the m and k values have been chosen by varying the last
optimal computed bloom filter (m = 3408 and k = 10). Notice
that for the same false positive 0.001, we obtained a size of
7000 bits, which represents almost 6% of N by only using 3
hash functions.



TABLE II
NON OPTIMAL BLOOM FILTERS

Bloom Filter n fp k m
bloom M3000K3 237 0.01 3 3000
bloom M3000K4 237 0.005 4 3000
bloom M7000K3 237 0.001 3 7000
bloom M7000K4 237 0.00026 4 7000

TABLE III
VECTOR AND BLOOM MODELS TRADE-OFFS.

Item Representation VM OPM NOPM
Size (bits) 104957 3408 7000
Hash Functions - 10 3
Building model (sec) 6.58 8.94 8.32
AND Similarity (ms) - 0.001 0.003
XNOR Similarity (ms) - 0.004 0.006
Reconstruction (ms) - 127.28 141.27
Jaccard Similarity (ms) 0.4 2.6 2.3

Actually, the more hash functions are used, the less false
positive error one achieves. However, the filter fills more
quickly as well, and thus, cardinal similarities (such as AND
or XNOR similarities) might fall into similarity-mistakes. In
addition, the more hash functions to perform, the slower is
the system. On the contrary, increasing the size of filters better
distribute hashed insertions but more space is needed.

Table III shows interesting comparisons in terms of space
and time-consumption. The machine used is a MacOS 4Go
RAM with 2 cores (2.53GHz). Three models are compared:
Vector Model (VM), Optimal Bloom Model (OPM) and Non-
Optimal Bloom Model (NOPM). To build vectors and filters,
a database access was required. Query time was around 200 ms
(not included in these results). One may observe that building
bloom model takes extra time due to the hash functions,
however, this is acceptable as there is a high space reduction.
In addition, operations among bloom models can perform
faster due to two facts: (1) bitwise operation are faster than
jaccard/cosine similarities, and (2) bitsets are smaller.

Moreover, it might be interesting to reconstruct a vector
from a bloom filter to compare vector and bloom models under
the same conditions and similarities. Reconstruction time is
given by the features loading (140 ms) and the features hashing
(145 ms), which are performed only once. Then, a single
vector reconstruction is created by querying filters. This is
also shown in Table III.

2) Singular Value Decomposition (SVD) model: SVD is
a factorization model that decomposes the big matrix in
three smaller matrices (left-eigenvectors, eigenvalues and right
eigenvectors) in such a way that the multiplication of the three
is an approximation of the original big matrix. By using this,
the rank of the big matrix may be reduced by decreasing
the matrix sparsity as well.

We applied SVD to the set of items-features to reduce
sparsity and to find an accurate reduced matrix representation.
We compared this model against the vector model and bloom
model in terms of data compression and fidelity in item

similarities. To have a fair comparison between SVD and
bloom models, the rank of the SVD matrix should not be
above the 300 non-zero eigenvalues due to the data precision
of the matrix: each eigenvalue has double precision by using
a 32 bits representation. Thus the total rank representation may
use 9600 bits, which is already larger than the 7000 bits of
our biggest bloom filter.

The comparisons of our bloom model were stopped due to
two facts: (1) the large dataset made the SVD model very
timely expensive, and (2) the item similarities that one may
achieve by using the reduced SVD model were not accurate.
Indeed, the items-features matrices are so sparse that the SVD
can not find a very low rank model. This may be solved by
increasing the rank of the matrix, yet the bloom model have
already demonstrated very good similarity fidelity in a much
more reduced item space representation.

B. Fidelity of the AND similarity

In this section we evaluate the accuracy of the AND
Similarity measure. This computes the similarity between two
bloom filters, and thus two items, by performing the bitwise
AND operation. First, the AND bitwise operations among
filters (two by two) is performed. There are two ways to exploit
such results: the cardinality representation and the set repre-
sentation of the bloom filter. The former compares two filters
by using their bit-set vectors. It is fast but it highly depends
on low values of k. The latter compares two filters by their
set representation. In fact, it reconstructs the AND intersected
bloom filter into a N dimensional vector by querying it. Hence,
it is slower, yet it allows to compare bloom model and vector
model similarities under the same conditions, since items in
both models are represented as vectors of dimension N. In this
section we will use both set and cardinality representations of
the bloom filter.

On the one hand, we reconstruct the set representation
of the resulted AND operation. The first test aims to check
whether the bloom model is loyal to the similarity degree of
items. Hence, we compare item similarities in both models:
vector similarity model (using jaccard similarity) and bloom
similarity model (using AND bitwise similarity). We focus on
item 3426 which has more active features, and thus the bloom
filter with more insertions. This is our worst case comparison,
since it is more likely to have bits conflicts in a filter
comparison. Figure 7 shows the degree of similarity of both
approaches. It demonstrates the high fidelity in the similarity
of the bloom model (case bloom 0.001 in Table I) while
reproducing the vector model jaccard similarity.

On the other hand, one can use the cardinality of the resulted
bloom filter intersection. Thus, the hash functions k highly
affect this similarity due to the shared bits of insertions.
Figure 8 shows an optimal bloom filter case where the high
value of k causes the points sparsity. In fact, high values of
k associate inserted elements to more number of bits. Thus, it
makes difficult it to do comparisons based on the cardinality
of the intersection. Increasing m and decreasing k the bloom
filter fills up slowly with insertions, and thus better cardinality



Fig. 7. Degree of Similarity of the item 3246 with several items. Bloom Filter
(n=237, fp=0.001) has been reconstructed into a vector of size N .

Fig. 8. Bloom Filter (m=3408, k=10). Trade-Off for a Bloom Similarity
Model.

comparisons are possible as shown in Figure 10. Finally,
in Figure 11 we made a zoom over few values in the last
configuration to better appreciate these values.

Similarity models can be loyal while reproducing such item
similarities, yet tiny differences may have big differences in
top-K comparisons. We aim to compare the capacity to find
out the K-most similar items. Thus, we request the vector
similarity model to return several top-5, 10, 20, 50, 100, 150,
200, 300 and 500 most similar items by using the jaccard
similarity. The goal of the bloom filter similarity model is to

Fig. 9. Bloom Filter (m=7000, k=4). Trade-Offs for a Bloom Similarity
Model.

Fig. 10. Bloom Filter (m=7000, k=3). Trade-Off for a Bloom Similarity
Model.

reproduce such tops: the same items should appear in both tops
(in this test the order of items is not taken into account). As
a result, by comparing tops, one knows the correct presence
of items (True Positive (TP)), the correct absence of items
(True Negative (TN)), and the errors (False Negative (FN)
and False Positive (FP)). As a consequence, the accuracy of
the system is defined by Equation 7:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

The values for this accuracy vary between 0 and 1, where



Fig. 11. Zoom Bloom Filter (m=7000, k=3). Trade-Off for a Bloom Similarity
Model.

Fig. 12. Accuracy of the Bloom Filter Similarity Model against the Vector
Similarity Model. Bloom Filters with fewer false positive values achieve better
accuracy in tops comparisons.

the value of 1 is the highest possible accuracy.
In order to compare both similarity models under the same

conditions, we reconstruct the bloom filter representations into
vector representations of size N . As the bloom filter model
depends on the false positive of bloom filters, the comparisons
are done over the cases in Table I. Figure 12 shows the results
for these tops comparisons. Notice that bloom filter represen-
tations may achieve almost a perfect accuracy fidelity in very
reduced sizes. In fact, the bloom filter with a false positive of
0.001 and 3408 bits achieves an almost perfect score in these
presented top similarities.

C. The XNOR similarity

In this section we use a XNOR Similarity measure in order
to compare items. This measure shows common insertions in

Fig. 13. Accuracy of the Bloom Filter Similarity Model against the Vector
Similarity Model. This similarity uses the XNOR operation.

two bloom filters, but it also shows the features that likely
have not been inserted in any of the bloom filters. That is,
common insertions and common non-insertions. In this test
we compare whether the bloom model correctly find similar
items by using this XNOR operation. For this purpose, we
first compute the XNOR operation in vector models. Then,
we compare this to the XNOR operation in the bloom filter
similarity model.

The comparisons are performed by reconstructing bloom
filters as vectors of N dimensions. As the bloom model
depends on the false positive of bloom filters, the comparisons
are done over the cases shown in Table I. The XNOR similarity
equally balances the similarity of common insertions and
common non-inserted elements. That is, α = 0.5. However,
one may change the weight in this similarity by giving more
relevancy to one aspect or another, e.g. giving more relevancy
to common inserted elements versus common non-inserted
elements. By doing this, results tend to approach the AND
similarity measure.

The evaluation is again made in terms of accuracy. We
compare both XNOR top-K looking for the presence and
the absence of items among the top-K. The results of this
similarity is shown in Figure 13. One may see how the bloom
model correctly finds the same similarities given by the vector
model in much fewer sizes.

VI. CONCLUSION

The items/users in recommender systems techniques, such
as content-based and hybrid methods, are usually represented
by a large set of features [1]. Hence, it is possible to compute
similarities among items/users that will help to achieve perti-
nent recommendations. However, the accuracy of the similarity
depends on the selected features and their number. Generally,
the more features are used the better the similarity might
be. In addition, items’ features are typically represented by
vectors, which are large and sparse. Hence, increasing vectors’
sizes makes similarity computations slower. We propose in this
paper a new method for representing the items/users based on



bloom filters that allows to: considerably improve the space
complexity, to perform faster bitwise operations and to keep
the fidelity in the similarity among items.

This paper is focused on three aspects: (1) the reduction
capacity of bloom filters in a recommender system context,
(2) the usage of AND operations as a similarity measure in
bloom filters to consider common insertions, and (3) the usage
of XNOR operations as a similarity measure that takes into
account not only common inserted items, but also common
non-inserted items.

The experimentations performed on a public dataset [9]
show that the bloom filter representation highly reduces
the size of vector representations (94-97% per vector) while
keeping a high fidelity in the item similarity (accuracy of 98%)
in comparison with standard approaches.

Finally, new experimentations to evaluate the impact of
the AND and the XNOR bloom similarities in a real recom-
mender systems are on-going. The current experimentations
are limited by the dataset which contains 6 features and
104957 possible different values to describe items. However,
we aim to test it on extremely large datasets. Therefore,
the future work focus on: (1) to study the effect of these
similarities in a complete recommendation context, (2) to
analyse the trade-off between similarity accuracy and features
bounds, (3) to test on larger and heterogeneous datasets, and
(4) to study the scalability of the similarity based on bloom
filters. In addition, other bloom filters, such as counting bloom
filter and dynamic bloom filters, are part of future experiments.
Those are all important tasks in recommender systems in
order to improve recommendations and to make these systems
more scalable.

ACKNOWLEDGMENTS

This work has been supported by FIORA project,
and funded by ”DGCIS” and ”Conseil Regional de
l’Île de France”.

REFERENCES

[1] P. B. Kantor, F. Ricci, L. Rokach, and B. Shapira, “Recommender
systems handbook,” in Recommender systems handbook, Springer.
Springer US, 2011, p. 848.

[2] K. Zhou, S.-H. Yang, and H. Zha, “Functional matrix factorizations for
cold-start recommendation,” in Proceedings of the 34th international
ACM SIGIR conference on Research and development in Information
Retrieval. ACM, 2011, pp. 315–324.

[3] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[4] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proceedings of the
Fourteenth conference on Uncertainty in artificial intelligence. Morgan
Kaufmann Publishers Inc., 1998, pp. 43–52.

[5] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in artificial intelligence, vol. 2009, p. 4, 2009.

[6] J. Karim, “Hybrid system for personalized recommendations,” in Re-
search Challenges in Information Science (RCIS), 2014 IEEE Eighth
International Conference on. IEEE, 2014, pp. 1–6.

[7] E. Peis, J. M. del Castillo, and J. Delgado-López, “Semantic recom-
mender systems. analysis of the state of the topic,” Hipertext. net, vol. 6,
pp. 1–5, 2008.

[8] R. Dahimene, C. Constantin, and C. du Mouza, “Recland: A recom-
mender system for social networks,” in Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge
Management. ACM, 2014, pp. 2063–2065.

[9] I. Cantador, P. Brusilovsky, and T. Kuflik, “2nd workshop on information
heterogeneity and fusion in recommender systems (hetrec 2011),” in
Proceedings of the 5th ACM conference on Recommender systems, ser.
RecSys 2011. New York, NY, USA: ACM, 2011.

[10] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proceedings of the 10th
international conference on World Wide Web. ACM, 2001, pp. 285–295.

[11] D. Lemire and A. Maclachlan, “Slope one predictors for online rating-
based collaborative filtering.” in SDM, vol. 5. SIAM, 2005, pp. 1–5.

[12] T. Hofmann, “Collaborative filtering via gaussian probabilistic latent
semantic analysis,” in Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in informaion retrieval.
ACM, 2003, pp. 259–266.

[13] Y. Koren, “The bellkor solution to the netflix grand prize,” Netflix prize
documentation, 2009.

[14] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[15] Y. Koren and R. Bell, “Advances in collaborative filtering,” in Recom-
mender Systems Handbook. Springer, 2011, pp. 145–186.

[16] A. Tiroshi, T. Kuflik, J. Kay, and B. Kummerfeld, “Recommender
systems and the social web,” Advances in User Modeling, pp. 60–70,
2012.

[17] R. Boim, T. Milo, and S. Novgorodov, “Direc: Diversified recommen-
dations for semantic-less collaborative filtering,” in Data Engineering
(ICDE), 2011 IEEE 27th International Conference on. IEEE, 2011,
pp. 1312–1315.

[18] Y. B. Fernández, J. J. P. Arias, M. L. Nores, A. G. Solla, and
M. R. Cabrer, “Avatar: An improved solution for personalized tv based
on semantic inference,” Consumer Electronics, IEEE Transactions on,
vol. 52, no. 1, pp. 223–231, 2006.

[19] P.-Y. Pan, C.-H. Wang, G.-J. Horng, and S.-T. Cheng, “The development
of an ontology-based adaptive personalized recommender system,” in
Electronics and Information Engineering (ICEIE), 2010 International
Conference On, vol. 1. IEEE, 2010, pp. 1–76.

[20] G. Katz, N. Ofek, B. Shapira, L. Rokach, and G. Shani, “Using wikipedia
to boost collaborative filtering techniques,” in Proceedings of the fifth
ACM conference on Recommender systems. ACM, 2011, pp. 285–288.

[21] D. Werner, C. Cruz, and C. Nicolle, “Ontology-based recommender
system of economic articles,” arXiv preprint arXiv:1301.4781, 2013.

[22] M. G. Vozalis and K. G. Margaritis, “Using svd and demographic data
for the enhancement of generalized collaborative filtering,” Information
Sciences, vol. 177, no. 15, pp. 3017–3037, 2007.

[23] B. Mobasher, X. Jin, and Y. Zhou, “Semantically enhanced collaborative
filtering on the web,” in Web Mining: From Web to Semantic Web.
Springer, 2004, pp. 57–76.

[24] M. Pozo, R. Chiky, and E. Métais, “Extraction de l’intérêt implicite des
utilisateurs dans les attributs des items pour améliorer les systèmes de
recommandations,” in 15ème conférence internationale sur l’extraction
et la gestion des connaissances. IEEE, January 2015, pp. 1–6.

[25] S. Geravand and M. Ahmadi, “An efficient and scalable plagiarism
checking system using bloom filters,” Computers & Electrical
Engineering, vol. 40, no. 6, pp. 1789 – 1800, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0045790614001712

[26] N. Jain, M. Dahlin, and R. Tewari, “Using bloom filters to refine web
search results.” in WebDB, 2005, pp. 25–30.

[27] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[28] S. J. Swamidass and P. Baldi, “Mathematical correction for fingerprint
similarity measures to improve chemical retrieval,” Journal of chemical
information and modeling, vol. 47, no. 3, pp. 952–964, 2007.

[29] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic bloom fil-
ters,” Knowledge and Data Engineering, IEEE Transactions on, vol. 22,
no. 1, pp. 120–133, 2010.

[30] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison, “Scalable
bloom filters,” Information Processing Letters, vol. 101, no. 6, pp. 255–
261, 2007.


