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ABSTRACT

This work presents an implementation of a Distributed
Stochastic Gradient Descent (DSGD) for Recommender Sys-
tems based on Hadoop/MapReduce. Recommender Systems
aim at presenting first the information in which users may
be more interested. To do this, they analyse a great volume
of data that represent the users preferences (e.g. ratings).
Thus, this stirs up the need of load-balancing. DSGD is
a Matrix Factorization technique that has demonstrated high
accuracy and scalability. In this work we expose this algo-
rithm and modify it to improve its accuracy and adaptability
to a hadoop cluster. The experimentation phase uses Movie-
Lens datasets. Comparisons with other algorithms are given.
Results show the good performance of the implementation.

Index Terms— recommender system, collaborative filter-
ing, matrix factorization, gradient descent, parallelization.

1. INTRODUCTION

The web content has become so vast that users hardly find the
information they are looking for. Recommender Systems aim
at selecting and presenting first the information in which users
may be more interested. Nowadays, enterprises use these sys-
tems to personalize items for users, i.e. recommendations, by
analysing their preferences [1]. For instance, Amazon and
Youtube propose new products/videos regarding what is al-
ready bought/watched. A very interesting datum has been of-
fered by the video media service Netflix in 2014 [2]: improv-
ing the accuracy of recommendations by 10% may lead in
around $500M per month of outcomes. Hence, these systems
are becoming more and more important in the past decade.

The interest of users in items can be explicit (e.g. giving
a rating to a movie) or implicit (e.g. tracking navigational be-
haviour). Recommender Systems analyze this feedback in or-
der to generate recommendations [1]. Furthermore, the num-
ber of users and items uses to be high. For instance, Netflix
has around 20 millions customers, 80 thousands movies and
5 billions ratings [3]. Normally users just rate some of these

items. This yields in a sparse dataset that contains a huge vol-
ume of missing/unknown ratings to predict. Thus, these pre-
dictions are computationally expensive. Novel recommenders
should be accurate to fit users interests, and scalable to alle-
viate time processing. Matrix Factorization (MF) is a rec-
ommendation technique that has demonstrated great accuracy
and scalability for very large datasets [4, 5].

This work focuses on a particular Matrix Factorization
technique called Distributed Stochastic Gradient Descent
(DSGD). The contribution in this paper are: (1) we detail
a MapReduce implementation of this technique in a real
Hadoop environment, (2) we did a modification in the
paradigm distribution to achieve better accuracy and bet-
ter adaptability to the hadoop cluster. The experimentation
phase uses the publicly available MovieLens dataset. Main
techniques are compared in terms of recommendation accu-
racy and time-consumption. The results indicate the good
performance of the implementation.

This article is structured as follows: section 2 presents
a brief state of the art in Matrix Factorization. In sections
3 and 4, we explain the distribution paradigm for Stochastic
Gradient Descent techniques and the proposed modification.
The experimentation phase is given in section 5. Finally, in
section 6 conclusions and future work are exposed.

2. RELATED WORK

This state of the art mainly focuses on Matrix Factorization
since it has demonstrated high accuracy predicting recom-
mendations [4]. It relies on collaborative filtering assump-
tions: users who agreed in past tend to agree in future. Hence,
it groups people of similar tastes, and it recommends past
liked items from people with the same preferences.

The Matrix Factorization technique decomposes a matrix
R into two random matrices, P and Q, in such a way that the
multiplication of both matrices gives approximately the orig-
inal one [5]. This concept is used in recommender systems
to predict the missing ratings or unknown values of a sparse
rating matrixR. Typically, known ratings in the matrix are de-



Fig. 1. Matrix Factorization technique. Decomposition in
matrices P and Q.

noted by ru,i, where u stands for a user-row and i for an item-
column. Thus, ru,i can be obtained by the multiplication of
a vector pu from matrix P and a vector qi from matrixQ. The
dimensions of these vectors are latent factors, a.k.a. latent fea-
tures, without any special semantic meaning used to represent
information. Figure 1 illustrates this technique.

As a consequence, the goal is to find the matrices P and
Q that best approximate known entries in R. That is, to look
for the best vectors so that a prediction r̂u,i is close to its
real value ru,i. This creates a basic baseline predictor r̂u,i =
pu · qti . Thus, other missing values might be discovered by
minimizing the quadratic error of the difference between real
and predicted values: min

∑
ru,i∈R(ru,i − r̂u,i)2.

Indeed, this problem can be solved by using optimization
algorithms. The two most known optimization techniques
that may find out accurate predictions are based on alternating
minimization and gradient descent [6].

On the one hand, alternating minimization techniques has
simple algebraic resolution. Popularized by the Alternating
Least Square (ALS) [7–11], this technique decomposes the
problem into two simple optimization problems represented
in P and Q. Then, by fixing one matrix, the other one has
to be guessed. Iterating the fixed matrix in order to guess the
other one yields in an approximated result for R. In order to
minimize the error, all ratings are consider in each iteration.
On the other hand, the gradient descent optimization tech-
nique includes learning-parameters that study the ratings pat-
terns to improve the results of the algorithm. This technique
was popularized as Gradient Descent (GD) and Stochastic
Gradient Descent (SGD) [12–14]. In order to minimize the
error, it iterates among each single entry in R looking for
a global minimum. After each iteration, the parameters are
updated taking the negative gradient of the function into ac-
count, what improves the accuracy by making little steps per
iteration. In [6, 15, 15] authors detail the evolution of this
technique to exploit both explicit and implicit feedback.

SGD techniques are more accurate than ALS techniques
[3, 6]. However, it is difficult to implement in a parallel way.
As a consequence, there is a tendency to use ALS techniques
due to their good accuracy and easy scalability [11, 16]. Yet,
a highly paralellizable version of SGD has been recently pro-
posed in [3,16], which has demonstrated that SGD may over-
come ALS in both accuracy and scalability. In this work we

offer an implementation of the Distributed SGD algorithm ex-
plained in [3]. In addition, we have slightly changed this al-
gorithm to achieve better accuracy and better adaptability to
the cluster. The following sections will explain the paradigm
in the distribution of SGD and our contribution.

3. DISTRIBUTED STOCHASTIC GRADIENT
DESCENT (DSGD)

3.1. Stochastic Gradient Descent (SGD)

Gradient Descent (GD) is based on Matrix Factorization. It
goals to explain the ratings in a matrix R by using two ma-
trices P and Q. The baseline predictor is defined as r̂u,i =
µ+ bu + bi + pu · qti , where µ is the average of the ratings in
the matrix R, and bu, bi are biases for the user u and the item
i respectively, which represent a deviation from the average.
In order to learn this parameters and to find the best P and Q,
the goal is to minimize the λ-regularized squared error of:

minbu,bi,pu,qi

∑
ru,i∈R

(ru,i−r̂u,i)2+λ·(b2u+b2i+‖pu‖
2
+‖qi‖2)

This technique iterates among ratings one by one evalu-
ating the error in the prediction, eu,i = ru,i − r̂u,i. Stochas-
tic Gradient Descent proposes to iterate over a batch of rat-
ings instead, what allows a faster convergence in very large
datasets. Then, they update users and items parameters and
matrices by taking the negative gradient, where a learning rate
γ is introduced:

• bu := bu + γ · (eu,i − λ · bu)

• bi := bi + γ · (eu,i − λ · bi)

• pu := pu + γ · (eu,i · pu − λ · qi)

• qi := qi + γ · (eu,i · qi − λ · pu)

However, either simple iteration or batch iterations, one
can highlight the interdependency of the new updated values
and previous values [3]. For instance, new value for bu de-
pends on last computed value of bu for this user u. In a single
machine, new updated values after one iteration are ready for
a new iteration. On the contrary, parallelizing the algorithm
may lead in miss-updated values or lack of synchronization.

Avoiding this dependency is possible by analysing the ma-
trixR. In fact, independent entries can be found, and thus, can
be computed in parallel. Indeed, independent entries do not
share rows and/or columns (users and/or items). As a con-
sequence, they have no common parameters; hence, there is
no dependency. Then, computing only independent entries
at a time may allow to safely update parameters for future
iterations. Based on this idea, authors in [3, 16] have devel-
oped a fully distributed stochastic gradient descent, which is
described below.



Fig. 2. Stratification and Block decomposition. Blocks 1,5, 9
do not share rows neither columns, thus, they form a stratum
to run in parallel. Once computed, another stratum (2,6,7 or
3,4,8) can run.

3.2. Distribution: paradigm and flexibility.

The main idea behind the parallelization of this algorithm is
the division of the matrix into blocks and stratums. A block is
a batch of ratings that should be computed. It is computed by
only one processor, and hence, parameters updates are avail-
able within the same processor and there is no dependency
problems inside. However, only independent blocks can be
computed in parallel. In fact, parallelizable blocks do not
share rows neither columns, as a consequence, ratings of dif-
ferent blocks are independent. A stratum is defined as a set
of independent blocks. Then, inside a stratum there are no
dependency problems. Thus, this creates a stratum sched-
ule to follow, where stratums can be computed in sequence
or arbitrary sequence [3]. Then, SGD is stratified and safely
parallelizable. Figure 2 represents this paradigm.

This method allows to distribute the process of blocks into
machines in a cluster. In order to distribute the algorithm,
the number of nodes w and thread processors per node t are
taken into account. Thus, the number of single process units
is b = w · t (supposing similar node machines). Looking for
b independent blocks in the matrix maximizes the efficiency
of the distribution in the cluster. However, this may cause
a problem of flexibility to the cluster. Imagine a matrix of
dimension nu x ni, the key point in the block decomposition
is the divisibility of the dimensions in integer parts. That is,
dimensions might be divisible by b in order to properly create
blocks (nu%b = 0 and ni%b = 0). This integer divisibility
constraint creates a conflict while decomposing matrices in
blocks, since dimensions may not verify this ”condition”.

4. FLEXIBLE DISTRIBUTED STOCHASTIC
GRADIENT DESCENT

Our work focuses on coping this divisibility condition. In [3,
16], the deletion of rows/column (i.e. users/items) is sug-
gested to achieve it. However, this may yield in a loss of
accuracy: if a significant number of data is deleted the system
may loose important information. In fact, this shows an accu-
racy/cluster flexibility trade-off: more clusters might lead in
more deletions, hence an accuracy loss.

Our contribution is flexible in the condition accomplish-
ment. On the one hand, deleting dimensions loses data. On

the other hand, adding dimensions may increase the time-
consumption of the algorithm. However, this does not yields
in a loss of data, since inserting empty dimension does not
add any noisy information.

Based on these ideas, we have developed a Flexible Dis-
tributed Stochastic Gradient Descent. It uses three modes of
usage regarding the available processing nodes and the matrix
dimensions: (1) under dimensionality, (2) upper dimensional-
ity, and (3) flexible dimensionality. The under dimensionality
is the proposition given by [3]. This mode resize the matrix by
deleting dimensions, and thus resized dimension are equal or
minor to the real one to accomplish the decomposing condi-
tion. The upper dimensionality resizes the matrix by inserting
empty dimensions until accomplishing the decomposing con-
dition. Finally, the flexible dimensionality technique is a hy-
brid of both techniques. It looks for the closest dimension
(above or below) to the real one. This technique balances the
trade-off. Any of these techniques return new dimensions, n′u
and n′i, that fits properly with a matrix block decomposition.

4.1. DSGD Hadoop/MapReduce

In this section, we present the steps of our implementation in
MapReduce. Three parameters have to be set: row original
matrix dimension nr, column original matrix dimension nc,
and the number of units b. There are three main points in our
implementation:

(1) Matrix block decomposition: it adapts the dataset to
the number of units of the cluster. To accomplish the decom-
position condition and make the rating matrix decomposable
in blocks, this method will delete entries and/or add empty
entries. Once the decomposing condition is solved, block
sizes can be defined. The row step size of a block is given
by rowStep = n′r/b and the column step size is given by
columnStep = n′c/b, where n′r and n′c are the new dimen-
sions. Hence, the blocks can be formed by moving through
the matrix.

(2) Stratum assignment: it groups independent blocks in
the same stratum. Note that, the number of the stratums is
actually the number of nodes b, and thus, up to b blocks are in
the same stratum and can be run in parallel.

(3) Stratum execution: This step computes SGD in stra-
tums blocks and then updates parameters at the end of their
execution. This guarantees the integrity and independence of
parameters for next stratums. The stratum are sequentially ex-
ecuted, yet this sequence may be randomly created. Finally,
the stratums sequence is run a defined number of iterations or
until convergence/achieved accuracy.

Our approach uses a SGDJob in MapReduce that analy-
ses multiple entries. These are the blocks of a stratum, which
contain the ratings to execute Gradient Descent optimization.
The output of the job consist of vectors containing the last
updated parameters for users and items. This process is done
with a singleMap−function. The input key is a pair of val-



ues which represent the entries of the matrix, the input value
is the rating itself. After computation and a clean-up map pro-
cess, the map function can return the results. The output key
are the row/column of the matrix and a vector representing
the updated parameters.

5. EXPERIMENTATION

We assess the performance of our implementation by using
the publicly available MovieLens 10M dataset 1, which has
10 million ratings applied by 69878 users to 10667 movies.
We create a matrix of rows (users) and columns (items) that
contains available ratings. The evaluation and comparisons
are carried in terms of accuracy and scalability. On the one
hand, the dataset is split up into a training set and a test
set, containing respectively the 90% and the 10% of the rat-
ings. These tests allow to evaluate the accuracy by using
Root Mean Square Error (RMSE). This metric computes the
square error in the difference between predicted values and
real-observed values, the lower the better. On the other hand,
the time-consuming and scalability parameters depend on
machines and clusters. We vary the number of nodes in the
cluster. That is, we use b = 1, 2, 5, 7, 15. In this paper we
run the experimentation in single node cluster: a MacOS 4Go
RAM with 2 cores (2.53GHz). This makes mappers in map-
reduce to be computed sequentially, thus time-consumption
is higher than in multi-cluster. Amazon EMR2 instances are
used for real cluster experimentation, yet results are still on
work and are not shown in this paper.

Three methods are compared: under dimensionality (un-
derDSGD), upper dimensionality (upperDSGD), and flex-
ible dimensionality (flexDSGD). These techniques have
been equally trained: the overfitting parameter and learn-
ing rate were obtained by cross-validation: λ = 0.025 and
γ = 0.0075. In addition, the algorithms run for 30 iterations
and use 30 latent features. Henceforth, it is expected that
upperDSGD obtains slightly better results in terms of RMSE,
since it does not delete data. Yet, underDSGD might get
slightly better time performance. FlexDSGD will show inter-
mediary results in both comparisons. Moreover, we offer a
comparison to ALS that shows the superiority of DSGD. The
technique uses λ = 0.025, value obtained by cross-validation.
30 iterations over 30 latent features were performed as well.

Table 1 shows the comparisons and results. The perfor-
mance in RMSE and the time achieved in computing one
iteration in a single node cluster are presented. Besides, it
shows the number of rows/columns (users/items) that has
been added or removed (denoted by ”+” or ”-”, respectively)
in order to achieve the divisibility ”condition”: nu%b = 0
and ni%b = 0.

As it was expected, DSGD techniques are more accurate
(with a lower RMSE) and faster than ALS. In addition, up-

1http://grouplens.org/datasets/movielens/
2http://aws.amazon.com/elasticmapreduce/

Table 1. Experimentation results.
Technique RMSE Time (min) N. Units (b) Rows Columns
ALS [7, 8] 0.79603 3.019 1 = =

Under DSGD [3] 0.77571 1.303 1 = =
Flex DSGD 0.77571 1.303 1 = =

Upper DSGD 0.77571 1.303 1 = =
Under DSGD [3] 0.77611 1.850 2 = -1

Flex DSGD 0.77555 1.852 2 = +1
Upper DSGD 0.77559 1.885 2 = +1

Under DSGD [3] 0.77626 5.518 5 -3 -2
Flex DSGD 0.77617 5.524 5 +2 -2

Upper DSGD 0.77597 5.525 5 +2 +3
Under DSGD [3] 0.77586 8.978 7 -4 -6

Flex DSGD 0.77548 8.985 7 +3 +1
Upper DSGD 0.77565 9.024 7 +3 +1

Under DSGD [3] 0.77593 28.506 15 -8 -2
Flex DSGD 0.77596 28.526 15 +7 -2

Upper DSGD 0.77555 28.536 15 +7 +13

perDSGD and flexDSGD slightly overcome to underDSGD
in accuracy. Indeed, these two modes deal with more ratings,
what allows achieving (tiny 1%) better results. This fact ex-
plains as well the little extra time taken in computation. Nev-
ertheless, less or none information is deleted. For instance,
focus in the case of 15 number of units, which has 15 inde-
pendent blocks per stratum. In order to achieve this decompo-
sition, underDSGD has deleted 8 rows (users) and 2 columns
(items), yielding in a loss of data. In addition, the deletion is
not controlled, and thus one may delete very informativeness
rows and columns.

6. CONCLUSION

Recommender Systems aim at selecting and presenting first
the information in which users may be more interested. Ma-
trix Factorization recommendation technique achieves high
accuracy and scalability in very large datasets. In this pa-
per we focused on a Distributed Stochastic Gradient Descent
(DSGD) algorithm based on this technique. It has higher per-
formance compared to other algorithms; yet its distribution
paradigm does not fit properly the cluster, what may cause
light loss in accuracy.

This paper details an implementation of Distributed
Stochastic Gradient Descent in a real Hadoop environment. In
addition, we have proposed a slight modification to (1) adapt
the distribution to the cluster set up, and (2) avoid the minor
loss of accuracy of the current distribution paradigm. The ex-
perimentation phase uses the public MovieLens dataset. The
evaluations show the good performance of the approach in
terms of accuracy and scalability. Future work focuses on en-
hancing and improving this implementation by incorporating
more heterogeneous data to the process.
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