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On uniqueness for a rough transport-diffusion equation

In this Note, we study a transport-diffusion equation with rough coefficients and we prove that solutions are unique in a low-regularity class.

Introduction

In this note, we address the problem of uniqueness for a transport-diffusion equation with rough coefficients. Our primary interest and motivation is a uniqueness result for an equation obeyed by the vorticity of a Leray-type solution of the Navier-Stokes equation in the full, three dimensional space. The main theorem of this note is the following. Theorem 1.1 : Let v be a divergence free vector field in L 2 (R + , Ḣ1 (R 3 )) and a a function in L 2 (R + ×R 3 ). Assume that a is a distributional solution of the Cauchy problem

(C)    ∂ t a + ∇ • (av) -∆a = 0 a(0) = 0, (1) 
where the initial condition is understood in the distributional sense. Then a is identically zero on R + ×R 3 .
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As a preliminary remark, the assumptions on both v and a entail that ∂ t a belongs to L 1 loc (R + , H -2 (R 3 )) and thus, in particular, a is also in C(R + , D ′ (R 3 )). In Theorem 1.1, a is to be thought of as a scalar component of the vorticity of v, which is in the original problem a Leray solution of the Navier-Stokes equation. In particular, we only know that a belongs to L 2 (R + × R 3 ) and L ∞ (R + , Ḣ-1 (R 3 )), though we will not use the second assumption. The reader accustomed to three-dimensional fluid mechanics will notice that, comparing the above equation with the actual vorticity equations in 3D, a term of the type a∂ i v is missing. In the original problem, where this Theorem first appeared, we actually rely on a double application of Theorem 1.1. For some technical reasons, only the second application of Theorem 1.1 takes in account the abovementioned term.

As opposed to the standard DiPerna-Lions theory, we cannot assume that a is in L ∞ (R + , L p (R 3 )) for some p ≥ 1. However, our proof does bear a resemblance to the work of DiPerna and Lions; our result may thus be viewed as a generalization of their techniques. Because of the low regularity of both the vector field v and the scalar field a, the use of energy-type estimates seems difficult. This is the main reason why we rely instead on a duality argument, embodied by the following theorem.

Theorem 1.2 : Given v a divergence free vector field in L 2 (R + , Ḣ1 (R 3 )) and a smooth ϕ 0 in D(R 3 ), there exists a distributional solution of the Cauchy problem

(C ′ )    ∂ t ϕ -v • ∇ϕ -∆ϕ = 0 ϕ(0) = ϕ 0 (2) with the bounds ϕ(t) L ∞ (R 3 ) ≤ ϕ 0 L ∞ (R 3 ) (3) 
and

∂ j ϕ(t) 2 L 2 (R 3 ) + t 0 ∇∂ j ϕ(s) 2 L 2 (R 3 ) ds ≤ ∂ j ϕ 0 2 L 2 (R 3 ) + ϕ 0 2 L ∞ (R 3 ) ∂ j v 2 L 2 (R+×R 3 ) (4) 
for j = 1, 2, 3 and any positive time t. By reversing the arrow of time, this amounts to build, for any strictly positive T , a solution on [0, T ] × R 3 of the Cauchy problem

(-C ′ )    -∂ t ϕ -v • ∇ϕ -∆ϕ = 0 ϕ(T ) = ϕ T , (5) 
where we have set ϕ T := ϕ 0 for the reader's convenience.

Proofs

We begin with the dual existence result. Proof (of Theorem 1.2.) : Let us choose some mollifying kernel ρ = ρ(t, x) and denote v δ := ρ δ * v, where ρ δ (t, x) := δ -4 ρ( t δ , x δ ). Let (C ′ δ ) be the Cauchy problem (C ′ ) where we replaced v by v δ . The existence of a (smooth) solution ϕ δ to (C ′ δ ) is then easily obtained thanks to, for instance, a Friedrichs method combined with heat kernel estimates. We now turn to estimates uniform in the regularization parameter δ. The first one is a sequence of energy estimates done in L p with p ≥ 2, which yields the maximum principle in the limit. Multiplying the equation on ϕ δ by ϕ δ |ϕ δ | p-2 and integrating in space and time, we get

1 p ϕ δ (t) p L p (R 3 ) + (p -1) t 0 ∇ϕ δ (s)|ϕ δ (s)| p-2 2 2 L 2 (R 3 ) ds = 1 p ϕ 0 p L p (R 3 ) . (6) 
Discarding the gradient term, taking p-th root in both sides and letting p go to infinity gives

ϕ δ (t) L ∞ (R 3 ) ≤ ϕ 0 L ∞ (R 3 ) . (7) 
To obtain the last estimate, let us derive for 1 ≤ j ≤ 3 the equation satisfied by ∂ j ϕ δ . We have

∂ t ∂ j ϕ δ -v δ • ∇∂ j ϕ δ -∆∂ j ϕ δ = ∂ j v δ • ∇ϕ δ . ( 8 
)
Multiplying this new equation by ∂ j ϕ δ and integrating in space and time gives

1 2 ∂ j ϕ δ (t) 2 L 2 (R 3 ) + t 0 ∇∂ j ϕ δ (s) 2 L 2 (R 3 ) ds = 1 2 ∂ j ϕ 0 2 L 2 (R 3 ) + t 0 R 3 ∂ j ϕ δ (s, x)∂ j v δ (s, x) • ∇ϕ δ (s, x)dxds. ( 9 
)
Since v is divergence free, the gradient term in the left-hand side does not contribute to Equation (9). Denote by I(t) the last integral written above. Integrating by parts and recalling that v is divergence free, we have

I(t) = - t 0 R 3 ϕ δ (s, x)∂ j v δ (s, x) • ∇∂ j ϕ δ (s, x)dxds ≤ ϕ 0 L ∞ (R 3 ) t 0 ∂ j v δ (s) L 2 (R 3 ) ∇∂ j ϕ δ (s) L 2 (R 3 ) ds ≤ 1 2 t 0 ∇∂ j ϕ δ (s) 2 L 2 (R 3 ) ds + 1 2 ϕ 0 2 L ∞ (R 3 ) t 0 ∂ j v δ (s) 2 L 2 (R 3 ) ds.
And finally, the energy estimate on ∂ j ϕ δ reads

∂ j ϕ δ (t) 2 L 2 (R 3 ) + t 0 ∇∂ j ϕ δ (s) 2 L 2 (R 3 ) ds ≤ ∂ j ϕ 0 2 L 2 (R 3 ) + ϕ 0 2 L ∞ (R 3 ) ∂ j v 2 L 2 (R+,×R 3 ) . (10) 
Thus, the family (ϕ

δ ) δ is bounded in L ∞ (R + , H 1 (R 3 )) ∩ L 2 (R + , Ḣ2 (R 3 )) ∩ L ∞ (R + × R 3 ).
Up to some extraction, we have the weak convergence of (ϕ δ ) δ in L 2 (R + , Ḣ2 (R 3 )) and its weak- * convergence in

L ∞ (R + , H 1 (R 3 )) ∩ L ∞ (R + × R 3 ) to some function ϕ.
By interpolation, we also have ∇ϕ δ ⇀ ∇ϕ weakly in L 4 (R + , Ḣ 1 2 (R 3 )) as δ → 0. As a consequence, because v δ → v strongly in L 2 (R + , Ḣ1 (R 3 )) as δ → 0, the following convergences hold :

∆ϕ δ ⇀ ∆ϕ in L 2 (R + × R 3 ); v δ • ∇ϕ δ , ∂ t ϕ δ ⇀ v • ∇ϕ , ∂ t ϕ in L 4 3 (R + , L 2 (R 3 )).
In particular, such a ϕ is a distributional solution of (C ′ ) with the desired regularity. We now state a Lemma which will be useful in the final proof. Lemma 2.1 : Let v be a fixed, divergence free vector field in L 2 (R + , Ḣ1 (R 3 )). Let (ϕ δ ) δ be a bounded family in L ∞ (R + × R 3 ). Let ρ = ρ(x) be some smooth function supported inside the unit ball of R 3 and define

ρ ε := ε -3 ρ • ε . Define the commutator C ε,δ by C ε,δ (s, x) := v(s, x) • (∇ρ ε * ϕ δ (s))(x) -(∇ρ ε * (v(s)ϕ δ (s)))(x). Then C ε,δ L 2 (R+×R 3 ) ≤ ∇ρ L 1 (R 3 ) ∇v L 2 (R+, Ḣ1 (R 3 )) ϕ δ L ∞ (R+,H 1 (R 3 )) . (11) 
This type of lemma is absolutely not new. Actually, it is strongly reminiscent of Lemma II.1 in [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] and serves the same purpose. We are now in position to prove the main theorem of this note.

Proof (of Theorem 1.1.) : Let ρ = ρ(x) be a radial mollifying kernel and define ρ ε (x) := ε -3 ρ( x ε ). Convolving the equation on a by ρ ε gives, denoting a ε := ρ ε * a,

(C ε ) ∂ t a ε + ∇ • (a ε v) -∆a ε = ∇ • (a ε v) -ρ ε * ∇ • (av). ( 12 
)
Notice that even without any smoothing in time, a ε ,

∂ t a ε are in L ∞ (R + , C ∞ (R 3 )) and L 1 (R + , C ∞ (R 3 ))
respectively, which is enough to make the upcoming computations rigorous. In what follows, we let ϕ δ be a solution of the Cauchy problem (-C ′ δ ), with (-C ′ δ ) being (-C ′ ) with v replaced by v δ . Let us now multiply, for δ, ε > 0 the equation (C ε ) by ϕ δ and integrate in space and time. After integrating by parts (which is justified by the high regularity of the terms we have written), we get

T 0 R 3 ∂ t a ε (s, x)ϕ δ (s, x)dxds = a ε (T ), ϕ T D ′ (R 3 ),D(R 3 ) - T 0 R 3 a ε (s, x)∂ t ϕ δ (s, x)dxds and T 0 R 3 [∇ • (v(s, x)a ε (s, x)) -ρ ε (x) * ∇ • (v(s, x)a(s, x))] ϕ δ (s, x)dxds = T 0 R 3 a(s, x)C ε,δ (s, x)dxds,
where the commutator C ε,δ has been defined in the Lemma. From these two identities, it follows that

a ε (T ), ϕ T D ′ (R 3 ),D(R 3 ) = T 0 R 3 a(s, x)C ε,δ (s, x)dxds - T 0 R 3 a ε (s, x) -∂ t ϕ δ (s, x) -v(s, x) • ∇ϕ δ (s, x) -∆ϕ δ (s, x) dxds.
From the Lemma, we know that (

C ε,δ ) ε,δ is bounded in L 2 (R + × R 3 ). Because v • ∇ϕ δ → v • ∇ϕ in L 4 3 (R + , L 2 (R 3 
)) as δ → 0, the only weak limit point in L 2 (R + × R 3 ) of the family (C ε,δ ) ε,δ as δ → 0 is C ε,0 . Thanks to the smoothness of a ε for each fixed ε, we can take the limit δ → 0 in the last equation, which leads to a ε (T ), ϕ T D ′ (R 3 ),D(R 3 ) = T 0 R 3 a(s, x)C ε,0 (s, x)dxds.

Again, the family (C ε,0 ) ε is bounded in L 2 (R + × R 3 ) and its only limit point as ε → 0 is 0, simply because v • ∇ϕ ερ ε * (v • ∇ϕ) → 0 in L 4 3 (R + , L 2 (R 3 )). Taking the limit ε → 0, we finally obtain a(T ), ϕ T D ′ (R 3 ),D(R 3 ) = 0.

This being true for any test function ϕ T , a(T ) is the zero distribution and finally a ≡ 0.