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Abstract

In this Note, we study a transport-diffusion equation with rough coefficients and we prove that solutions are

unique in a low-regularity class. To cite this article: G. Lévy, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé

Sur l’unicité pour une équation de transport-diffusion irrégulière. Dans cette Note, nous étudions une

équation de transport-diffusion à coefficients irréguliers et nous prouvons l’unicité de sa solution dans une classe

de fonctions peu régulières. Pour citer cet article : G. Lévy, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

1. Introduction

In this note, we address the problem of uniqueness for a transport-diffusion equation with rough coeffi-
cients. Our primary interest and motivation is a uniqueness result for an equation obeyed by the vorticity
of a Leray-type solution of the Navier-Stokes equation in the full, three dimensional space. The main
theorem of this note is the following.

Theorem 1.1 : Let v be a divergence free vector field in L2(R+, Ḣ
1(R3)) and a a function in L2(R+×R

3).
Assume that a is a distributional solution of the Cauchy problem

(C)







∂ta+∇ · (av)−∆a = 0

a(0) = 0,
(1)

where the initial condition is understood in the distributional sense. Then a is identically zero on R+×R
3.

Email address: levy@ljll.math.upmc.fr (Guillaume Lévy).
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As a preliminary remark, the assumptions on both v and a entail that ∂ta belongs to L1
loc(R+, H

−2(R3))
and thus, in particular, a is also in C(R+,D

′(R3)). In Theorem 1.1, a is to be thought of as a scalar
component of the vorticity of v, which is in the original problem a Leray solution of the Navier-Stokes
equation. In particular, we only know that a belongs to L2(R+ × R

3) and L∞(R+, Ḣ
−1(R3)), though

we will not use the second assumption. The reader accustomed to three-dimensional fluid mechanics will
notice that, comparing the above equation with the actual vorticity equations in 3D, a term of the type
a∂iv is missing. In the original problem, where this Theorem first appeared, we actually rely on a double
application of Theorem 1.1. For some technical reasons, only the second application of Theorem 1.1 takes
in account the abovementioned term.
As opposed to the standard DiPerna-Lions theory, we cannot assume that a is in L∞(R+, L

p(R3)) for
some p ≥ 1. However, our proof does bear a resemblance to the work of DiPerna and Lions; our result
may thus be viewed as a generalization of their techniques. Because of the low regularity of both the
vector field v and the scalar field a, the use of energy-type estimates seems difficult. This is the main
reason why we rely instead on a duality argument, embodied by the following theorem.

Theorem 1.2 : Given v a divergence free vector field in L2(R+, Ḣ
1(R3)) and a smooth ϕ0 in D(R3),

there exists a distributional solution of the Cauchy problem

(C′)







∂tϕ− v · ∇ϕ−∆ϕ = 0

ϕ(0) = ϕ0

(2)

with the bounds
‖ϕ(t)‖L∞(R3) ≤ ‖ϕ0‖L∞(R3) (3)

and

‖∂jϕ(t)‖
2
L2(R3) +

∫ t

0

‖∇∂jϕ(s)‖
2
L2(R3)ds ≤ ‖∂jϕ0‖

2
L2(R3) + ‖ϕ0‖

2
L∞(R3)‖∂jv‖

2
L2(R+×R3) (4)

for j = 1, 2, 3 and any positive time t.
By reversing the arrow of time, this amounts to build, for any strictly positive T , a solution on [0, T ]×R

3

of the Cauchy problem

(−C′)







−∂tϕ− v · ∇ϕ−∆ϕ = 0

ϕ(T ) = ϕT ,
(5)

where we have set ϕT := ϕ0 for the reader’s convenience.

2. Proofs

We begin with the dual existence result.
Proof (of Theorem 1.2.) : Let us choose some mollifying kernel ρ = ρ(t, x) and denote vδ := ρδ ∗ v,
where ρδ(t, x) := δ−4ρ( t

δ
, x
δ
). Let (C′

δ) be the Cauchy problem (C′) where we replaced v by vδ. The
existence of a (smooth) solution ϕδ to (C′

δ) is then easily obtained thanks to, for instance, a Friedrichs
method combined with heat kernel estimates. We now turn to estimates uniform in the regularization
parameter δ. The first one is a sequence of energy estimates done in Lp with p ≥ 2, which yields the
maximum principle in the limit. Multiplying the equation on ϕδ by ϕδ|ϕδ|p−2 and integrating in space
and time, we get

1

p
‖ϕδ(t)‖p

Lp(R3) + (p− 1)

∫ t

0

‖∇ϕδ(s)|ϕδ(s)|
p−2

2 ‖2L2(R3)ds =
1

p
‖ϕ0‖

p

Lp(R3). (6)
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Discarding the gradient term, taking p-th root in both sides and letting p go to infinity gives

‖ϕδ(t)‖L∞(R3) ≤ ‖ϕ0‖L∞(R3). (7)

To obtain the last estimate, let us derive for 1 ≤ j ≤ 3 the equation satisfied by ∂jϕ
δ. We have

∂t∂jϕ
δ − vδ · ∇∂jϕ

δ −∆∂jϕ
δ = ∂jv

δ · ∇ϕδ. (8)

Multiplying this new equation by ∂jϕ
δ and integrating in space and time gives

1

2
‖∂jϕ

δ(t)‖2L2(R3) +

∫ t

0

‖∇∂jϕ
δ(s)‖2L2(R3)ds =

1

2
‖∂jϕ0‖

2
L2(R3)

+

∫ t

0

∫

R3

∂jϕ
δ(s, x)∂jv

δ(s, x) · ∇ϕδ(s, x)dxds. (9)

Since v is divergence free, the gradient term in the left-hand side does not contribute to Equation (9).
Denote by I(t) the last integral written above. Integrating by parts and recalling that v is divergence
free, we have

I(t) = −

∫ t

0

∫

R3

ϕδ(s, x)∂jv
δ(s, x) · ∇∂jϕ

δ(s, x)dxds

≤ ‖ϕ0‖L∞(R3)

∫ t

0

‖∂jv
δ(s)‖L2(R3)‖∇∂jϕ

δ(s)‖L2(R3)ds

≤
1

2

∫ t

0

‖∇∂jϕ
δ(s)‖2L2(R3)ds+

1

2
‖ϕ0‖

2
L∞(R3)

∫ t

0

‖∂jv
δ(s)‖2L2(R3)ds.

And finally, the energy estimate on ∂jϕ
δ reads

‖∂jϕ
δ(t)‖2L2(R3) +

∫ t

0

‖∇∂jϕ
δ(s)‖2L2(R3)ds ≤ ‖∂jϕ0‖

2
L2(R3) + ‖ϕ0‖

2
L∞(R3)‖∂jv‖

2
L2(R+,×R3). (10)

Thus, the family (ϕδ)δ is bounded in L∞(R+, H
1(R3)) ∩ L2(R+, Ḣ

2(R3)) ∩ L∞(R+ × R
3). Up to some

extraction, we have the weak convergence of (ϕδ)δ in L2(R+, Ḣ
2(R3)) and its weak-∗ convergence in

L∞(R+, H
1(R3)) ∩ L∞(R+ × R

3) to some function ϕ.

By interpolation, we also have ∇ϕδ ⇀ ∇ϕ weakly in L4(R+, Ḣ
1
2 (R3)) as δ → 0. As a consequence,

because vδ → v strongly in L2(R+, Ḣ
1(R3)) as δ → 0, the following convergences hold :

∆ϕδ ⇀ ∆ϕ in L2(R+ × R
3);

vδ · ∇ϕδ , ∂tϕ
δ ⇀ v · ∇ϕ , ∂tϕ in L

4
3 (R+, L

2(R3)).

In particular, such a ϕ is a distributional solution of (C′) with the desired regularity. �
We now state a Lemma which will be useful in the final proof.
Lemma 2.1 : Let v be a fixed, divergence free vector field in L2(R+, Ḣ

1(R3)). Let (ϕδ)δ be a bounded
family in L∞(R+ × R

3). Let ρ = ρ(x) be some smooth function supported inside the unit ball of R3 and
define ρε := ε−3ρ

(

·

ε

)

. Define the commutator Cε,δ by

Cε,δ(s, x) := v(s, x) · (∇ρε ∗ ϕ
δ(s))(x) − (∇ρε ∗ (v(s)ϕ

δ(s)))(x).

Then
‖Cε,δ‖L2(R+×R3) ≤ ‖∇ρ‖L1(R3)‖∇v‖L2(R+,Ḣ1(R3))‖ϕ

δ‖L∞(R+,H1(R3)). (11)

This type of lemma is absolutely not new. Actually, it is strongly reminiscent of Lemma II.1 in [2] and
serves the same purpose. We are now in position to prove the main theorem of this note.
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Proof (of Theorem 1.1.) : Let ρ = ρ(x) be a radial mollifying kernel and define ρε(x) := ε−3ρ(x
ε
).

Convolving the equation on a by ρε gives, denoting aε := ρε ∗ a,

(Cε) ∂taε +∇ · (aεv)−∆aε = ∇ · (aεv)− ρε ∗ ∇ · (av). (12)

Notice that even without any smoothing in time, aε, ∂taε are in L∞(R+, C
∞(R3)) and L1(R+, C

∞(R3))
respectively, which is enough to make the upcoming computations rigorous. In what follows, we let ϕδ

be a solution of the Cauchy problem (−C′

δ), with (−C′

δ) being (−C′) with v replaced by vδ. Let us now
multiply, for δ, ε > 0 the equation (Cε) by ϕδ and integrate in space and time. After integrating by parts
(which is justified by the high regularity of the terms we have written), we get

∫ T

0

∫

R3

∂taε(s, x)ϕ
δ(s, x)dxds = 〈aε(T ), ϕT 〉D′(R3),D(R3) −

∫ T

0

∫

R3

aε(s, x)∂tϕ
δ(s, x)dxds

and
∫ T

0

∫

R3

[∇ · (v(s, x)aε(s, x)) − ρε(x) ∗ ∇ · (v(s, x)a(s, x))]ϕδ(s, x)dxds

=

∫ T

0

∫

R3

a(s, x)Cε,δ(s, x)dxds,

where the commutator Cε,δ has been defined in the Lemma. From these two identities, it follows that

〈aε(T ), ϕT 〉D′(R3),D(R3) =

∫ T

0

∫

R3

a(s, x)Cε,δ(s, x)dxds

−

∫ T

0

∫

R3

aε(s, x)
(

−∂tϕ
δ(s, x)− v(s, x) · ∇ϕδ(s, x)−∆ϕδ(s, x)

)

dxds.

From the Lemma, we know that (Cε,δ)ε,δ is bounded in L2(R+ × R
3). Because v · ∇ϕδ → v · ∇ϕ in

L
4
3 (R+, L2(R3)) as δ → 0, the only weak limit point in L2(R+ × R

3) of the family (Cε,δ)ε,δ as δ → 0 is
Cε,0. Thanks to the smoothness of aε for each fixed ε, we can take the limit δ → 0 in the last equation,
which leads to

〈aε(T ), ϕT 〉D′(R3),D(R3) =

∫ T

0

∫

R3

a(s, x)Cε,0(s, x)dxds. (13)

Again, the family (Cε,0)ε is bounded in L2(R+×R
3) and its only limit point as ε → 0 is 0, simply because

v · ∇ϕε − ρε ∗ (v · ∇ϕ) → 0 in L
4
3 (R+, L2(R3)). Taking the limit ε → 0, we finally obtain

〈a(T ), ϕT 〉D′(R3),D(R3) = 0. (14)

This being true for any test function ϕT , a(T ) is the zero distribution and finally a ≡ 0. �
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