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Abstract

This article deals with the boundary observability properties of a space finite-differences semi-
discretization of the clamped beam equation. We make a detailed spectral analysis of the system and,
by combining numerical estimates with asymptotic expansions, we localize all the eigenvalues of the
corresponding discrete operator depending on the mesh size h. Then, an Ingham’s type inequality
and a discrete multiplier method allow us to deduce that the uniform (with respect to h) observability
property holds if and only if the eigenfrequencies are filtered out in the range O

(
1/h4

)
.

1 Introduction

We consider the following equation modelling the boundary controlled vibration of an elastic beam
clamped at both extremities

ü(x, t) + ∂4xu(x, t) = 0, (x, t) ∈ (0, 1)× (0, T )
u(0, t) = u(1, t) = 0, t ∈ (0, T )
∂xu(0, t) = 0, ∂xu(1, t) = v(t), t ∈ (0, T )
u(x, 0) = u0(x), u̇(x, 0) = u1(x), x ∈ (0, 1).

(1.1)

In (1.1) u = u(x, t) denotes the position of the beam at time t > 0 and point x ∈ [0, 1] and v = v(t)
represents the boundary control acting on the extremity x = 1. Moreover, u̇ denotes the derivative of
u with respect to time. The controllability problem associated to (1.1) reads as follows: given T > 0,
for every initial data (u0, u1) ∈ L2(0, 1) × H−2(0, 1) there exists a control v ∈ L2(0, T ) such that the
solution of (1.1) verifies

u(x, T ) = u̇(x, T ) = 0 (x ∈ (0, 1)). (1.2)
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It has been proved that, for every T > 0, the above controllability problem has a positive answer. For
details see [11, Section 6.10] for a solution using semigroups theory or [9] for a solution using multiplier
method. Moreover, it is well known that this controllability property is equivalent with an observability
property ensuring that there exists a constant K > 0 such that the following inequality holds

‖(y0, y1)‖2H2
0 (0,1)×L2(0,1) 6 K

∫ T

0

∣∣∂2xy(1, t)
∣∣2 dt (

(y0, y1) ∈ H2
0 (0, 1)× L2(0, 1)

)
, (1.3)

where (y, ẏ) is the solution of the following adjoint homogeneous equation
ÿ(x, t) + ∂4xy(x, t) = 0, (x, t) ∈ (0, 1)× (0, T )
y(0, t) = y(1, t) = 0, t ∈ (0, T )
∂xy(0, t) = ∂xy(1, t) = 0, t ∈ (0, T )
y(x, 0) = y0(x), ẏ(x, 0) = y1(x), x ∈ (0, 1).

(1.4)

The main objective of this work is to study the controllability properties of a finite-differences semi-
discrete approximation of (1.1). More precisely, let N be the number of discretization points uniformly
distributed in the interval (0, 1) and let h = 1

N+1 . The finite-differences semi-discretization of system
(1.1) is the following:

üj(t) + 1
h4 (uj+2(t)− 4uj+1(t) + 6uj(t)− 4uj−1(t) + uj−2(t)) = 0, 1 ≤ j ≤ N, t ∈ (0, T )

u0(t) = 0, uN+1(t) = 0, t ∈ (0, T )
u−1(t) = u1(t), uN+2(t) = uN (t) + hvh(t), t ∈ (0, T )
uj(0) = u0j , u̇j(0) = u1j , 1 ≤ j ≤ N,

(1.5)

where for every 1 ≤ j ≤ N , uj(t) approximates the solution u(jh, t) of (1.1) and (u0j , u
1
j ) is the approxi-

mation of the initial data of (1.1). In order to tackle the boundary conditions, two extra functions u−1(t)
and uN+2(t) have been introduced. The controllability problem associated to (1.5) reads as follows: for
a given T > 0 and (u0j , u

1
j )1≤j≤N ∈ C2N there exists a control vh ∈ L2(0, T ) such that the solution of

(1.5) satisfies:
uj(T ) = u̇j(T ) = 0 (1 ≤ j ≤ N).

We remark that system (1.5) can be equivalently written in the following vectorial form Üh(t) +AhUh(t) = Fh(t), t ∈ (0, T )

Uh(0) = U0
h , U̇h(0) = U1

h ,

(1.6)

where

U0
h =


u01
u02
...
u0N

 , U1
h =


u11
u12
...
u1N

 , Uh(t) =


u1(t)
u2(t)

...
uN (t)

 , Fh(t) = − 1
h3


0
0
...
vh

 ,

and Ah =
1

h4
A, with A the matrix in MN×N (C) defined by

A =



7 −4 1 0 . . . . . . . . . . . . 0
−4 6 −4 1 0 . . . . . . . . . 0

1 −4 6 −4 1 0 . . . . . . 0
0 1 −4 6 −4 1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 1 −4 6 −4 1 0
0 . . . . . . 0 1 −4 6 −4 1
0 . . . . . . . . . 0 1 −4 6 −4
0 . . . . . . . . . . . . 0 1 −4 7


. (1.7)
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Let us define in CN the canonical inner product given by

〈F,G〉0 = h

N∑
i=1

figi
(
F = (fi)16i6N , G = (gi)16i6N ∈ CN

)
, (1.8)

and let ‖ · ‖0 be its corresponding norm. In CN , we also introduce the inner product

〈F,G〉2 = 〈AhF,G〉0
(
F, G ∈ CN

)
, (1.9)

with the corresponding norm denoted by ‖ · ‖2. We remark that, whereas the norm ‖ · ‖0 is a discrete
version of the norm in L2(0, 1), the norm ‖ · ‖2 discretizes the usual norm in H2

0 (0, 1). Finally, let us
introduce the inner product in C2N defined by〈(

F 1

F 2

)
,

(
G1

G2

)〉
= 〈F 1, G1〉2 + 〈F 2, G2〉0

((
F 1

F 2

)
,

(
G1

G2

)
∈ C2N

)
(1.10)

with the corresponding norm denoted ‖ · ‖.
One expects that the family of discrete controls (vh)h>0 for (1.5) approximates a control v of the

continuous equation (1.1) and converges to it as h tends to zero. The fact that this is not generally
true has been proved in several semi-discrete settings corresponding to the linear wave equation [7] or
hinged beam equation [10]. The non convergence result is due to the bad numerical approximation of
the highest eigenvalues and eigenvectors, which do not reflect anymore the properties of their continuous
counterparts. This phenomenon can be also seen at the level of the discrete observability inequality
corresponding to the problem. Indeed, if the observability constant is not uniformly bounded with
respect to the mesh size h, then it can be proved that there exist initial data for which the family of
minimal norm discrete controls diverges when h tends to zero. Reciprocally, if the observability constant
is uniformly bounded in h, the convergence of the discrete controls is ensured. In fact, the study of the
corresponding discrete observability inequality shows not only the convergence or not of the numerical
scheme, but also indicates possible cures of the defects. This is the case for the hinged beam equation
which was considered in [10]. More precisely, from the spectral analysis of the problem and the study of
the corresponding observability inequality, two possibilities to ensure the convergence of the scheme have
been proposed in [10]: by filtering out the spurious high frequencies or by adding an extra boundary
control. An alternative method to ensure the uniform controllability result consists in adding a vanishing
numerical viscosity and has been analyzed in [1].

The aim of this paper is to study the discrete observability property corresponding to the controlled
problem (1.5) which reads as follows: there exists a constant Kh such that the following inequality holds

‖Y 0
h ‖22 + ‖Y 1

h ‖20 6 Kh

∫ T

0

∣∣∣∣YhN (t)

h2

∣∣∣∣2 dt, (1.11)

for any

(
Y 0
h

Y 1
h

)
∈ C2N , where

(
Yh
Ẏh

)
is the solution of the discrete version of (1.4) given by

 Ÿh(t) +AhYh(t) = 0, t ∈ (0, T )

Yh(0) = Y 0
h , Ẏh(0) = Y 1

h .

(1.12)

We remak that (1.11) is a discrete version of (1.3), since the norms ‖·‖0 and ‖·‖2 stand for approximations
of the norms in L2(0, 1) and H2

0 (0, 1), respectively. Moreover, by taking into account the boundary

relations YhN+1 = 0 and YhN+2 = YhN , we deduce that 2YhN (t)
h2 is an approximation of ∂2xy(1, t). If

Kh does not depend of h, we say that (1.6) is uniformly observable. The study of the behavior of the
constant Kh in (1.11) with respect to h is the main objective of this paper. The uniform boundedness of
Kh with respect to h would ensure directly the convergence of the controls (vh)h>0 for (1.5) to a control
v of (1.1). On the contrary, if Kh tends to infinity as h goes to zero, some kind of filtration is needed to
ensure the convergence.

In the examples of the linear wave and hinged beam equations mentioned before the observability
constant is not uniformly bounded with respect to the discretization parameter h. Our main result states
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that, for the clamped beam equation (1.4), the uniform observability inequality associated to (1.12) does
not hold either. Hence, Kh tends to infinity as h goes to zero. Nevertheless, by filtering out the high
frequencies in the range O

(
1
h4

)
, the uniform observability inequality is restored.

These results are similar to the ones obtained for the hinged beam equation. The main difference is
that, for the clamped beam (1.4), the corresponding discrete finite-differences operator Ah is no more the
square of finite-differences discrete Laplacian and the eigenvalues cannot be explicitly computed. This
makes the Fourier analysis of the solutions of (1.12), and consequently the proof of the results concerning
the observability inequality (1.11), more intricate. Using some algebraic computations combined with
asymptotic estimates and Rouché’s theorem, we are able to localize the eigenvalues of the discrete
operator Ah driving system (1.6). Moreover, we also obtain estimates for the eigenvectors of Ah by using
asymptotic techniques and a discrete multiplier method.

Finally, let us remark that our analysis shows precisely how and when the observability inequality
begins to deteriorate. It gives more precise results than the general ones obtained for the abstract
hyperbolic equations deduced in [3, 4]. For instance, we are able to deduce that the optimal filtering
range ensuring the uniform observability is O

(
1
h4

)
and that the main defect comes from an error of order

of h−1 in the approximation of the second derivative ∂2xu(1, t) affecting the highest frequencies in that
range.

The remaining part of this paper is organized as follows. In Section 2 we analyze the eigenvalues and
eigenvectors of the discrete operator by dividing the spectrum in two parts: the low and the high one.
On the one side, the low frequencies are tackled by using a classical numerical convergence result, and, on
the other side, the high frequencies are studied by using an argument based on Rouché’s Theorem. In the
same Section 2 we give some lower estimates for the last component of the eigenvectors again by analyzing
separately the cases of the high and the low frequencies. Section 3 formulates and proves the main results
of our paper concerning the observability inequality (1.11). Finally, in Section 4, we numerically illustrate
the obtained results by considering some numerical experiments for the approximation of the controls.

2 Spectral properties of the matrix A

The main objective of this paper is to study the inequality (1.11) by using a spectral decomposition of

the operator Ah and a Fourier expansion of solutions

(
Yh
Ẏh

)
of (1.12). The aim of this section is to offer

the needed spectral information concerning the discrete operator Ah. In a first step we characterize the
eigenvalues and eigenvectors of the matrix A as solutions of some trigonometric equations. After that, we
obtain estimates for the high part of the spectrum of A by using the Rouché’s theorem and asymptotic
expansions. The low part of the spectrum is analyzed with the aid of a numerical convergence result and
a discrete multiplier method.

2.1 Algebraic properties

Firstly, we have the following simple result which is a consequence of the elementary properties of the
matrix A.

Proposition 2.1. The matrix A given by (1.7) has only real eigenvalues (λn)16n6N ⊂ (0, 16) and
there exists an orthonormal basis in CN (with respect to the canonical inner product (1.8)) consisting of
eigenvectors (φn)16n6N of A.

Proof. We remark that A is a symmetric matrix and it can be written as A = B2 +D, where

B =



2 −1 0 . . . . . . . . . 0
−1 2 −1 0 . . . . . . 0

0 −1 2 −1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 −1 2 −1 0
0 . . . . . . 0 −1 2 −1
0 . . . . . . . . . 0 −1 2


, D =



2 0 0 . . . . . . . . . 0
0 0 0 0 . . . . . . 0
0 0 0 0 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 0 0 0 0
0 . . . . . . 0 0 0 0
0 . . . . . . . . . 0 0 2


.
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Since B is positive defined and D is positive semi-defined it follows that A is positive definite. Hence,
the eigenvalues of A are real positive numbers. To find an upper bound for the eigenvalues we use the
well known result of Gershgorin (see, for instance, [5, Corollary 6.1.5, p. 346]) and deduce that every
eigenvalue of A verifies

|λn| 6 max
i∈{1,2,...,N}

N∑
j=1

|aij | = 16 (1 ≤ n ≤ N).

To show that a strict inequality takes place in the above estimate it is sufficient to remark that the
matrix A has the property SC and that the point of coordinates (16, 0) is not on the boundaries of all
Gershgorin discs (see [5, Better Theorem 6.2.8, p. 356]). The remaining part of the proof follows from
standard results for symmetric matrices.

The following proposition gives an algebraic characterization of the eigenvalues and eigenvectors of
the matrix A.

Proposition 2.2. With the above notation, λ is a eigenvalue of the matrix A if and only if verifies one
of the following relations

cos ((N + 1) arg(X4)) =
8XN+1

1 −
√
λX

2(N+1)
1 −

√
λ

2
(

2X
2(N+1)
1 −

√
λXN+1

1 + 2
) , sin((N + 1) arg(X4)) > 0, (2.1)

or

cos ((N + 1) arg(X4)) =
8XN+1

1 +
√
λX

2(N+1)
1 +

√
λ

2
(

2X
2(N+1)
1 +

√
λXN+1

1 + 2
) , sin((N + 1) arg(X4)) < 0, (2.2)

where for each j ∈ {1, 2, 3, 4} the numbers Xj are given by

X1,2 =
2 +
√
λ±

√
(2 +

√
λ)2 − 4

2
, (2.3)

X3,4 =
2−
√
λ± i

√
4− (2−

√
λ)2

2
. (2.4)

Moreover, to each eigenvalue λ of A corresponds a unitary eigenvector φ = (φ1, φ2, . . . , φN )′ given by

φk = C1X
k
1 + C2X

k
2 + C3X

k
3 + C4X

k
4 (k ∈ {1, 2, . . . , N}), (2.5)

where

C1 =
C

XN+1
1 r1N

, (2.6)

C2 = − C

XN+1
2 r2N

, (2.7)

C3 = −αC1

(
X1

X3

)N+1

− β C2

(
X2

X3

)N+1

, (2.8)

C4 = −β C1

(
X1

X4

)N+1

− αC2

(
X2

X4

)N+1

, (2.9)

r1N =

√√√√((X4

X1

)N+1

− 1

)((
X3

X1

)N+1

− 1

)
, (2.10)

r2N =

√√√√((X4

X2

)N+1

− 1

)((
X3

X2

)N+1

− 1

)
, (2.11)
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α =
1

2

(
1− iR+

R−

)
, β =

1

2

(
1 + i

R+

R−

)
, (2.12)

R+ =

√
(2 +

√
λ)2 − 4, R− =

√
4− (2−

√
λ)2. (2.13)

The positive constant C appearing in (2.6)-(2.7) is chosen such that ‖φ‖0 = 1.

Proof. Let λ be an eigenvalue of the matrix A and φ a corresponding eigenvector. Note that, by taking
φ0 = φN+1 = 0, φ−1 = φ1 and φN+2 = φN , we deduce from the equality Aφ = λφ that

φk−2 − 4φk−1 + (6− λ)φk − 4φk+1 + φk+2 = 0 (1 6 k 6 N). (2.14)

Equality (2.14) represents a recurrence relation of order 4 and its characteristic equation is given by

x4 − 4x3 + (6− λ)x2 − 4x+ 1 = 0. (2.15)

Since x 6= 0, dividing (2.15) by x2, we obtain:(
x+

1

x

)2

− 4

(
x+

1

x

)
+ 4− λ = 0

and, denoting s = x + 1
x , we obtain the following second order equation s2 − 4s + 4 − λ = 0 with the

solutions s1,2 = 2±
√
λ. Therefore, going back to the variable x and taking into account that λ ∈ (0, 16),

we obtain that equation (2.15) has four different solutions Xj (j ∈ {1, 2, 3, 4}) given by (2.3)-(2.4). From
classical results about recursive sequences there exist constants C1, C2, C3, C4 ∈ C such that (2.5) holds.

From the boundary conditions φ0 = φN+1 = 0, φ−1 = φ1 and φN+2 = φN , we deduce that the
constants Cj , j ∈ {1, 2, 3, 4}, satisfy the following system:

C1 + C2 + C3 + C4 = 0
R+C1 − R+C2 + iR−C3 − iR−C4 = 0

XN+1
1 C1 + XN+1

2 C2 + XN+1
3 C3 + XN+1

4 C4 = 0

XN+1
1 R+C1 − XN+1

2 R+C2 + iXN+1
3 R−C3 − iXN+1

4 R−C4 = 0.

(2.16)

From the first two equations in system (2.16) we extract

C3 = −1

2

(
1− iR+

R−

)
C1 −

1

2

(
1 + i

R+

R−

)
C2,

C4 = −1

2

(
1 + i

R+

R−

)
C1 −

1

2

(
1− iR+

R−

)
C2,

and from the last two equations

C3 = −1

2

(
1− iR+

R−

)
XN+1

1

XN+1
3

C1 −
1

2

(
1 + i

R+

R−

)
XN+1

2

XN+1
3

C2,

C4 = −1

2

(
1 + i

R+

R−

)
XN+1

1

XN+1
4

C1 −
1

2

(
1− iR+

R−

)
XN+1

2

XN+1
4

C2,

thus (2.8-2.9) hold. Putting together these relations, we obtain the following system verified by C1 and
C2 : 

(
1− iR+

R−

)(
1− XN+1

1

XN+1
3

)
C1 +

(
1 + i

R+

R−

)(
1− XN+1

2

XN+1
3

)
C2 = 0

(
1 + i

R+

R−

)(
1− XN+1

1

XN+1
4

)
C1 +

(
1− iR+

R−

)(
1− XN+1

2

XN+1
4

)
C2 = 0.

(2.17)

Since we are not interested to the null solution to (2.17) (and, respectively, to (2.16)), the determinant
associated to system (2.17) should be equal to zero, i.e.,(

1− iR+

R−

)2

(XN+1
3 −XN+1

1 )(XN+1
4 −XN+1

2 ) =

(
1 + i

R+

R−

)2

(XN+1
4 −XN+1

1 )(XN+1
3 −XN+1

2 ),
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or, in a slightly different but equivalent form,(
R− − iR+

R− + iR+

)2

=
(XN+1

4 −XN+1
1 )(XN+1

3 −XN+1
2 )

(XN+1
3 −XN+1

1 )(XN+1
4 −XN+1

2 )
. (2.18)

Moreover, we easily remark that

R− − iR+

R− + iR+
= −1

4

(√
λ+ i

√
16− λ

)
.

By choosing C1 as in (2.6) then from (2.17) we obtain C2 as in (2.7).
Let arg(X4) ∈ [0, 2π) be the argument of the complex number X4. It is easy to see from (2.3)-(2.4)

that X2 =
1

X1
and X3 = X4. Using this notation and the trigonometric form of X4, we obtain from

(2.18) that λ is an eigenvalue of the matrix A if and only if it verifies

√
λ

4
=

2−
(
XN+1

1 + 1
XN+1

1

)
cos((N + 1) arg(X4))

XN+1
1 + 1

XN+1
1

− 2 cos((N + 1) arg(X4))
, sin((N + 1) arg(X4)) > 0 (2.19)

or

−
√
λ

4
=

2−
(
XN+1

1 + 1
XN+1

1

)
cos((N + 1) arg(X4))

XN+1
1 + 1

XN+1
1

− 2 cos((N + 1) arg(X4))
, sin((N + 1) arg(X4)) < 0. (2.20)

This is equivalent to (2.1)–(2.2) and the proof of the proposition is complete.

2.2 Spectral properties of the high frequencies

In this section we asymptotically localize the largest eigenvalues of the matrix A which, according to
Proposition 2.2, verify equations (2.1) or (2.2). In order to do this, we need to rewrite the equations in
a more tractable form. Firstly, let us remark that any number λ ∈ (0, 16) may be written as

λ = 16 sin4

(
hz

2

)
, (2.21)

for some z ∈
(
0, πh

)
. With this notation, from (2.3) and (2.4) we obtain that arg(X4) = 2π − zh and

8XN+1
1 ±

√
λX

2(N+1)
1 ±

√
λ

2
(

2X
2(N+1)
1 ±

√
λXN+1

1 + 2
) = ± sin2

(
hz

2

)
+

2
(
1− sin4

(
hz
2

))
rN+1(z)

r2(N+1)(z)± 2 sin2
(
hz
2

)
rN+1(z) + 1

.

Let us define the complex functions

g±(z) = cos z ± sin2

(
zh

2

)
and f±(z) = g±(z)−

2
(
1− sin4

(
hz
2

))
rN+1(z)

r2(N+1)(z)∓ 2 sin2
(
hz
2

)
rN+1(z) + 1

, (2.22)

where r(z) is a notation for X1, namely

r(z) = 1 + 2 sin2

(
zh

2

)
+ 2

√
sin2

(
zh

2

)(
1 + sin2

(
zh

2

))
. (2.23)

Consequently, equations (2.1) and (2.2) are equivalent with f+(z) = 0 and f−(z) = 0, respectively.
In the remaining part of this section, our aim is to get information about the zeros of the functions f±

by comparing them with the simpler functions g± and by using the Rouché’s Theorem.
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Firstly, we have the following immediate result.

Lemma 2.3. Each equation g±(z) = 0 has exactly one real zero z±n in each interval (nπ, (n+ 1)π], for
0 6 n 6 N . Moreover, we have that

z+n ∈
[
nπ, nπ +

π

2

]
if n is odd,

z−n ∈
[
nπ, nπ +

π

2

]
if n is even.

(2.24)

Remark 2.4. As mentioned before, we are interested only in the values z ∈ (0, πh ). The previous lemma
ensures that each equation g±(z) = 0 has exactly N + 1 real zeros in the interval (0, πh ). Since the first

eigenvalue of the matrix B defined in Proposition 2.1 is λ̃1 = 4 sin2
(
πh
2

)
, it follows that the eigenvalues

of our matrix A are larger than (λ̃1)2. Hence, if we are looking for eigenvalues λ of the matrix A in the
form (2.21), then we should consider only values z > π.

For every δ > 0 and every n ∈ {1, 2, . . . , N}, we define the simple curves Γ±n (δ) = ∂D±n (δ) where

D±n (δ) =
{
z ∈ C

∣∣∣ ∣∣z − z±n ∣∣ < δ
}
. (2.25)

Moreover, for any L ∈
(
0, N + 1

2

)
, we consider the domain

D(L) =
{
z ∈ C

∣∣∣ |=(z)| 6 1, Lπ 6 <(z) 6 Nπ +
π

2

}
. (2.26)

Here and henceforth we denote by <(z) and =(z) the real and the imaginary part of the complex
number z, respectively. In what follows we analyze the roots of the function f+. The roots of f− can
be treated similarly and we shall give only the final result. In order to apply Rouché’s theorem, the
following two lemmas give estimates for |g+| on the contours Γ+

n (δ) and for |f+ − g+| in the domain
D(L).

Lemma 2.5. There exist δ1 > 0 and C1 > 0 such that for any δ ∈ (0, δ1) and N ∈ N∗ we have the
following estimates

|g+(z)| ≥ C1hδ
(
z ∈ Γ+

n (δ), 1 6 n 6 N
)
. (2.27)

Proof. Firstly, we remark that the function g+ can be written in the following form

g+(z) = cos(z) +
1

2
− cos(zh)

2
(z ∈ C).

Let z be on the circle Γ+
n (δ), i.e there exists ϕ ∈ [0, 2π) such that z = z+n + δeiϕ. We replace every

function of δ by its corresponding Taylor series at order o(δ3) and, by using several times the fact that
z+n are the solutions of the equation g+(z) = 0, we deduce that

|g+(z)|2 = δ2
(

sin2(z+n ) +
h2

4
sin(hz+n )− h sin(z+n ) sin(hz+n )

)
+ o(δ3)

= δ2
(

sin(z+n )− h

2
sin(hz+n )

)2

+ o(δ3). (2.28)

Finally, since cos(z+n ) = − sin2

(
hz+n

2

)
we have

∣∣∣∣sin(z+n )− h

2
sin(hz+n )

∣∣∣∣ >√1− cos2(z+n )− h sin

(
hz+n

2

)
cos

(
hz+n

2

)

=

√(
1− sin2

(
hz+n

2

))(
1 + sin2

(
hz+n

2

))
− h sin

(
hz+n

2

)
cos

(
hz+n

2

)
> cos

(
hz+n

2

)(
1− h sin

(
hz+n

2

))
>

1

2
cos

(
hz+n

2

)
. (2.29)
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From (2.24), we have that

cos

(
hz+n

2

)
> cos

(
hz+N

2

)
> cos

(
π

2
− hπ

4

)
>
h

2
.

From the last inequality, (2.28) and (2.29) we obtain that (2.27) holds on Γ+
n (δ), and the proof of the

lemma is complete.

Now, we pass to evaluate |f+(z)− g+(z)| in the domain D(L) defined by (2.26).

Lemma 2.6. There exist L0 > 0, N1 ∈ N∗ and C2 > 0 such that, for any L > L0 and N > N1, the
following inequality holds ∣∣f+(z)− g+(z)

∣∣ 6 C2 exp(−L) (z ∈ D(L)) . (2.30)

Proof. Firstly, from (2.23) we deduce that

r(z) =

(√
1 + sin2

(
zh

2

)
+

√
sin2

(
zh

2

))2

.

Since we have that

sin

(
zh

2

)
= sin

(
<(z)h

2

)
cosh

(
=(z)h

2

)
+ i cos

(
<(z)h

2

)
sinh

(
=(z)h

2

)
, (2.31)

we deduce that, for any z ∈ D (L), the following inequality holds

<
(

sin

(
zh

2

))
> sin

(
<(z)h

2

)
. (2.32)

Moreover, there exists L′0 > 0 and N1 ∈ N∗ such that, for any L > L′0, z ∈ D (L) and N > N1, the
following estimate is verified

<
(

sin2

(
zh

2

))
>

1

2
sin2

(
<(z)h

2

)
> 2

∣∣∣∣=(sin2

(
zh

2

))∣∣∣∣ . (2.33)

From (2.32)-(2.33) we deduce that

<

(√
1 + sin2

(
zh

2

)
+

√
sin2

(
zh

2

))
>

√
1 +

1

2
sin2

(
<(z)h

2

)
+sin

(
<(z)h

2

)
(z ∈ D(L)) . (2.34)

From (2.34) and by taking into account that

sin

(
<(z)h

2

)
> sin

(
πLh

2

)
> Lh (z ∈ D(L)) ,

we obtain that

|r(z)| > 1 + sin

(
<(z)h

2

)
> 1 + Lh (z ∈ D(L)) . (2.35)

Estimate (2.35) allows us to obtain (2.30). Indeed, it is easy to see that (2.35) implies that

|r(z)|N+1 > (1 + Lh)
1
h > exp (L) (z ∈ D(L)) . (2.36)

Finally, from (2.22) and (2.36), we deduce that there exist L′′0 > 0 and C2 > 0 such that the following
inequalities hold for any L > L′′0∣∣f+(z)− g+(z)

∣∣ 6 C2

|r(z)|N+1
6 C2 exp(−L) (z ∈ D(L)),

and, by choosing L0 = max{L′0, L′′0}, the proof ends.
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The following two theorems give the needed information concerning the roots of the functions f±.

Theorem 2.7. Let % > 1. There exists δ0 > 0 such that, for each δ ∈ (0, δ0), there exists N0(δ) ∈ N∗
with the property that for each N > N0(δ) and n verifying % lnN 6 n 6 N , the function f+ has a unique
zero y+n in D+

n (δ).

Proof. In the following we apply Rouché’s Theorem to the functions f+ and g+ given by (2.22). By
using Lemma 2.5, there exist δ1 > 0 and C1 > 0 such that, for each δ ∈ (0, δ1) and N ∈ N∗, we have

|g+(z)| > C1hδ (z ∈ Γ+
n (δ), 1 6 n 6 N). (2.37)

Moreover, from Lemma 2.6 we obtain that there exist L0 > 0, N1 ∈ N∗ and C2 > 0 such that, for each
L ∈

(
L0, N + 1

2

)
and N > N1 we have that

|f+(z)− g+(z)| 6 C2 exp(−L) (z ∈ D(L)). (2.38)

Let δ0 = min{δ1, 1}. For any δ ∈ (0, δ0), there exists N2(δ) ∈ N such that, for any N > N2(δ), we can
find a real number L ∈

(
L0, N + 1

2

)
verifying

L 6 ln

(
2C2

C1hδ

)
< % lnN − 1. (2.39)

From (2.38) and (2.39) we deduce that

|f+(z)− g+(z)| 6 C1hδ

2
(z ∈ D(L)). (2.40)

Moreover, (2.39) implies that D+
n (δ) ⊂ D(L) for any N > N2(δ) and n with the property that % lnN 6

n 6 N. Consequently, from (2.37) and (2.40) we deduce that, for any δ ∈ (0, δ0) and N > N0 :=
max{N2(δ), N1}, the following relation holds

|g+(z)| > |f+(z)− g+(z)| (z ∈ Γ+
n (δ), % lnN 6 n 6 N). (2.41)

By applying Rouché’s Theorem, we obtain that f+ vanishes only one time in the interior of Γ+
n (δ), for

each number n which verifies % lnN 6 n 6 N and the proof of the theorem is complete.

An analysis similar to the one in Theorem 2.7 shows that the following result holds.

Theorem 2.8. Let % > 1. There exists δ0 > 0 such that, for each δ ∈ (0, δ0), there exists N0(δ) ∈ N∗
with the property that for each N > N0(δ) and n verifying % lnN 6 n 6 N , the function f− has a unique
zero y−n in D−n (δ).

The main results of this section is the following theorem which, given % > 1 and N sufficiently large,
localizes the eigenvalues (λn)% lnN≤n≤N of the matrix A defined by (1.7).

Theorem 2.9. Let % > 1. There exists δ0 > 0 such that, for each δ ∈ (0, δ0), there exists N0(δ) ∈ N∗
with the property that the eigenvalues (λn)% lnN6n6N of the matrix A ∈ MN (R) with N > N0(δ) are
given by

λn =

 16 sin4
(
y+k h

2

)
if n = 2k + 2,

16 sin4
(
y−k h

2

)
if n = 2k + 1,

(2.42)

where y+k and y−k are zeros of the functions f+ and f− respectively, localized by Theorems 2.7 and 2.8.

Proof. As mentioned at the beginning of this section, from Proposition 2.2 we deduce that the eigenvalues
λ of the matrix A are of the form 16 sin4

(
zh
2

)
, where z are roots of the functions f+ if sin(z) > 0 or f−

if sin(z) < 0. Since the zeros of f+ with sin(z) > 0 are given by y+n with n even, whereas the roots of
f− with sin(z) < 0 are given by y−n with n odd, relations (2.42) follow immediately from Theorems 2.7
and 2.8.
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Remark 2.10. We define for every n ∈ {1, 2, . . . , N} the numbers yn and zn by

yn =

{
y+n if n is odd
y−n if n is even,

(2.43)

and

zn =

{
z+n if n is odd
z−n if n is even,

(2.44)

where we recall that z±n are the roots of equations g±(z) = 0 belonging to the interval (nπ, (n+1)π]. With

this notation, Theorem 2.9 says that λn = 16 sin4

(
ynh

2

)
and |yn − zn| 6 δ for each % lnN 6 n 6 N .

Figure 1 depicts the graphs of the functions cos(z) and ± sin2( zh2 ) for z ∈ [0, (N + 1)π] and N = 10. By
dots we represent the roots zn given by (2.44).

0 2010 305 15 25 35

0

−1

1

−0.5

0.5

cos(z)

sin2

zh

2




− sin2

zh

2




(zn, cos(zn))

Figure 1: Solutions zn of equations g±(z) = 0 for N = 10.

Remark 2.11. Concerning the largest eigenvalue, λN , of the matrix A, we have that, for δ small enough,
there exist two positive constants α1 and α2 such that the following estimate holds

16(1− α1h
2) < λN < 16(1− α2h

2). (2.45)

Indeed, since πN < zN < πN + π
2 and |yN − zN | 6 δ, we obtain that, for δ > 0 small enough, the

following estimates hold

π

2
−
π
(
N − δ

π

)
2(N + 1)

>
π

2
− hyN

2
>
π

2
−
π
(
N + 1

2 + δ
π

)
2(N + 1)

, (2.46)

from which (2.45) follows immediately.

2.3 Asymptotic analysis of the high eigenvectors

Let λ be one of the eigenvalues of the matrix A given in Theorem 2.9 and let φ = (φk)16k6N be the
normalized corresponding eigenvector. In this subsection we investigate the asymptotic behavior of φN ,
the last component of eigenvector φ. From (2.6)-(2.11) it follows that

C1X
N
1 =

C

X1r1N
, (2.47)

C2X
N
2 = − C

X2r2N
, (2.48)

C3X
N
3 =

C

X3

(
− α

r1N
+

β

r2N

)
, (2.49)

C4X
N
4 =

C

X4

(
− β

r1N
+

α

r2N

)
. (2.50)
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Hence, we have that

φN = C1X
N
1 + C2X

N
2 + C3X

N
3 + C4X

N
4 =

C

r1N

(
1

X1
− α

X3
− β

X4

)
+

C

r2N

(
− 1

X2
+

β

X3
+

α

X4

)
= C
√
λ

(
1

r1N
− 1

r2N

)
. (2.51)

We recall that, the constant C = C(λ) is chosen such that ‖φ‖0 = 1. In what follows we use (2.51) to
evaluate φN . Useful estimates of r1N and r2N are given by the following lemma.

Lemma 2.12. There exists N0 ∈ N∗ such that for each N > N0 and any eigenvalue λ of the matrix A
with the property that λ > (3h lnN)

4
the following estimates hold:

1

XN+1
1

= o(1)
√
λ, (2.52)

|1− r1N | 6
(

1

X1

)N+1

, (2.53)

r2N > XN+1
1 − 1. (2.54)

Proof. From (2.3) it follows easily that for each λ > 0 the corresponding value of X1 satisfies

X1 > 1 +
4
√
λ. (2.55)

Using the above relation, we deduce that there exists C > 0 and N0 ∈ N such that

XN+1
1 > e

C
4√
λ

h (N > N0), (2.56)

hence, by using that |λ| > (3h lnN)4 we obtain that (2.52) holds. In order to deduce relations (2.53)-
(2.54) we remark that

r1N =

∣∣∣∣∣
(
X3

X1

)N+1

− 1

∣∣∣∣∣ , r2N =

∣∣∣∣∣
(
X3

X2

)N+1

− 1

∣∣∣∣∣ .
Since |X3| = |X4| = 1, estimate (2.53) is justified by

|1− r1N | =

∣∣∣∣∣1−
∣∣∣∣∣
(
X3

X1

)N+1

− 1

∣∣∣∣∣
∣∣∣∣∣ 6

(
1

X1

)N+1

,

whereas (2.54) is a consequence of

r2N >

∣∣∣∣∣
∣∣∣∣∣
(
X3

X2

)N+1
∣∣∣∣∣− 1

∣∣∣∣∣ = XN+1
1 − 1.

Remark 2.13. In (2.52) and henceforth we use the classical notation o(f(x)) for functions of x satisfying
o(f(x))

f(x)
→ 0 when x goes to 0. In the same spirit, the notation O(f(x)) stands for functions verifying∣∣∣∣O(f(x))

f(x)

∣∣∣∣ 6 C when x is close to 0 and for some positive constant C.

The following two propositions are concerned with the behavior of the constant C from (2.51). Propo-
sition 2.14 shows that, for the low eigenvalues, C is bounded from below as h goes to zero. Proposition
2.15 proves that, for the highest eigenvalue λN of A, the corresponding constant C tends to zero as h
goes to zero.
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Proposition 2.14. Let σ ∈ (0, 1). There exist K0 > 0 and N0 ∈ N such that, for each N > N0 and λ
an eigenvalue of the matrix A with the property that λ ∈ (σ, 16− σ), its associated constant C verifies

C ≥ K0. (2.57)

Proof. From (2.12)-(2.13), we easily deduce that

<(α) = O(1), =(α) = O

(
1√

16− λ

)
= O(1). (2.58)

Since λ ∈ (σ, 16− σ), combining (2.6), (2.7) and (2.53) we obtain

C1X
k
1 =

C

XN+1−k
1

+ o(1)C (1 6 k 6 N), (2.59)

C2X
k
2 = − C

Xk
1

+ o(1)C (1 6 k 6 N). (2.60)

By using again the fact that λ ∈ (σ, 16− σ), putting together (2.59) and (2.60), it follows that

|C1X
k
1 + C2X

k
2 | 6 O(1)C (1 6 k 6 N). (2.61)

On the other hand, by using that λ ∈ (σ, 16− σ), (2.47) - (2.50) and (2.53)-(2.54) we obtain

C3X
k
3 + C4X

k
4 = −2<

(
αC

XN+1−k
3

)
+ o(1)C (1 6 k 6 N). (2.62)

Hence, from (2.61)-(2.62) it follows that

|C1X
k
1 + C2X

k
2 + C3X

k
3 + C4X

k
4 | 6 2

∣∣∣∣<( αC

XN+1−k
3

)∣∣∣∣+O(1)C (1 6 k 6 N). (2.63)

On the other hand, since
∣∣∣<( αC

XN+1−k
3

)∣∣∣ 6 |α|C, we obtain that there exists C > 0 such that

1 = ‖φ‖20 6 Ch

N∑
k=1

(
1 + |α|2

)
C2. (2.64)

Finally, since λ ∈ (σ, 16− σ), from (2.58) we deduce that |α| is uniformly bounded in h. This, together
with (2.64), implies that (2.57) holds.

Proposition 2.15. Within the above notation, there exist positive constants K1, K2 and N0 ∈ N∗ such
that for each N > N0 the constant CN corresponding to λN verifies the following estimate

K1h 6 CN 6 K2h. (2.65)

Proof. Let us consider α1 > α2 > 0 given by (2.45). From (2.58), we easily deduce that

|α| = |β| = O(h−1). (2.66)

Hence, in a similar way, using (2.64) we obtain that there exists K1 > 0 such that CN > K1h.
For every h > 0, using (2.45), there exists K ∈ (α2, α1) such that λN = 16−Kh2. Then, from (2.4)

we obtain the following asymptotic expansion X3 = −1 + i
√

K
8 h + o(h2), thus for small enough h and

for 1 6 k 6 δN , with δ ∈ (0, 1), we have

XN+1−k
3 =

(
−1 + i

√
K

8
h+ o(h2)

)N+1−k

= (−1)N+1−ke−i
√

K
8 (N+1−k)h+o(h).
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Evaluating the term in the right-hand side of (2.63), we obtain∣∣∣∣<( α

XN+1−k
3

)∣∣∣∣ =

∣∣∣∣∣<
(

1
2 (1− iR+

R−
)

e−i
√

K
8 (N+1−k)h+o(h)

)∣∣∣∣∣
=

1

2
cos

(√
K

8
(N + 1− k)h

)
+

1

2
sin

(√
K

8
(N + 1− k)h

)√
4 +
√
λN

4−
√
λN

+ o(h).

By choosing 0 < δ1 < δ2 < 1 such that there exist C1 > 0 which verifies sin
(√

K
8 (N + 1− k)h

)
> C1,

for each n ∈ (δ1N, δ2N), from the above relation combined to (2.45) it follows that there exists C2 > 0
such that ∣∣∣∣<( α

XN+1−k
3

)∣∣∣∣ =
2

C2h
+O(1) (δ1N ≤ k ≤ δ2N). (2.67)

From (2.63)-(2.67) we have that

1 = ‖φ‖20 = h

N∑
k=1

|C1X
k
1 + C2X

k
2 + C3X

k
3 + C4X

k
4 |2

> h

δ2N∑
k=δ1N

|C1X
k
1 + C2X

k
2 + C3X

k
3 + C4X

k
4 |2 > h

δ2N∑
k=δ1N

2C2

C2
2h

2
=

(δ2 − δ1)C2

C2
2h

2
,

and finally C ≤ K2h, where K2 = C2√
δ2−δ1

.

Now we have all the ingredients needed to evaluate φN . The following result holds true.

Theorem 2.16. Let σ ∈ (0, 1). There exist K > 0 and N0 ∈ N∗ such that, for each N > N0 and
each λ eigenvalue of the matrix A with the property that λ ∈ (σ, 16 − σ), the corresponding normalized
eigenvector φ = (φk)16k6N ∈ RN has the following property

|φN | > K
√
λ. (2.68)

Moreover, if φN ∈ RN is the eigenvector corresponding to the last eigenvalue λN , we have that

|φNN |√
λN

= O(h). (2.69)

Proof. Inequality (2.68) is a consequence of (2.51), (2.53), (2.54) and (2.57). On the other hand, taking
into account (2.65), we deduce that (2.69) holds for the normalized eigenvector corresponding to the last
eigenvalue λN .

Remark 2.17. Inequality (2.68) shows that a uniform observability inequality holds for the eigenvectors
corresponding to eigenvalues λ ∈ (σ, 16− σ). Moreover, according to (2.69), the observability inequality
for the highest eigenmodes degenerates. On the other hand, for the low frequencies λ 6 σ, our asymptotic
estimates does not allow to obtain useful estimates for φN . This case will be treated in a following section.

In Figure 2 is displayed the evolution of the quantity
(φNN )2

λN
as a function of N (and respectively h). We

remark that
(φNN )2

λN
≈ C0h

2 with C0 = 2.2 We mention that the eigenvalues and eigenvectors of the

matrix A were numerically approximated.

2.4 Numerical estimates of the low frequencies

This section is devoted to analyze the behavior of the low eigenvalues of the matrix A for which Theorem
2.9 does not offer any information. This will be done by using the fact that the low eigenvalues of the
operator Ah = 1

h4A approximate the corresponding low eigenvalues of the differential operator of the

14



Figure 2: Evolution of the quantity
(φNN )2

λN
as a function of h.

beam equation (1.4). Let (Ã,D(Ã)) be the unbounded elliptic operator in L2(0, 1) associated to the
clamped beam equation and defined by Ã u = ∂4xu (u ∈ D(Ã)),

D(Ã) = H4(0, 1) ∩H2
0 (0, 1).

(2.70)

The operator (Ã,D(Ã)) has a sequence of simple positive eigenvalues (λ̃n)n>1 of the form

λ̃n =

(
n+

1

2

)4

π4 + υn (n > 1), (2.71)

where (υn)n>1 is a sequence converging exponentially to zero (see [11, Lemma 6.10.2]). Any eigenfunction

ϕ̃n corresponding to λ̃n verifies ϕ̃n ∈ C∞(0, 1) ∩D(Ã).

Let N ∈ N∗, h = 1
N+1 and xj = jh, 0 6 j 6 N , be an equidistant division of the interval [0, 1]. The

following lemma is a classical result concerning the error in the finite-differences approximation of the
operator (Ã,D(Ã)).

Lemma 2.18. There exists an absolute constant C > 0 such that, for any u ∈ C6[0, 1] ∩D(Ã), we have
that ∣∣∣(Ã u)(xj)− (AhU)j

∣∣∣ 6 Ch2 sup
x∈[0,1]

|u(6)(x)| (1 6 j 6 N), (2.72)

where U =


u(x1)
.
.
.

u(xN )

.

We recall that the matrix Ah has a family of eigenvalues
(
λn
h4

)
16n6N

. The following theorem is a

consequence of a well known result concerning the approximation of the eigenvalues of an elliptic operator
(see [8, Theorem 3.1]).

Theorem 2.19. Let ε ∈ (0, 2). There exist N0 > 0 and C > 0 such that, for each N ≥ N0, the following
estimate holds: ∣∣∣∣λ̃n − λn

h4

∣∣∣∣ ≤ Chε (
1 ≤ n ≤ N 1

6 (2−ε)
)
. (2.73)
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Proof. Let λ̃n be an eigenvalue of the continuous operator (Ã,D(Ã)) and let ϕ̃n be a corresponding
eigenfunction. From (2.72), we deduce that

AhΦ̃n − λ̃nΦ̃n = Ψ̃n ∈ RN with ‖Ψ̃n‖∞ 6 Ch2 sup
x∈[0,1]

∣∣∣ϕ̃(6)
n (x)

∣∣∣ , (2.74)

where Φ̃n =


ϕ̃n(x1)

.

.

.
ϕ̃n(xN )

 will be normalized such that

‖Φ̃n‖0 :=

√√√√h

N∑
j=1

|ϕ̃n(xj)|2 = 1. (2.75)

Since Ah is a symmetric matrix, it follows that it is diagonalisable and there exist a unitary matrix
P ∈MN (R) and a diagonal matrix Dh ∈MN (R) such that

P−1AhP = Dh. (2.76)

Of course, the elements on the diagonal of Dh are the eigenvalues of the matrix Ah which can be supposed

ordered in a strictly increasing sequence
(
λj
h4

)
1≤j≤N

. From(2.74) and (2.76) we deduce that

Φ̃n = (Ah − λ̃nIh)−1Ψ̃n = P (Dh − λ̃nIh)−1P−1Ψ̃n. (2.77)

Since P is unitary (and thus ‖P‖0 = ‖P−1‖0 = 1), it follows from (2.77) and (2.75) that

min
16j6N

∣∣∣∣λ̃n − λj
h4

∣∣∣∣ 6 ‖Ψ̃n‖0.

By taking into account that the sequence
(
λj
h4

)
1≤j≤N

is strictly increasing, from (2.74) and the last

relation, we deduce that ∣∣∣∣λ̃n − λn
h4

∣∣∣∣ 6 Ch2 sup
x∈[0,1]

∣∣∣ϕ̃(6)
n (x)

∣∣∣ . (2.78)

From the known form of the eigenfunction ϕ̃n (see (6.10.13) in [11, Lemma 6.10.2]) a straightforward
computation allows us to show that there exists a positive constant C such that

sup
x∈[0,1]

∣∣∣ϕ̃(6)
n (x)

∣∣∣ 6 Cn6 (1 6 n 6 N). (2.79)

By combining (2.78) and (2.79), (2.73) follows immediately.

A direct consequence of Theorem 2.19 is the following result which ensures the existence of a positive
gap between two consecutive discrete low eigenvalues λn.

Corollary 2.20. Let ε ∈ (0, 2). There exist N0 > 0 and d > 0 such that, for each N ≥ N0, the following
estimate holds:

1

h2

∣∣∣√λn+1 −
√
λn

∣∣∣ > dn
(

1 ≤ n ≤ N 1
6 (2−ε)

)
. (2.80)

Proof. Since the eigenvalues (λ̃n)n>1 of the continuous operator verify (2.71), there exists a constant
d > 0 such that ∣∣∣∣√λ̃n+1 −

√
λ̃n

∣∣∣∣ ≥ 2dn (n ≥ 1).

The desired result (2.80) follows easily by taking into account that

1

h2

∣∣∣√λn+1 −
√
λn

∣∣∣ > ∣∣∣∣√λ̃n+1 −
√
λ̃n

∣∣∣∣−
∣∣∣∣∣
√
λn+1

h2
−
√
λ̃n+1

∣∣∣∣∣−
∣∣∣∣√λnh2

−
√
λ̃n

∣∣∣∣ ,
and by using estimate (2.73) in order to bound by d the sum of the last two terms.
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2.5 An observability inequality for the low eigenvectors

The aim of this section is to prove an observability inequality for the low eigenvectors of the matrix Ah
similar to (2.68). We use a discrete multiplier method already presented in [2]. This method allows us
to show that, for every 0 < σ < 16, given an eigenvalue λ of the matrix A with the property λ 6 σ and
given a normalized eigenvector φ = (φk)16k6N corresponding to λ, the following observability inequality
for eigenvectors holds

|φN | > K
√
λ, (2.81)

where K is a positive constant independent of h or N . We recall that, inequality (2.81) has been
obtained for the eigenvectors corresponding to eigenvalues λ ∈ (σ, 16 − σ). This section shows that the
same estimate holds for the low eigenvalues λ 6 σ.

Since we use the discrete multiplier method, let us define inMN (R) the following matrices discretizing
the third (D3) and the first (D1c, D1b) derivatives, respectively

D3 =



3 −3 1 0 . . . . . . . . . . . . 0
−1 3 −3 1 0 . . . . . . . . . 0

0 −1 3 −3 1 0 . . . . . . 0
0 0 −1 3 −3 1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 0 −1 3 −3 1 0
0 . . . . . . 0 0 −1 3 −3 1
0 . . . . . . . . . 0 0 −1 3 −3
0 . . . . . . . . . . . . 0 0 −1 4


and

D1c =



0 1 0 . . . . . . . . . 0
−1 0 1 0 . . . . . . 0

0 −1 0 1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 −1 0 1 0
0 . . . . . . 0 −1 0 1
0 . . . . . . . . . 0 −1 0


, D1b =



1 0 0 . . . . . . . . . 0
−1 1 0 0 . . . . . . 0

0 −1 1 0 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 −1 1 0 0
0 . . . . . . 0 −1 1 0
0 . . . . . . . . . 0 −1 1


.

A straightforward computation gives the following lemma.

Lemma 2.21. With the above notation we have that

1. A = D1bD3 +


4 −1 0 . . . 0
0 0 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 0 0

 ,

2. D3 = D′1bB +


0 0 0 . . . 0
0 0 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 0 2

 ,

3. B = D1bD
′
1b +


1 0 0 . . . 0
0 0 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 0 0

 ,

4. D′1b(v.w) = D′1bv.w + S′0v.D
′
1bw, for every vectors v, w ∈ RN , where

S0 = I −D1b, (2.82)

where I denotes the identity matrix in MN (R).
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In the remaining part of this section we denote by “.” the product component by component of two
vectors in RN , i.e., for any two vectors U, V ∈ RN we have that U.V is the vector in RN whose j-th
component is given by (U.V )j = ujvj .

Remark 2.22. Note that, we obtain an observability estimate for the eigenvectors of the matrix A = B2.
This would give the observability inequality for the semi-discrete problem studied in [10], when we consider
an eigenfunction of the system as initial data. Let φ ∈ RN be a normalized eigenvector corresponding
to the eigenvalue λ of the matrix A. Firstly, we remark that φ is also an eigenvector of the matrix B,

corresponding to the eigenvalue λ
1
2 . Therefore, we can use the identity proved in [7, Lemma 1.1] to show

that following relation holds

φ
2

N =
1

2

(
4− λ

1
2

)
〈Bφ, φ〉. (2.83)

Hence, (2.83) implies that φ
2

N is of order of 〈Bφ, φ〉 (or, equivalently, of order of λ
1
2 ), as long as λ is

not approaching 16. In order to ensure that, one has to filter the high frequencies. This remark is the
main ingredient for proving the nonuniform observability result [10, Theorem 2.1].

The main difficulty comes from the fact that, when we are dealing with the matrix A, instead of A,
we cannot reduce the problem to a similar one for the matrix B as in the previous remark. The following
result gives an identity for the eigenvectors of the matrix A we are concerned with. We are inspired on
the multiplier method used to prove the observability inequality (1.3) for the continuous equation (1.4).

Lemma 2.23. Let N ∈ N∗ and let φ = (φk)16k6N be the normalized eigenvector of A corresponding to
the eigenvalue λ. Then the following identity holds

φ2N = 〈Aφ, φ〉 − λ

4
〈Bφ, φ〉 − h

4

(
4φ21 + 4φ2N − φ1φ2 − φN−1φN

)
. (2.84)

Proof. Let J = (1, 2, . . . , N)
′
. Relation (2.84) can be deduced multiplying the relation Aφ = λφ by

J.D1cφ. We evaluate first the product 〈φ, J.D1cφ〉 and we obtain that

〈φ, J.D1cφ〉 = 〈D1cφ.φ, J〉 = 〈(−S0 + S′0)φ.φ, J〉.

Since

D′1b(S0φ.φ) = (I − S′0)(S0φ.φ) = S0φ.φ− S′0(S0φ.φ) = S0φ.φ− S′0φ.φ,

the above relation becomes

〈φ, J.D1cφ〉 = −〈D′1b(S0φ.φ), J〉 = −〈S0φ.φ,D1bJ〉

= −〈S0φ, φ〉 = −1

2
(〈S0φ, φ〉+ 〈S′0φ, φ〉)

=

〈
−1

2
(S0 + S′0)φ, φ

〉
=

〈(
1

2
B − I

)
φ, φ

〉
.

Hence, it follows that

〈φ, J.D1cφ〉 =
1

2
〈Bφ, φ〉 − 〈φ, φ〉. (2.85)

We evaluate the product 〈Aφ, J.D1cφ〉 by using the first assertion of Lemma 2.21 and it follows that

〈Aφ, J.D1cφ〉 = 〈D1bD3φ, J.D1cφ〉+ h(4φ1φ2 − φ22).

By using the point (4) of Lemma 2.21, we have that

〈D1bD3φ, J.D1cφ〉 = 〈D3φ,D
′
1b(J.D1c)φ〉

= 〈D3φ,D
′
1bJ.D1cφ+ S′0J.D

′
1b(D1cφ)〉

= 〈D3φ,−D1cφ+ S′0J.D
′
1b(D1cφ)〉 − (N + 1)φN−1(4φN − φN−1).
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Moreover, we deduce that

〈D3φ,D1cφ〉 = −〈Aφ, φ〉+ 〈Bφ,D2
1bφ〉+ (4φ1 − φ2)φ1 + 2φN (φN − φN−1)

and

〈D3φ, S
′
0J.D

′
1b(D1cφ)〉 = 〈Aφ, φ〉 − 2φ21 − 2φ2N + (2v1 − v2)2 − (N + 1)(−vN−1 + 2vN )2.

The above relations combined to the third relation in Lemma 2.21 allow us to deduce the following
expression for the product 〈Aφ, J.D1cφ〉:

〈Aφ, J.D1cφ〉 =2〈Aφ, φ〉+ 〈Bφ, S0Bφ〉 − 4φ2N − h(4φ2N + 4φ21 − 2φ1φ2 − 2φNφN−1).

Finally, since φ is the eigenvector of A corresponding to the eigenvalue λ, we obtain that

〈Bφ, S0Bφ〉 =〈Aφ, φ〉 − λ

2
〈Bφ, φ〉 − h(φ1φ2 + φNφN−1)

and it follows that

〈Aφ, J.D1cφ〉 = 3〈Aφ, φ〉 − λ

2
〈Bφ, φ〉 − 4φ2N − h

(
4φ21 + 4φ2N − φ1φ2 − φN−1φN

)
. (2.86)

Relation (2.84) can be easily deduced from (2.85)-(2.86) and the proof of the lemma is complete.

By comparing (2.84) to (2.83), it is not so easy to see that φ2N is bounded from below by its corre-
sponding eigenvalue λ. However, we are able to show that this is indeed the case, at least for the low
frequencies.

Theorem 2.24. Let N ∈ N∗, σ ∈ (0, 1) and φ = (φk)16k6N be the normalized eigenvector of A
corresponding to the eigenvalue λ ∈ (0, 16 − σ). Then there exists a constant K > 0, independent of N
and λ, such that the following estimate holds

|φN | > K
√
λ. (2.87)

Proof. Let us remark that

‖Bφ‖20 =〈Bφ,Bφ〉 = 〈B2φ, φ〉 = 〈Aφ, φ〉 − 2h(φ21 + φ2N )

=λ〈φ, φ〉 − 2h(φ21 + φ2N ).

Hence, the following inequalities hold
‖Bφ‖0 6

√
λ (2.88)

and
h(2φ1 − φ2)2 + h(2φN − φN−1)2 6 λ. (2.89)

Estimate (2.84) can be written as

φ2N =
λ

4
(4〈φ, φ〉 − 〈Bφ, φ〉)− h

2

(
φ21 + φ2N

)
− h

4
((2φ1 − φ2)φ1 + (2φN − φN−1)φN ) .

Combining the above relation with the inequalities

2(2φ1 − φ2) ≤ς(2φ1 − φ2)2 +
1

ς
φ21

2(2φN − φN−1) ≤ς(2φN − φN−1)2 +
1

ς
φ2N ,

for any ς > 0, gives

φ2N >
λ

4

(
4‖φ‖20 − ‖Bφ‖0 ‖φ‖0

)
− h

2

(
1 +

1

4ς

)(
φ21 + φ2N

)
− ςh

8

(
(2φ1 − φ2)2 + (2φN − φN−1)2

)
.
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By using (2.88) and (2.89) and the fact that ‖φ‖0 = 1, we deduce from the last inequality that, for
any ς > 0, we have

h

2

(
1 +

1

4ς

)(
φ21 + φ2N

)
+ φ2N >

λ

4
(4−

√
λ)− ςλ

8
. (2.90)

Since λ ∈ (0, 16− σ), by considering ς = 4−
√

16− σ > 0 in estimate (2.90), we deduce that

h

2

(
1 +

1

4ς

)(
φ21 + φ2N

)
+ φ2N >

λ

8
(4−

√
16− σ). (2.91)

Finally, by using that φ21 = φ2N (from the symmetry), we obtain from (2.91) that there exists a constant

K > 0 given by K =

√
4−
√

16− σ
4

, such that (2.87) holds and the proof of the proposition is complete.

Remark 2.25. In addition to Theorem 2.16 and as in the case treated in [10], we obtain the desired
observability inequality for eigenvectors holds if the highest frequencies are filtered and λ ∈ (0, 16 − σ)
with σ ∈ (0, 1).

3 Observability results

This section gives the main observability result concerning the solutions of (1.12). In order to give the

Fourier expansion of the solutions

(
Yh
Ẏh

)
of (1.12) we remark that the set (Φn)16|n|6N defined by

Φn =

 h2√
λ|n|

−sgn(n) i

φ|n| (1 6 |n| 6 N),

forms an orthonormal basis in C2N with respect to the inner product (1.10). We recall that, according
to Proposition 2.1, the set (φn)16n6N is an orthonormal basis for CN . Let γ ∈ (0, 1). We define the
following space of filtered data

Ch(γ) =


(
Y 0
h

Y 1
h

)
=

∑
16|n|6γN

anΦn, (an)16|n|6γN ⊂ C

 . (3.1)

We remark that the condition |n| 6 γN in the definition of the space Ch(γ) is equivalent to the
fact that the eigenfrequencies |λn| > C/h4, for some C = C(γ) > 0, are filtered out. The following
result, concerning the separation of the eigenvalues of our matrix A, will allow us to prove the desired
observability inequality.

Proposition 3.1. Let T > 0. There exist N0, nT ∈ N∗ such that, for any N > N0, the eigenvalues λn
of the matrix A verify √

λn+1 −
√
λn >

2π

T
h2 (nT 6 n 6 N − nT ) . (3.2)

Proof. Let (yn)n be the family given by (2.43). Let % > 1 and let δ0 be given by Theorem 2.9. For any
δ ∈ (0, δ0) there exists N0(δ) such that |yn − zn| 6 δ for % lnN 6 n 6 N and N > N0(δ). Hence,

|yn+1 − yn| > |zn+1 − zn| − 2δ (% lnN 6 n 6 N − 1) . (3.3)

According to Lemma 2.3 and relations (2.24), it follows that

|zn+1 − zn| >
π

2
. (3.4)

By choosing δ < min
{
δ0,

π
8

}
, from (3.3) and (3.4), we deduce that, for each N > N0(δ),

|yn+1 − yn| >
π

4
(% lnN 6 n 6 N − 1). (3.5)
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Now, for each %N 6 n 6 N − 1, there exists ξn ∈ (ynh, yn+1h) such that

|
√
λn+1 −

√
λn| = 2| cos(yn+1h)− cos(ynh)| = 2h |sin ξn| |yn+1 − yn| . (3.6)

Let n′T = 2
[
1
T

]
+ 2. Since yn > πn for each % lnN 6 n 6 N and yN−n′T <

(
N − n′T + 1

2

)
π, we

deduce that π%h lnN < ξn < π − πh
(
n′T + 1

2

)
and, consequently,

| sin ξn| > h(2n′T + 1) (% lnN 6 n 6 N − n′T ) .

By taking into account the last inequality, (3.5) and (3.6), we deduce immediately that

|
√
λn+1 −

√
λn| >

π

2
h2(2n′T + 1) >

2π

T
h2 (% ln(N) 6 n 6 N − n′T ). (3.7)

On the other hand, by using Corollary 2.20 (with ε = 1) and choosing n′′T =
[
2π
Td

]
+1, we deduce that

|
√
λn+1 −

√
λn| >

2π

T
h2 (n′′T 6 n 6 N

1
6 ). (3.8)

From (3.7) and (3.8) we deduce that (3.2) holds with nT = max {n′T , n′′T }.

Finally, we have all the ingredients needed to prove the main result of this paper.

Theorem 3.2. Let T > 0 and γ ∈ (0, 1). There exists N0 ∈ N such that for every N > N0 the
observability inequality (1.11) holds with a positive constant KT independent of h for every solution of
(1.12) with initial data in the space Ch(γ) given by (3.1). Moreover,

lim
h→∞

sup


‖Y 0

h ‖22 + ‖Y 1
h ‖20∫ T

0

∣∣∣∣YhN (t)

h2

∣∣∣∣2 dt
∣∣∣∣∣∣∣∣∣
(
Y 0
h

Y 1
h

)
∈ C2N and

(
Yh
Ẏh

)
solution of (1.12)

 =∞. (3.9)

Proof. If the initial data

(
Y 0
h

Y 1
h

)
∈ C2N is given by

(
Y 0
h

Y 1
h

)
=
∑

16|n|6γN anΦn, then the corresponding

solution of (1.12) can be written as(
Yh(t)

Ẏh(t)

)
=

∑
16|n|6γN

ane
−i sgn(n)

√
λ|n|
h2

tΦn.

Consequently, inequality (1.11) is equivalent to

∑
16|n|6γN

|an|2 6 KT

∫ T

0

∣∣∣∣∣∣
∑

16|n|6γN

ane
−i sgn(n)

√
λ|n|
h2

t φ
|n|
N√
λ|n|

∣∣∣∣∣∣
2

dt
(
(an)16|n|6N ∈ C2N

)
. (3.10)

Now, by taking into account property (3.2) of the eigenvalues and using the generalization of Ingham’s
inequality proved in [10, Lemma 2.3], we obtain that there exist a constant K ′T > 0 and N0 ∈ N∗,
independent of h, such that the following inequality is verified for any N > N0 and (an)16|n|6N ∈ C2N ,

∑
16|n|6γN

|an|2
∣∣∣∣∣ φ|n|N√λ|n|

∣∣∣∣∣
2

6 K ′T

∫ T

0

∣∣∣∣∣∣
∑

16|n|6γN

ane
−i sgn(n)

√
λ|n|
h2

t φ
|n|
N√
λ|n|

∣∣∣∣∣∣
2

dt. (3.11)

On the other hand, let us remark that, if n 6 γN , then

λn = 16 sin4

(
ynh

2

)
6 16 sin4

(
(n+ 1)hπ

2

)
6 16 sin4

(
(γ + h)π

2

)
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and there exists σ ∈ (0, 1) such that λn 6 16 − σ. According to Theorem 2.24 the following estimate
holds for the last component of the eigenvectors φn of the matrix A

|φnN | > K ′′
√
λn (1 6 n 6 γN) , (3.12)

where K ′′ is a positive constant depending on γ but which is independent of h. From (3.11) and (3.12)

it follows that (3.10) holds with KT =
K′T
K′′ .

In order to show (3.9), it is sufficient to consider

(
Y 0
h

Y 1
h

)
= ΦN and to remark that, according to

estimate (2.69) from Theorem 2.16,

‖Y 0
h ‖22 + ‖Y 1

h ‖20∫ T

0

∣∣∣∣YhN (t)

h2

∣∣∣∣2 dt
=

√
λN∣∣φNN ∣∣ = O

(
1

h

)

and the proof of the theorem is complete.

Remark 3.3. Theorem 3.2 shows that a uniform observability inequality for the solutions of (1.12) holds
true if the eigenfrequencies |λn| > C/h4 are filtered out. Moreover, it shows that there are solutions
containing eigenfrequencies in this range which are nor uniformly observable. These results are similar
to the ones obtained for the hinged beam equation in [10]. These observability results allow to show
immediately that we can control, with uniformly bounded controls, the projection over the space Ch(γ) of
any solution of (1.5).

Remark 3.4. The observability result given by Theorem 3.2 cannot be obtained by using only the error
estimates for the numerical scheme. Indeed, (2.73) would allow us to prove that the uniform observability
holds for a space of initial data in which the eigenfrequencies |λn| > C

h
4
3
−ε are filtered out. This weaker

result is similar to the ones obtained for more general hyperbolic problems in [3, 4]. Theorem 3.2, based
on the asymptotic analysis of the highes eigenfrequencies, allows to filter at the range of the largest
eigenvalue, which may improve the convergence rate of the numerical scheme.

4 Numerical examples

In this section we discuss some examples concerning the numerical approximation of controls associated
to an initial data in L2(0, 1)×H−2(0, 1). More precisely, we consider the following initial data

u0(x) = 1( 1
4 ,

3
4 )(x), u1(x) = 0 (x ∈ (0, 1)). (4.1)

The aim of this section is to illustrate the theoretical results proved in the previous sections, namely
the uniform controllability of filtered solutions.

In order to filter the high frequencies, for a given value of N , we firstly numerically approach the
eigenvectors (φn)1≤n≤N and their corresponding eigenvalues (λn)1≤n≤N of the matrix A. For each value
of N we compute the control associated to initial data given by (4.1) and filtered at the level [γN ], where
γ is a filtering threshold and is chosen in the set {0.1, 0.5, 0.9, 1}. More precisely, we consider initial
displacements of the form

uγ0 =

[γN ]∑
n=1

〈u0, φn〉0φn ∈ CN ,

while the initial velocity is taken equal to zero. Figure 3 (left) displays initial data u0 given by (4.1)
filtered for these values of γ.

Since filtered solutions of the semi-discrete beam equation (1.6) are expressed by the sum given in

(3.1), in order to represent correctly these solutions we take the time discretization step ∆t =

√
λ[γN ]

h2
.

With this notation λ[γN ] corresponds to the highest frequency present in the solution to control. For the

time discretization we use a Newmark finite-differences scheme of parameters 1
4 and 1

2 (see, for instance,
the monograph [6]).
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A standard conjugate gradient algorithm was employed in order to minimize a weighted dual func-
tional associated to the controllability problem. In order to keep solutions in the class Ch(γ) at each
iteration of the conjugate gradient algorithm we filter the frequencies higher than λγN which appear as a
consequence of the non-homogeneous boundary terms. Table 1 gathers the number of iterations needed
for the convergence of the conjugate gradient algorithm. As a stopping criteria, the residuum in the con-
jugate gradient algorithm should be smaller than ε = 10−7. We observe that for a fixed value of N the
number of iterations necessary for the convergence of the conjugate gradient algorithm increases when γ
increases. Moreover, for γ = 1 the number of iterations increases linearly with respect to the number N
of discretization points and for values of γ smaller than 1 this number is clearly upper bounded. This
is related to the non-uniform observability of the highest frequencies and to the uniform observability of
the filtered solutions, respectively.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1
N = 25 4 6 12 29
N = 50 4 6 15 52
N = 100 4 6 17 87
N = 200 4 6 20 168
N = 400 4 6 19 321

Table 1: Number of iterations needed for the convergence of the conjugate gradient algorithm for initial
data (uγ0 , 0) and different values of N .

In Table 2 we list the L2 norms of the computed controls associated to initial data (uγ0 , 0) for different
values of N . The values of the final state of the solutions controlled by these controls are gathered in
Table 3.
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Figure 3: Filtered initial data uγ0 for different values of γ and N = 400 (left) and the energy of the
corresponding controlled solutions (right).

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1
N = 25 0.5691 0.5992 0.6411 0.9871
N = 50 0.5986 0.6082 0.6462 0.8104
N = 100 0.5880 0.5971 0.6104 0.8025
N = 200 0.5927 0.5982 0.6064 0.8031
N = 400 0.5960 0.5987 0.6028 0.8033

Table 2: Norms ‖vh‖L2(0,T ) of controls associated to filtered solutions in Ch(γ) for different values of N
and γ.

Figure 4 displays controls associated to initial data (uγ0 , 0) for γ ∈ {0.1, 0.5, 0.9, 1} and N = 400.
In Figure 3 (right) we depict the evolution of the energy of solutions associated to these controls. As
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γ = 0.1 γ = 0.5 γ = 0.9 γ = 1
N = 25 8.12× 10−4 6.85× 10−9 5.98× 10−7 1.24× 10−10

N = 50 4.98× 10−6 2.33× 10−8 9.75× 10−6 9.02× 10−7

N = 100 3.61× 10−9 1.03× 10−7 6.51× 10−6 3.89× 10−6

N = 200 5.05× 10−9 1.41× 10−7 8.99× 10−6 1.75× 10−5

N = 400 6.53× 10−9 1.56× 10−7 2.38× 10−5 3.08× 10−5

Table 3: Energy norm of the controlled filtered solution at the time T = 1.

expected, controls present higher higher rate oscillations when γ is close to 1. Nevertheless, the energy
of the corresponding solutions seems to go to zero when the time is approaching the final time T taken
in this section equal to 1. In the same time, due to the fact that the numerical resolution of the beam
equation for initial data containing higher frequencies is less precise, the norms of the controlled solutions
are larger for larger values of the filtering threshold γ.
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Figure 4: Controls obtained for N = 400 and different values of the filtering threshold γ.

Finally, from a computational point of view, considering larger values of N and unfiltered initial data
could be difficult, since the time discretization step needed for a correct representation of such higher
oscillating controls should be very small. Moreover, if no filtering strategy is employed (γ = 1) the
number of iterations increases with N , this implying even longer computation times.
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