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MultiDimensional (MD) Harmonic Retrieval is a challenging multi-parameter estimation problem and is useful for a plethora of operational applications as for instance channel sounding or MIMO radar processing. The MD-harmonic model follows a structured Canonical Polyadic Decomposition (CPD) in the sense that the factors of the CPD are Vandermonde. A standard and popular estimation scheme to derive the CPD is the Alternating Least Squares (ALS) algorithm. Unfortunately, the ALS algorithm does not exploit the a priori known factor structure, which considerably degrades the estimation performance. In this work, a modified ALS-type algorithm is proposed. This new algorithm, called Rectified ALS (RecALS), is able to take into account the Vandermonde structure of the factors. The RecALS algorithm belongs to the Lift-and-Project family and exploits iterated projections on the set of Toeplitz rank-1 matrices. It exhibits a fast convergence and is very accurate in the sense that its Mean Square Error (MSE) is close to the Cramér-Rao Bound for a wide range of Signal to Noise Ratio (SNR).

I. INTRODUCTION

An increasing number of signal processing applications deal with multidimensional data. In particular, MultiDimensional (MD)-harmonic retrieval [START_REF] Haardt | Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensionnal harmonic retrieval problems[END_REF]- [START_REF] Liu | An eigenvector-based approach for multidimensional frequency estimation with improved identifiability[END_REF] is an important and challenging multi-parameter estimation problem. Multilinear algebra provides a powerful framework to exploit these data [START_REF] Cichocki | Tensor decompositions for signal processing applications: From two-way to multiway component analysis[END_REF]- [START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF] by conserving the multidimensional structure of the information.

Nevertheless, generalizing matrix-based algorithms to the multilinear algebra framework is not a trivial task. In particular, there exist several multilinear extensions of the matrix Singular Value Decomposition (SVD) [START_REF] Golub | Matrix computations[END_REF], each enjoying only some properties of the matrix SVD. The Canonical Polyadic Decomposition (CPD), also sometimes referred to as Candecomp/Parafac may be seen as one possible extension of the SVD to the multilinear case; see [START_REF] Comon | Tensors: a brief introduction[END_REF] and references therein. Recall that a rank-M matrix is defined as the sum of M rank-1 matrices and the best low-rank approximation is provided by the truncated-SVD [START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF]. The CPD straightforwardly extends this principle, i.e., a rank-M tensor follows a CPD of order M or equivalently can be expressed as the sum of M rank-1 tensors, which can be stored in matrix factors. In addition, like SVD, it is essentially unique under mild conditions. Unfortunately, in contrast to matrices, the set of tensors of rank at most M is in general not closed, which renders the problem of finding a tensorial best low-rank approximation ill-posed [START_REF] Silva | Tensor rank and the ill-posedness of the best low-rank approximation problem[END_REF]. As a consequence, we have to resort to suboptimal algorithms to derive the CPD.

Despite of this difficulty, the Alternating Least Squares (ALS) algorithm [START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Kroonenberg | Principal component analysis of threemode data by means of alternating least squares algorithms[END_REF][START_REF] Sidiropoulos | Parallel factor analysis in sensor array processing[END_REF] has proven to be powerful in a wide range of operational contexts. To such an extent that the ALS algorithm is now considered as the gold standard method to estimate the factors entering the CPD. However, in the standard ALS algorithm, all factor entries are estimated independently while ignoring an a priori known structure. In addition, practical problems are encountered when factor matrices have a linear structure [START_REF] Nion | A block component model based blind DS-CDMA receiver[END_REF][START_REF] De Almeida | Parafac-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization[END_REF] such as Toeplitz, circulant or Hankel. In order to fill this gap, several algorithms have been proposed and their estimation accuracies have been studied in [START_REF] Goulart | Tensor CP Decomposition with structured factor matrices: Algorithms and Performance[END_REF]. But less attention has been dedicated to Vandermonde structured factors [START_REF] Haardt | Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensionnal harmonic retrieval problems[END_REF]- [START_REF] Boyer | Deterministic asymptotic Cramér-Rao Bound for the multidimensional harmonic model[END_REF] involved in the CPD of the MD-harmonic model.

A class of well-known methods called projections onto convex sets (POCS) continues to receive great attention [START_REF] Combettes | The foundations of set theoretic estimation[END_REF][START_REF] Boyle | A method for finding projections onto the intersection of convex sets in hilbert spaces[END_REF][START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF][START_REF] Dykstra | An iterative procedure for obtaining I-projections onto the intersection of convex sets[END_REF]. The POCS method is based on an infinite sequence of iterated projections onto closed convex subsets. This method is simple to implement and its convergence has been proved in [START_REF] Bregman | The method of successive projection for finding a common point of convex sets[END_REF] for instance. Unfortunately, in many operational applications, the considered subsets are nonconvex and generally no convergence guarantees exist. A typical example of nonconvex problem is the well-known phase recovery problem [START_REF] Candes | Phase retrieval via matrix completion[END_REF]. Despite this, a method called Lift-and-Project has been the subject of many publications [START_REF] Markovsky | Low rank approximation: algorithms, implementation, applications[END_REF] and has been used successfully in several operational contexts [START_REF] Cadzow | Signal enhancement-a composite property mapping algorithm[END_REF][START_REF] Alberge | Iterative decoding as Dijkstra's algorithm with alternate I-projection and reverse I-projection[END_REF]. In this work, we propose a new methodology belonging to the Lift-and-Project algorithm family to tackle the MD-Harmonic Retrieval problem, breaking with the standard approaches as proposed for instance in [START_REF] Sorensen | Blind signal separation via tensor decomposition with vandermonde factor: Canonical polyadic decomposition[END_REF].

II. MD-HARMONIC MODEL AND ALS ALGORITHM A. Structured Canonical Polyadic Decomposition (CPD)

The MD-harmonic model assumes that the measurements can be modeled as the superposition of M undamped expo-nentials sampled on a P -dimensional grid according to

[X ] n1...n P = M m=1 α m P p=1 z np m,p , 0 ≤ n p ≤ N p -1 (1)
in which the m-th complex amplitude is denoted by α m and z m,p = e iωm,p where ω m,p is the m-th angular-frequency along the p-th dimension. Tensor X can be expressed as the linear combination of M rank-1 tensors, each of size N 1 ×. . .×N P (the size of the grid), and follows a generalized Vandermonde decomposition:

X = (V 1 , . . . , V P ) • A where A is a M × . . . × M diagonal tensor with [A] m,...,m = α m and V p = v(z 1,p ) . . . v(z M,p ) is a N p × M
Vandermonde matrix, where each column v(z m,p ) depends on a single parameter, z m,p , of unit modulus. We define a noisy MD-harmonic tensor model of order P as: Y = X +σE where σE is the noise tensor, σ is a positive real scalar, and each entry [E] n1...n P follows an i.i.d. circular complex Gaussian distribution N (0, 1), and X has rank M .

B. Limit of the ALS algorithm for structured CPD

The CPD of any order-P rank-M tensor X involves the estimation of P factors F p of size N p × M . As pointed out above, in the context of the MD-harmonic model, the factors F p of the CPD are Vandermonde matrices. Consider, Y p , the p-th mode unfolding [START_REF] Comon | Tensors: a brief introduction[END_REF] of tensor Y, at the k-th iteration with 1 ≤ k ≤ I, I denoting the maximal number of iterations. The ALS algorithm solves alternatively for each of the P dimensions the minimization problem [START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Kroonenberg | Principal component analysis of threemode data by means of alternating least squares algorithms[END_REF]:

min Fp ||Y p -F p G p || 2 where G T p = F 1 . . . F p-1 F p+1 .
. . F P , where denotes the Khatri-Rao product [START_REF] Comon | Tensors: a brief introduction[END_REF]. It aims at approximating tensor Y by a tensor of rank M , hopefully close to X . The LS solution conditionally to matrix G p is given by F p = Y p G † p where † stands for the pseudo-inverse. Now, remark that there is no reason that the above LS criterion promotes the Vandermonde structure in the estimated factors in the presence of noise. In other words, ignoring the structure in the CPD leads to estimate an excessive number of free parameters. This mismatched model dramatically decreases the estimation performance [START_REF] Goulart | Tensor CP Decomposition with structured factor matrices: Algorithms and Performance[END_REF]. Hence there is a need to rectify the ALS algorithm to take into account the factor structure.

III. RECTIFICATION STRATEGIES A. Iterated projections and splitted LS criterion

Let V be the set of the complex Vandermonde vectors. The structured LS optimization problem is the following [START_REF] Combettes | The foundations of set theoretic estimation[END_REF]- [START_REF] Boyle | A method for finding projections onto the intersection of convex sets in hilbert spaces[END_REF]:

min Vp Trace (F p -V p )(F p -V p ) H s.t. V p ∈ V M (2)
where V M is the set of Vandermonde matrices with M columns. The proposed strategy is to split the optimization problem (2) into the resolution of M independent LS subproblems:

min v ||f (p) m -v|| 2 s.t. v ∈ V (3) 
where

f (p)
m is the m-th column of F (p) . Assume that set V is the intersection of K closed convex subsets {V 1 . . . , V K } in which each subset encodes a desired algebraic property. Then the solution of eq. ( 3) can be rewritten as

v = π V1∩...∩V K (f (p) m )
, where π V denotes the projector onto V. A standard approach to solve this optimization problem is the method of iterated projections. More precisely, define the following recursion:

f (p) m (h) = (π V K . . . π V1 )(f (p) m (h -1)) = (π V K . . . π V1 ) h (f (p) m ) with f (p) m (0) = f (p)
m . Under rather mild conditions, convergence is ensured: [START_REF] Combettes | The foundations of set theoretic estimation[END_REF][START_REF] Markovsky | Low rank approximation: algorithms, implementation, applications[END_REF]:

lim h→∞ ||(π V K . . . π V1 ) h (f (p) m ) -π V1∩...∩V K (f (p) m )|| 2 = 0.
Unfortunately, many operational applications involve nonconvex sets, as for instance the set of rank deficient matrices. In this case, the projection may be multivalued, and there is no guarantee of convergence, even if numerical convergence has often been observed [START_REF] Cadzow | Signal enhancement-a composite property mapping algorithm[END_REF].

B. Standard strategies 1) Column-averaging:

The most intuitive way to exploit the Vandermonde structure is to note that ω = 1 n ∠z n where ∠ stands for the angle function. Define the sets

J = v = f [f ] 1 : f ∈ C N A = v(z = e iω ) : ω = 1 n=1 1 n ∠[f ] n+1
where 1 ≤ ≤ N -2. This method exploits the Vandermonde structure in a heuristic way. So, the rectified strategy is to consider the iterated vector f (h) = (π A π J ) h (f ).

2) Periodogram maximization: Under Gaussian noise and for a single tone α m z np m,p , the maximum likelihood estimator (MLE) is optimal and is given by the location of the maximal peak of the Fourier-periodogram [START_REF] Nion | Tensor algebra and multidimensional harmonic retrieval in signal processing for mimo radar[END_REF][START_REF] Rife | Single tone parameter estimation from discrete-time observations[END_REF]. To increase the precision of the estimation, it is standard to use the wellknown zero-padding technique at the price of an increase in computational cost.

IV. RECTIFIED ALS (RECALS) ALGORITHM

The RecALS algorithm belongs to the family of Lift-and-Project Algorithms [START_REF] Markovsky | Low rank approximation: algorithms, implementation, applications[END_REF][START_REF] Boyle | A method for finding projections onto the intersection of convex sets in hilbert spaces[END_REF]. The optional lift step computes a low rank approximation and the projection step performs a rectification toward the desired structure. In Section IV-A the basic RecALS algorithm is described. In Section IV-B, an improved version of the RecALS algorithm is proposed.

A. Principles of the RecALS algorithm

The RecALS algorithm is based on iterated projections and splitted LS criteria. Its algorithmic description is provided in Algorithm 1 for P = 3. We insist that several iterations in the while loops are necessary, since restoring the structure generally increases the rank, and computing the lowrank approximation via truncated SVD generally destroys the structure.

Algorithm 1 Rectified ALS (RecALS) Require: Y 1 , Y 2 , Y 3 , I, F 1 , F 2 , {V 1 , . . . , V K }, CritStop Ensure: {z 1,p , . . . , z M,p } for 1 ≤ p ≤ 3 1: for k = 1, . . . , I do 2:
------------------3:

F 3 = Y 3 (F 1 F 2 ) T † 4:
for m = 1, . . . , M do 5:

f := [F 3 ] m 6:
while (CritStop is false) do 7:

f = π V K . . . π V1 (f ) 8:
end while 9:

z m,3 = min z ||v(z) -f || 2 10:
end for 11:

F 3 := v(z 1,3 ) . . . v(z M,3 ) 12: 
------------------13:

F 2 = Y 2 (F 3 F 1 ) T † 14:
for m = 1, . . . , M do 15:

f := [F 2 ] m 16:
while (CritStop is false) do 17:

f = π V K . . . π V1 (f ) 18:
end while 19:

z m,2 = min z ||v(z) -f || 2 20:
end for 21:

F 2 := v(z 1,2 ) . . . v(z M,2 ) 22: 
------------------23:

F 1 = Y 1 (F 2 F 3 ) T †

24:

for m = 1, . . . , M do 25:

f := [F 1 ] m 26:
while (CritStop is false) do 27:

f = π V K . . . π V1 (f ) 28:
end while 29:

z m,1 = min z ||v(z) -f || 2 30:
end for 31:

F 1 := v(z 1,1 ) . . . v(z M,1 ) 32: end for B. Toeplitz Rank-1 Approximation (TR 1 A)
In this section, we propose better strategies than bruteforce ALS. This is made possible by noting that columns of Vandermonde matrices can be computed one by one, and that the outer product between a Vandermonde vector and its Hermitian transpose is a rank-one Toeplitz matrix.

1) Equivalent matrix-based criterion: Property 4.1: Let T be the set of Hermitian Toeplitz rank-1 matrices of size N × N . For x ∈ R × C N -1 , define the Hermitian Toeplitz matrix:

Toep(x) =        x 1 x 2 x 3 . . . x N x * 2 x 1 x 2 . . . x N -1 x * 3 x * 2 x 1 . . . x N -2 . . . . . . . . . . . . . . . x * N x * N -1 x * N -2 . . . x 1        .
For v(z) ∈ V, it is straightforward to prove that:

T(z) = Toep(v(z)) = v(z) * v(z) T ∈ T.
Property 4.2: Recall that in virtue of the Carathéodory's theorem [START_REF] Pisarenko | The retrieval of harmonics from a covariance function[END_REF], there exist a one-to-one mapping between T(z) ∈ T and v(z) ∈ V with a unique z. This means that minimizing criteria ||v(ẑ) -v(z)|| 2 or ||T(ẑ) -T(z)|| 2 are equivalent.

So, thanks to the two above properties, we propose the following estimation methodology.

Result 4.3: The aim is to find the minimizer, ẑ, of criterion ||T(ẑ) -T(z)|| 2 conditionally to T(z) for unknown z. The solution is given by ẑ = e i∠([u]1[u] *

2 ) where T(z) = Toep(u).

Proof As matrix T(z) is by construction Toeplitz and rank-1, we have T(z) SVD = λuu H . Identifying the (n, n )-th term of the Toeplitz matrix T(ẑ) and the (n, n )-th term of the SVD of T(z) we have ẑ-n+n = e iω(-n+n

) = λ[u] n+1 [u] * n +1 . So, for n = 0 and n = 1, we have ẑ = e iω with ω = ∠([u] 1 [u] *
2 ). 2) Iterated projections: In preamble, the two following sets are introduced.

• Define the set of Hermitian Toeplitz matrices:

D = T = Toep(x) ∈ C N ×N , x ∈ R × C N -1 .
• Introduce the non-convex set of Hermitian rank-1 N × N matrices:

Q = Q ∈ C N ×N , rankQ = 1 .
Clearly, the set T is nothing else but Q ∩ D. From Property 4.1, we consider the sequence (π D π Q ) h (Toep(π J f )). As π J f / ∈ V, Toep(π J f ) is full-rank with probability one. In practice, projector π Q is implemented by just retaining the dominant singular triplet, which is known to yield the optimal rank-1 approximation [START_REF] Golub | Matrix computations[END_REF][START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF]: H where s is the singular vector of matrix Q associated with the largest singular value, λ max (Q).

Q = π Q (Q) = λ max (Q)ss
In the remainder, we shall use the following iterates, with T = Toep(f ) as initialization:

T ← π D π Q (T).
Once (π D π Q ) h (T) has converged to a matrix in set T, we use Result 4.3 to estimate parameter z.

V. NUMERICAL SIMULATIONS

We fix M = 2 sources with α 1 = e iπ/3 and α 2 = e iπ/4 and P = 3 in eq. ( 1). In Fig. 1, the MSE with respect to the SNR is drawn for 1) the RecALS algorithm using the column-averaging defined in section 3.2.1.

2) The RecALS-T R 1 A algorithm exploiting iterated projections on the set of Toeplitz rank-1 matrices described in section 4.2.

3) The standard ALS algorithm rectified in a postprocessing way with the maximization periodogram procedure, called ALS+max Perio. 4) The deterministic CRB has been derived in several publications as for instance [START_REF] Liu | An eigenvector-based approach for multidimensional frequency estimation with improved identifiability[END_REF][START_REF] Sahnoun | Joint source estimation and localization[END_REF] and we use the scalar expressions given in [START_REF] Boyer | Deterministic asymptotic Cramér-Rao Bound for the multidimensional harmonic model[END_REF] defined by Trace{CRB} = As shown in Fig. 1, the accuracy of the ALS+max Perio is saturated in the high SNR regime due to the zero-padding processing. Conversely, the two RecALS algorithms do not suffer from this drawback. In addition, according to Table I, the RecALS algorithms converge much faster than the ALS+max Perio. Fig. 2 illustrates the fast convergence of the iterated projections on the set of Toeplitz rank-1 matrices. Finally thanks to Fig. 1, we can observe the RecALS-T R 1 A algorithm has the smallest MSE remaining close to the CRB for a wide range of SNR.

VI. CONCLUSION

MultiDimensional (MD) Harmonic Retrieval is a challenging multi-parameter estimation problem. The MD-harmonic model can be decomposed as a Vandermonde-structured Canonical Polyadic Decomposition (CPD). A popular way to derive the CPD is the Alternating Least Squares (ALS) algorithm. Unfortunately, this scheme ignores the structure in the CPD factors and thus the number of free parameters is overestimated. As a consequence, discarding this a priori knowledge considerably degrades the estimation performance. In this work, we propose a modified ALS-type algorithm, called Rectified ALS (RecALS), which enforces the Vandermonde structure of the CPD factors at each iteration. We first show that the RecALS algorithm converges much faster than the ALS algorithm. Next, an improved RecALS scheme, based on iterated projections on the set of Toeplitz rank-1 matrices, is introduced. This last scheme is shown to have a fast convergence and its MSE is close to the CRB for a wide range of SNR values.
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