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From the Newton equation to the wave
equation : the case of shock waves

Xavier Blanc∗& Marc Josien† ‡.

May 11, 2016

Abstract

We study the macroscopic limit of a chain of atoms governed by the Newton
equation. It is known from the work of Blanc, Le Bris, Lions, that this limit is the
solution of a nonlinear wave equation, as long as this solution remains smooth.
We show, numerically and mathematically that, if the distances between parti-
cles remain bounded, it is not the case any more when there are shocks -at least
for a convex nearest-neighbour interaction potential with convex derivative.

1 Introduction

Motivation We investigate here the macroscopic limit of the time-dependent New-
ton equation ruling the evolution of a set of particles at the microscopic scale. We
perform our study in a simplified context: the particles form a one-dimension chain
and we suppose that the interactions between the particles are nearest-neighbour
interactions. It has been proven in [6] that, when the potential is convex, this system
tends to a wave equation, provided that the solution of this wave equation is regular.
However, non-linear wave equations are known to develop shocks in finite time. Our
aim is to examine how this phenomenon impacts the convergence of Newton equa-
tions to wave equation.
Consider 2N particles, indexed by j ∈ [[−N , N −1]] and with positions X j which in-
teract through the Newton equation, for j ∈ [[−N +1, N −2]]:

d 2

d t
X j (t ) =W ′ (X j+1(t )−X j (t )

)−W ′ (X j (t )−X j−1(t )
)

, (1)
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where W is the interaction potential. Throughout the article, we assume that W is
even. The initial and boundary conditions are:

X j+1 −X j (0) =φx
0

(
j

N

)
and

d

d t
X j (0) =φτ0

(
j

N

)
, (2)

X−N (t ) = Nφl and XN (t ) = Nφr . (3)

We introduce the following rescaling:

t = Nτ, j = N x.

The time t is the microscopic time while τ is the macroscopic time. Then, the semi-
discrete equation (1) is consistent with the wave equation:

∂2
τφ(τ, x) = ∂x

[
W ′(∂xφ(τ, x))

]
, (4)

with initial and boundary conditions:

∂xφ(τ= 0, x) =φx
0 (x) and ∂τφ(τ= 0, x) =φτ0(x), (5)

φ(τ,−1) =φl and φ(τ,1) =φr . (6)

Remark 1. It is worth pointing out that the natural variables in the hyperbolic sys-
tem (4) are ∂τφ and ∂xφ, in the sense that:

∂τ

(
∂τφ

∂xφ

)
= ∂x

(
W ′ (∂xφ

)
∂τφ

)
,

which is a p-system (see [26], p 127-131). We therefore introduce their discrete ana-
logues:

U j = X j+1 −X j and V j =
d X j

d t
.

Remark 2 (About inversion). One could a priori think that (1) may lead to some in-
versions of atom positions, especially when shocks occur (see [8]). Put differently,
one could have X j+1(t ) < X j (t ) for certain t and j , even if X j (t = 0) was increasing.
This would question the physical relevance of (1), for the j -th particle is supposed
to interact with its nearest neighbours (which are the j −1-th and the j +1-th parti-
cles if and only if X j is monotone). However, numerical simulations show that, for
many interesting initial conditions (including many of those that lead to shocks),
such inversions never occur. We therefore assume throughout the article that con-
dition X j (t ) < X j+1(t ) holds for all t , j .

In the regular case and if W is convex, it has been proven in [6] that (1) converges
to (4) in the following sense:
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Theorem 1.1. Assume that W ∈ C 4(R), and that W ′′ ≥ α > 0. Suppose φl = −1 and
φr = 1. Assume that φ ∈ Cτ

(
C 4

x

)
is a solution to (4) for the initial and boundary con-

ditions (5) and (6). Let X j (t ) be the unique solution to (1) for the initial and boundary
conditions (2) and (3). Then we have the following convergences:

∀τ ∈ [0,T [, sup
−N≤i≤N−1

∣∣∣∣ 1

N
X j (Nτ)−φ

(
τ,

i

N

)∣∣∣∣ →
N→∞

0, (7)

∀τ ∈ [0,T [, sup
−N≤i≤N−1

∣∣∣∣d X j

d t
(Nτ)−∂τφ

(
τ,

i

N

)∣∣∣∣ →
N→∞

0. (8)

Remark 3. Theorem 1.1 is not stated in [6] for the initial condition (2), but with:

X j (t = 0) = N
∫ j /N

−1
φx

0 (x)d x and
d X j

d t
(t = 0) =φτ0

(
j

N

)
.

As easily seen, its proof however also applies to the initial condition (2).

When W is convex but not quadratic, even if φx
0 and φτ0 are smooth, shocks gen-

erally occur in finite time for solutions of (4). By shock, we mean that the solution
φ of (4) becomes irregular (see [26] for examples). An interesting question is what
happens after such shocks for the discrete system (1), and in particular if there is still
a link between (1) and (4). To answer this question, we will consider Riemann-like
initial conditions, as is customary in the study of hyperbolic systems.
Let us underline that (1), which can be seen as a semi-discrete numerical scheme, is
taken for granted, as it comes from a physical model. Some authors take the opposite
way, and modify given schemes (adding viscosity for example) in order to go from the
discrete system to the continuous one (see [22]), or to help the numerical computa-
tion of hyperbolic systems ([29]).
Let us also mention that their exists a quite detailed study on discrete systems ruled
by (1) in the particular case where:

W (u) = exp(−u). (9)

In that case, called the Toda lattice (see [14], [18], [30], [31]), the discrete Hamiltonian
system is completely integrable: this allows for a detailed description of the solu-
tions. It is well-known that (4) does not describe well the limiting system and that the
solutions are dispersive waves. This is linked with Lax pairs, and helps to make the
connection with the Korteweg-de Vries equation (see [20]). We will not investigate in
this article this particular case, which is, in our understanding, closely linked with the
special structure induced by the potential (9). We shall however demonstrate that the
solutions associated with more general potentials globally display the same features
as the dispersive waves of the Toda lattice (see Section 5).
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Numerics In order to have a better understanding of (1), we perform some numer-
ical experiments. To do so, we use a Verlet scheme (see [21], p 111) on the variables

U j and Z j := dU j

d t . More explicitly, we simulate:

U n+1/2
j =U n

j + δt
2 Z n

j ,

Z n+1/2
j = Z n

j + δt
2

(
W ′

(
U n+1/2

j+1

)
−2W ′

(
U n+1/2

j

)
+W ′

(
U n+1/2

j−1

))
,

U n+1
j =U n

j +δt Z n+1/2
j ,

Z n+1
j = Z n

j +δt
(
W ′

(
U n+1/2

j+1

)
−2W ′

(
U n+1/2

j

)
+W ′

(
U n+1/2

j−1

))
,

(10)

where X n
j is an approximation for X j (nδt ). We take an initial condition correspond-

ing to a Riemann problem or a smooth initial condition that develops shocks in finite
time (for the sake of simplicity, we only use Riemann problems for illustrations in this
article). The crucial feature of (10) is that it preserves the Hamiltonian properties of
(1) (for (10) is symplectic). The error we make on U j in L2 norm is of order O(N Tδt )
(see [17] p13), where T is the final macroscopic time of simulation, which allows to
simulate (1) for a reasonably large number 2N of particles (N ' 104), and thus to have
a fair experimental knowledge of the system (1).

Outline of the article In Section 2, we introduce the notations and collect some
classical facts about (1) and (4). In particular, we focus on the initial and boundary
conditions, that are supposed to mimic the Riemann problem. We also focus on the
natural energy of these systems.
In Section 3, we state and next illustrate our main results. We focus first on the simple
quadratic potential W (u) = u2/2 and claim that the convergence of (1) to (4) is true
for a large class of initial conditions. This is proved in Section 4. Then we examine
the case where both W and W ′ are strongly convex. We show that, if the distances
between neighbouring particles remain bounded and if the energy of the continuous
system (4) is not preserved, solutions of (1) do not converge to solutions of (4). It is
based on the fact that the system (1) displays the property of light cone: the perturba-
tions propagate with a finite speed at macroscopic level. This is proved in Section 5.
We state next a conjecture about a uniform bound on the distances between particles
of the system (1), that we justify with numerics and that we question through a study
of the linear case. This conjecture is motivated by the fact that the assumption of
boundedness of the distances between particle is a major assumption in every result
of Section 5. We discuss it in Section 6. Finally, we state that discrete shock waves do

not exist, either when W (u) = u2

2 or when W ′ and W ′′ are strictly convex. It is proved
in Section 7.
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2 Preliminaries

2.1 General notations

Let q ∈ [1,∞]. For Y j , with j ∈ [[−N , N −1]], we denote by:

∥∥(
Y j

)∥∥
l

q
j
=

{ (∑N−1
i=−N Y q

j

)1/q
if q <∞,

max j∈[[−N ,N−1]]
∣∣Y j

∣∣ if q =∞.

We denote by Cp the set of piecewise continuous functions on [−1,1], and C 1
p the set

of piecewise continuous functions on [−1,1] that have piecewise continuous deriva-
tives. We use the subscript per for functional spaces to indicate that we intersect
these spaces with the space of 2-periodic functions. We use the subscripts x, τ, t for
functional spaces to indicate that these spaces have their variables x in [−1,1], τ in
[0,T ], respectively t in [0, N T ]. For example:

H 1
τ (Cx) := H 1 ([0,T ],C ([−1,1])) .

2.2 Initial data and boundary conditions

In the present article, we mainly use Dirichlet boundary conditions. They have the
advantage of being consistent with Riemann problems. In Section 6, we will also use
periodic boundary conditions for technical reasons; more specifically, when the po-
tential W is quadratic, it allows for an explicit resolution of (1).
We say that (1) (respectively (4)) is set with Dirichlet boundary conditions if (2) and
(3) (respectively (5) and (6)) are satisfied, with φx

0 ,φτ0 ∈Cp and φl ,φr ∈ R being com-
patible in the following sense:∫ 1

−1
φx

0 (x)d x =φr −φl , φτ0(−1) = 0, φτ0(1) = 0. (11)

We say that the system (1) is set with periodic boundary conditions if (1) is satisfied
for all j with the convention that XN+ j = X−N+ j . The associated initial conditions
are (3) with φτ0,φx

0 ∈Cp such that the compatibility condition:∫ 1

−1
φx

1 (x)d t = 0

is satisfied.
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2.3 Hypotheses on W

We suppose that W is C 2 and strongly convex:

W ′′ ≥α> 0. (12)

Indeed, this assumption implies that (4) is a strictly hyperbolic system (if not, the
theory for (4) is far more complex). A very particular case is when W is quadratic:

W (u) = u2

2
. (13)

When we consider a non-quadratic potential, we also assume that W is C 3 and that
W ′ is strictly convex:

W ′′′ > 0. (14)

Let us emphasize that (4) is genuinely non-linear when W ′′′ > 0 (see [26] p 113 and
p 127). We speak about the linear case (respectively the nonlinear case) when (13) is
satisfied (respectively when (12) and (14) are satisfied). The terminology may seem
ambiguous, but it is justified by (4), which involves W ′ and not W .
The convexity (12), and a fortiori (14), is obviously a strong and non-physical sim-
plification, as a physical potential should be even (and non-constant even potentials
with other minima than 0 cannot satisfy (12) on R). For example, our results do not
directly cover this “quadratic” potential:

W (u) = (|u|−1)2 . (15)

Our numerical experiments suggest that for given initial conditions, the distances be-
tween particles is bounded from below and from above (see Remark 2 and Section 6).
Hence one can require (12) or (14) to be true only on the corresponding intervals. For
example, if we know a priori that the order of the particles is preserved, one can apply
our results with the potential (15).

2.4 The discrete system

Notations For the discrete system (1), we denote:

V j (t ) = d X j

d t
(t ), U j (t ) = X j+1(t )−X j (t ), Z j (t ) = dU j

d t
(t ).

Remark 4 (Dependence on N ). X j and the other discrete quantities implicitly depend
on N . When necessary, we write X N

j , U N
j , et cetera.
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The correspondence between the discrete system and the continuous system in
encoded in the following notations:

kN (x) := bN xc,

θN (x) := N x −kN (x),

φN (τ, x) := 1−θN (x)

N
XkN (x)(t )+ θN (x)

N
XkN (x)+1(t ),

ζN (τ, x) := ∂τφN (τ, x) =
((

1−θN (x)
) d

d t
XkN (x) +θN (x)

d

d t
XkN (x)+1

)
(t ),

ξN (τ, x) := d

d t
XkN (x)(t ).

Remark that ∂τφN is the linear interpolation of V j , and is therefore not equal to
ξN (τ, x), which corresponds to V j (t ). In any case, we extend the functions φN ,ξN

by continuity with constant branches on ]−∞,−1]∪ [1,+∞[. For example, we have
φ(x) =φl if x <−1.

Properties of the discrete system The discrete system (1) is an Hamiltonian system,
with the energy:

ED (t ) := 1

2N

N−1∑
j=−N

V 2
j (t )+ 1

N

N−1∑
j=−N

W (U j (t )). (16)

The energy (16) is the total mechanical energy of the system. The kinetic energy is
the first term and the potential energy is the second term. Either in Dirichlet or in
periodic setting, an elementary calculation shows that the discrete energy ED is pre-
served:

d

d t
ED (t ) = 0. (17)

As a consequence, the energy (16) being convex, a direct application of the Cauchy-
Lipschitz theorem implies that (1) has a unique solution for every time t ∈ [0,+∞[,
provided W satisfies (12). For later purpose, we define the notion of discrete com-
patibility.

Definition 2.1 (D-compatibility). We say that T > 0 is D-compatible with φx
0 and φτ0

if there exist δ> 0 and C > 0 such that:∣∣∂xφ
N (τ, x)−φx

0 (−1)
∣∣≤C N−1 ∀(τ, x) ∈ [0,T ]× [−1,−1+δ],∣∣∂xφ

N (τ, x)−φx
0 (1)

∣∣≤C N−1 ∀(τ, x) ∈ [0,T ]× [1−δ,1],

and ∂τφ
N converges uniformly to 0 on [0,T ]× {[−1,−1+δ]∪ [1−δ,1]}, as N goes to

infinity.

D-compatibility means that the solution of (1) is almost not perturbed near the
boundary x =−1 and x = 1, until time T .
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2.5 The continuous system

Let T > 0. Following [26], p 28, we say that φ ∈ W 1,∞
τ,x is a weak solution of (4) with

initial conditions (5) if, for all g ∈C ∞
c (]−∞,T [×]−1,1[):∫ T

0

∫ 1

−1

{
∂x gW ′ (∂xφ

)−∂τg∂τφ
}

(τ, x)d xdτ=
∫ 1

−1
g (0, x)φτ0(x)d x, (18)∫ T

0

∫ 1

−1

{
∂x g∂τφ−∂τg∂xφ

}
(τ, x)d xdτ=

∫ 1

−1
g (0, x)φx

0 (x)d x. (19)

We say that a weak solution φ of (4) is an entropy solution if it also satisfies in the
weak sense (see [26], p 82):

d

dτ
EC (τ) ≤ 0, (20)

where EC is the continuous energy associated with φ:

EC (τ) =
∫ 1

−1

{
1

2

(
∂τφ

)2 +W
(
∂xφ

)}
(τ, x)d x. (21)

We are interested in weak entropy solutions φ of (4) satisfying

EC (T ) < EC (0). (22)

Shocks satisfy (22). We recall now the definition of the Riemann problems:

Definition 2.2 (Riemann problem). Let ul ,ur , vl , vr ∈R, and:

φx
0 (x) :=

{
ul if x < 0,
ur if x ≥ 0,

φτ0(x) :=
{

vl if x < 0,
vr if x ≥ 0.

(23)

Solving the Riemann problem associated with (ul ,ur , vl , vr ) consists in finding φ an
entropy solution of (4) on [0,T ]×Rwith initial conditions (5).

This is the classical Riemann problem. However, it is possible to use weaker as-
sumptions on φx

0 and φτ0, that simulate what we call a boundary Riemann problem.
This second definition is more flexible and allows to work with a very large class of
initial conditions (for example, smooth initial data that develop discontinuities in
finite times, in system (4)). Namely:

Definition 2.3 (Boundary Riemann problem). Let ul ,ur ∈R2, and:

φx
0 (x) :=

{
ul if x <−1/2,
ur if x > 1/2,

φτ0(x) :=
{

0 if x <−1/2,
0 if x > 1/2,

(24)

without further requirement onφx
0 andφτ0 between −1/2 and 1/2. Solving this bound-

ary Riemann problem consists in finding φ(τ, x), entropy solution of (4) with ini-
tial and boundary conditions (5) and (6), and X j (t ), solution of (1) with initial and
boundary conditions (2) and (3), withφl andφr being constant so that (11) is satisfied.
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We impose φτ0 to vanish near the boundary in the boundary Riemann problem
(24) so that φl and φr are constant; this is useful to avoid some technicalities about
boundary conditions.
The solutions of the Riemann problem (23) are combinations of rarefaction waves
and shock waves. One does not change the solution of (4) (for T sufficiently small) if
one restricts φ to x ∈ [−1,1] and solves (4) with Dirichlet boundary conditions (6).
For example (see [26], p 127-131), if ur > ul and if the following Rankine-Hugoniot
condition is satisfied:

vr − vl =σ (ur −ul ) and W ′(ur )−W ′(ul ) =σ(vr − vl ), (25)

then the entropy solution of the Riemann problem reads as:

∂xφ(τ, x) =
{

ul if x <−στ
ur if −στ≤ x

, ∂τφ(0, x) =
{

vl if x <−στ
vr if −στ≤ x

,

and satisfies (22). We are interested in boundary Riemann problems. As a conse-
quence, we focus on weak solutions φ ∈ W 1,∞

τ,x of (4) in the Dirichlet setting that can
be continued by a constant on the right and on the left:

Definition 2.4 (C -compatibility). Let φx
0 and φτ0 ∈ Cp , φl and φr ∈ R satisfying (11).

Assume thatφ is an entropy solution of (4) on [0,T ]×[−1,1] with initial and boundary
conditions (5) and (6). We say that T is C -compatible with φx

0 and φτ0 if there exists
δ> 0 such that:

φ([0,T ]× [−1,−1+δ]) = {
φl

}
and φ([0,T ]× [1−δ,1]) = {

φr
}

. (26)

If T is D-compatible and C -compatible with φx
0 and φτ0, we say that it is DC -

compatible. Basically, DC -compatibility provides a strong control on the solutions
of (1) and (4) near the boundary x =−1 and x = 1, until time T .

For the linear system, we have the following theorem of existence and uniqueness
(see Theorem 3 p 384 and Theorem 4 p 385 of [15]):

Theorem 2.1 (Existence and uniqueness in the linear case). Let φx
0 ,φτx ∈ L2

x . Suppose
that a,b ∈C 1

x , and a ≥ a0 > 0. Then, there exists one and only one solution φ ∈ H 1
τ,x to:

∂2
τφ(τ, x) = ∂x

(
a(x)∂xφ(τ, x)+b(x)

)
,

with initial and boundary conditions (5) and (6). In addition, the energy ẼC of the
system is preserved:

ẼC =
∫ 1

−1

{
1

2

(
∂τφ(τ, x)

)2 + a(x)

2

(
∂xφ(τ, x)

)2 +b(x)∂xφ(τ, x)

}
d x.

It is clear that this energy extends the above definition (21).
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2.6 Discrete shock waves

Definition 2.5. We say that X j (t ), j ∈ Z, t ∈ R+, is a discrete shock wave of (1) asso-
ciated with (ul ,ur ) ∈ R2, ul 6= ur , if X j (t ) satisfies (1) and if there exist φ ∈ C 2(R) and
c ∈R such that:

X j (t ) =φ( j − ct ) ∀t ∈R+,∀ j ∈Z,

lim
x→−∞φ

′(x) = ul ,

lim
x→+∞φ

′(x) = ur .

The definition implies that:

c2φ′′(x) =W ′(φ(x +1)−φ(x))−W ′(φ(x)−φ(x −1)). (27)

3 Results

We state here our main results and illustrate them with some numerical results.

3.1 The linear case

When W (u) = u2/2, one observes that φN converges in H 1
τ,x to φ. One can even see

that for regular initial conditions, this convergence seems to hold in every W 1,p
τ,x . This

is illustrated by Figure 1:

Figure 1: Comparison between ∂xφ
N (black curve) and ∂xφ (red curve) for Riemann

shock initial conditions. W (u) = u2

2 , N = 10000, τ= 0.3.
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We prove this convergence in a generalized framework, where the quadratic po-
tential W depends not only on u but also on x:

Theorem 3.1. Let T > 0, φl ,φr ∈R, φx
0 and φτ0 ∈Cp satisfy (11). Assume that:

W (x,u) = 1

2
A(x)u2 +B(x)u.

with A,B ∈C 1
x and A satisfying:

A ≥α> 0, (28)

for α a given positive constant. Consider the solution X N
j (t ) to:

d 2

d t 2
X N

j (t ) = ∂uW

(
j

N
,U N

j (t )

)
−∂uW

(
j −1

N
,U N

j−1(t )

)
(29)

for all j ∈ [[−N +1, N −2]] for the initial and boundary conditions (2) and (3). Then the
associated φN converges:

φN →
N→+∞

φ in H 1
τ,x ,

where φ is the unique solution of:

∂2
τφ(τ, x) = ∂x

(
∂uW (x,∂xφ(τ, x)

)
, (30)

for the initial and boundary conditions (5) and (6).

It has a direct corollary:

Corollary 3.2. Let T > 0, φl ,φr ∈ R, φx
0 and φτ0 ∈ Cp satisfying (11). Assume that W

satisfies (13). Let φ be the solution of (4) for the initial and boundary conditions (5)
and (6), and X N

j be the solution of (1) for the initial and boundary conditions (2)
and (3). We have the following convergence:

φN →
N→+∞

φ in H 1
τ,x .

Remark 5 (Less restrictive assumptions). For both Theorem 3.1 and Corollary 3.2, it is
sufficient to assume that φx

0 and φτ0 ∈ L2
x as long as X N

j satisfies the initial condition:

X j+1(0)−X j (0) = ∂xφ
N

(
τ= 0,

j

N

)
and

d

d t
X j (0) = ∂τφN

(
τ= 0,

j

N

)
,

such that:

∂xφ
N (τ= 0, .) →φx

0 in L2
x , ξN (τ= 0, .) →φτ0 in L2

x .
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3.2 The non-linear case

If the potential W is convex but not quadratic, when there is a shock, we observe on
numerical simulations that ∂xφ

N does not converge strongly to the associated ∂xφ.
It does not even converge weakly. Actually ∂xφ

N oscillates with a high frequency and
an amplitude that does not decrease when N grows. We believe that this situation is
generic for basically any potential such that W ′ is not affine on the zone where U j

evolves. We can to prove this non-convergence, under the extra-hypothesis that W ′

is strictly convex, and under the assumption that the distance between particles U N
j

is bounded uniformly in N , j and t ∈ [0, N T ] (the latter assumption is discussed in
Section 6).
We illustrate this non-convergence with Figure 2 comparing ∂xφ

N and ∂xφ. Remark-
ably enough, even if there are large oscillations, let us remark that distances between
particles remain bounded. We check numerically that ∂xφ

N coincides with ∂xφ out-
side a region of space away from the shock that grows linearly in macroscopic time;
this property is known for Toda lattice [18]. It is also known that the Korteweg-de-
Vries equation [20] has a similar behaviour.

Figure 2: Comparison between ∂xφ
N (black curve) and ∂xφ (red curve) for Riemann

shock initial conditions, and a non-linear potential. N = 5000, τ= 0.075, W (u) = u6

6 .

Theorem 3.3. Let W ∈C 3([a,b]) satisfy (12) and (14). Assume that φx
0 ,φτ0 ∈C 1

p,x and

12



φl ,φr ∈R satisfy (11) and (24), for ul ,ur ∈R. Let T0 > 0.
Let X N

j (t ) be the solution of (1) for the initial and boundary conditions (2) and (3).
Suppose that:

U N
j (t ) ∈ [a,b] ∀ j ∈ [[−N , N −1]],∀N > 0,∀t ∈ [0, N T0]. (31)

Then there exists a D-compatible T ≤ T0.
Assume that φ ∈W 1,∞

τ,x , is an entropy solution of (4) for the initial and boundary con-
ditions (5) and (6), that T is C -compatible and that there exists T1 < T satisfying:

EC (T1) < EC (0). (32)

Then φN does not converge to φ in the sense of distribution in space and time D ′
τ,x .

Remark 6 (Entropy solution). In Theorem 3.3, we only compare φN to the entropy
solution φ of (4). We think that φN cannot converge to any weak solution of (4).
Indeed, if φN converges to φ, which is a solution of (4), Lemma 5.2 below implies
that ∂xφ

N converges strongly to ∂xφ. But numerical experiments show that ∂xφ
N

oscillates too much so that it cannot converge strongly to anything: this justifies our
conclusion.

Remark 7 (Reversibility). (1) is a reversible system, but (4) is not when shocks occur,
whereas both systems are reversible as long as the solution φ of (4) remains smooth
enough. In the first case, the discrete system does not converge to the continuous
one (Theorem 3.3), but it does in the second case (Theorem 1.1).

Remark 8 (Convergence breakdown). Suppose that W satisfies (12) and (14). Let φx
0

andφτ0 be smooth functions. Define X N
j andφ as in Theorem 3.3. Suppose that there

exists a DC -compatible T > 0 such that EC (T ) < EC (0) -in other words, a shock oc-
curs. If Conjecture 3.5 above holds for initial data φx

0 and φτ0, it leads to the following
paradoxical situation:

1. until a certain time T0 < T , φ(τ, .) is sufficiently smooth, so that Theorem 1.1
applies. Thus:

φN →φ in C ([0,T0]× [−1,1]) ,

2. applying Theorem 3.3, we get that φN does not converge to φ in D ′([0,T1]×
[−1,1]) as soon as EC (T1) < EC (0).

Therefore, shocks break the discrete-to-continuum convergence of (1) to (4).

It is immediate to see that (1) instantly propagates perturbations in the discrete
system. It can be proven by linearizing (1) and assuming a small perturbation ε on a
fixed j0-th particle:

X̃ j (0) = X j (0)+εδ j
j0

,
d X j

d t
(0) = d X̃ j

d t
(0).

13



We assume that both X j and X̃ j satisfy (1). Integrating iteratively (1) for small time
∆t , we get (for j > 0) at leading order in ε (the proof of this formal expansion is in the
spirit of the proof of Proposition 5.1 below):

X̃ j0+ j (∆t )−X j0+ j (∆t ) ' ε (∆t )2 j

(2 j )!

j−1∏
k=0

W ′′ (U j0+k (0)
)

.

However, on the macroscopic level, this propagation has a finite speed. This paradox
is due to the fact that the influence of perturbation on x0 at t0 decays exponentially
outside a cone |x−x0| ≤ c |t − t0|. It is noticeable that this light cone property is an im-
portant feature of hyperbolic systems. It is however a key ingredient to prove that (1)
does not converge to (4).

We formalize the fact that perturbations of the discrete system propagate with a
finite speed on the macroscopic level by the following theorem:

Theorem 3.4. Let W ∈ C 2(R) satisfy (12). Let T > 0. Assume that X N
j (t ) and X̃ N

j (t )

satisfy (1), for j ∈ [[0, N −1]], t ∈ [0, N T ], with right boundary condition X̃ N
N = X N

N =
Nφr . We denote by:

Ṽ N
j (t ) = d

d t
X̃ N

j (t ), Ũ N
j (t ) := X̃ N

j+1(t )− X̃ N
j (t ).

Suppose that

X N
j (t = 0) = X̃ N

j (t = 0),∀ j ∈ [[1, N −1]],

V N
j (t = 0) = ˜V N

j (t = 0),∀ j ∈ [[1, N −1]].

Assume that there exists C ∈R+ such that, ∀N > 0:

sup
t∈R+

(
N−1∑
j=0

W
(
U N

j (t )
)
+ 1

2

N−1∑
j=0

(
V N

j (t )
)2

)
≤C N , (33)

and:

K = sup
u∈]u1,u2[

∣∣W ′′(u)
∣∣<+∞, (34)

where:

u1 := inf
N > 0,
j ∈ [[−N , N −1]],
t ∈ [0, N T ]

{
min

(
U N

j (t ),Ũ N
j (t )

)}
,

u2 := sup
N > 0,
j ∈ [[−N , N −1]],
t ∈ [0, N T ]

{
max

(
U N

j (t ),Ũ N
j (t )

)}
.

14



Let c = exp(2)
p

K . Let x ∈]0,1[. Then, for all τ< x
c , we have:

lim
N→+∞

N sup
0 ≤ t < Nτ,
j > N x

∣∣∣U N
j (t )−Ũ N

j (t )
∣∣∣
= 0, (35)

lim
N→+∞

sup
0 ≤ t < Nτ,
j > N x

∣∣∣V N
j (t )− Ṽ N

j (t )
∣∣∣= 0. (36)

Figure 3: Light cone on the surface
(
t ,U N

j (t )
)
, for Riemann initial conditions corre-

sponding to a shock wave, for a non-linear potential W (u) = u6

6

j

U j

t

A few remarks are in order:

Remark 9. The speed c in Theorem 3.4 is not optimal -we see it from numerical
experiments- but it has the same order as the natural speed of (4), given by (25). For-
mally:

exp(2)
p

K ∝ sup
u∈[ul ,ur ]

√
|W ′′(u)|∝

√∣∣∣∣W ′(ur )−W ′(ul )

ur −ul

∣∣∣∣.
The above formal calculation is exact when W is quadratic.

Remark 10. Assumption (34) of Theorem 3.4 is automatically fulfilled if there exists
α,β ∈ R such that α ≤ W ′′(u) ≤ β,∀u ∈ R. This is the case when the potential W is
quadratic. However, such a bound cannot hold if W ′ is strongly convex: one needs to
know a priori that the distances U N

j between particles is bounded uniformly in N .

3.3 Uniform L∞
t

(
l∞j

)
bound

Most of the results we are able to prove in the non-linear case require the assump-
tion that, for given initial data, the distance between particles remains bounded uni-
formly in N (that is, (31) is satisfied). We have not been able to prove that this as-
sumption is fulfilled. We formulate the following conjecture:

15



Conjecture 3.5. Suppose that W ∈C 2(R) satisfies (12). Assume that φx
0 and φτ0 ∈C 1

p,x .
Then, there exist T > 0 and a < b ∈ R depending only on W , φx

0 and φτ0 such that, for
X j (t ) satisfying (1) for the initial and boundary conditions (2) and (3):

a ≤U N
j (Nτ) ≤ b, ∀ j ∈ [[−N , N −1]],∀N ∈N,∀τ ∈ [0,T ]. (37)

Note that in the case of Riemann problem (23), the initial conditions satisfy the
hypotheses of Conjecture 3.5. We checked Conjecture 3.5 numerically for a large set
of piecewise smooth initial data, with potentials of the form W (u) = Auγ+Bu2, γ> 2,
A,B ∈ R+. When φ is sufficiently smooth, Conjecture 3.5 can be proven (by Theo-
rem 1.1).

Let us point out the fact that it seems necessary to require some smoothness
on the initial conditions in Conjecture 3.5. In other words, one cannot hope that,

for X N
j solution of (1), for given T > 0,

∥∥∥U N
j

∥∥∥
l∞j ,t

is controlled by
∥∥∥U N

j (t = 0)
∥∥∥

l∞j
and∥∥∥V N

j (t = 0)
∥∥∥

l∞j
uniformly in N . Indeed, we can prove the following proposition:

Proposition 3.6. Let W (u) = u2

2 , and τ0 > 0. There exists a sequence of initial condi-
tions U N

j (t = 0), V N
j (t = 0) such that, for X N

j (t ) the corresponding solutions of (1) with
periodic boundary conditions, we have:∥∥∥U N

j (t = 0)
∥∥∥

l∞j
≤ 1,

∥∥∥V N
j (t = 0)

∥∥∥
l∞j

≤ 1,
∥∥∥U N

j (Nτ0)
∥∥∥

l∞j
→

N→∞
+∞.

The following plot shows the explosion:

Figure 4: Successive pictures of U j (Nτ). N = 1000, τ= 0,0.08, ...,0.4
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3.4 Non-existence of discrete shock waves

A natural question is whether or not there exist non-trivial discrete shock waves for
the Newton equation (1). Should such discrete progressive waves exist, one could
expect that they would describe an important feature of the limit of (1) system when
N →+∞. Unfortunately, we prove that discrete shock waves do not exist, even when
the potential is quadratic. More specifically, we prove the following propositions:

Proposition 3.7. Suppose W satisfies (13). Then there exist no discrete shock wave
for (1), in the sense of Definition 2.5.

Proposition 3.8. Suppose W satisfies (12) and (14). Then there exist no discrete shock
wave for (1), in the sense of Definition 2.5.

Remark 11. It is straightforward from the proof that there does not exist any other
discrete wave than the constant ones in the linear case. In the non-linear case, we do
not know if there exists solitons, that is X j (t ) satisfying Definition 2.5, with the slight
modification that ul = ur .

4 The linear case

When the potential is quadratic, the corresponding wave equation (4) is linear. Its
characteristic lines do not cross, therefore, when the initial conditions are regular,
shocks never occur. Furthermore, the energy is preserved: the continuous system (4)
is thus conservative, as the discrete one (1). This is the reason why the discrete sys-
tem naturally tends to the continuous one, and we show it with simple arguments,
essentially using weak compactness of H 1

τ,x . This extends the result of [6].

Let us prove Theorem 3.1. We first prove that the discrete energy is preserved:

Lemma 4.1. Under the hypotheses of Theorem 3.1, the following generalized discrete
energy is preserved:

Ẽ N
D (t ) :=

N−1∑
k=−N

W

(
k

N
,Uk (t )

)
+ 1

2

N−1∑
k=−N

(Vk (t ))2 . (38)

Proof. Using (1), we get that:

d

d t
Ẽ N

D (t ) =
N−1∑

k=−N

{
∂uW

(
k

N
,Uk

)
(Vk+1 −Vk )

}
(t )+

N−1∑
k=−N+1

{
Vk

d 2

d t 2
Xk

}
(t ),

=
N−1∑

k=−N

{
∂uW

(
k

N
,Uk

)
(Vk+1 −Vk )

}
(t )

+
N−1∑

k=−N+1

{
Vk

(
∂uW

(
k

N
,Uk

)
−∂uW

(
k −1

N
,Uk−1

))}
(t ).
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Reorganizing the sum, we obtain:

d

d t
Ẽ N

D (t ) =
{
∂uW

(
N −1

N
,UN−1

)
VN −∂uW (−1,U−N )V−N

}
(t ).

Yet, as (3) is satisfied, we have VN =V−N = 0. Therefore:

d

d t
Ẽ N

D (t ) = 0,

which implies the desired result.

Next we prove that (29) is consistent with (30):

Lemma 4.2. Under the hypotheses of Theorem 3.1, we have the following convergences
for all g ∈C ∞

c (]−∞,T [×]−1,1[):∫ T

0

∫ 1

−1

{
∂x g∂uW

(
x,∂xφ

N )−∂τg∂τφ
N }

(τ, x)d xdτ

−
∫ 1

−1
g (0, x)φτ0(x)d x →

N→+∞
0, (39)∫ T

0

∫ 1

−1

{
∂x g∂τφ

N −∂τg∂xφ
N }

(τ, x)d xdτ−
∫ 1

−1
g (0, x)φx

0 (x)d x →
N→+∞

0. (40)

Proof. It is easy to prove (40) by an integration by parts:∫ T

0

∫ 1

−1

{
∂x g∂τφ

N −∂τg∂xφ
N }

(τ, x)d xdτ

=−
∫ T

0

∫ 1

−1

{
g∂x∂τφ

N − g∂x∂τφ
N }

(τ, x)d xdτ+
∫ 1

−1
g (0, x)∂xφ

N (0, x)d x

→
N→+∞

∫ 1

−1
g (0, x)φx

0 (x)d x.

Before proving (39), let us introduce the operators:

D−
N : f (x) 7→ N

(
f (x)− f

(
x − 1

N

))
D+

N : f (x) 7→ N

(
f (x)− f

(
x + 1

N

))
,

which are adjoint of each other.
We integrate by parts:∫ T

0

∫ 1

−1

{
∂x g∂uW

(
x,∂xφ

N )−∂τg∂τφ
N }

(τ, x)d xdτ

=
∫ T

0

∫ 1

−1

{
∂x g∂uW

(
x,∂xφ

N )+ g∂2
τφ

N }
(τ, x)d xdτ

+
∫ 1

−1
g (0, x)∂τφ

N (0, x)d x. (41)
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It is clear that: ∫ 1

−1
g (0, x)∂τφ

N (0, x)d x →
N→+∞

∫ 1

−1
g (0, x)φτ0(x)d x. (42)

We focus on the other integrals. By definition, if x ∈ [−1+1/N ,1−1/N ]:

∂2
τφ

N (τ, x) = N
d 2

d t 2

((
1−θN (x)

)
XkN (x) +θN (x)XkN (x)+1

)
(t )

= (
1−θN (x)

)
D−

N

{
A

(
kN (x)

N

)
UkN (x)(t )+B

(
kN (x)

N

)}
+θN (x)D−

N

{
A

(
kN (x)+1

N

)
UkN (x)+1(t )+B

(
kN (x)+1

N

)}
= (

1−θN (x)
)

D−
N

{
A

(
kN (x)

N

)
∂xφ

N (τ, x)+B

(
kN (x)

N

)}
+θN (x)D−

N

{
A

(
kN (x)+1

N

)
∂xφ

N (τ, x +1/N )+B

(
kN (x)+1

N

)}
.

Remark that D±
N and θN commute, in the sense that:

D±
N

{
θN (x) f (x)

}= θN (x)D±
N

{
f (x)

}
.

Hence:

∂2
τφ

N (τ, x) = D−
N

{(
1−θN (x)

)(
A

(
kN (x)

N

)
∂xφ

N (τ, x)+B

(
kN (x)

N

))
+θN (x)

(
A

(
kN (x)+1

N

)
∂xφ

N (τ, x +1/N )+B

(
kN (x)+1

N

))}
,

if |x| < 1−1/N . We assume that N is sufficiently large, so that Supp(g ) ⊂ [−1+2/N ,1−
2/N ]. Then:∫ T

0

∫ 1

−1
∂2
τφ

N (τ, x)g (τ, x)d xdτ

=
∫ T

0

∫ 1

−1
g (τ, x)D−

N

{(
1−θN (x)

)(
A

(
kN (x)

N

)
∂xφ

N (τ, x)+B

(
kN (x)

N

))
+θN (x)

(
A

(
kN (x)+1

N

)
∂xφ

N (τ, x +1/N )+B

(
kN (x)+1

N

))}
d xdτ.
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As D−
N and D+

N are adjoint of each other:∫ T

0

∫ 1

−1
∂2
τφ

N (τ, x)g (τ, x)d xdτ

=
∫ T

0

∫ 1

−1
D+

N

{
g (τ, x)

}{(
1−θN (x)

)(
A

(
kN (x)

N

)
∂xφ

N (τ, x)+B

(
kN (x)

N

))
+θN (x)

(
A

(
kN (x +1/N )

N

)
∂xφ

N (τ, x +1/N )+B

(
kN (x +1/N )

N

))}
d xdτ

=
∫ T

0

∫ 1

−1

[(
1−θN (x)

)
D+

N

{
g (τ, x)

}+θN (x)D+
N

{
g (τ, x −1/N )

}]
(

A

(
kN (x)

N

)
∂xφ

N (τ, x)+B

(
kN (x)

N

))
d xdτ.

Now, since A, B and g are regular:

D+
N

{
g (τ, x)

}=−∂x g (τ, x)+
hN

g (τ, x)

N
,

A

(
kN (x)

N

)
= A(x)+ hN

A (x)

N
,

B

(
kN (x)

N

)
= B(x)+ hN

B (x)

N
,

where:
sup

N
sup
τ,x

{∣∣∣hN
g (τ, x)

∣∣∣+ ∣∣hN
A (τ, x)

∣∣+ ∣∣hN
B (τ, x)

∣∣}<+∞.

Therefore: ∫ T

0

∫ 1

−1
∂2
τφ

N (τ, x)g (τ, x)d xdτ

=−
∫ T

0

∫ 1

−1
∂x g (τ, x)

(
A(x)∂xφ

N (τ, x)+B(x)
)

d xdτ+C N , (43)

where, by the Cauchy-Schwarz inequality:

C N ≤ Cp
N

1+
√∫ T

0

∫ 1

−1

(
∂xφN (τ, x)

)2 d xdτ

 . (44)

Using Lemma 4.1 and (28), we get that:∫ 1

−1

(
∂xφ

N (τ, x)
)2

d x ≤C . (45)
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Whence, from (43), (44) and (45) we deduce:∣∣∣∣∫ T

0

∫ 1

−1

{
∂2
τφ

N g +∂x g∂u
(
W (x,∂xφ

N )}
(τ, x)d xdτ

∣∣∣∣ →
N→+∞

0. (46)

From (41), (42) and (46), we obtain (39).

We are now able to prove Theorem 3.1.

Proof. Using Lemma 4.1 and (28), we estimate:

N−1∑
k=−N

{
A

(
k

N

)
U 2

k +V 2
k

}
(t )

(28)≤ C +C
N−1∑

k=−N

{
A

(
k

N

)
(Uk )2 +B

(
k

N

)
Uk + (Vk )2

}
(t )

≤C
(
1+ Ẽ N

D (t )
)

≤C
(
1+ Ẽ N

D (0)
)

.

Since φx
0 and φτ0 are sufficiently regular, we have:

ED (0) →
N→∞

∫ 1

−1
W

(
x,φx

0 (x)
)

d x + 1

2

∫ 1

−1

(
φτ0(x)

)2 d x.

We therefore obtain that, for all τ> 0:∫ 1

−1

{
A

(
kN (x)

N

)(
∂xφ

N (τ, x)
)2 + (

∂τφ
N (τ, x)

)2
}

d x ≤C .

And by smoothness of A and thanks to the fact that A ≥α> 0, we obtain:∫ 1

−1

{
A(x)

(
∂xφ

N (τ, x)
)2 + (

∂τφ
N (τ, x)

)2
}

d x ≤C . (47)

We take the following scalar product on Ḣ 1
τ,x :

〈g ,h〉 ˜̇H 1
τ,x

:=
∫ T

0

∫ 1

−1

{
A(x)∂x g∂xh +∂τg∂τh

}
(τ, x)d xdτ.

This scalar product induces a norm which is equivalent to the classical one on Ḣ 1
τ,x ,

as A ≥ α > 0 and A is bounded. We denote ˜̇H 1
τ,x for Ḣ 1

τ,x endowed with this scalar
product, respectively H̃ 1

τ,x for H 1
τ,x endowed with the scalar product:

〈g ,h〉H̃ 1
τ,x

= 〈g ,h〉 ˜̇H 1
τ,x

+
∫ T

0

∫ 1

−1
g (τ, x)h(τ, x)d xdτ.

From (47) and the fact that φN (−1) =φl , we get by the Poincaré inequality that φN is
bounded in H̃ 1

τ,x . By weak compactness of this space, we extract:

φN *φ∞ in H̃ 1
τ,x . (48)
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Lemma 4.2 implies that, for all g ∈C ∞
c ([0,T [, ]−1,1[):∫ T

0

∫ 1

−1

{
∂x g∂uW

(
x,∂xφ

∞)−∂τg∂τφ∞
}

(τ, x)d xdτ=
∫ 1

−1
g (0, x)φτ0(x)d x,∫ T

0

∫ 1

−1

{
∂x g∂τφ∞−∂τg∂xφ∞

}
(τ, x)d xdτ=

∫ 1

−1
g (0, x)φx

0 (x)d x.

Therefore, φ∞ is φ, the unique solution of (4) for the initial and boundary conditions
(5) and (6) given by Theorem 2.1.
We now prove that this convergence is strong. As Ẽ N

D is preserved, we have:∥∥φN
∥∥2

˜̇H 1
τ,x

=2T
(
Ẽ N

D (0)
)2 +2

∫ T

0

∫ 1

−1

{(
A

(
kN (x)

N

)
− A(x)

)(
∂xφ

N )2

−B

(
kN (x)

N

)
∂xφ

N
}

(τ, x)d x

Yet, as A and B are C 1, we have:

lim
N→+∞

sup
x∈[−1,1]

∣∣∣∣A

(
kN (x)

N

)
− A(x)

∣∣∣∣= 0,

B

(
kN (x)

N

)
→ B(x) in L2

x .

Moreover:

Ẽ N
D (0) →

N→∞

∫ 1

−1

{
A(x)

2

(
φx

0 (x)
)2 +B(x)φx

0 (x)+ 1

2

(
φτ0(x)

)2
}

d x.

Therefore, we have the following convergence:∥∥φN
∥∥2

˜̇H 1
τ,x

→
N→∞

2T
∫ 1

−1

{
A(x)

2

(
φx

0 (x)
)2 +B(x)φx

0 (x)+ 1

2

(
φτ0(x)

)2
}

d x

−2
∫ T

0

∫ 1

−1

{
B (x)∂xφ

}
(τ, x)d x. (49)

But, from Theorem 2.1, the continuous energy EC is also preserved. This implies:

2T
∫ 1

−1

{
A(x)

2

(
φx

0 (x)
)2 +B(x)φx

0 (x)+ 1

2

(
φτ0(x)

)2
}

d x

−2
∫ T

0

∫ 1

−1

{
B (x)∂xφ

}
(τ, x)d x

=
∫ T

0

∫ 1

−1

{
A(x)

2

(
∂xφ

)2 + 1

2

(
∂τφ

)2
}

(τ, x)d x. (50)

From (49) and (50), we obtain: ∥∥φN
∥∥ ˜̇H 1

τ,x
→

N→∞
∥∥φ∥∥ ˜̇H 1

τ,x
.

Whence φN strongly converges to φ in H̃ 1
τ,x (and as a consequence, in H 1

τ,x).
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5 The non-linear case

This section is devoted to the proof of Theorem 3.3.

Remark 12 (Boundedness of ∂xφ). Under the hypotheses of Theorem 3.3, if ∂xφ does
not belong to [a,b] on a non-zero measure set, then ∂xφ

N cannot converge weakly
to ∂xφ. Therefore, we henceforth assume that ∂xφ(τ, x) ∈ [a,b], ∀x ∈ [−1,1],∀τ< T0.
The latter assumption holds for some a and b related to the initial conditions φ0

x ,
φ0
τ ∈C 1

p,x .

5.1 Light cone

The system (1) has the property that perturbations propagate at a finite speed on the
macroscopic level. This is stated in Theorem 3.4, but before proving it, we have to
derive a Grönwall-type estimate:

Proposition 5.1. Under the hypotheses of Theorem 3.4, if, for fixed N :

M = ∥∥U0(.)−Ũ0(.)
∥∥

L∞
t
<+∞, (51)

then we have, for all j ∈ [[1, N −1]], t ∈R+:

∣∣U j (t )−Ũ j (t )
∣∣≤ M

(
2t
p

K
)2 j

(2 j )!
exp

(
2t
p

K
)

, (52)

∣∣V j (t )− Ṽ j (t )
∣∣≤ M

p
2K

[(
2t
p

K
)2 j+1

(2 j +1)!
exp

(
2t
p

K
)
+

(
2t
p

K
)2 j−1

(2 j −1)!
exp

(
2t
p

K
)]

. (53)

Proof. Remark first that it is straightforward to get (53) from (52) ((52) also holds for
j = 0) by integrating (1). Indeed, using (1), we have, for j ∈ [[1, N −2]]:

∣∣V j (t )− Ṽ j (t )
∣∣≤ ∫ t

0

∣∣W ′ (U j (s)
)−W ′ (Ũ j (s)

)+W ′ (Ũ j−1(s)
)−W ′ (U j−1(s)

)∣∣d s

(34)≤ K
∫ t

0

{∣∣Ũ j (s)−U j (s)
∣∣+ ∣∣Ũ j−1(s)−U j−1(s)

∣∣}d s

(52)≤ 2MK

[
t
(
2t

p
K

)2 j

(2 j +1)!
exp

(
2t
p

K
)
+ t

(
2t
p

K
)2( j−1)

(2 j −1)!
exp

(
2t
p

K
)]

.

We now prove the estimate (52). We do it by induction on j in the expression:

S j (t ) := max
k∈[[ j ,N−1]]

∣∣Uk (t )−Ũk (t )
∣∣ .
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Using (1), we get, for j ≥ 1:

∣∣U j (t )−Ũ j (t )
∣∣≤∫ t

0

∣∣V j+1(s)− Ṽ j+1(s)+ Ṽ j (s)−V j (s)
∣∣d s

≤K
∫ t

0

∫ s

0

{∣∣U j+1 −Ũ j+1
∣∣+2

∣∣U j −Ũ j
∣∣

+ ∣∣U j−1 −Ũ j−1
∣∣}(r )dr d s,

≤4K
∫ t

0

∫ s

0
S j−1(r )dr d s.

Thus:

S j (t ) ≤ 4K
∫ t

0

∫ s

0
S j−1(r )dr d s. (54)

From hypothesis (34), we have that S0(0) ≤ M . Using the same argument as above,
we get for j = 0:

S0(t ) ≤ M +4K
∫ t

0

∫ s

0
S0(r )dr d s.

Using the Grönwall Lemma, we obtain:

S0(t ) ≤ M exp
(
2t
p

K
)

. (55)

Therefore, we obtain from (54) that:

S j (t ) ≤(4K ) j
∫ t=t j

0

∫ s j

0

∫ t j−1

0

∫ s j−1

0
...

∫ t1

0

∫ s1

0
S0(r )dr d s1d t1...d s j−1d t j−1d s j d t j

≤(4K ) j
∫ t

0

(t − r )2 j−1

(2 j −1)!
S0(r )dr

≤M (4K ) j t 2 j

(2 j )!
exp

(
2t
p

K
)

,

which concludes the proof.

We are now able to prove Theorem 3.4:

Proof. Let j > N x, t ∈ [0, Nτ[. By strong convexity of W and by the Cauchy-Schwarz
inequality, (33) implies:

MN := sup
t∈R+

∣∣U N
0 (t )

∣∣≤C
p

N .

By Proposition 5.1, we have:

∣∣U j (t )−Ũ j (t )
∣∣≤ MN

(
2t
p

K
)2 j

(2 j )!
exp

(
2t
p

K
)

.
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Using logarithm and Stirling formula, we obtain:

ln
(
N

∣∣U j (t )−Ũ j (t )
∣∣)= ln(MN )+2 j ln

(
2t
p

K
)
− ln((2 j )!)+2t

p
K + ln(N )

≤C (1+ ln(N ))+2 j ln

(
2et

p
K

2 j

)
+2t

p
K ,

≤C (1+ ln(N ))+2 j ln

(
exp(2)t

p
K

j

)
+ (2t

p
K −2 j )

≤C (1+ ln(N ))+2 j ln

(
cNτ

N x

)
+2

(
c

exp(2)
Nτ−N x

)
≤C (1+ ln(N ))+2N

(
x ln

(cτ

x

)
+ c

exp(2)
τ−x

)
.

As cτ< x, we obtain that:

lim
N→+∞

sup
0≤t<Nτ

max
j>N x

ln
(
N

∣∣∣U N
j (t )−Ũ N

j (t )
∣∣∣)=−∞,

which gives (35). The same method applies for (36).

5.2 Strengthened convergence

In this section, we prove that if φN converges weakly to φ in H 1
τ,x , then convergence

holds in a strong sense for ∂xφ
N to ∂xφ in L2

τ,x .

Lemma 5.2. Under the hypotheses of Theorem 3.3, if T is DC -compatible, then the
following implication is true:

φN *φ in H 1
τ,x =⇒ ∂xφ

N → ∂xφ in L2
τ,x .

To get it, we first prove two parallel integral identities, for the continuous system
(4) and the discrete one (1).

Lemma 5.3. Assume that W ∈C 2(R) satisfies (12). Letφ ∈W 1,∞
τ,x be a weak entropy so-

lution of (4) the initial and boundary conditions (5) and (6). Then, if T is C -compatible,
we have: ∫ T

0

∫ 1

−1
(1−x)

(
∂τφ(τ, x)−φτ0(x)

)
d xdτ

=
∫ T

0

∫ 1

−1
(T −τ)

(
W ′ (∂xφ(τ, x)

)−W ′ (φx
0 (−1)

))
d xdτ. (56)

A similar identity can be derived for the discrete system:
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Lemma 5.4. Let W ∈C 1(R) satisfy (12) and (14). Let X j (t ) be the solution of (1) for the
initial and boundary conditions (2) and (3). Suppose that T is D-compatible. Assume
that:

∂τφ
N * ξ∞ in L2

τ,x , (57)

∂xφ
N *ψ∞ in L2

τ,x . (58)

Assume that ∂xφ
N is uniformly bounded in τ, x, N . Let ντ,x be the Young measure

associated with the convergence of ∂xφ
N . Then, we have:∫ T

0

∫ 1

−1
(1−x)

(
ξ∞(τ, x)−φτ0(x)

)
d xdτ

=
∫ T

0

∫ 1

−1
(T −τ)

{∫
R

W ′(λ)dντ,x(λ)−W ′(φx
0 (−1))

}
dτd x. (59)

See Theorem 3.1 p 31 of [23] for the definition of Young measures.

We temporarily admit Lemma 5.3 and 5.4 and proceed with the proof of Lemma
5.2.

Proof. Using Lemmata 5.3 and 5.4, we get that, if ντ,x characterizes the weak conver-
gence of ∂xφ

N to ∂xφ:∫ T

0

∫ 1

−1
(T −τ)

{
W ′ (∂xφ(τ, x)

)−∫
R

W ′(λ)dντ,x(λ)

}
d xdτ= 0.

But, as W ′ is strongly convex, using Theorem 1.1.8 p 47 of [24], we obtain:

ντ,x = δ∂xφ(τ,x).

Then, Corollary 3.2 p 34 of [23] implies:

∂xφ
N → ∂xφ in L2

τ,x .

Next, we prove Lemma 5.3:

Proof. As T is C -compatible, we can take the following g (τ, x) = (T −τ)(1−x) in (18).
Thus, we have:∫ T

0

∫ 1

−1

{−(T −τ)W ′ (∂xφ(τ, x)
)+ (1−x)∂τφ(τ, x)

}
d xdτ

= T
∫ 1

−1
(1−x)φτ0(x)d x −2

∫ T

0
W ′ (φx

0 (−1)
)

(T −τ)dτ.

This is equivalent to (56).
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We now prove Lemma 5.4:

Proof. We sum (1) and get:

k∑
j=−N

d 2

d t 2
X j (t ) =

k∑
j=−N+1

W ′(U j )(t )−W ′(U j−1)(t )

=W ′(Uk )(t )−W ′(U−N )(t ).

Then we multiply the above expression by (N T − t ) and integrate with respect to t :∫ N T

0
(N T − t )

(
W ′(Uk )−W ′(U−N )

)
(t )d t

=
∫ N T

0

∫ t

0

k∑
i=−N

d 2

d t 2
X j (s)d sd t

=
k∑

j=−N

∫ N T

0

{
d X j

d t
(Nτ)− d

d t
X j (0)

}
d t .

If we rescale it and sum over k ∈ [[−N , N −1]], we obtain:

1

N

N−1∑
k=−N

∫ T

0
(T −τ)

(
W ′

(
∂xφ

N
(
τ,

k

N

))
−W ′ (U−N (Nτ))

)
dτ

= 1

N 2

N−1∑
k=−N

k∑
j=−N

∫ T

0

{
ξN

(
τ,

k

N

)
−ξN

(
0,

k

N

)}
dτ

= 1

N

N−1∑
k=−N

(N −k)

N

∫ T

0

{
ξN

(
τ,

k

N

)
−ξN

(
0,

k

N

)}
dτ

=
∫ T

0

∫ 1

−1

(
1− bN xc

N

)(
ξN (τ, x)−ξN (0, x)

)
dτ.

Remark first that:

1− bN xc
N

→ 1−x in L∞
x .

As T is D-compatible, we have the following convergence, uniform for τ ∈ [0,T ]:

W ′ (U−N (Nτ)) →W ′ (φx
0 (−1)

)
.

From initial conditions (2), we get that:

ξN (0, .) →φτ0(.) in L2
x ,

and from the hypotheses (57) and (58) that:∫ T

0

∫ 1

−1
(1−x)

(
ξ∞(τ, x)−φτ0(x)

)
d xdτ

=
∫ T

0

∫ 1

−1
(T −τ)

{∫
R

W ′(λ)dντ,x(λ)−W ′(φx
0 (−1))

}
dτd x.
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5.3 From strong convergence of∂xφ
N to strong convergence of∂τφN

We now prove that the strong convergence of ∂xφ
N in L2

τ,x implies the strong conver-
gence of ∂τφN in L2

τ,x .

Lemma 5.5. Under the hypotheses of Theorem 3.3, if T is DC -compatible, the follow-
ing implication is true:

φN →φ in L2
τ,x

∂xφ
N → ∂xφ in L2

τ,x
∂τφ

N * ∂τφ in L2
τ,x

=⇒
{
∂τφ

N → ∂τφ in L2
τ,x

ξN → ∂τφ in L2
τ,x

,

for ξN (τ, x) =V N
kN (x)

(Nτ).

We first prove that it is enough to have ∂τφN → ∂τφ.

Lemma 5.6. Assume that ∂τφN → ζ in L2
τ,x . Then ξN → ζ in L2

τ,x .

Proof. Recall that ζN = ∂τφN . Assume that ζN → ζ. We suppose first that:

ζ(τ, x) =
N−1∑

k=−N
ζk (τ)1[ k

N , k+1
N

[(x). (60)

Then, for all j ∈ [[−N , N −1]], τ ∈ [0,T ]:∫ ( j+1)/N

j /N

(
ζN −ζ)2

(τ, x)d x

= 1

N

∫ 1

0

(
θ(ξN (τ, j /N )−ζ(τ, j /N ))

+ (1−θ)(ξN (τ, ( j +1)/N )−ζ(τ, j /N ))
)2

dθ

= 1

N

[
1

3

(
ξN (τ, j /N )−ζ(τ, j /N )

)2 + 1

3

(
ξN (τ, ( j +1)/N )−ζ(τ, j /N )

)2

+ 1

3

(
ξN (τ, j /N )−ζ(τ, j /N )

)(
ξN (τ, ( j +1)/N )−ζ(τ, j /N )

)]
≥ 1

6N

(
ξN (τ, j /N )−ζ(τ, j /N )

)2

≥ 1

6

∫ ( j+1)/N

j /N

(
ξN (τ, x)−ζ(τ, x)

)2
d x.

Therefore, we have:∫ T

0

∫ 1

−1

(
ζN −ζ)2

(τ, x)d xdτ≥ 1

6

∫ T

0

∫ 1

−1

(
ξN −ζ)2

(τ, x)d xdτ.
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If ζ is now only L2, we approximate it by ζ̃ that has the form (60). Thus, by the triangle
inequality, and applying the former result on ζ̃, we have:∫ T

0

∫ 1

−1

(
ξN −ζ)2

(τ, x)d xdτ≤C
∫ T

0

∫ 1

−1

{(
ζN −ζ)2

(τ, x)+ (
ζ− ζ̃)2

(τ, x)
}

d xdτ.

Hence: ∥∥ξN −ζ∥∥L2
τ,x

→ 0.

We can now proceed with the proof of Lemma 5.5.

Proof. By definition:

ζN (τ, x) =
((

1−θN (x)
) d

d t
XkN (x) +θN (x)

d

d t
XkN (x)+1

)
(t ). (61)

Using (1), we obtain:

∂τζ
N (τ, x) =N

(
1−θN (x)

)(
W ′ (Uk(x)

)−W ′ (Uk(x)−1
))

(t )

+NθN (x)
(
W ′ (Uk(x)+1

)−W ′ (Uk(x)
))

(t ).

We define:

Ξ(x) :=



0 if x < 0,
x2

2 if x ∈ [0,1],
1
2 − (x −1)2 + (x −1) if x ∈ [1,2],
1
2 + (x−2)2

2 − (x −2) if x ∈ [2,3],
0 if x > 3.

Let ΞN
j (x) :=Ξ(N x − j ). We have:

d

d x
ΞN

j (x) :=



0 if x < j /N ,
NθN (x) if x ∈ [ j /N , ( j +1)/N ],
N

(
1−2θN (x)

)
if x ∈ [( j +1)/N , ( j +2)/N ],

N
(
θN (x)−1

)
if x ∈ [( j +2)/N , ( j +3)/N ],

0 if x > ( j +3)/N .

Newt, we define:

Ψ(τ, x) :=
N−1∑

j=−N
ΞN

j−1(x)W ′ (U j (Nτ)
)

.

We have:

∂xΨ
N (τ, x) = ∂τζN (τ, x), ∀τ ∈ [0,T ],∀x ∈ [−1,1].
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Since ∂xφ
N → ∂xφ in L2

τ,x , and since ∂xφ
N is bounded in L∞, we have:

W ′ (∂xφ
N )→W ′ (∂xφ

)
in L2

τ,x .

We claim that it implies: ∥∥ΨN −W ′ (∂xφ
)∥∥

L2
τ,x

→
N→+∞

0. (62)

Indeed, as ∂xφ
N is bounded in L∞

τ,x uniformly in N , it suffices to bound as follows:∫ 1

−1

∣∣ΨN (τ, x)−W ′ (∂xφ(τ, x)
)∣∣d x

≤
∫ 1

−1

∣∣∣∣∣ N−1∑
j=−N

ΞN
j−1(x)

(
W ′ (U j (Nτ)

)−W ′ (∂xφ(τ, x)
))∣∣∣∣∣d x

≤
∫ 1

−1

N−1∑
j=−N

ΞN
j−1(x)

∣∣W ′ (U j (Nτ)
)−W ′ (∂xφ(τ, x)

)∣∣d x

≤
∫ 1

−1

N−1∑
j=−N

1[ j−1
N , j+2

N

](x)
∣∣W ′ (U j (Nτ)

)−W ′ (∂xφ(τ, x)
)∣∣d x

≤
1∑

j=−1

∫ 1

−1

∣∣W ′ (Uk(x)+ j (Nτ)
)−W ′ (∂xφ(τ, x)

)∣∣d x

≤
1∑

j=−1

∫ 1

−1

∣∣∣∣W ′
(
∂xφ

N
(
τ, x + j

N

))
−W ′ (∂xφ (τ, x)

)∣∣∣∣d x

→ 0.

Interpolating with L∞
τ,x , this gives (62). We define:

αN := ζN −ζ, βN :=Ψ−W ′ (∂xφ
)

, γN := ∂xφ
N −∂xφ.

Remark that, by definition, we have:

∂τα
N = ∂xβ

N , (63)

∂xα
N = ∂τγN . (64)

D-compatibility of T implies the following convergences:∫ T

0

(
αN (τ,−1)

)2 → 0,
∫ T

0

(
αN (τ,1)

)2
dτ→ 0,

∫ 1

−1

(
αN (0, x)

)2
d x → 0. (65)

From (62), and by D-compatibility, we deduce that:

lim
N→+∞

∥∥βN
∥∥

L2
τ,x

= 0, lim
N→+∞

{∥∥βN (.,1)
∥∥

L2
τ
+∥∥βN (.,−1)

∥∥
L2
τ

}
= 0. (66)

30



The energy estimates for (1) and (4) give:

sup
N

∥∥γN
∥∥

L2
τ,x

≤C , sup
N

{∥∥γN (0, .)
∥∥

L2
x
+∥∥γN (T, .)

∥∥
L2

x

}
≤C . (67)

We now claim that (63), (64), (66), (67), (65) imply:

limsup
N→+∞

∥∥αN
∥∥

L2
τ,x

= 0, (68)

which gives the desired result, thanks to Lemma 5.6. To prove (68), we write:

αN (τ, x)
(63)= αN (τ,−1)+

∫ x

−1
∂τγ

N (τ, y)d y.

αN (τ, x)
(64)= αN (0, x)+

∫ τ

0
∂xβ

N (ν, x)dν.

Therefore:∫ T

0

∫ 1

−1

(
αN (τ, x)

)2
d xdτ

=
∫ T

0

∫ 1

−1

(
αN (τ,−1)+

∫ x

−1
∂τγ

N (τ, y)d y

)(
αN (0, x)+

∫ τ

0
∂xβ

N (ν, x)dν

)
d xdτ

=
∫ T

0

∫ 1

−1
αN (τ,−1)αN (0, x)d xdτ+

∫ T

0

∫ 1

−1
αN (τ,−1)

∫ τ

0
∂xβ

N (ν, x)dνd xdτ

+
∫ T

0

∫ 1

−1
αN (0, x)

∫ x

−1
∂τγ

N (τ, y)d yd xdτ

+
∫ T

0

∫ 1

−1

∫ x

−1
∂τγ

N (τ, y)d y
∫ τ

0
∂xβ

N (ν, x)dνd xdτ

=: T N
1 +T N

2 +T N
3 +T N

4 .

We deal separately with T N
1 ,T N

2 ,T N
3 ,T N

4 . By the Cauchy-Schwarz inequality:

T N
1 ≤

(∫ T

0
αN (τ,−1)dτ

)1/2 (∫ 1

−1
αN (0, x)d x

)1/2
(65)→ 0. (69)

Integrating over x in T N
2 , we obtain:

T N
2 =

∫ T

0
αN (τ,−1)

∫ τ

0

(
βN (ν,1)−βN (ν,−1)

)
dνdτ

(66),(65)→ 0. (70)

Next, integrating over τ in T N
3 , we get:

T N
3 =

∫ 1

−1
αN (0, x)

∫ x

−1

(
γN (T, y)−γN (0, y)

)
d yd x

(67),(65)→ 0. (71)
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We deal with T N
4 by a double integration by parts:

T N
4 =

∫ T

0

∫ 1

−1
∂τγ

N (τ, y)d y
∫ τ

0
βN (ν,1)dνdτ

−
∫ T

0

∫ 1

−1
∂τγ

N (τ, x)
∫ τ

0
βN (ν, x)dνd xdτ

=
∫ 1

−1
γN (T, y)d y

∫ T

0
βN (τ,1)dτ

−
∫ T

0

∫ 1

−1
γN (τ, x)βN (τ,1)d xdτ

−
∫ T

0

∫ 1

−1
βN (τ, x)γN (T, x)dτd x∫ T

0

∫ 1

−1
βN (τ, x)γN (τ, x)dτd x.

(66),(67)→ 0. (72)

From (69), (70), (71), (72), we obtain (68), which concludes the proof.

5.4 Proof of Theorem 3.3

We are now in position to prove Theorem 3.3.

Proof. We first prove the existence of a D-compatible T > 0. φx
0 and φτ0 satisfies (24),

and : ∥∥W ′′(U j (t ))
∥∥

L∞
t (l∞j ) ≤

∥∥W ′′∥∥
L∞([a,b]) .

Moreover, the discrete energy is preserved, which implies that:

ED (t ) ≤
N∑

j=−N+1

{
1

2

(
φτ0

(
j

N

))2

+W

(
φx

0

(
j

N

))}
≤N

∥∥φτ∥∥2
L∞

x
+2N ‖W ‖L∞([a,b]) .

Therefore, we can apply Theorem 3.4. Let X̃ j (t ) satisfy (1) with initial conditions
Ũ j (t = 0) = ur , Ṽ j (t = 0) = vr and Dirichlet boundary conditions (remark that this
means that U j (t ) and V j (t ) do not depend on time). We compare Ũ j (t ) = ur and
Ṽ j (t ) = vr with U j (t ) and V j (t ), respectively. Using Theorem 3.4, there exists c > 0
such that, if T < 1/(4c) and T < T0:

sup
t∈[0,N T ]

max
j∈[3N /4,N ]

N
∣∣U j (t )−ur

∣∣ →
N→+∞

0,

sup
t∈[0,N T ]

max
j∈[3N /4,N ]

N
∣∣V j (t )− vr

∣∣ →
N→+∞

0.
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The same argument applies for j < −3N /4. Therefore, there exists a D-compatible
T > 0.

We now prove that φN does not converge to φ. We argue by contradiction and
assume that:

φN →φ in D ′
τ,x . (73)

Since the discrete energy ED is preserved and as W is strongly convex, we get an H 1

estimate over φN : ∫ 1

−1

{(
∂xφ(τ, x)

)2 + (
∂τφ(τ, x)

)2
}
≤C .

which directly implies:
φN *φ in H 1

τ,x . (74)

By Lemma 5.2, we get that:
∂xφ

N → ∂xφ in L2
τ,x . (75)

Whence, by Lemme 5.5, we have:

ξN → ∂τφ in L2
τ,x . (76)

W is continuous. Therefore (75), (31) and (76) imply:∫ T

0

∫ 1

−1

{
1

2

(
∂τφ

N )2 +W
(
∂xφ

N )}
(τ, x)d xdτ

→
∫ T

0

∫ 1

−1

{
1

2

(
∂τφ

)2 +W
(
∂xφ

)}
(τ, x)d xdτ. (77)

But the left-hand term of (77) also converges, by discrete energy conservation, to:∫ T

0

∫ 1

−1

{
1

2

(
∂τφ

N )2 +W
(
∂xφ

N )}
(τ, x)d xdτ

→
∫ T

0

∫ 1

−1

{
1

2

(
φτ0

)2 +W
(
φx

0

)}
(τ, x)d xdτ= T EC (0),

and the right-hand term of (77) is nothing but the energy EC (τ). As φ is an entropy
solution, we have: ∫ T

0
EC (τ)dτ=

∫ T1

0
EC (τ)dτ+

∫ T

T1

EC (τ)dτ

(32)< T EC (0).

Therefore, we reach a contradiction, and φN cannot converge to φ.
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6 A uniform bound on the distance between particles

Notice that it is important to assume some regularity on the initial conditions in Con-
jecture 3.5. It is indeed possible to build some initial conditions that are small in l∞j
such that the associated solutions of (1) are not bounded uniformly in N at a fixed
macroscopic time τ> 0. The following proof of Proposition 3.6 uses the reversibility
of equation (1) and also a linearization of eigenvalues λk .

We first derive explicit formulae for solution of linear periodic system (1).
Let I ∈M2N (R) be the identity matrix, and J ∈M2N (R) the circular permutation:

J j k := δ j
k+1.

When the potential is quadratic and satisfies (13), system (1) with periodic boundary
conditions is equivalent to:

d 2X

d t 2
+ (

2I − J − J−1) X = 0.

We diagonalize this system using its eigenvectors:

Ω j = 1p
2N


1
ω j

..
ω2N−1

j

 ,

where ω j = exp
(

i jπ
N

)
. The associated eigenvalues are:

λ j = 2

(
1−cos

(
jπ

N

))
= 4sin2

(
jπ

2N

)
. (78)

Thus, a solution of (1) with periodic boundary conditions satisfies:

X j (t ) =
2N−1∑
k=1

cos
(
t
√
λk

)
(Ωk |X (0))(Ωk ) j +

2N−1∑
k=1

1√
λk

sin
(
t
√
λk

)
(Ωk |V (0))(Ωk ) j

+ 1p
2N

[(Ω0|X (0))+ (Ω0|V (0)) t ] , (79)

where, for two vectors Y , Z ∈C2N , (|) denotes the hermitian product:

(Y |Z ) :=
N−1∑

k=−N
Yk Z∗

k .

One easily derives such formulae for V j , U j and Z j by linearity.
We can now prove Proposition 3.6.

34



Proof of Proposition 3.6. Using the reversibility of (1), it is enough to prove that, if
X N

j is a solution of (1) with periodic boundary condition such that U N
j (t = 0) = δ0

j

and V N
j (t = 0) = 0, then: ∥∥∥U N

j (Nτ)
∥∥∥

l∞j
→ 0, (80)∥∥∥V N

j (Nτ)
∥∥∥

l∞j
→ 0. (81)

Indeed, let X̃i be the solution of (1) with periodic boundary conditions and the fol-
lowing initial conditions:

Ũ N
j (t = 0) := KNU N

j (Nτ),

Ṽ N
j (t = 0) :=−KN V N

j (Nτ).

By linearity and reversibility of (1), we get:

Ũ N
j (Nτ) = KNU N

j (0),

Ṽ N
j (Nτ) =−KN V N

j (0).

Setting KN =
{

max

(∥∥∥U N
j (Nτ)

∥∥∥
l∞j

,
∥∥∥V N

j (Nτ)
∥∥∥

l∞j

)}−1

gives the desired result.

We only show (80), as the proof of (81) is similar. Thanks to (79):

U N
k (Nτ) = 1

2N

N−1∑
j=−N

cos

(
2Nτsin

(
jπ

2N

))
e i j kπ/N .

To simplify the proof, we suppose N = nm (it can be generalized with a few techni-
calities). Thus:

U N
k (Nτ) = 1

2N

n−1∑
l=−n

m−1∑
j=0

cos

(
2Nτsin

(
(lm + j )π

2N

))
e i (l m+ j )kπ/N .

Let us bound terms of the type:

Q l ,k
± :=

∣∣∣∣∣ 1

N

m−1∑
j=0

exp

(
±i 2Nτsin

(
(lm + j )π

2N

))
e i (lm+ j )kπ/N

∣∣∣∣∣ .

We expand:

sin

(
(lm + j )π

2N

)
= sin

(
l mπ

2N

)
+ jπ

2N
cos

(
l mπ

2N

)
+ m2

N 2
r (N ,m, l , j ),
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where r (N ,m, l , j ) <C , independently of N , m, l , j . As a consequence:

Q l ,k
± ≤

∣∣∣∣∣ 1

N

m−1∑
j=0

exp

(
±2i

(
τ jπ

2
cos

(
lmπ

2N

)
+ m2τ

N
r (N ,m, l , j )

))
e i j kπ/N

∣∣∣∣∣
≤ 1

N

m−1∑
j=0

C m2

N
+

∣∣∣∣∣ 1

N

m−1∑
j=0

exp

(
±iτ jπcos

(
lmπ

2N

)
+ i j kπ

N

)∣∣∣∣∣
≤C

m3

N 2
+ 1

N

2∣∣1−exp(iγ±(k, l ,m, N ,τ))
∣∣ ,

where:

γ±(k, l ,m, N ,τ) = kπ

N
±τπcos

(
lmπ

2N

)
.

Without loss of generality, we focus only on Q l ,k
+ . There exist at most two solutions s1

and s2 ∈ [−π/2,π/2] to the equation:

τπcos(s)+ kπ

N
= 0.

Let 1 > δ> 0. If l mπ
2N ∉]s1 −δ, s1 +δ[∪]s2 −δ, s2 +δ[, then:∣∣1−exp(iγ+(k, l ,m, N ,τ))

∣∣>Cδ2. (82)

for some universal constant C . Whence, if l mπ
2N ∉]s1−δ, s1+δ[∪]s2−δ, s2+δ[, we have:

Q l ,k
+ ≤C

m3

N 2
+ 1

N

C

δ2
.

Moreover, it is immediate from the definition of Q l ,k
± that for all l ,k:

Q l ,k
± ≤ m

N
.

We denote:

E := [[−n,n −1]]∩
(]

2N

mπ
(s1 −δ),

2N

mπ
(s1 +δ)

[
∪

]
2N

mπ
(s2 −δ),

2N

mπ
(s2 +δ)

[)
,

and bound the sum:
n−1∑

l=−n
Q l ,k

+ =∑
l∈E

Q l ,k
+ + ∑

l∉E
Q l ,k

+

≤∑
l∈E

m

N
+C

∑
l∉E

m3

N 2
+ 1

Nδ2

≤ 8N

mπ
δ

m

N
+2C n

(
m3

N 2
+ 1

Nδ2

)
≤C

(
δ+ m2

N
+ 1

mδ2

)
.
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Let δ= (m)−1/3, m = N 3/7. We get:

n−1∑
l=−n

Q l ,k
+ ≤ C

N 1/7
.

Doing the same manipulations on Q l ,k− , we get that, for all k ∈ [[−N , N −1]]:

∣∣U N
k (Nτ)

∣∣≤ n−1∑
l=−n

Q l ,k
+ +Q l ,k

−

≤ C

N 1/7
,

whence (80).

Remark 13. One can remove the technical assumption N = nm with m,n ∈ N, by
fixing µ := ⌊

N 1/7
⌋

, and then m :=µ3, n :=µ4. Remarking that N −µ7 <C N 6/7, we can
apply the same proof as above and derive the same estimates.

7 Non-existence of discrete shock waves

We prove in this section that there do not exist discrete shock waves. We use some
ideas from [4], where an existence result is proven for upwind schemes.

7.1 Quadratic potential

In this section, we prove Proposition 3.7. We first show a lemma which is valid for a
wide class of potentials W :

Lemma 7.1. Suppose W ∈ C 1(R), such that W ′(ul ) 6= W ′(ur ). Then there exists no
discrete shock wave to the equation (1) with zero speed. That is, there does not exist
X j (t ) satisfying Definition 2.5, with associated c = 0.

Proof. Integrating (27), we get:

c2
∫ y

x
φ′′(s)d s =

∫ y

y−1
W ′(φ(s +1)−φ(s))d s −

∫ x

x−1
W ′(φ(s +1)−φ(s))d s.

If x →−∞ and y →+∞, we obtain:

c2(ur −ul ) =W ′(ur )−W ′(ul ), (83)

which is the Rankine-Hugoniot equation (25). It cannot hold if c = 0.
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We can now prove Proposition 3.7:

Proof. If c = 0, Lemma 7.1 gives the desired result. Suppose c 6= 0. Using Fourier
transform on (27) implies:

c2ξ2 F (φ)(ξ) =(
exp(i ξ)−2+exp(−i ξ)

)
F (φ)(ξ).

The equation:
c2ξ2 = 2(1−cos(ξ)) , (84)

has a finite number of solutions ξ j , j ∈ J . Therefore, there exist K j ∈N, a j k ∈ R such
that:

F (φ) =
J∑

j=1

K j∑
k=0

a j kδ
(k)
ξ j

.

Thus:

φ(x) =
J∑

j=1

K j∑
k=0

a j k (i x)k exp(i x ξ j ).

Since φ′ has a limit for x →+∞ then a j k = 0 if j 6= 0 or k > 1. Thus, there exists no
discrete shock wave with c 6= 0.

7.2 Convex non-linear potential

We now prove Proposition 3.8.

Proof. Suppose ul 6= ur . Test now (27) with φ′:

c2

2

(
u2

r −u2
l

)= lim
R→+∞

∫ R

−R

{
W ′(φ(x +1)−φ(x))−W ′(φ(x)−φ(x −1))

}
φ′(x)d x

= lim
R→+∞

{∫ R

−R
W ′(φ(x +1)−φ(x))

(
φ′(x +1)−φ′(x)

)
d x

+
∫ R

R−1
φ′(x +1)W ′(φ(x +1)−φ(x))d x −

∫ −R

−R−1
φ′(x +1)W ′(φ(x +1)

−φ(x))d x

}
=W (ur )−W (ul )+W ′(ur )ur −W ′(ul )ul .

Using (83), we get:
1

2

(
W ′(ur )−W ′(ul )

)= W (ur )−W (ul )

ur −ul
. (85)
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Yet:

1

2

(
W ′(ur )−W ′(ul )

)− W (ur )−W (ul )

ur −ul

= 1

ur −ul

∫ ur

ul

{
ur − s

ur −ul
W ′(ul )+ s −ul

ur −ul
−W ′(s)

}
d s,

and as W ′ is strictly convex:

ur − s

ur −ul
W ′(ul )+ s −ul

ur −ul
−W ′(s) > 0,∀s ∈]ul ,ur [.

This is contradictory. Therefore, as ul 6= ur , there does not exist any discrete shock
wave of (1).
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