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On optimality of empirical risk minimization in
linear aggregation

Adrien Saumard�

May 25, 2016

Abstract

In the �rst part of this paper, we show that the small-ball condition,
recently introduced by [Men15], may behave poorly for important classes of
localized functions such as wavelets, leading to suboptimal estimates of the
rate of convergence of ERM for the linear aggregation problem.
In a second part, we derive optimal upper and lower bounds for the ex-

cess risk of ERM when the dictionary is made of trigonometric functions.
While the validity of the small-ball condition remains essentially open in
the Fourier case, we show strong connection between our results and con-
centration inequalities recently obtained for the excess risk in [Cha14] and
[vdGW16].
Keywords: empirical risk minimization, linear aggregation, small-ball

property, concentration inequality, empirical process theory.

1 Introduction

Consider the following general regression framework: (X ; TX ) is a measurable space,
(X; Y )2X � R is a pair of random variables of joint distribution P - the marginal
of X being denoted PX - and it holds

Y = s� (X) + � (X) " , (1)

where s� is the regression function of the response variable Y with respect to the
random design X, � (X) � 0 is the heteroscedastic noise level and " is the con-
ditionally standardized noise, satisfying E [" jX ] = 0 and E ["2 jX ] = 1. Relation
(1) is very general and is indeed satis�ed as soon as E [Y 2] < +1. In this case
s� 2 L2

�
PX
�
is the orthogonal projection of Y onto the space of X-measurable

functions. In particular, no restriction is made on the structure of dependence
between Y and X.

�Research partly supported by the french Agence Nationale de la Recherche (ANR 2011 BS01
010 01 projet Calibration).
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We thus face a typical learning problem, where the statistical modelling is mini-
mal, and the goal will be, given a sample (Xi; Yi)

n
i=1 of law P


n and a new covariate
Xn+1, to predict the value of the associated response variable Yn+1. More precisely,
we want to construct a function bs, depending on the data (Xi; Yi)

n
i=1, such that the

least-squares risk R (bs) = E
�
(Yn+1 � bs (Xn+1))

2� is as small as possible, the pair
(Xn+1; Yn+1) being independent of the sample (Xi; Yi)

n
i=1.

In this paper, we focus on the technique of linear aggregation via Empirical Risk
Minimization (ERM). This means that we are given a dictionary S = fs1; :::; sDg
and that we produce the least-squares estimator bs on its linear span m = Span (S),

bs 2 argmin
s2m

Rn (s) , where Rn (s) =
1

n

nX
i=1

(Yi � s (Xi))
2 . (2)

The quantity Rn (s) is called the empirical risk of the function s. The accuracy of
the method is tackled through an oracle inequality, where the risk of the estimator
R (bs) is compared - on an event of probability close to one - to the risk of the best
possible function within the linear model m. The latter function is denoted sm
and is called the oracle, or the (orthogonal) projection of the regression function
s� onto m,

sm 2 argmin
s2m

R (s) .

An oracle inequality then writes, on an event 
0 of probability close to one,

R (bs) � R (sm) + rn (D) , (3)

for a positive residual term rn (D). An easy and classical computation gives that the
excess risk satis�es R (bs)�R (sm) = kbs� smk22, where k�k2 is the natural quadratic
norm in L2

�
PX
�
: Hence, inequality (3) can be rewritten as kbs� smk22 � rn (D)

and the quantity rn (D) thus corresponds to the rate of estimation of the projection
sm by the least-squares estimator bs in terms of excess risk, corresponding here to
the squared quadratic norm.
The linear aggregation problem has been well studied in various settings linked

to nonparametric regression ([Nem00], [Tsy03], [BTW07], [AC11]) and density esti-
mation ([RT07]). It has been consequently understood that the optimal rate rn (D)
of linear aggregation is of the order of D=n, where D is the size of the dictionary.
Recently, [LM15] have shown that ERM is suboptimal for the linear aggregation
problem in general, in the sense that there exist a dictionary S and a pair (X; Y )
of random variables for which the rate of ERM (drastically) deteriorates, even in
the case where the response variable Y and the dictionary are uniformly bounded.
On the positive side, [LM15] also made a breakthrough by showing that if a

so-called small-ball condition is achieved with absolute constants, uniformly over
the functions in the linear model m, then the optimal rate is recovered by ERM.
We recall and discuss in details the small-ball condition in Section 2, but it is
worth mentioning here that one of the main advantages of the small-ball method
developed in a series of papers, [Men14b], [Men15], [Men14a], [KM15], [LM14],
[LM15] is that it enables to prove sharp bounds under very weak moment conditions
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and thus to derive results that were unachievable with more standard concentration
arguments.
In Section 2, we contribute to the growing understanding of this very recent

approach by looking at the behavior of the small-ball condition when the dictionary
is made of localized functions such as compactly supported wavelets, histograms or
piecewise polynomials. It appears that with such functions, the small-ball condition
can�t be satis�ed with absolute constants and the resulting bounds obtained in
[LM15] are far from optimal in this case since they are of the order of D3=n.
The question of the validity of the small-ball approach in the Fourier case, which

is a case where the functions are typically unlocalized, remains an open issue, of
potentially great consequences in compressed sensing, [LM15]. Despite this lack
of understanding, we prove by other means optimal upper and lower bounds for
ERM when the dictionary is made of trigonometric functions. Our result, stated
in Section 3, also outperforms previously obtained bounds [AC11].
An outline of the proofs related to Section 3 is given in Section 3.2. While de-

tailing our arguments, we show the strong connection of our approach to optimal
bounds with recent works of [Cha14] concerning least-squares under convex con-
straint, extended to the setting of regularized ERM by [MvdG15] and [vdGW16].
Finally, complete proofs are dispatched in the Appendix.

2 The small-ball method for classical functional
bases

We recall in Section 2.1 one of the main results of [LM15], linking the small-ball
condition to the rate of convergence of ERM in linear aggregation. Then, we show
in Section 2.2 that the constants involved in the small-ball condition behave poorly
for dictionaries made of localized bases.

2.1 The small-ball condition and the rate of ERM in linear
aggregation

Let us �rst recall the de�nition of the small-ball condition for a linear span, as
exposed in [LM15].

De�nition 1 A linear span m � L2
�
PX
�
is said to satisfy the small-ball con-

dition for some positive constants �0 and �0 if for every s 2 m,

P (js (X)j � �0 ksk2) � �0 . (4)

The small-ball condition thus ensures that the functions of the model m do not
put too much weight around zero. From a statistical perspective, it is also explained
in [LM15] that the small-ball condition can be viewed as quanti�ed version of
identi�ability of the model m. A more general small-ball condition - that reduces
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to the previous de�nition for linear models - is also available when the model isn�t
necessary linear, [Men15].
Under the small-ball condition, [LM15] derive the following result, describing

the rate of convergence of ERM in linear aggregation.

Theorem 2 ([LM15]) Let S = fs1; :::; sDg � L2
�
PX
�
be a dictionary and as-

sume that m = Span (S) satis�es the small-ball condition with constants �0 and �0
(see De�nition 1 above). Let n � (400)2D=�20 and set � = Y � sm (X), where sm
is the projection of the regression function s� onto m. Assume further that one of
the following two conditions holds:

1. � is independent of X and E�2 � �2, or

2. j�j � � almost surely.

Then the least-squares estimator bs on m, de�ned in (2), satis�es for every
x > 0, with probability at least 1� exp

�
��20n=4

�
� (1=x),

kbs� smk22 �
�
16

�0�
2
0

�2
�2Dx

n
. (5)

Notice that Alternative 1 in Theorem 2 is equivalent to assuming that the
regression function belongs tom - that is s� = sm - and that the noise is independent
from the design - that is � (X) � � is homoscedastic and " is independent of X in
relation (1).
The main feature of Theorem 2 is that if the small-ball condition is achieved

with absolute constants �0 and �0 not depending on the dimensionD nor the sample
size n, then optimal linear aggregation rates of order D=n are recovered by ERM.
If moreover the regression function belongs to m (Alternative 1), then the only
moment assumption required is that the noise is in L2. Otherwise, Alternative 2
asks for a uniformly bounded noise. Some variants of Theorem 2 are also presented
in [LM15], showing for instance that optimal rates can be also derived for ERM
when the noise as a fourth moment.
In the analysis of optimal rates in linear aggregation, it is thus worth under-

standing when the small ball condition stated in De�nition 1 is achieved with
absolute constants.
One typical such situation is for linear measurements, that is when the functions

of the dictionary are of the form fi (x) = hx; tii, ti 2 Rd. Indeed, very weak
conditions are asked on the design X in this case to ensure the small-ball property:
for instance, it su¢ ces to assume that X has independent coordinates that are
absolutely continuous with respect to the Lebesgue measure, with a density almost
surely bounded (see [LM14] and [Men15], Section 6, for more details). As shown
in [LM14] and [LM16], this implies that the small-ball property has important
consequences in sparse recovery and analysis of regularized linear regression.
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2.2 The constants in the small-ball condition for general
linear bases

Besides linear measurements discussed in Section 2.1 above, an important class of
dictionaries for the linear aggregation problem consists in expansions along ortho-
normal bases of L2

�
PX
�
. Our goal in this section is thus to investigate the behavior

of the small-ball condition for some classical orthonormal bases such as piecewise
polynomial functions, including histograms, wavelets or the Fourier basis.
The following assumption, that states the equivalence between the L1 and L2

norms for functions in the linear model m, is satis�ed by many classical functional
bases:

(A1) Take S = fs1; :::; sDg � L2
�
PX
�
a dictionary and consider its linear span

m = Span (S). Assume that there exists a positive constant L0 such that,
for every s 2 m,

ksk1 � L0
p
D ksk2 .

Examples of linear models m satisfying Assumption (A1) with an absolute
constant L0 are given for instance in [BBM99].
More precisely, when X = [0; 2�], X is uniform on X and S consists of the D

�rst elements of the Fourier basis, then (A1) is veri�ed.
Furthermore, if X = [0; 1]d for some d � 1,X is uniform onX , � is a regular par-

tition on X made of J hyper-rectangles and m is made of the piecewise polynomial
functions de�ned on �, of maximal degrees on each element of � not larger than
r 2 N�, then Assumption (A1) is also satis�ed with a dimension D = (r + 1) J .
This example includes in particular for r = 0 the case of histograms on �.
Some wavelet expansions also satisfy Assumption (A1). As it will be useful in

the following, let us more precisely state some notations (for more details about
wavelets, see for instance [HKPT98]). We consider in this case that X = [0; 1] and
X is uniformly distributed on X . Set �0 the father wavelet and �0 the mother
wavelet, two functions de�ned on R. Thus, the support of the wavelets may not
be contained in [0; 1], but for the estimation, only the wavelets whose support
intersects [0; 1] will count. For every integers j � 0, 1 � k � 2j, de�ne

�j;k : x 7! 2j=2�0
�
2jx� k + 1

�
.

We set for every integer j � 0,

� (j) =
�
(j; k) ; 1 � k � 2j & Support

�
�j;k
�
\ [0; 1] 6= ;

	
.

Moreover, we set ��1;k (x) = �0 (x� k + 1) and for any integer l � 0,

� (�1) =
�
(�1; k) ; Support

�
��1;k

�
\ [0; 1] 6= ;

	
and �l =

l[
j=�1

� (j) .
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Then we consider the model

m = Span f�� ; � 2 �lg .

If �0 and �0 are compactly supported, then f�� ; � 2 �lg satis�es Assumption
(A1) for an absolute constant L0 and dimension D =Card(�l). It is worth noting
that more general multidimensional wavelets could also be considered at the price
of more technicalities.
When a model m satis�es Assumption (A1), the small-ball condition is also

veri�ed, but with constants that may depend on the dimension of the model.

Proposition 3 If a linear model m satis�es Assumption (A1) then inequality (4)
of the small-ball condition given in De�nition 1 is veri�ed for any �0 2 (0; 1) with
�0 = (1� �20)L

�2
0 D�1.

When applied to Theorem 2, a direct consequence of Proposition 3 is that ERM
satis�es the following bound on a model m satisfying Assumption (A1): for every
x > 0 and �0 2 (0; 1), with probability at least 1 � exp (� (1� �20)n= (4L0D

2)) �
(1=x),

kbs� smk22 �
�

16L0
(1� �20)�

2
0

�2
�2D3x

n
,

Hence, in such case Theorem 2 only says something for models of dimension D .p
n (using the condition exp (� (1� �20)n= (4L0D

2)) < 1) and when the latter
restriction is achieved, it provides a rate of convergence of the order D3=n. This
is essentially a weakness of the small-ball approach in this case, since considering
histograms and piecewise polynomial functions, [Sau12] proved in a bounded setting
that the rate of convergence of ERM is actually D=n (whenever D . n= (lnn)2),
which is the optimal rate of linear aggregation. Furthermore, for some more general
linear models with localized bases such as Haar expansions, [Sau15] also proved that
the rate of convergence of ERM is still D=n:
The proof of Proposition 3, detailed in the Appendix, is a direct application

of Paley-Zygmund�s inequality (see [dlPG99]). [LM15] also noticed that more gen-
erally, Paley-Zygmund�s inequality could be used to prove the small-ball property
when for some p > 2, the Lp and L2 norms are equivalent, or also for subgaussian
classes, where the Orlicz  2 norm is controlled by the L2 norm, see [LM13].
These conditions are weaker than the control of the L1 norm by the L2 norm,

however we will show that the dependence in D for �0 given in Proposition 3
above is sharp for localized bases such as histograms, piecewise polynomials and
wavelets. Hence, the control of the L1 norm by the L2 norm is in some way optimal
in these cases, and weaker assumptions could not imply some improvements on the
behavior of the small ball property for these models. In conclusion, when applied
to histograms and piecewise polynomials on regular partitions, or to compactly
supported wavelets, the small-ball method developed in [LM15] enables only to
prove suboptimal rates of the order D3=n.
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Consider �rst a model of histograms on a regular partition � of X = [0; 1]d made
of D pieces, X being uniformly distributed on X . More precisely, for any I 2 �,
set

sI =
1Ip
PX (I)

=
p
D1I

and take a dictionary S = fsI ; I 2 �g, associated to the model m = Span (S). It
holds, for every I 2 �,

ksIk1 =
p
D ksIk2

and so, as the sI�s have disjoint supports, it is easy to see that m satis�es (A1)
with L0 = 1. Furthermore, for any �0 2 (0; 1),

P (jsI (X)j � �0 ksIk2) = PX (I) =
1

D
. (6)

This shows that necessarily �0 � D�1 and so, up to absolute constants, the value of
�0 given in Proposition 3 is optimal in the case of histograms on a regular partition.
In particular, Assumption (A1) can�t be satis�ed with absolute constants in this
case.
When considering the case of piecewise polynomial functions on a regular parti-

tion, identity (6) above still holds for polynomial functions of degree zero supported
by one element of the partition. Thus when the degrees of the polynomial functions
in the model m are bounded by a constant r, we easily deduce that �0 � rD�1 for
any �0 2 (0; 1) and the value of �0 given in Proposition 3 is again optimal in this
case.
Finally, when the model m corresponds to a �nite expansion in some compactly

supported wavelet basis, we have the following property, that again proves that the
value of �0 given in Proposition 3 is optimal. Examples of compactly supported
wavelets include Daubechies wavelets and coi�ets, see [HKPT98].

Proposition 4 Assume that X = [0; 1] and that the design X is uniformly dis-
tributed on X . Take m = Span f�� ; � 2 �lg (using notations above de�ning the
wavelets �� and the index set �m) a linear model corresponding to some compactly
supported wavelet expansion. More precisely, assume that Supp (�0) [ Supp (�0) �
[0; R] for some R � 1, where Supp (�0) and Supp (�0) are the supports of the father
wavelet �0 and the mother wavelet �0 respectively. Assume that the linear dimension
D =Card(�l) of the model m is greater than [R], the integer part of R: D > [R].
Then there exists an absolute constant �0 > 0 such that, if m achieves the small-ball
condition given in De�nition 1 with constants (�0; �0) then �0 � (D � [R])

�1.

The proof of Proposition 4 consists in basic calculations and can be found in
the Appendix.
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3 Optimal excess risks bounds for Fourier expan-
sions

3.1 Main theorem

We have shown in Section 2 that the small-ball condition is satis�ed for linear
models such as histograms, piecewise polynomials or compactly supported wavelets,
but with constants that depend on the dimension of the model in such a way that
using this condition to analyze the rate of convergence of ERM on these models
may lead to suboptimal bounds.
The behavior of the small-ball condition when the modelm is spanned by the D

�rst elements of the Fourier basis - considering that X = [0; 2�] - remains however
essentially unknown. Indeed, in the Fourier case, the bound obtained in Proposition
3 for the constants involved in the small-ball condition might be suboptimal. In
particular, lower bounds such as the one established in Proposition 4 in the case
of compactly supported wavelets remains inaccessible for us in the Fourier case.
It is worth noting that in the context of sparse recovery, [LM14] already noticed
that the small-ball condition for Fourier measurements is hard to check and the
authors mention a possible �non-uniform�small-ball property satis�ed in this case,
but leave this direction open (see Remark 1.5 of [LM14] for more details).
Our aim in this section is to show that optimal rates of linear aggregation

are attained by ERM in the Fourier case, that is when the model m is spanned
by the D �rst elements of the Fourier basis. As optimal rates would also be
achieved by Theorem 2 if the model m would satisfy the small-ball condition with
absolute constants, this supports the conjecture made by [LM14] that the Fourier
basis achieves a condition which is close to the small-ball condition with absolute
constants.
We only tackle the bounded setting. One of the main reasons for this restric-

tion is that we make a recurrent use along our proofs of classical Talagrand�s type
concentration inequalities for suprema of the empirical process with bounded ar-
guments. Indeed, our approach, which is based on [Sau12] and is detailed at a
heuristic level in Section 3.2 below, is very di¤erent from the small-ball approach.
In fact, as we will explain in Section 3.2, it is closely related to recent advances
linked to excess risk concentration due to [Cha14] in the context of least-squares
under convex constraint, extended to regularized ERM by [vdGW16]. Even if con-
centration inequalities exist for suprema of the empirical process with unbounded
arguments, the unbounded case would involve much more technicalities and this
would go beyond the scope of this paper.
Let us now precisely detail our assumptions. Assume that the design X is

uniformly distributed on X = [0; 2�] and that the regression function s� satis�es
s� (0) = s� (2�). Then the Fourier basis is orthonormal in L2(PX) and we consider
a model m of dimension D (assumed to be odd) corresponding to the linear vector
space spanned by the �rst D elements of the Fourier basis. More precisely, if we set
'0 � 1, '2k (x) =

p
2 cos (kx) and '2k+1 (x) =

p
2 sin (kx) for k � 1, then

�
'j
�D�1
j=0
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is an orthonormal basis of (m; k�k2), for an integer l satisfying 2l+1 = D. Assume
also:

� (H1) The data and the linear projection of the target onto m are bounded
by a positive �nite constant A:

jY j � A a:s: (7)

and
ksmk1 � A : (8)

Hence, from (H1) we deduce that

ks�k1 = kE [Y jX = � ]k1 � A (9)

and that there exists a constant �max > 0 such that

�2 (Xi) � �2max � A2 a:s: (10)

� (H2) The heteroscedastic noise level � is not reduced to zero:

k�k2 =
p
E [�2 (X)] > 0 .

We are now in position to state our main result.

Theorem 5 Let A+; A�; � > 0 and let m be a linear vector space spanned by a
dictionary made of the �rst D elements of the Fourier basis. Assume (H1) and
take ' = ('k)

D�1
k=0 the Fourier basis of m. If it holds

A� (lnn)
2 � D � A+

n1=2

(lnn)2
� n ; (11)

then there exists a constant A0 > 0, only depending on �;A� and on the constants
A; k�k2 de�ned in assumptions (H1), (H2) respectively, such that by setting

"n = A0max

(�
lnn

D

�1=4
;

�
D2 lnn

n

�1=4)
; (12)

we have for all n � n0 (A�; A+; A; k�k2 ; �),

P
�
kbs� smk22 � (1� "n)

D

n
C2m
�
� 1� 5n�� ; (13)

P
�
kbs� smk22 � (1 + "n)

D

n
C2m
�
� 1� 5n�� ; (14)

where bs is the least-squares estimator on m, de�ned in (2), and
C2m = E

�
�2 (X)

�
+ ks� � smk22 .
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The rate of convergence of ERM for linear aggregation with a Fourier dictionary
exhibited by Theorem 5 is thus of the order D=n, which is the optimal rate of linear
aggregation. In particular, this outperforms the bounds obtained in Theorem 2.2 of
[AC11] under same assumption as Assumption (A1), that is satis�ed in the Fourier
case, but also under more general moment assumptions on the noise. Indeed, as
noticed in [LM15], the bounds obtained by [AC11] are in this case of the order
D3=n, for models of dimension lower than n1=4. In Theorem 5, our condition on
the permitted dimension which is less restrictive, since models with dimension close
to n1=2 are allowed.
Concerning the assumptions, uniform boundedness of the projection of the tar-

get onto the model, as described in (8), is guaranteed as soon as the regression
belongs to a broad class of functions named the Wiener algebra, that is whenever
the Fourier coe¢ cients of the regression function are summable (in other words
when the Fourier series of the regression function is absolutely convergent). For
instance, functions that are Hölder continuous with index greater than 1/2 belong
to the Wiener algebra, [Kat04].
Furthermore, Theorem 5 gives an information that is far more precise than sim-

ply the rate of convergence of the least-squares estimator. Indeed, the conjunction
of inequalities (13) and (14) of Theorem 5 actually proves the concentration of
the excess risk of the least-squares estimator around one precise value, which is
DC2m=n.
There are only very few and recent such concentration results for the excess

risk of a M-estimator in the literature and this question constitutes an exiting
new line of research in learning theory. Considering the same regression frame-
work as ours, [Sau12] has shown concentration bounds for the excess risk of the
least-squares estimator on models of piecewise polynomial functions. In a slightly
di¤erent context of least-squares estimation under convex constraint, [Cha14] also
proved the concentration in L2 norm, with �xed design and Gaussian noise. Un-
der the latter assumptions, [MvdG15] have shown the excess risk�s concentration
for the penalized least-squares estimator. Finally, [vdGW16] recently proved some
concentration results for some regularized M-estimators. They also give an appli-
cation of their results to a linearized regression context with random design and
independent Gaussian noise.

3.2 Outline of the approach

The aim of this section is to explain the main ideas leading to the proof of Theorem
5 and to highlight some connections with other works in the literature.
The proof of Theorem 5 is technically very involved and is an adaptation to the

Fourier case of the approach developed in [Sau12] concerning the performance of
the least-squares estimator on models of piecewise polynomial functions and more
general models endowed with a localized orthonormal basis.
An orthonormal basis ( k)

D
k=1 of a linear model m � L2

�
PX
�
is said to be lo-

calized if there exists a constant L > 0 such that
PD

k=1 �k k


1
� L

p
D supk j�kj

10



for any (�k)
D
k=1 2 RD. This condition, taken into advantage in [Sau12], is typ-

ically valid for models of piecewise polynomial functions and wavelets, but it is
false in the Fourier case. Indeed, if ('k)

D�1
k=0 is the collection of D = 2l + 1

�rst elements of the Fourier basis de�ned in Section 3.1 above, then by taking
(�k)

D�1
k=0 = (1; 1; 0; 1; 0; 1; 0::::; 1; 0), it holds
D�1X
k=0

�k'k


1

�
D�1X
k=0

�k'k (0) = 1 +
p
2

l�1X
k=0

cos (k � 0) � l + 1 � D

2
sup
k
j�kj .

Hence, the Fourier basis has a behavior with respect to the sup-norm which is
harder to control from this point of view than localized bases. It is however possible,
for models of dimensionD . pn, to prove the consistency in sup-norm of the least-
squares estimator towards the projection of the regression function s� onto a model
corresponding to �nite Fourier expansions. More precisely, we prove the following
theorem, which is an essential piece in the proof of Theorem 5.

Theorem 6 Let � > 0: Assume that m is a linear vector space spanned by the
�rst D elements of the Fourier basis. Assume that (H1) holds and that there
exists A+ > 0 such that

D � A+
n1=2

(lnn)2
� n .

Then we have, for all n � n0 (A+; �),

P

 
kbs� smk1 � L

(1)
A;�D

r
lnn

n

!
� n�� .

The proof of Theorem 6, which uses concentration tools such as Bernstein�s
inequality (see Theorem 19) can be found in the Appendix, Section 5.1. Using
Theorem 6, we can localize with probability close to one (equal to 1 � n��) our
analysis in a ball in sup-norm BL1 (sm; Rn;D;�), centered on the projection of the
target and of radius Rn;D;� = L

(1)
A;�D

p
lnn=n.

As explained in [Sau12], empirical process theory can be used to derive optimal
bounds such as Theorem 5, through the use of a representation formula for the
excess risk, in terms of local suprema of the underlying empirical process. Indeed,
set the least-squares contrast  : L2

�
PX
�
! L1 (P ) de�ned by,

 (s) : (x; y) 2 X � R 7! (y � s (x))2 .

Then, we can write bs 2 argmins2m fPn ( (s))g, where Pn is the empirical measure
associated to the sample and we also have kbs� smk22 = P ( (bs)�  (sm)). Further-
more, the following representation formula holds for the excess risk (see identity
(3.9) of [Sau12]) with probability close to one,

kbs� smk22 2 argmaxC�0

�
sup
s2DC

(P � Pn) ( (s)�  (sm))� C

�
, (15)

11



where
DC :=

�
s 2 m ; ks� smk22 = C

	\
BL1 (sm; Rn;d;�) .

A similar representation formula is also at the core of the approach developed by
[Cha14] for least-squares estimation under convex constraints, extended to regular-
ized ERM by [MvdG15] and [vdGW16]. In [Cha14] and [MvdG15], the framework
allows to replace the empirical process appearing in (15) by a Gaussian process,
while in [vdGW16] the more general framework of M-estimation forces the authors
to work with an empirical process, exactly as in (15).
Using concentration inequalities for the supremum of the empirical process, on

may show from (15) that with probability close to one,

kbs� smk22 � argmaxC�0

�
E
�
sup
s2DC

(P � Pn) ( (s)�  (sm))

�
� C

�
. (16)

The quantity of interest is thus the expectation of supremum of the empirical
process over a slice DC of the model m. Moreover, as we want to derive optimal
bounds, we are looking for a control to the right constant of the �rst order of this
quantity. To this end, we introduce an argument of contrast expansion into a linear
and quadratic part, originally developed in [Sau12] and which is also one of the
main features of the small-ball approach �rst built in [Men15]. More precisely, for
every s 2 m and z = (x; y) 2 X�R, it holds

 (s) (z)�  (sm) (z) =  1;m (z) (s� sm) (x) + (s� sm)
2 (x) (17)

where  1;m (z) = �2 (y � sm (x)) : Using (17), we then split the quantity of interest
in (16) into two parts,

E
�
sup
s2DC

(P � Pn) ( (s)�  (sm))

�
� E

�
sup
s2DC

(P � Pn)
�
 1;m � (s� sm)

��
| {z }

main part

+ E
�
sup
s2DC

(P � Pn) (s� sm)
2

�
| {z }

remainder term

.

We �nally show that the empirical process corresponding to the linear part of
the contrast expansion gives the exact �rst order of rate of linear aggregation of the
least-squares estimator, while the empirical process corresponding to the quadratic
part of the contrast expansion contributes only through remainder terms. Some
technical lemmas roughly corresponding to the previous observations can be found
in the Appendix, Section 5.2.1.

4 Proofs related to Section 2

Proof of Proposition 3. Take s 2 m and �0 2 (0; 1). Set
�0 = fjs (X)j � �0 ksk2g.
By Paley-Zygmund�s inequality (Corollary 3.3.2 in [dlPG99]), it holds

P (
�0)�
�
1� �20

� ksk22
ksk21

� 1� �20
L20

1

D
,

12



which readily proves Proposition 3.

Proof of Proposition 4. Take (j; k) 2 �m, j � 0. It holds�j;k22 =

Z 1

0

�2j;k (x) dx

= 2j
Z 1

0

���0 �2jx� k + 1
���2 dx

=

Z 2j�k+1

�k+1
j�0 (y)j

2 dy .

Thus, whenever Supp (�0) � [�k + 1; 2j � k + 1], one has
�j;k2 = 1. Take j0 � 0

such that 2j0 � R. Then
�j0;12 = 1 and it is easy to see that for any j � j0

there exists at least 2j�j0 values of k such that Supp (�0) � [�k + 1; 2j � k + 1]
and

�j;k2 = 1. Now, take �0 > 0 such thatZ R

0

1fj�0(y)j��0gdy �
1

2
.

For any j � j0 and k such that Supp (�0) � [�k + 1; 2j � k + 1], we get

P
����j;k (X)�� � �0

�j;k2�
= P

�
2j=2

���0 �2jX � k + 1
��� � �0

�
= 2�j

Z 2j�k+1

�k+1
j�0 (y)j dy = 2�j

Z R

0

j�0 (y)j dy � 2�j�1 . (18)

Furthermore, notice that Card (� (�1)) � [R] + 1 and D = Card (�l) � [R] + 2l+1.
Hence, taking j = l in (18), we deduce that,

P
����l;k (X)�� � �0

�l;k2� � 1

D � [R] ,

which gives the result.

5 Proofs related to Section 3

5.1 Proof of Theorem 6

Proof of Theorem 6. Let �;C > 0. Set

F1
C := fs 2 m ; ks� smk1 � Cg

and
F1
>C := fs 2 m ; ks� smk1 > Cg = mnF1

C .

13



Take the Fourier basis ('k)
D�1
k=0 of (m; k�k2). By assumption on D, it holds D � n.

Hence, by Lemma 8 below, we get that there exists L(1)A;� > 0 such that, by setting


1 =

(
max

k2f0;:::;D�1g

��(Pn � P )
�
 1;m � 'k

��� � L
(1)
A;�

r
lnn

n

)
,

we have for all n � n0 (A+), P (
1) � 1� n��. Moreover, we set


2 =

(
max

k2f0;:::;D�1g2
j(Pn � P ) ('k � 'l)j � L(2)�

r
lnn

n

)
,

where L(2)� is de�ned in Lemma 7 below. By Lemma 7, we have P (
2) � 1� n��

and so, for all n � n0 (A+),

P
�

1
\

2

�
� 1� 2n�� : (19)

We thus have for all n � n0 (A+),

P (kbs� smk1 > C)

� P
�
inf

s2F1>C
Pn ( (s)�  (sm)) � inf

s2F1C
Pn ( (s)�  (sm))

�
= P

 
sup
s2F1>C

Pn ( (sm)�  (s)) � sup
s2F1C

Pn ( (sm)�  (s))

!

� P

 (
sup
s2F1>C

Pn ( (sm)�  (s)) � sup
s2F1

C=2

Pn ( (sm)�  (s))

)\

1
\

2

!
+ 2n�� .(20)

Now, for any s 2 m such that

s� sm =
D�1X
k=0

�k'k, � = (�k)
D�1
k=0 2 RD,

we have

Pn ( (sm)�  (s))

= (Pn � P )
�
 1;m � (sm � s)

�
� (Pn � P )

�
(s� sm)

2�� ks� smk22

=
D�1X
k=0

�k (Pn � P )
�
 1;m � 'k

�
�

D�1X
k;l=0

�k�l (Pn � P ) ('k � 'l)�
D�1X
k=0

�2k .

We set for any (k; l) 2 f0; :::; D � 1g2,

R
(1)
k = (Pn � P )

�
 1;m � 'k

�
and R

(2)
k;l = (Pn � P ) ('k � 'l) .

14



Moreover, we set a function hn, de�ned as follows,

hn : � = (�k)
D�1
k=0 7�!

D�1X
k=0

�kR
(1)
k �

D�1X
k;l=0

�k�lR
(2)
k;l �

D�1X
k=0

�2k .

We thus have for any s 2 m such that s� sm =
PD�1

k=0 �k'k, � = (�k)
D�1
k=0 2 RD,

Pn ( (sm)�  (s)) = hn (�) . (21)

In addition we set for any � = (�k)
D�1
k=0 2 RD,

j�jm;1 =
p
2D j�j1 . (22)

It is straightforward to see that j�jm;1 is a norm on RD, proportional to the sup-
norm. We also set for a real D �D matrix B, its operator norm kAkm associated
to the norm j�jm;1 on the D-dimensional vectors. More explicitly, we set for any
B 2 RD�D,

kBkm := sup
�2RD; � 6=0

jB�jm;1
j�jm;1

= sup
�2RD; � 6=0

jB�j1
j�j1

.

Note that k�km is an operator norm and so
Bk


m
� kBkkm for any k 2 N. We

also have, for any B = (Bk;l)k;l=0;::;D�1 2 RD�D, the following classical formula

kBkm = max
k2f0;:::;D�1g

8<:
8<: X
l2f0;:::;D�1g

jBk;lj

9=;
9=; . (23)

Notice that for any � = (�k)
D�1
k=0 2 RD,

D�1X
k=0

�k'k


1

� D j�j1 sup
k
k'kk1 � j�jm;1 .

Hence, it holds

F1
>C �

(
s 2 m ; s� sm =

D�1X
k=0

�k'k & j�jm;1 � C

)
(24)

and

F1
C=2 �

(
s 2 m ; s� sm =

D�1X
k=0

�k'k & j�jm;1 � C=2

)
. (25)

Hence, from (20), (21) (25) and (24) we deduce that if we �nd on 
1
T

2 a value

of C such that

sup
�2RD; j�jm;1�C

hn (�) < sup
�2RD; j�jm;1�C=2

hn (�) ,
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then we will get
P (kbs� smk1 > C) � 2n�� .

Taking the partial derivatives of hn with respect to the coordinates of its arguments,
it then holds for any (k; l) 2 f0; :::; D � 1g2 and � = (�i)

D�1
i=0 2 RD,

@hn
@�k

(�) = R
(1)
k � 2

D�1X
i=0

�iR
(2)
k;i � 2�k (26)

We look now at the set of solutions � of the following system,

@hn
@�k

(�) = 0 , 8k 2 f0; :::; D � 1g . (27)

We de�ne the D �D matrix R(2)n to be

R(2)n :=
�
R
(2)
k;l

�
k;l=0::D�1

and by (26), the system given in (27) can be written

2
�
ID +R(2)n

�
� = R(1)n , (S)

where R(1)n is a D-dimensional vector de�ned by

R(1)n =
�
R
(1)
n;k

�
k=0::D�1

.

Let us give an upper bound of the norm
R(2)n 

m
, in order to show that the matrix

ID +R
(2)
n is nonsingular. On 
2 we have

R(2)n m = max
k2f0;:::;D�1g

8<:
8<: X
l2f0;:::;D�1g

j(Pn � P ) ('k � 'l)j

9=;
9=;

� L(2)� max
k2f0;:::;D�1g

8<:
8<: X
l2f0;:::;D�1g

r
lnn

n

9=;
9=;

� L(2)� D

r
lnn

n
(28)

Hence, from (28) and the fact thatD � A+
n1=2

(lnn)2
, we get that for all n � n0 (A+; �),

it holds on 
2, R(2)n m � 1

2

and the matrix
�
Id +R

(2)
n

�
is nonsingular, of inverse

�
Id +R

(2)
n

��1
=
P+1

u=0

�
�R(2)n

�u
.

Hence, the system (S) admits a unique solution �(n), given by

�(n) =
1

2

�
Id +R(2)n

��1
R(1)n .
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Now, on 
1 we have,��R(1)n ��m;1 � p2D max
k2f0;:::;D�1g

��(Pn � P )
�
 1;m � 'k

��� � L
(1)
A;�D

r
2 lnn

n

and we deduce that for all n0 (A+; �), it holds on 
2
T

1,����(n)���

m;1
� 1

2

�Id +R(2)n
��1

m

��R(1)n ��m;1 � L
(1)
A;�D

r
2 lnn

n
. (29)

Moreover, by the formula (21) we have

hn (�) = Pn ( (sm))�
1

n

nX
i=1

 
Yi � sm (Xi)�

D�1X
k=0

�k'k (Xi)

!2
and we thus see that hn is concave. Hence, for all n0 (A+; �), we get that on 
2,
�(n) is the unique maximum of hn and on 
2

T

1, by (29), concavity of hn and

uniqueness of �(n), we get

hn

�
�(n)

�
= sup

�2RD; j�jm;1�C=2
hn (�) > sup

�2RD; j�jm;1�C
hn (�) ,

with C = 2L(1)A;�D
q

2 lnn
n
, which concludes the proof.

Lemma 7 Let � > 0. Assume that m is a linear vector space spanned by the �rst
D elements of the Fourier basis, where D � n. Then there exists L(2)� > 0 such
that

P

 
max

k2f0;:::;D�1g2
j(Pn � P ) ('k � 'l)j � L(2)�

r
lnn

n

!
� n�� . (30)

Proof. For any (k; l) 2 f0; :::; D � 1g2, we have

E
�
('k � 'l)

2� � k'k � 'lk21 � 4 .
Hence, we apply Bernstein�s inequality (see Proposition 2.9 in [Mas07]) and we get,
for all  > 0,

P

 
j(Pn � P ) ('k � 'l)j � 2

r
2 lnn

n
+
2 lnn

3n

!
� 2n� . (31)

We get from (31) that for all  > 0,

P

 
max

(k;l)2f0;:::;D�1g2
j(Pn � P ) ('k � 'l)j �

�
2
p
2 +

2

3

�r
lnn

n

!
� 2D2n� � n�+2 . (32)

To conclude, take  = �+ 2.
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Lemma 8 Let � > 0. Assume that m is a linear vector space spanned by the �rst
D elements of the Fourier basis, where D � n.If (H1) holds and  1;m (X; Y ) :=
�2 (Y � sm (X)) then

P

 
max

k2f1;:::;Dg

��(Pn � P )
�
 1;m � 'k

��� � L
(1)
A;�

r
lnn

n

!
� n�� . (33)

Proof. Let � > 0. By Bernstein�s inequality, we get by straightforward computa-
tions (of the spirit of the proof of Lemma 7) that there exists LA;� > 0 such that,
for all k 2 f0; :::; D � 1g,

P

 ��(Pn � P )
�
 1;m � 'k

��� � L
(1)
A;�

r
lnn

n

!
� n�� .

Now the result follows from a simple union bound with � = �+ 1.

5.2 Proof of Theorem 5

Aiming at clarifying the proofs, the arguments involved and the connection with
the proofs exposed in [Sau12], we generalize a little bit the Fourier framework by
invoking along the proofs the three following assumptions, that are satis�ed for
Fourier expansions. From now on, m � L2

�
PX
�
is considered to be a linear model

of dimension D, not necessarily built from the Fourier basis.
Let us de�ne a function 	m on X , that we call the unit envelope of m, such that

	m (x) =
1p
D

sup
s2m;ksk2�1

js (x)j : (34)

As m is a �nite dimensional real vector space, the supremum in (34) can also be
taken over a countable subset of m, so 	m is a measurable function.

� (H3) The unit envelope of m is uniformly bounded on X : a positive constant
A3;m exists such that

k	mk1 � A3;m <1 :

In the Fourier case, (H3) is valid by taking A3;m �
p
2. In fact, it is easy to

see that assumption (H3) is equivalent to assumption (A1). Moreover, several
technical lemmas derived in [Sau12] only assume the validity of (H3) and will thus
be used without repeating their proofs.

� (H4) Uniformly bounded basis : there exists an orthonormal basis ' =
('k)

D
k=1 in (m; k�k2) that satis�es, for a positive constant um (')

k'kk1 � um (') .
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Again, in the Fourier case, (H4) is valid by taking um (') �
p
2.

Remark 3 (H4) implies (H3) and in that case A3;m = um (').

The assumption of consistency in sup-norm:

We assume that the least squares estimator is consistent for the sup-norm on the
space X . More precisely, this requirement can be stated as follows.

� (H5) Assumption of consistency in sup-norm: for any A+ > 0, if m is a
model of dimension D satisfying

D � A+
n1=2

(lnn)2
;

then for every � > 0, we can �nd a positive integer n1 and a positive constant
Acons satisfying the following property: there exists Rn;D;� > 0 depending on
D; n and �, such that

Rn;D;� �
Aconsp
lnn

(35)

and by setting

1;� = fkbs� smk1 � Rn;D;�g ; (36)

it holds for all n � n1,
P [
1;�] � 1� n�� : (37)

By Theorem 6, (H5) is veri�ed with Rn;D;� � D
p
lnn=n.

In order to express the quantities of interest in the proof of Theorem 5, we need
preliminary de�nitions. Let � > 0 be �xed and for Rn;D;� de�ned in (H5), we set

~Rn;D;� = max

(
Rn;D;� ; A1

r
D lnn

n

)
(38)

where A1 is a positive constant to be chosen later. Moreover, we set

�n = max

(r
lnn

D
;

r
D lnn

n
; Rn;D;�

)
: (39)

Thanks to the assumption of consistency in sup-norm (H5), our analysis will be
localized in the subset

B(m;L1)

�
sm; ~Rn;D;�

�
=
n
s 2 m; ks� smk1 � ~Rn;D;�

o
of m.
Let us de�ne several slices of excess risk on the model m : for any C � 0,

FC =
�
s 2 m; ks� smk22 � C

	\
B(m;L1)

�
sm; ~Rn;D;�

�
F>C =

�
s 2 m; ks� smk22 > C

	\
B(m;L1)

�
sm; ~Rn;D;�

�
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and for any interval J � R;

FJ =
�
s 2 m; ks� smk22 2 J

	\
B(m;L1)

�
sm; ~Rn;D;�

�
:

We also de�ne, for all L � 0,

DL =
�
s 2 m; ks� smk22 = L

	\
B(m;L1)

�
sm; ~Rn;D;�

�
:

Recall that the contrasted functions satisfy, for every s 2 m and z = (x; y) 2 X�R;

 (s) (z)�  (sm) (z) =  1;m (z) (s� sm) (x) + (s� sm)
2 (x) (40)

where  1;m (z) = �2 (y � sm (x)) : Note that, for all s 2 m,

P
�
 1;m � s

�
= 0 (41)

and by (H1),  1;m1 � 4A : (42)

Also, for the term Cm de�ned in Theorem 5, simple computations give that

C2m =
1

4D

D�1X
k=0

Var
�
 1;m � 'k

�
(43)

for the Fourier basis ('k)
D�1
k=0 of (m; k�k2) : Moreover, it is easy to see that under

(H1) we have,
Cm � �max + 2A � 3A . (44)

We also have
0 <

p
E [�2 (X)] = k�k2 � Cm . (45)

Finally, when (H3) holds (it is the case when (H4) holds), we have by (34),

sup
s2m; ksk2�1

ksk1 � A3;m
p
D (46)

and so, for any orthonormal basis ('k)
D
k=1 of (m; k�k2), it holds for all k 2 f1; :::; Dg,

as P ('2k) = 1,
k'kk1 � A3;m

p
D . (47)

We are now in position to prove Theorem 5. The proof of Theorem 5 relies on
Lemmas 13, 14 and 15 stated in Section 5.2.1, and that give sharp estimates of
suprema of the empirical process on the contrasted functions over slices of interest.
Recall that in the Fourier case, assumptions (H3) and (H4) hold, as well as (H5)
with Rn;D;� � D

p
lnn=n.
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Proof of inequality (13). Let � > 0, r 2 (1; 2] to be chosen later and C > 0
such that

rC =
D

n
C2m : (48)

By (H5) there exists a positive integer n1 such that it holds, for all n � n1,

P
�
kbs� smk22 � C

�
� P

��
kbs� smk22 � C

	\

1;�

�
+ n�� (49)

and also

P
��
kbs� smk22 � C

	\

1;�

�
� P

�
inf
s2FC

Pn ( (s)�  (sm)) � inf
s2F>C

Pn ( (s)�  (sm))

�
� P

�
inf
s2FC

Pn ( (s)�  (sm)) � inf
s2F(C;rC]

Pn ( (s)�  (sm))

�
= P

 
sup
s2FC

Pn ( (sm)�  (s)) � sup
s2F(C;rC]

Pn ( (sm)�  (s))

!
: (50)

Now, by (48) and (45) we have

D

2n
k�k22 � C � (1 + A4�n)2

D

n
C2m ,

where A4 is de�ned in Lemma 13. Hence we can apply Lemma 13 with � = �, Al =
k�k22=2 andA3;m = um ('). Therefore it holds, for all n � n0 (A1; Acons; A+; k�k2 ; �),

P

"
sup
s2FC

Pn ( (sm)�  (s)) � 2
�
1 + LA1;A;um(');k�k2;A�;� � �n

�rCD

n
Cm � C

#
� 2n�� :

(51)
Moreover, by using (45) and (44) in (48) we get

D

n
k�k22 � rC � D

n
(�max + 2A)

2 :

We then apply Lemma 15 with

� = �; Al = k�k22 ; Au = (�max + 2A)
2

and A1 � 32B2A
p
2Au k�k�12 um (')

A1 � 32
p
2B2A (�max + 2A) k�k�12 um (') ; (52)

so it holds for all n � n0 (A�; A+; A;A1; Acons; B2; um (') ; �max; k�k2 ; �),

P

 
sup

s2F(C;rC]
Pn ( (sm)�  (s)) � 2

�
1� LA�;A;A1;�max;k�k2;um(');� � �n

�rrCD

n
Cm � rC

!
� 2n�� :

(53)
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Now, from (51) and (53) we can �nd a positive constant ~A0, only depending on
A�; A;A1; �max; k�k2 ; um (') and �, such that
for all n � n0 (A�; A+; A;A1; Acons; B2; um (') ; �max; k�k2 ; �), there exists an

event of probability at least 1� 4n�� on which

sup
s2FC

Pn ( (sm)�  (s)) � 2
�
1 + ~A0�n

�rCD

n
Cm � C (54)

and

sup
s2F(C;rC]

Pn ( (sm)�  (s)) � 2
�
1� ~A0�n

�rrCD

n
Cm � rC : (55)

Hence, from (54) and (55) we deduce, using (49) and (50), that if we choose r 2
(1; 2] such that

2
�
1 + ~A0�n

�rCD

n
Cm � C < 2

�
1� ~A0�n

�rrCD

n
Cm � rC (56)

then, for all n � n0 (A�; A+; A;A1; Acons; B2; um (') ; �max; k�k2 ; n1; �) we have

kbs� smk22 � C

with probability at least 1� 5n��. Now, by (48) it holdsr
rCD

n
Cm = rC =

D

n
C2m ,

and as a consequence Inequality (56) is equivalent to�
1� 2 ~A0�n

�
r � 2

�
1 + ~A0�n

�p
r + 1 > 0 : (57)

Moreover, we have by (39) and (H5), for all n � n0

�
A+; A�; Acons; ~A0; �

�
,

~A0�n �
1

4
(58)

and so, for all n � n0

�
A+; A�; Acons; ~A0; �

�
, simple computations involving (58)

show that by taking

r = 1 + 48

q
~A0�n (59)

inequality (57) is satis�ed. Notice that, for all n � n0

�
A+; A�; Acons; ~A0; �

�
we

have 0 < 48
p
~A0�n < 1, so that r 2 (1; 2). Finally, we compute C by (48) and

(59), in such a way that for all n � n0

�
A+; A�; Acons; ~A0; �

�
,

C =
rC

r
=

1

1 + 48
p
~A0�n

D

n
C2m �

�
1� 48

q
~A0�n

�
D

n
C2m > 0 (60)
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which yields the result by noticing that the dependence on �max can be released in
n0 and ~A0 since by (H1) we have �max � A.

Proof of Inequality (14). Let �;C > 0 and � 2
�
0; 1

2

�
to be chosen later in

such a way that

(1� �)C =
D

n
C2m (61)

and

C � (1 + A5�n)2
D

n
C2m , (62)

where A5 is de�ned in Lemma 14. We have by (H5), for all n � n1;

P
�
kbs� smk22 > C

�
� P

��
kbs� smk22 > C

	\

1;�

�
+ n�� (63)

and also

P
��
kbs� smk22 > C

	\

1;�

�
� P

�
inf
s2FC

Pn ( (s)�  (sm)) � inf
s2F>C

Pn ( (s)�  (sm))

�
= P

�
sup
s2FC

Pn ( (sm)�  (s)) � sup
s2F>C

Pn ( (sm)�  (s))

�

� P

0@ sup
s2F
(C2 ;(1��)C]

Pn ( (sm)�  (s)) � sup
s2F>C

Pn ( (sm)�  (s))

1A : (64)

Now by (62) we can apply Lemma 14 with � = � and we obtain, for all n �
n0 (A1; Acons; A+; �),

P

"
sup
s2F>C

Pn ( (sm)�  (s)) � (1 + A5�n)
r
CD

n
K1;m � C

#
� 2n�� (65)

where A5 only depends on A;A3;m; A1; �min; A� and �. Moreover, we can take
A3;m = um (') by Remark 3. Also, by (61), (45) and (44) we can apply Lemma
15 with the quantity C in Lemma 15 replaced by C=2, � = �, r = 2 (1� �),
Au = (�max + 2A)

2, Al = k�k22 and the constant A1 satisfying

A1 � 32
p
2B2A (�max + 2A)�

�1
minum (') ; (66)

and so it holds, for all n � n0 (A�; A+; A;A1; Acons; B2; um (') ; �max; k�k2 ; �),

P

0@ sups2F
(C2 ;(1��)C]

Pn ( (sm)�  (s))

� 2
�
1� LA�;A;A1;�max;k�k2;um(');� � �n

�q (1��)CD
n

Cm � (1� �)C

1A � 2n�� :

(67)
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Hence from (65) and (67), we deduce that a positive constant �A0 exists, only
depending on A�; A;A1; �max; k�k2 ; um (') and �, such that
for all n � n0 (A�; A+; A;A1; Acons; B2; um (') ; �max; k�k2 ; �) it holds on an event
of probability at least 1� 4n��,

sup
s2F
(C2 ;(1��)C]

Pn ( (sm)�  (s)) � 2
�
1� �A0�n

�r(1� �)CD

n
Cm � (1� �)C (68)

and

sup
s2F>C

Pn ( (sm)�  (s)) � 2
�
1 + �A0�n

�rCD

n
Cm � C . (69)

Now, from (68) and (69) we deduce, using (63) and (64), that if we choose � 2
�
0; 1

2

�
such that (62) and

2
�
1 + �A0�n

�rCD

n
Cm � C < 2

�
1� �A0�n

�r(1� �)CD

n
Cm � (1� �)C (70)

are satis�ed then, for all n � n0 (A�; A+; A;A1; Acons; B2; um (') ; �max; k�k2 ; n1; �),

kbs� smk22 � C ,

with probability at least 1� 5n��: By (61) it holdsr
(1� �)CD

n
Cm = (1� �)C =

1

2

D

n
C2m ,

and by consequence, inequality (70) is equivalent to�
1� 2 �A0�n

�
(1� �)� 2

�
1 + �A0�n

�p
1� � + 1 > 0 . (71)

Moreover, we have by (39) and (H5), for all n � n0
�
A+; A�; Acons; �A0; A5; �

�
,�

�A0 _ A5
�
�n <

1

72
(72)

and so, for all n � n0
�
A+; A�; Acons; �A0; �

�
, simple computations involving (72)

show that by taking

� = 6

�q
�A0 _

p
A5

�
p
�n , (73)

inequalities (71) and (62) are satis�ed and � 2
�
0; 1

2

�
. Finally, we can compute C

by (61) and (73), in such a way that for all n � n0
�
A+; A�; Acons; �A0; �

�
0 < C =

(1� �)C

(1� �)
=

1

(1� �)

D

n
C2m �

�
1 + 12

�q
�A0 _

p
A5

�
p
�n

�
D

n
C2m ; (74)

which yields the result by noticing that the dependence on �max can be released
from n0 and �A0 since by (H1) we have �max � A.
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5.2.1 Technical Lemmas

We state here some lemmas needed in the proofs of Theorem 5. First, in Lemmas
9, 10 and 11, we derive some controls, from above and from below, of the empirical
process indexed by the �linear parts� of the contrasted functions over slices of
interest. Secondly, we give in Lemma 12 an upper bound for the empirical process
indexed by the �quadratic parts�of the contrasted functions over slices of interest.
And �nally, we use all these results in Lemmas 13, 14 and 15 to derive upper and
lower bounds for the empirical process indexed by the contrasted functions over
slices of interest.
The following lemma is a straightforward adaptation in our context of Lemma

11 in [Sau12].

Lemma 9 Assume that (H1), (H2) and (H3) hold. Then for any � > 0, by
setting

�n = LA;A3;m;k�k2;�

 r
lnn

D
_
p
lnn

n1=4

!
;

It holds, for any orthonormal basis ('k)
D
k=1 of (m; k�k2),

P

24
vuut DX

k=1

(Pn � P )2
�
 1;m � 'k

�
� 2 (1 + �n)

r
D

n
Cm

35 � n�� : (75)

If (H1) and (H3) hold, then for any � > 0; it holds

P

24
vuut DX

k=1

(Pn � P )2
�
 1;m � 'k

�
� LA;A3;m;�

r
D _ lnn

n

35 � n�� : (76)

In the next lemma, we state sharp lower bounds for the mean of the supremum of
the empirical process on the linear parts of contrasted functions of m belonging to
a slice of excess risk. This is done for a model of reasonable dimension.

Lemma 10 Let r > 1 and C > 0. Assume that (H1), (H2), (H4) and (35)
hold and let ' = ('k)

D
k=1 be an orthonormal basis of (m; k�k2) satisfying (H4). If

positive constants A�; A+; Al; Au exist such that

A+
n

(lnn)2
� D � A� (lnn)

2 and Al
D

n
� rC � Au

D

n
;

and if the constant A1 de�ned in (38) satis�es

A1 � 32B2A
p
2Au k�k�12 um (') ; (77)

then a positive constant LA;Al;Au;k�k2 exists such that,
for all n � n0 (A�; A+; Au; Al; A;B2; um (') ; k�k2),

E

"
sup

s2F(C;rC]
(Pn � P )

�
 1;m � (sm � s)

�#
� 2

�
1�

LA;Al;Au;k�k2p
D

�r
rCD

n
Cm : (78)
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Our argument leading to Lemma 10 shows that we have to assume that the constant
A1 introduced in (38) is large enough. In order to prove Lemma 10 the following
result is needed.

Lemma 11 Let r > 1; � > 0 and C � 0. Assume that (H1), (H2), (H4) and
(35) hold and let ' = ('k)

D
k=1 be an orthonormal basis of (m; k�k2) satisfying (H4).

If positive constants A+; A� and Au exist such that

A+
n

(lnn)2
� D � A� (lnn)

2 ; rC � Au
D

n
;

and if
A1 � 16B2A

p
2Au� k�k�12 um (')

then for all n � n0 (A�; A+; A;B2; um (') ; k�k2 ; �), it holds

P

24 max
k2f1;:::;Dg

������
p
rC (Pn � P )

�
 1;m � 'k

�qPD
j=1 (Pn � P )2

�
 1;m � 'j

�
������ �

~Rn;D;�

um (')
p
D

35 � 2D + 1

n�
:

Proof of Lemma 11. By Cauchy-Schwarz inequality, we get

�m =

vuut DX
k=1

(Pn � P )2
�
 1;m � 'k

�
= sup

s2Sm

��(Pn � P )
�
 1;m � s

��� ;
where Sm is the unit sphere of m, that is

Sm =

8<:s 2 m; s =
DX
k=1

�k'k and

vuut DX
k=1

�2k = 1

9=; :

Thus we can apply Klein-Rio�s inequality (101) to �m by taking F =Sm and use
the fact that

sup
s2Sm

 1;m � s� P
�
 1;m � s

�
1 � 4A

p
Dum (') by (41), (42) and (H4). (79)

sup
s2Sm

Var
�
 1;m � s

�
= sup

s2Sm
P
�
 1;m � s

�2 � 16A2 by (41), (42)

and also, by using (79) in Inequality (96) applied to �m, we get that

E [�m] � B�1
2

p
E [�2m]�

4A
p
Dum (')

n

= 2B�1
2

r
D

n
Cm �

4A
p
Dum (')

n
:
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We thus obtain by (101), for all "; x > 0;

P

 
�m � 2 (1� ")B�1

2

r
D

n
Cm �

r
32A2

x

n
�
�
1� "+

�
1 +

1

"

�
x

�
4A
p
Dum (')

n

!
� exp (�x) :

(80)
So, by taking " = 1

2
and x = � lnn in (80), and by observing that D � A� (lnn)

2

and Cm � k�k2, we conclude that, for all n � n0 (A�; A;B2; um (') ; k�k2 ; �),

P

"
�m �

B�1
2

2

r
D

n
Cm

#
� n�� : (81)

Furthermore, combining Bernstein�s inequality (97), with the observation that we
have, for every k 2 f1; :::; Dg, 1;m � 'k1 � 4Aum (') by (42) and (H4)

P
�
 1;m � 'k

�2 �  1;m21 � 16A2 by (42)

we get that, for every x > 0 and every k 2 f1; :::; Dg,

P
���(Pn � P )

�
 1;m � 'k

��� �r32A2x
n
+
4Aum (')

3

x

n

�
� 2 exp (�x)

and so

P
�
max

k2f1;:::;Dg

��(Pn � P )
�
 1;m � 'k

��� �r32A2x
n
+
4Aum (')

3

x

n

�
� 2D exp (�x) :

(82)
Hence, taking x = � lnn in (82), it comes

P

"
max

k2f1;:::;Dg

��(Pn � P )
�
 1;m � 'k

��� �r32A2� lnn
n

+
4Aum (') � lnn

3n

#
� 2D

n�
;

(83)
then, by using (81) and (83), we get for all n � n0 (A�; A;B2; um (') ; k�k2 ; �),

P

24 max
k2f1;:::;Dg

�����
p
rC (Pn � P )

�
 1;m � 'k

�
�m

����� � 2B2
p
rCq

D
n
Cm

 r
32A2� lnn

n
+
4Aum (') � lnn

3n

!35 � 2D + 1

n�
:

Finally, as A+ n
(lnn)2

� D we have, for all n � n0 (A;A+; um (') ; �),

4Aum (') � lnn

3n
�
r
32A2� lnn

n

and we can check that, since rC � Au
D
n
and Cm � k�k2, if

A1 � 16B2
p
2AuA2� k�k�12 um (')
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then, for all n � n0 (A�; A+; A;B2; um (') ; k�k2 ; �),

P

"
max

k2f1;:::;Dg

�����
p
rC (Pn � P )

�
 1;m � 'k

�
�m

����� � A1
um (')

r
lnn

n

#
� 2D + 1

n�

which readily gives the result.
We are now ready to prove the lower bound (78) for the expected value of the
largest increment of the empirical process over F(C;rC]:
Proof of Lemma 10. Let us begin with the lower bound of

E
1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;m � (sm � s)

�!2
;

a result that will be need further in the proof. Introduce for all k 2 f1; :::; Dg,

�k;n =

p
rC (Pn � P )

�
 1;m � 'k

�qPD
j=1 (Pn � P )2

�
 1;m � 'j

� ;
and observe that the excess risk on m of

�PD
k=1 �k;n'k + sm

�
2 m is equal to rC.

We also set

~
 =

(
max

k2f1;:::;Dg

���k;n�� � ~Rn;D;�

um (')
p
D

)
:

By Lemma 11 we have that for all � > 0, if A1 � 16B2
p
2AuA2� k�k�12 um (')

then,
for all n � n0 (A�; A+; A;B2; um (') ; k�k2 ; �),

P
�
~

�
� 1� 2D + 1

n�
: (84)

Moreover, by (H4), we get on the event ~
,
DX
k=1

�k;n'k


1

� ~Rn;D;� ;

and so, on ~
,  
sm +

DX
k=1

�k;n'k

!
2 F(C;rC] : (85)
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As a consequence, by (85) it holds

E
1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;m � (sm � s)

�!2

� E 1
2

24 (Pn � P )

 
 1;m �

 
DX
k=1

�k;n'k

!!!2
1~


35
=
p
rC

vuutE" DX
k=1

(Pn � P )2
�
 1;m � 'k

�!
1~


#
: (86)

Furthermore, since by (41) P
�
 1;m � 'k

�
= 0 and by (H4) k'kk1 � um (') for all

k 2 f1; :::; Dg ; we have�����
DX
k=1

(Pn � P )2
�
 1;m � 'k

������ � D max
k=1;:::;D

��(Pn � P )2
�
 1;m � 'k

���
= D max

k=1;:::;D

��P 2n � 1;m � 'k���
� D max

k=1;:::;D

 1;m � 'k21
� 16A2Du2m (')

and it ensures

E

" 
DX
k=1

(Pn � P )2
�
 1;m � 'k

�!
1~


#
� E

" 
DX
k=1

(Pn � P )2
�
 1;m � 'k

�!#
�16A2Du2m (')P

h�
~

�ci

:

(87)
Comparing inequality (87) with (86) and using (84), we obtain the following lower
bound for all n � n0 (A�; A+; A;B2; um (') ; k�k2 ; �),

E
1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;m � (sm � s)

�!2
�
p
rC

vuutE" DX
k=1

(Pn � P )2
�
 1;m � 'k

�!#

� 4Aum (')D
p
rC

r
P
h�
~

�ci

� 2
r
rCD

n
Cm � 4Aum (')D

p
rC

r
2D + 1

n�
:

(88)

We take � = 4, and we must have

A1 � 32AB2
p
2Au k�k�12 um (') .

SinceD � A+n (lnn)
�2 and Cm � k�k2 under (H2), we get, for all n � n0 (A;A+; um (') ; k�k2),

4Aum (')D
p
rC

r
2D + 1

n�
� 2p

D
�
r
rCD

n
Cm (89)
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and so, by combining (88) and (89), for all n � n0 (A�; A+; A;B2; um (') ; k�k2), it
holds

E
1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;m � (sm � s)

�!2
� 2

�
1� 1p

D

�r
rCD

n
Cm : (90)

Now, as D � A� (lnn)
2 we have for all n � n0 (A�), D�1=2 � 1=2. Moreover, we

have Cm � k�k2 > 0 by (H2) and rC � AlDn
�1, so we �nally deduce from (90)

that, for all n � n0 (A�; A+; A;B2; Al; um (') ; k�k2),

E
1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;m � (sm � s)

�!2
� 2 k�k2

p
Al
D

n
: (91)

We turn now to the lower bound of E
h
sups2F(C;rC] (Pn � P )

�
 1;m � (sm � s)

�i
.

First observe that s 2 F(C;rC] implies that (2sm � s) 2 F(C;rC], so that

E

"
sup

s2F(C;rC]
(Pn � P )

�
 1;m � (sm � s)

�#
= E

"
sup

s2F(C;rC]

��(Pn � P )
�
 1;m � (sm � s)

���# :
(92)

In the next step, we apply Corollary 21. More precisely, using notations of Corollary
21, we set

F =
�
 1;m � (sm � s) ; s 2 F(C;rC]

	
and

Z = sup
s2F(C;rC]

��(Pn � P )
�
 1;m � (sm � s)

��� :
Now, since for all n � n0 (A+; A�; A1; Acons) we have ~Rn;D;� � 1, we get by (41)
and (42), for all n � n0 (A+; A�; A1; Acons),

sup
f2F

kf � Pfk1 = sup
s2F(C;rC]

 1;m � (sm � s)

1 � 4A ~Rn;D;� � 4A

we set b = 4A. Since we assume that rC � Au
D
n
, it moreover holds by (42),

sup
f2F

Var (f) � sup
s2F(C;rC]

P
�
 1;m � (sm � s)

�2 � 16A2rC � 16A2AuD
n

and so we set �2 = 16A2AuDn . Now, by (91) we have, for all n � n0 (A�; A+; A;B2; Al; um (') ; k�k2),p
E [Z2] � 2 k�k2

p
Al
D

n
: (93)

Hence, a positive constant LA;Al;Au;k�k2 (max
�
2A
p
AuA

�1=2
l k�k�12 ;

p
2AA

�1=4
l k�k�1=22

�
holds) exists such that, by setting

{n =
LA;Al;Au;k�k2p

D
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we get, using (93), that, for all n � n0 (A�; A+; Al; Au; A;B2; um (') ; Acons; k�k2),

{2nE
�
Z2
�
� �2

n
,

{2n
p
E [Z2] � b

n
.

Furthermore, since D � A� (lnn)
2, we have for all n � n0 (A�; A;Au; Al; k�k2),

{n 2 (0; 1) :

So, using (92) and Corollary 21, it holds for all n � n0 (A�; A+; Al; Au; A;B2; um (') ; k�k2),

E

"
sup

s2F(C;rC]
(Pn � P )

�
 1;m � (sm � s)

�#

�
�
1�

LA;Al;Au;k�k2p
D

�
E

1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;m � (sm � s)

�!2
: (94)

Finally, by comparing (90) and (94), we deduce that for all n � n0 (A�; A+; Al; Au; A;B2; um (') ; k�k2),

E

"
sup

s2F(C;rC]
(Pn � P )

�
 1;m � (sm � s)

�#
� 2

�
1�

LA;Al;Au;k�k2p
D

�r
rCD

n
Cm

and so (78) is proved.
In the following Lemma, we formulate uniform upper bounds for the supremum
of the empirical process of second order terms in the contrast expansion when
the considered slices are not too small. This lemma follows from the exact same
arguments as Lemma 15 of [Sau12].

Lemma 12 Let A+; A�; Al; �; C� > 0, and assume (H3) and (35). If C� � Al
D
n

and A+n (lnn)
�2 � D � A� (lnn)

2, then a positive constant LA�;Al;� exists such
that, for all n � n0 (A1; Acons; A+; Al),

P

"
8C > C�; sup

s2FC

��(Pn � P )
�
(s� sm)

2��� � LA�;Al;�

r
CD

n
~Rn;D;�

#
� 1� n�� :

Having controlled the residual empirical process driven by the remainder terms
in the expansion of the contrast, and having proved sharp bounds for the expec-
tation of the increments of the main empirical process on the slices, it remains to
combine the above lemmas in order to establish the probability estimates control-
ling the empirical excess risk on the slices.
The following lemma combines Lemma 9 and Lemma 12 and follows from the

same lines as Lemma 16 of [Sau12].
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Lemma 13 Let �;A�; A+; Al; C > 0. Assume that (H1), (H2), (H3) and (35)
hold. A positive constant A4 exists, only depending on A;A3;m; k�k2 ; �, such that,
if

Al
D

n
� C � (1 + A4�n)2

D

n
C2m and A+

n

(lnn)2
� D � A� (lnn)

2

where �n = max
nq

lnn
D
;
q

D lnn
n
; Rn;D;�

o
is de�ned in (39), then for all n �

n0 (A1; Acons; A+; Al),

P

"
sup
s2FC

Pn ( (sm)�  (s)) � 2
�
1 + LA1;A;A3;m;k�k2;A�;Al;� � �n

�rCD

n
Cm � C

#
� 2n�� :

The following lemma makes use of Lemma 9, Lemma 13 and Lemma 12 and follows
from exactly the same arguments as for Lemma 17 in [Sau12].

Lemma 14 Let �;A�; A+; C � 0. Assume that (H1), (H2), (H3) and (35) hold.
A positive constant A5, depending on A;A3;m; A1; �min; A� and �, exists such that,
if it holds

C � (1 + A5�n)2
D

n
C2m and A+

n

(lnn)2
� D � A� (lnn)

2

where �n = max
nq

lnn
D
;
q

D lnn
n
; Rn;D;�

o
is de�ned in (39), then for all n �

n0 (A1; Acons; A+),

P

"
sup
s2F>C

Pn ( (sm)�  (s)) � 2 (1 + A5�n)
r
CD

n
Cm � C

#
� 2n�� :

Moreover, when we only assume C � 0, we have for all n � n0 (A1; Acons; A+),

P
�
sup
s2F>C

Pn ( (sm)�  (s)) � (1 + A5�n)2
D

n
C2m
�
� 2n�� : (95)

The following lemma combines Lemma 10 and Lemma 12 and follows from the
exact same lines as Lemma 18 of [Sau12].

Lemma 15 Let r > 1 and C; � > 0. Assume that (H1), (H2), (H4) and (35)
hold and let ' = ('k)

D
k=1 be an orthonormal basis of (m; k�k2) satisfying (H4). If

positive constants A�; A+; Al; Au exist such that

A+
n

(lnn)2
� D � A� (lnn)

2 and Al
D

n
� rC � Au

D

n
;

and if the constant A1 de�ned in (38) satis�es

A1 � 32B2A
p
2Au k�k�12 um (') ;
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then a positive constant LA�;Al;Au;A;A1;k�k2;um(');� exists such that,
for all n � n0 (A�; A+; Au; Al; A;A1; Acons; B2; um (') ; k�k2),

P

 
sup

s2F(C;rC]
Pn ( (sm)�  (s)) � 2

�
1� LA�;Al;Au;A;A1;k�k2;um(');� � �n

�rrCD

n
Cm � rC

!
� 2n�� ;

where �n = max
nq

lnn
D
;
q

D lnn
n
; Rn;D;�

o
is de�ned in (39).

5.2.2 Probabilistic Tools

We recall here the main probabilistic results that are instrumental in our proofs.
Let us begin with the Lp-version of Ho¤mann-Jørgensen�s inequality, that can be
found for example in [LT91], Proposition 6.10, p.157.

Theorem 16 For any independent mean zero random variables Yj; j = 1; :::; n
taking values in a Banach space (B; k:k) and satisfying E [kYjkp] < +1 for some
p � 1; we have

E1=p


nX
j=1

Yj


p

� Bp

 
E


nX
j=1

Yj

+ E1=p
�
max
1�j�n

kYjk
�p!

where Bp is a universal constant depending only on p.

We will use this theorem for p = 2 in order to control suprema of empirical
processes. In order to be more speci�c, let F be a class of measurable functions from
a measurable space Z to R and (X1; :::; Xn) be independent variables of common
law P taking values in Z. We then denote by B = l1 (F) the space of uniformly
bounded functions on F and, for any b 2 B, we set kbk = supf2F jb (f)j. Thus
(B; k:k) is a Banach space. Indeed we shall apply Theorem 16 to the independent
random variables, with mean zero and taking values in B, de�ned by

Yj = ff (Xj)� Pf; f 2 Fg :

More precisely, we will use the following result, which is a straightforward applica-
tion of Theorem 16. Denote by

Pn =
1

n

nX
i=1

�Xi

the empirical measure associated to the sample (X1; :::; Xn) and by

kPn � PkF = sup
f2F

j(Pn � P ) (f)j

the supremum of the empirical process over F .
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Corollary 17 If F is a class of measurable functions from a measurable space Z
to R satisfying

sup
z2Z

sup
f2F

jf (z)� Pf j = sup
f2F

kf � Pfk1 < +1

and (X1; :::; Xn) are n i.i.d. random variables taking values in Z, then an absolute
constant B2 exists such that,

E1=2
�
kPn � Pk2F

�
� B2

�
E [kPn � PkF ] +

supf2F kf � Pfk1
n

�
: (96)

Another tool we need is a comparison theorem for Rademacher processes, see Theo-
rem 4.12 of [LT91]. A function ' : R! R is called a contraction if j' (u)� ' (v)j �
ju� vj for all u; v 2 R. Moreover, for a subset T � Rn we set

kh (t)kT = khkT = sup
t2T

jh (t)j :

Theorem 18 Let ("1; :::; "n) be n i.i.d. Rademacher variables and F : R+ �! R+
be a convex and increasing function. Furthermore, let 'i : R �! R; i � n; be
contractions such that 'i (0) = 0. Then, for any bounded subset T � Rn;

EF

 X
i

"i'i (ti)


T

!
� 2EF

 X
i

"iti


T

!
:

The next tool is the well known Bernstein�s inequality, that can be found for
example in [Mas07], Proposition 2.9.

Theorem 19 (Bernstein�s inequality) Let (X1; :::; Xn) be independent real valued
random variables and de�ne

S =
1

n

nX
i=1

(Xi � E [Xi]) :

Assuming that

v =
1

n

nX
i=1

E
�
X2
i

�
<1

and
jXij � b a:s:

we have, for every x > 0,

P
�
jSj �

r
2v
x

n
+
bx

3n

�
� 2 exp (�x) : (97)

We turn now to concentration inequalities for the empirical process around its
mean. Bousquet�s inequality [Bou02] provides optimal constants for the deviations
at the right. Klein-Rio�s inequality [KR05] gives sharp constants for the deviations
at the left, that slightly improves Klein�s inequality [Kle02].
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Theorem 20 Let (�1; :::; �n) be n i.i.d. random variables having common law P
and taking values in a measurable space Z. If F is a class of measurable functions
from Z to R satisfying

jf (�i)� Pf j � b a:s:; for all f 2 F ; i � n;

then, by setting
�2F = sup

f2F

�
P
�
f 2
�
� (Pf)2

	
;

we have, for all x � 0,
Bousquet�s inequality :

P
�
kPn � PkF � E [kPn � PkF ] �

r
2 (�2F + 2bE [kPn � PkF ])

x

n
+
bx

3n

�
� exp (�x)

(98)
and we can deduce that, for all "; x > 0, it holds

P
�
kPn � PkF � E [kPn � PkF ] �

r
2�2F

x

n
+ "E [kPn � PkF ] +

�
1

"
+
1

3

�
bx

n

�
� exp (�x) :

(99)
Klein-Rio�s inequality :

P
�
E [kPn � PkF ]� kPn � PkF �

r
2 (�2F + 2bE [kPn � PkF ])

x

n
+
bx

n

�
� exp (�x)

(100)
and again, we can deduce that, for all "; x > 0, it holds

P
�
E [kPn � PkF ]� kPn � PkF �

r
2�2F

x

n
+ "E [kPn � PkF ] +

�
1

"
+ 1

�
bx

n

�
� exp (�x) :

(101)

The following proposition is proved in [Sau12], Corollary 25.

Proposition 21 Under notations of Theorem 20, if some {n 2 (0; 1) exists such
that

{2nE
�
kPn � Pk2F

�
� �2

n

and

{2n
q
E
�
kPn � Pk2F

�
� b

n

then we have, for a numerical constant A1;�,

(1� {nA1;�)
q
E
�
kPn � Pk2F

�
� E [kPn � PkF ] :
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