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In the …rst part of this paper, we show that the small-ball condition, recently introduced by [Men15], may behave poorly for important classes of localized functions such as wavelets, leading to suboptimal estimates of the rate of convergence of ERM for the linear aggregation problem.

.

Introduction

Consider the following general regression framework: (X ; T X ) is a measurable space, (X; Y ) 2X R is a pair of random variables of joint distribution P -the marginal of X being denoted P X -and it holds

Y = s (X) + (X) " , ( 1 
)
where s is the regression function of the response variable Y with respect to the random design X, (X) 0 is the heteroscedastic noise level and " is the conditionally standardized noise, satisfying E [" jX ] = 0 and E [" 2 jX ] = 1. Relation (1) is very general and is indeed satis…ed as soon as E [Y 2 ] < +1. In this case s 2 L 2 P X is the orthogonal projection of Y onto the space of X-measurable functions. In particular, no restriction is made on the structure of dependence between Y and X.
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We thus face a typical learning problem, where the statistical modelling is minimal, and the goal will be, given a sample (X i ; Y i ) n i=1 of law P n and a new covariate X n+1 , to predict the value of the associated response variable Y n+1 . More precisely, we want to construct a function b s, depending on the data (X i ; Y i ) n i=1 , such that the least-squares risk R (b s) = E (Y n+1 b s (X n+1 )) 2 is as small as possible, the pair (X n+1 ; Y n+1 ) being independent of the sample (X i ; Y i ) n i=1 . In this paper, we focus on the technique of linear aggregation via Empirical Risk Minimization (ERM). This means that we are given a dictionary S = fs 1 ; :::; s D g and that we produce the least-squares estimator b s on its linear span m = Span (S),

b s 2 arg min s2m R n (s) , where R n (s) = 1 n n X i=1 (Y i s (X i )) 2 . ( 2 
)
The quantity R n (s) is called the empirical risk of the function s. The accuracy of the method is tackled through an oracle inequality, where the risk of the estimator R (b s) is compared -on an event of probability close to one -to the risk of the best possible function within the linear model m. The latter function is denoted s m and is called the oracle, or the (orthogonal) projection of the regression function s onto m, s m 2 arg min s2m R (s) .

An oracle inequality then writes, on an event 0 of probability close to one,

R (b s) R (s m ) + r n (D) , (3) 
for a positive residual term r n (D). An easy and classical computation gives that the excess risk satis…es R (b s) R (s m ) = kb s s m k 2 2 , where k k 2 is the natural quadratic norm in L 2 P X : Hence, inequality (3) can be rewritten as kb s s m k 2 2 r n (D) and the quantity r n (D) thus corresponds to the rate of estimation of the projection s m by the least-squares estimator b s in terms of excess risk, corresponding here to the squared quadratic norm.

The linear aggregation problem has been well studied in various settings linked to nonparametric regression ([Nem00], [START_REF] Tsybakov | Optimal rates of aggregation[END_REF], [START_REF] Bunea | Aggregation for Gaussian regression[END_REF], [START_REF] Audibert | Robust linear least squares regression[END_REF]) and density estimation ( [START_REF] Ph | Linear and convex aggregation of density estimators[END_REF]). It has been consequently understood that the optimal rate r n (D) of linear aggregation is of the order of D=n, where D is the size of the dictionary. Recently, [START_REF] Lecué | Performance of empirical risk minimization in linear aggregation[END_REF] have shown that ERM is suboptimal for the linear aggregation problem in general, in the sense that there exist a dictionary S and a pair (X; Y ) of random variables for which the rate of ERM (drastically) deteriorates, even in the case where the response variable Y and the dictionary are uniformly bounded.

On the positive side, [START_REF] Lecué | Performance of empirical risk minimization in linear aggregation[END_REF] also made a breakthrough by showing that if a so-called small-ball condition is achieved with absolute constants, uniformly over the functions in the linear model m, then the optimal rate is recovered by ERM. We recall and discuss in details the small-ball condition in Section 2, but it is worth mentioning here that one of the main advantages of the small-ball method developed in a series of papers, [START_REF] Mendelson | A remark on the diameter of random sections of convex bodies[END_REF], [START_REF] Mendelson | Learning without concentration[END_REF], [START_REF] Mendelson | Learning without concentration for general loss functions[END_REF], [START_REF] Koltchinskii | Bounding the smallest singular value of a random matrix without concentration[END_REF], [START_REF] Lecué | Sparse recovery under weak moment assumptions[END_REF], [START_REF] Lecué | Performance of empirical risk minimization in linear aggregation[END_REF] is that it enables to prove sharp bounds under very weak moment conditions and thus to derive results that were unachievable with more standard concentration arguments.

In Section 2, we contribute to the growing understanding of this very recent approach by looking at the behavior of the small-ball condition when the dictionary is made of localized functions such as compactly supported wavelets, histograms or piecewise polynomials. It appears that with such functions, the small-ball condition can't be satis…ed with absolute constants and the resulting bounds obtained in [START_REF] Lecué | Performance of empirical risk minimization in linear aggregation[END_REF] are far from optimal in this case since they are of the order of D 3 =n.

The question of the validity of the small-ball approach in the Fourier case, which is a case where the functions are typically unlocalized, remains an open issue, of potentially great consequences in compressed sensing, [START_REF] Lecué | Performance of empirical risk minimization in linear aggregation[END_REF]. Despite this lack of understanding, we prove by other means optimal upper and lower bounds for ERM when the dictionary is made of trigonometric functions. Our result, stated in Section 3, also outperforms previously obtained bounds [START_REF] Audibert | Robust linear least squares regression[END_REF].

An outline of the proofs related to Section 3 is given in Section 3.2. While detailing our arguments, we show the strong connection of our approach to optimal bounds with recent works of [START_REF] Chatterjee | A new perspective on least squares under convex constraint[END_REF] concerning least-squares under convex constraint, extended to the setting of regularized ERM by [START_REF] Muro | Concentration behavior of the penalized least squares estimator[END_REF] and [START_REF] Van De Geer | On concentration for (regularized) empirical risk minimization[END_REF].

Finally, complete proofs are dispatched in the Appendix.

The small-ball method for classical functional bases

We recall in Section 2.1 one of the main results of [START_REF] Lecué | Performance of empirical risk minimization in linear aggregation[END_REF], linking the small-ball condition to the rate of convergence of ERM in linear aggregation. Then, we show in Section 2.2 that the constants involved in the small-ball condition behave poorly for dictionaries made of localized bases.

The small-ball condition and the rate of ERM in linear aggregation

Let us …rst recall the de…nition of the small-ball condition for a linear span, as exposed in [START_REF] Lecué | Performance of empirical risk minimization in linear aggregation[END_REF].

De…nition 1 A linear span m L 2 P X is said to satisfy the small-ball condition for some positive constants 0 and 0 if for every s 2 m,

P (js (X)j 0 ksk 2 ) 0 . (4) 
The small-ball condition thus ensures that the functions of the model m do not put too much weight around zero. From a statistical perspective, it is also explained in [START_REF] Lecué | Performance of empirical risk minimization in linear aggregation[END_REF] that the small-ball condition can be viewed as quanti…ed version of identi…ability of the model m. A more general small-ball condition -that reduces to the previous de…nition for linear models -is also available when the model isn't necessary linear, [START_REF] Mendelson | Learning without concentration[END_REF].

Under the small-ball condition, [START_REF] Lecué | Performance of empirical risk minimization in linear aggregation[END_REF] derive the following result, describing the rate of convergence of ERM in linear aggregation.

Theorem 2 ([LM15]) Let S = fs 1 ; :::; s D g L 2 P X be a dictionary and assume that m = Span (S) satis…es the small-ball condition with constants 0 and 0 (see De…nition 1 above). Let n (400) 2 D= 2 0 and set = Y s m (X), where s m is the projection of the regression function s onto m. Assume further that one of the following two conditions holds:

1. is independent of X and E 2 2 , or 2. j j almost surely.

Then the least-squares estimator b s on m, de…ned in (2), satis…es for every x > 0, with probability at least 1 exp

2 0 n=4 (1=x), kb s s m k 2 2 16 0 2 0 2 2 Dx n . ( 5 
)
Notice that Alternative 1 in Theorem 2 is equivalent to assuming that the regression function belongs to m -that is s = s m -and that the noise is independent from the design -that is (X) is homoscedastic and " is independent of X in relation (1).

The main feature of Theorem 2 is that if the small-ball condition is achieved with absolute constants 0 and 0 not depending on the dimension D nor the sample size n, then optimal linear aggregation rates of order D=n are recovered by ERM. If moreover the regression function belongs to m (Alternative 1), then the only moment assumption required is that the noise is in L 2 . Otherwise, Alternative 2 asks for a uniformly bounded noise. Some variants of Theorem 2 are also presented in [START_REF] Lecué | Performance of empirical risk minimization in linear aggregation[END_REF], showing for instance that optimal rates can be also derived for ERM when the noise as a fourth moment.

In the analysis of optimal rates in linear aggregation, it is thus worth understanding when the small ball condition stated in De…nition 1 is achieved with absolute constants.

One typical such situation is for linear measurements, that is when the functions of the dictionary are of the form f i (x) = hx; t i i, t i 2 R d . Indeed, very weak conditions are asked on the design X in this case to ensure the small-ball property: for instance, it su¢ ces to assume that X has independent coordinates that are absolutely continuous with respect to the Lebesgue measure, with a density almost surely bounded (see [START_REF] Lecué | Sparse recovery under weak moment assumptions[END_REF] and [START_REF] Mendelson | Learning without concentration[END_REF], Section 6, for more details). As shown in [START_REF] Lecué | Sparse recovery under weak moment assumptions[END_REF] and [START_REF] Lecué | Regularization and the small-ball method i: sparse recovery[END_REF], this implies that the small-ball property has important consequences in sparse recovery and analysis of regularized linear regression.

The constants in the small-ball condition for general linear bases

Besides linear measurements discussed in Section 2.1 above, an important class of dictionaries for the linear aggregation problem consists in expansions along orthonormal bases of L 2 P X . Our goal in this section is thus to investigate the behavior of the small-ball condition for some classical orthonormal bases such as piecewise polynomial functions, including histograms, wavelets or the Fourier basis.

The following assumption, that states the equivalence between the L 1 and L 2 norms for functions in the linear model m, is satis…ed by many classical functional bases:

(A1) Take S = fs 1 ; :::; s D g L 2 P X a dictionary and consider its linear span m = Span (S). Assume that there exists a positive constant L 0 such that, for every s 2 m,

ksk 1 L 0 p D ksk 2 .
Examples of linear models m satisfying Assumption (A1) with an absolute constant L 0 are given for instance in [START_REF] Barron | Risk bounds for model selection via penalization[END_REF].

More precisely, when X = [0; 2 ], X is uniform on X and S consists of the D …rst elements of the Fourier basis, then (A1) is veri…ed.

Furthermore, if X = [0; 1] d for some d 1, X is uniform on X , is a regular partition on X made of J hyper-rectangles and m is made of the piecewise polynomial functions de…ned on , of maximal degrees on each element of not larger than r 2 N , then Assumption (A1) is also satis…ed with a dimension D = (r + 1) J. This example includes in particular for r = 0 the case of histograms on . Some wavelet expansions also satisfy Assumption (A1). As it will be useful in the following, let us more precisely state some notations (for more details about wavelets, see for instance [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF]). We consider in this case that X = [0; 1] and X is uniformly distributed on X . Set 0 the father wavelet and 0 the mother wavelet, two functions de…ned on R. Thus, the support of the wavelets may not be contained in [0; 1], but for the estimation, only the wavelets whose support intersects [0; 1] will count. For every integers j 0, 1 k 2 j , de…ne j;k : x 7 ! 2 j=2 0 2 j x k + 1 .

We set for every integer j 0,

(j) = (j; k) ; 1 k 2 j & Support j;k \ [0; 1] 6 = ; .
Moreover, we set 1;k (x) = 0 (x k + 1) and for any integer l 0,

( 1) = ( 1; k) ; Support

1;k \ [0; 1] 6 = ; and l = l [ j= 1 (j) .
Then we consider the model m = Span f ; 2 l g .

If 0 and 0 are compactly supported, then f ; 2 l g satis…es Assumption (A1) for an absolute constant L 0 and dimension D =Card( l ). It is worth noting that more general multidimensional wavelets could also be considered at the price of more technicalities. When a model m satis…es Assumption (A1), the small-ball condition is also veri…ed, but with constants that may depend on the dimension of the model.

Proposition 3 If a linear model m satis…es Assumption (A1) then inequality (4) of the small-ball condition given in De…nition 1 is veri…ed for any 0 2 (0; 1) with

0 = (1 2 0 ) L 2 0 D 1 .
When applied to Theorem 2, a direct consequence of Proposition 3 is that ERM satis…es the following bound on a model m satisfying Assumption (A1): for every x > 0 and 0 2 (0; 1), with probability at least 1 exp ( (1

2 0 ) n= (4L 0 D 2 )) (1=x), kb s s m k 2 2 16L 0 (1 2 0 ) 2 0 2 2 D 3 x n ,
Hence, in such case Theorem 2 only says something for models of dimension D . p n (using the condition exp ( (1 2 0 ) n= (4L 0 D 2 )) < 1) and when the latter restriction is achieved, it provides a rate of convergence of the order D 3 =n. This is essentially a weakness of the small-ball approach in this case, since considering histograms and piecewise polynomial functions, [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF] proved in a bounded setting that the rate of convergence of ERM is actually D=n (whenever D . n= (ln n) 2 ), which is the optimal rate of linear aggregation. Furthermore, for some more general linear models with localized bases such as Haar expansions, [START_REF] Saumard | Optimal model selecion in hetereroscedatic regression using strongly localised bases[END_REF] also proved that the rate of convergence of ERM is still D=n:

The proof of Proposition 3, detailed in the Appendix, is a direct application of Paley-Zygmund's inequality (see [START_REF] De La Peña | Decoupling. Probability and its Applications[END_REF]). [START_REF] Lecué | Performance of empirical risk minimization in linear aggregation[END_REF] also noticed that more generally, Paley-Zygmund's inequality could be used to prove the small-ball property when for some p > 2, the L p and L 2 norms are equivalent, or also for subgaussian classes, where the Orlicz 2 norm is controlled by the L 2 norm, see [START_REF] Lecué | Learning subgaussian classes: Upper and minimax bounds[END_REF].

These conditions are weaker than the control of the L 1 norm by the L 2 norm, however we will show that the dependence in D for 0 given in Proposition 3 above is sharp for localized bases such as histograms, piecewise polynomials and wavelets. Hence, the control of the L 1 norm by the L 2 norm is in some way optimal in these cases, and weaker assumptions could not imply some improvements on the behavior of the small ball property for these models. In conclusion, when applied to histograms and piecewise polynomials on regular partitions, or to compactly supported wavelets, the small-ball method developed in [START_REF] Lecué | Performance of empirical risk minimization in linear aggregation[END_REF] enables only to prove suboptimal rates of the order D 3 =n.

Consider …rst a model of histograms on a regular partition of X = [0; 1] d made of D pieces, X being uniformly distributed on X . More precisely, for any I 2 , set

s I = 1 I p P X (I) = p D1 I
and take a dictionary S = fs I ; I 2 g, associated to the model m = Span (S). It holds, for every I 2 ,

ks I k 1 = p D ks I k 2
and so, as the s I 's have disjoint supports, it is easy to see that m satis…es (A1) with L 0 = 1. Furthermore, for any 0 2 (0; 1), P (js I (X)j

0 ks I k 2 ) = P X (I) = 1 D . ( 6 
)
This shows that necessarily 0 D 1 and so, up to absolute constants, the value of 0 given in Proposition 3 is optimal in the case of histograms on a regular partition. In particular, Assumption (A1) can't be satis…ed with absolute constants in this case.

When considering the case of piecewise polynomial functions on a regular partition, identity (6) above still holds for polynomial functions of degree zero supported by one element of the partition. Thus when the degrees of the polynomial functions in the model m are bounded by a constant r, we easily deduce that 0 rD 1 for any 0 2 (0; 1) and the value of 0 given in Proposition 3 is again optimal in this case.

Finally, when the model m corresponds to a …nite expansion in some compactly supported wavelet basis, we have the following property, that again proves that the value of 0 given in Proposition 3 is optimal. Examples of compactly supported wavelets include Daubechies wavelets and coi ‡ets, see [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF].

Proposition 4 Assume that X = [0; 1] and that the design X is uniformly distributed on X . Take m = Span f ; 2 l g (using notations above de…ning the wavelets and the index set m ) a linear model corresponding to some compactly supported wavelet expansion. More precisely, assume that Supp ( 0 ) [ Supp ( 0 ) [0; R] for some R 1, where Supp ( 0 ) and Supp ( 0 ) are the supports of the father wavelet 0 and the mother wavelet 0 respectively. Assume that the linear dimension

D =Card( l ) of the model m is greater than [R], the integer part of R: D > [R].
Then there exists an absolute constant 0 > 0 such that, if m achieves the small-ball condition given in De…nition 1 with constants

( 0 ; 0 ) then 0 (D [R]) 1 .
The proof of Proposition 4 consists in basic calculations and can be found in the Appendix.

3 Optimal excess risks bounds for Fourier expansions

Main theorem

We have shown in Section 2 that the small-ball condition is satis…ed for linear models such as histograms, piecewise polynomials or compactly supported wavelets, but with constants that depend on the dimension of the model in such a way that using this condition to analyze the rate of convergence of ERM on these models may lead to suboptimal bounds.

The behavior of the small-ball condition when the model m is spanned by the D …rst elements of the Fourier basis -considering that X = [0; 2 ] -remains however essentially unknown. Indeed, in the Fourier case, the bound obtained in Proposition 3 for the constants involved in the small-ball condition might be suboptimal. In particular, lower bounds such as the one established in Proposition 4 in the case of compactly supported wavelets remains inaccessible for us in the Fourier case. It is worth noting that in the context of sparse recovery, [START_REF] Lecué | Sparse recovery under weak moment assumptions[END_REF] already noticed that the small-ball condition for Fourier measurements is hard to check and the authors mention a possible 'non-uniform'small-ball property satis…ed in this case, but leave this direction open (see Remark 1.5 of [START_REF] Lecué | Sparse recovery under weak moment assumptions[END_REF] for more details).

Our aim in this section is to show that optimal rates of linear aggregation are attained by ERM in the Fourier case, that is when the model m is spanned by the D …rst elements of the Fourier basis. As optimal rates would also be achieved by Theorem 2 if the model m would satisfy the small-ball condition with absolute constants, this supports the conjecture made by [START_REF] Lecué | Sparse recovery under weak moment assumptions[END_REF] that the Fourier basis achieves a condition which is close to the small-ball condition with absolute constants.

We only tackle the bounded setting. One of the main reasons for this restriction is that we make a recurrent use along our proofs of classical Talagrand's type concentration inequalities for suprema of the empirical process with bounded arguments. Indeed, our approach, which is based on [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF] and is detailed at a heuristic level in Section 3.2 below, is very di¤erent from the small-ball approach. In fact, as we will explain in Section 3.2, it is closely related to recent advances linked to excess risk concentration due to [START_REF] Chatterjee | A new perspective on least squares under convex constraint[END_REF] in the context of least-squares under convex constraint, extended to regularized ERM by [START_REF] Van De Geer | On concentration for (regularized) empirical risk minimization[END_REF]. Even if concentration inequalities exist for suprema of the empirical process with unbounded arguments, the unbounded case would involve much more technicalities and this would go beyond the scope of this paper.

Let us now precisely detail our assumptions. Assume that the design X is uniformly distributed on X = [0; 2 ] and that the regression function s satis…es s (0) = s (2 ). Then the Fourier basis is orthonormal in L 2 (P X ) and we consider a model m of dimension D (assumed to be odd) corresponding to the linear vector space spanned by the …rst D elements of the Fourier basis. More precisely, if we set

' 0 1, ' 2k (x) = p 2 cos (kx) and ' 2k+1 (x) = p 2 sin (kx) for k 1, then ' j D 1 j=0
is an orthonormal basis of (m; k k 2 ), for an integer l satisfying 2l + 1 = D. Assume also:

(H1) The data and the linear projection of the target onto m are bounded by a positive …nite constant A:

jY j A a:s:

and

ks m k 1 A : (8) 
Hence, from (H1) we deduce that

ks k 1 = kE [Y jX = ]k 1 A (9) 
and that there exists a constant max > 0 such that

2 (X i ) 2 max
A 2 a:s:

(H2) The heteroscedastic noise level is not reduced to zero:

k k 2 = p E [ 2 (X)] > 0 .
We are now in position to state our main result.

Theorem 5 Let A + ; A ; > 0 and let m be a linear vector space spanned by a dictionary made of the …rst D elements of the Fourier basis. Assume (H1) and take ' = (' k ) D 1 k=0 the Fourier basis of m. If it holds

A (ln n) 2 D A + n 1=2 (ln n) 2 n ; (11) 
then there exists a constant A 0 > 0, only depending on ; A and on the constants A; k k 2 de…ned in assumptions (H1), (H2) respectively, such that by setting

" n = A 0 max ( ln n D 1=4 ; D 2 ln n n 1=4 ) ; (12) 
we have for all n n 0 (A ; A + ; A; k k 2 ; ),

P kb s s m k 2 2 (1 " n ) D n C 2 m 1 5n ; (13) 
P kb s s m k 2 2 (1 + " n ) D n C 2 m 1 5n ; ( 14 
)
where b s is the least-squares estimator on m, de…ned in (2), and

C 2 m = E 2 (X) + ks s m k 2 2 .
The rate of convergence of ERM for linear aggregation with a Fourier dictionary exhibited by Theorem 5 is thus of the order D=n, which is the optimal rate of linear aggregation. In particular, this outperforms the bounds obtained in Theorem 2.2 of [START_REF] Audibert | Robust linear least squares regression[END_REF] under same assumption as Assumption (A1), that is satis…ed in the Fourier case, but also under more general moment assumptions on the noise. Indeed, as noticed in [START_REF] Lecué | Performance of empirical risk minimization in linear aggregation[END_REF], the bounds obtained by [START_REF] Audibert | Robust linear least squares regression[END_REF] are in this case of the order D 3 =n, for models of dimension lower than n 1=4 . In Theorem 5, our condition on the permitted dimension which is less restrictive, since models with dimension close to n 1=2 are allowed.

Concerning the assumptions, uniform boundedness of the projection of the target onto the model, as described in (8), is guaranteed as soon as the regression belongs to a broad class of functions named the Wiener algebra, that is whenever the Fourier coe¢ cients of the regression function are summable (in other words when the Fourier series of the regression function is absolutely convergent). For instance, functions that are Hölder continuous with index greater than 1/2 belong to the Wiener algebra, [START_REF] Katznelson | An introduction to harmonic analysis[END_REF].

Furthermore, Theorem 5 gives an information that is far more precise than simply the rate of convergence of the least-squares estimator. Indeed, the conjunction of inequalities ( 13) and ( 14) of Theorem 5 actually proves the concentration of the excess risk of the least-squares estimator around one precise value, which is DC 2 m =n.

There are only very few and recent such concentration results for the excess risk of a M-estimator in the literature and this question constitutes an exiting new line of research in learning theory. Considering the same regression framework as ours, [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF] has shown concentration bounds for the excess risk of the least-squares estimator on models of piecewise polynomial functions. In a slightly di¤erent context of least-squares estimation under convex constraint, [Cha14] also proved the concentration in L 2 norm, with …xed design and Gaussian noise. Under the latter assumptions, [START_REF] Muro | Concentration behavior of the penalized least squares estimator[END_REF] have shown the excess risk's concentration for the penalized least-squares estimator. Finally, [START_REF] Van De Geer | On concentration for (regularized) empirical risk minimization[END_REF] recently proved some concentration results for some regularized M-estimators. They also give an application of their results to a linearized regression context with random design and independent Gaussian noise.

Outline of the approach

The aim of this section is to explain the main ideas leading to the proof of Theorem 5 and to highlight some connections with other works in the literature.

The proof of Theorem 5 is technically very involved and is an adaptation to the Fourier case of the approach developed in [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF] concerning the performance of the least-squares estimator on models of piecewise polynomial functions and more general models endowed with a localized orthonormal basis.

An orthonormal basis ( k ) D k=1 of a linear model m L 2 P X is said to be localized if there exists a constant L > 0 such that

P D k=1 k k 1 L p D sup k j k j for any ( k ) D k=1 2 R D .
This condition, taken into advantage in [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF], is typically valid for models of piecewise polynomial functions and wavelets, but it is false in the Fourier case. Indeed, if (' k ) D 1 k=0 is the collection of D = 2l + 1 …rst elements of the Fourier basis de…ned in Section 3.1 above, then by taking ( k ) D 1 k=0 = (1; 1; 0; 1; 0; 1; 0::::; 1; 0), it holds

D 1 X k=0 k ' k 1 D 1 X k=0 k ' k (0) = 1 + p 2 l 1 X k=0 cos (k 0) l + 1 D 2 sup k j k j .
Hence, the Fourier basis has a behavior with respect to the sup-norm which is harder to control from this point of view than localized bases. It is however possible, for models of dimension D . p n, to prove the consistency in sup-norm of the leastsquares estimator towards the projection of the regression function s onto a model corresponding to …nite Fourier expansions. More precisely, we prove the following theorem, which is an essential piece in the proof of Theorem 5.

Theorem 6 Let > 0: Assume that m is a linear vector space spanned by the …rst D elements of the Fourier basis. Assume that (H1) holds and that there exists A + > 0 such that

D A + n 1=2 (ln n) 2 n .
Then we have, for all n n 0 (A + ; ),

P kb s s m k 1 L (1) A; D r ln n n ! n .
The proof of Theorem 6, which uses concentration tools such as Bernstein's inequality (see Theorem 19) can be found in the Appendix, Section 5.1. Using Theorem 6, we can localize with probability close to one (equal to 1 n ) our analysis in a ball in sup-norm B L1 (s m ; R n;D; ), centered on the projection of the target and of radius R n;D; = L (1) A; D p ln n=n. As explained in [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF], empirical process theory can be used to derive optimal bounds such as Theorem 5, through the use of a representation formula for the excess risk, in terms of local suprema of the underlying empirical process. Indeed, set the least-squares contrast : L 2 P X ! L 1 (P ) de…ned by,

(s) : (x; y) 2 X R 7 ! (y s (x)) 2 .
Then, we can write b s 2 arg min s2m fP n ( (s))g, where P n is the empirical measure associated to the sample and we also have kb s s m k 2 2 = P ( (b s) (s m )). Furthermore, the following representation formula holds for the excess risk (see identity (3.9) of [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF]) with probability close to one,

kb s s m k 2 2 2 arg max C 0 sup s2D C (P P n ) ( (s) (s m )) C , (15) 
where

D C := s 2 m ; ks s m k 2 2 = C \ B L1 (s m ; R n;d; ) .
A similar representation formula is also at the core of the approach developed by [START_REF] Chatterjee | A new perspective on least squares under convex constraint[END_REF] for least-squares estimation under convex constraints, extended to regularized ERM by [START_REF] Muro | Concentration behavior of the penalized least squares estimator[END_REF] and [START_REF] Van De Geer | On concentration for (regularized) empirical risk minimization[END_REF]. In [START_REF] Chatterjee | A new perspective on least squares under convex constraint[END_REF] and [START_REF] Muro | Concentration behavior of the penalized least squares estimator[END_REF], the framework allows to replace the empirical process appearing in (15) by a Gaussian process, while in [START_REF] Van De Geer | On concentration for (regularized) empirical risk minimization[END_REF] the more general framework of M-estimation forces the authors to work with an empirical process, exactly as in (15). Using concentration inequalities for the supremum of the empirical process, on may show from (15) that with probability close to one,

kb s s m k 2 2 arg max C 0 E sup s2D C (P P n ) ( (s) (s m )) C . ( 16 
)
The quantity of interest is thus the expectation of supremum of the empirical process over a slice D C of the model m. Moreover, as we want to derive optimal bounds, we are looking for a control to the right constant of the …rst order of this quantity. To this end, we introduce an argument of contrast expansion into a linear and quadratic part, originally developed in [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF] and which is also one of the main features of the small-ball approach …rst built in [START_REF] Mendelson | Learning without concentration[END_REF]. More precisely, for every s 2 m and z = (x; y) 2 X R, it holds

(s) (z) (s m ) (z) = 1;m (z) (s s m ) (x) + (s s m ) 2 (x) (17) 
where 1;m (z) = 2 (y s m (x)) : Using (17), we then split the quantity of interest in (16) into two parts,

E sup s2D C (P P n ) ( (s) (s m )) E sup s2D C (P P n ) 1;m (s s m ) | {z } main part + E sup s2D C (P P n ) (s s m ) 2 | {z } remainder term .
We …nally show that the empirical process corresponding to the linear part of the contrast expansion gives the exact …rst order of rate of linear aggregation of the least-squares estimator, while the empirical process corresponding to the quadratic part of the contrast expansion contributes only through remainder terms. Some technical lemmas roughly corresponding to the previous observations can be found in the Appendix, Section 5.2.1.

Proofs related to Section 2

Proof of Proposition 3. Take s 2 m and 0 2 (0; 1). Set 0 = fjs (X)j 0 ksk 2 g. By Paley-Zygmund's inequality (Corollary 3.3.2 in [START_REF] De La Peña | Decoupling. Probability and its Applications[END_REF]), it holds

P ( 0 ) 1 2 0 ksk 2 2 ksk 2 1 1 2 0 L 2 0 1 D ,
which readily proves Proposition 3.

Proof of Proposition 4. Take (j; k) 2 m , j 0. It holds

j;k 2 2 = Z 1 0 2 j;k (x) dx = 2 j Z 1 0 0 2 j x k + 1 2 dx = Z 2 j k+1 k+1 j 0 (y)j 2 dy .
Thus, whenever Supp ( 0 ) [ k + 1; 2 j k + 1], one has j;k 2 = 1. Take j 0 0 such that 2 j 0 R. Then j 0 ;1 2 = 1 and it is easy to see that for any j j 0 there exists at least 2 j j 0 values of k such that Supp ( 0 )

[ k + 1; 2 j k + 1] and j;k 2 = 1. Now, take 0 > 0 such that Z R 0 1 fj 0 (y)j 0 g dy 1 2 .

For any j j 0 and k such that Supp ( 0 ) [ k + 1; 2 j k + 1], we get P j;k (X)

0 j;k 2 = P 2 j=2 0 2 j X k + 1 0 = 2 j Z 2 j k+1 k+1 j 0 (y)j dy = 2 j Z R 0 j 0 (y)j dy 2 j 1 . ( 18 
)
Furthermore, notice that Card ( ( 1)) [R] + 1 and D = Card ( l ) [R] + 2 l+1 . Hence, taking j = l in (18), we deduce that, P l;k (X)

0 l;k 2 1 D [R] ,
which gives the result.

5 Proofs related to Section 3

Proof of Theorem 6

Proof of Theorem 6. Let ; C > 0. Set

F 1 C := fs 2 m ; ks s m k 1 Cg and F 1 >C := fs 2 m ; ks s m k 1 > Cg = mnF 1 C .
Take the Fourier basis (' k ) D 1 k=0 of (m; k k 2 ). By assumption on D, it holds D n. Hence, by Lemma 8 below, we get that there exists L 

n P ) (' k ' l )j L (2) r ln n n ) ,
where L

(2) is de…ned in Lemma 7 below. By Lemma 7, we have P ( 2 ) 1 n and so, for all n n 0 (A + ),

P 1 \ 2 1 2n : (19) 
We thus have for all n n 0 (A + ),

P (kb s s m k 1 > C) P inf s2F 1 >C P n ( (s) (s m )) inf s2F 1 C P n ( (s) (s m )) = P sup s2F 1 >C P n ( (s m ) (s)) sup s2F 1 C P n ( (s m ) (s)) ! P ( sup s2F 1 >C P n ( (s m ) (s)) sup s2F 1 C=2 P n ( (s m ) (s)) ) \ 1 \ 2 ! + 2n . ( 20 
)
Now, for any s 2 m such that

s s m = D 1 X k=0 k ' k , = ( k ) D 1 k=0 2 R D ,
we have

P n ( (s m ) (s)) = (P n P ) 1;m (s m s) (P n P ) (s s m ) 2 ks s m k 2 2 = D 1 X k=0 k (P n P ) 1;m ' k D 1 X k;l=0 k l (P n P ) (' k ' l ) D 1 X k=0 2 k .
We set for any (k; l) 2 f0; :::

; D 1g 2 , R (1) 
k = (P n P ) 1;m ' k and R (2) 
k;l = (P n P ) (' k ' l ) .

Moreover, we set a function h n , de…ned as follows,

h n : = ( k ) D 1 k=0 7 ! D 1 X k=0 k R (1) k D 1 X k;l=0 k l R (2) k;l D 1 X k=0 2 k .
We thus have for any s 2 m such that s s m =

P D 1 k=0 k ' k , = ( k ) D 1 k=0 2 R D , P n ( (s m ) (s)) = h n ( ) . (21) 
In addition we set for any

= ( k ) D 1 k=0 2 R D , j j m;1 = p 2D j j 1 . ( 22 
)
It is straightforward to see that j j m;1 is a norm on R D , proportional to the supnorm. We also set for a real D D matrix B, its operator norm kAk m associated to the norm j j m;1 on the D-dimensional vectors. More explicitly, we set for any

B 2 R D D , kBk m := sup 2R D ; 6 =0 jB j m;1 j j m;1 = sup 2R D ; 6 =0 jB j 1 j j 1 .
Note that k k m is an operator norm and so B k 

Notice that for any

= ( k ) D 1 k=0 2 R D , D 1 X k=0 k ' k 1 D j j 1 sup k k' k k 1 j j m;1 .
Hence, it holds

F 1 >C ( s 2 m ; s s m = D 1 X k=0 k ' k & j j m;1 C ) (24) 
and

F 1 C=2 ( s 2 m ; s s m = D 1 X k=0 k ' k & j j m;1 C=2 ) . ( 25 
)
Hence, from (20), (21) (25) and (24) we deduce that if we …nd on 1 T 2 a value of C such that sup

2R D ; j j m;1 C h n ( ) < sup 2R D ; j j m;1 C=2 h n ( ) ,
then we will get

P (kb s s m k 1 > C) 2n .
Taking the partial derivatives of h n with respect to the coordinates of its arguments, it then holds for any (k; l) 2 f0; :::; D 1g 2 and = ( i

) D 1 i=0 2 R D , @h n @ k ( ) = R (1) k 2 D 1 X i=0 i R (2) k;i 2 k ( 26 
)
We look now at the set of solutions of the following system, @h n @ k ( ) = 0 , 8k 2 f0; :::

; D 1g . ( 27 
)
We de…ne the D D matrix R

(2)

n to be

R (2) n := R (2) k;l k;l=0::D 1
and by (26), the system given in (27) can be written

2 I D + R (2) n = R (1) n , (S)
where R

n is a D-dimensional vector de…ned by , in order to show that the matrix

R (1) n = R ( 
I D + R (2) 
n is nonsingular. On 2 we have (ln n) 2 , we get that for all n n 0 (A + ; ), it holds on 2 ,

R (2)
R (2) n m
1 2

and the matrix

I d + R (2) n is nonsingular, of inverse I d + R (2) n 1 = P +1 u=0 R (2) n u .
Hence, the system (S) admits a unique solution (n) , given by

(n) = 1 2 I d + R (2) n 1 R (1) n .
Now, on 1 we have, R 

m;1

1 2 I d + R (2) n 1 m R (1) n m;1 L (1) A; D r 2 ln n n . ( 29 
)
Moreover, by the formula (21) we have

h n ( ) = P n ( (s m )) 1 n n X i=1 Y i s m (X i ) D 1 X k=0 k ' k (X i ) ! 2
and we thus see that h n is concave. Hence, for all n 0 (A + ; ), we get that on 2 , (n) is the unique maximum of h n and on 2 T 1 , by (29), concavity of h n and uniqueness of (n) , we get

h n (n) = sup 2R D ; j j m;1 C=2 h n ( ) > sup 2R D ; j j m;1 C h n ( ) , with C = 2L (1) 
A; D q 2 ln n n , which concludes the proof.

Lemma 7 Let > 0. Assume that m is a linear vector space spanned by the …rst D elements of the Fourier basis, where D n. Then there exists L (2) > 0 such that P max k2f0;:::;D 1g 2 j(P n P ) (' k ' l )j L (2)

r ln n n ! n . (30) 
Proof. For any (k; l) 2 f0; :::; D 1g 2 , we have

E (' k ' l ) 2 k' k ' l k 2 1 4 .
Hence, we apply Bernstein's inequality (see Proposition 2.9 in [START_REF] Massart | Concentration inequalities and model selection[END_REF]) and we get, for all > 0,

P j(P n P ) (' k ' l )j 2 r 2 ln n n + 2 ln n 3n ! 2n . ( 31 
)
We get from (31) that for all > 0, P max (k;l)2f0;:::;D 1g 2 j(P

n P ) (' k ' l )j 2 p 2 + 2 3 r ln n n ! 2D 2 n n +2 . ( 32 
)
To conclude, take = + 2.

Lemma 8 Let > 0. Assume that m is a linear vector space spanned by the …rst D elements of the Fourier basis, where D n.If (H1) holds and 1;m (X; Y ) := 2 (Y s m (X)) then P max k2f1;:::;Dg

(P n P ) 1;m ' k L (1) A; r ln n n ! n . (33) 
Proof. Let > 0. By Bernstein's inequality, we get by straightforward computations (of the spirit of the proof of Lemma 7) that there exists L A; > 0 such that, for all k 2 f0; :::; D 1g,

P (P n P ) 1;m ' k L (1) A; r ln n n ! n .
Now the result follows from a simple union bound with = + 1.

Proof of Theorem 5

Aiming at clarifying the proofs, the arguments involved and the connection with the proofs exposed in [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF], we generalize a little bit the Fourier framework by invoking along the proofs the three following assumptions, that are satis…ed for Fourier expansions. From now on, m L 2 P X is considered to be a linear model of dimension D, not necessarily built from the Fourier basis.

Let us de…ne a function m on X , that we call the unit envelope of m, such that

m (x) = 1 p D sup s2m;ksk 2 1 js (x)j : (34) 
As m is a …nite dimensional real vector space, the supremum in (34) can also be taken over a countable subset of m, so m is a measurable function.

(H3) The unit envelope of m is uniformly bounded on X : a positive constant A 3;m exists such that k m k 1 A 3;m < 1 :

In the Fourier case, (H3) is valid by taking A 3;m p 2. In fact, it is easy to see that assumption (H3) is equivalent to assumption (A1). Moreover, several technical lemmas derived in [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF] only assume the validity of (H3) and will thus be used without repeating their proofs.

(H4) Uniformly bounded basis : there exists an orthonormal basis ' = (' k ) D k=1 in (m; k k 2 ) that satis…es, for a positive constant u m (')

k' k k 1 u m (') .
Again, in the Fourier case, (H4) is valid by taking u m (') p

Remark 3 (H4) implies (H3) and in that case

A 3;m = u m (').
The assumption of consistency in sup-norm:

We assume that the least squares estimator is consistent for the sup-norm on the space X . More precisely, this requirement can be stated as follows.

(H5) Assumption of consistency in sup-norm: for any

A + > 0, if m is a model of dimension D satisfying D A + n 1=2 (ln n) 2 ;
then for every > 0, we can …nd a positive integer n 1 and a positive constant A cons satisfying the following property: there exists R n;D; > 0 depending on D; n and , such that

R n;D; A cons p ln n ( 35 
)
and by setting

1; = fkb s s m k 1 R n;D; g ; (36) 
it holds for all n n 1 ,

P [ 1; ] 1 n : (37) 
By Theorem 6, (H5) is veri…ed with R n;D; D p ln n=n. In order to express the quantities of interest in the proof of Theorem 5, we need preliminary de…nitions. Let > 0 be …xed and for R n;D; de…ned in (H5), we set

Rn;D; = max ( R n;D; ; A 1 r D ln n n ) (38)
where A 1 is a positive constant to be chosen later. Moreover, we set 

F >C = s 2 m; ks s m k 2 2 > C \ B (m;L1) s m ; Rn;D;
and for any interval J R;

F J = s 2 m; ks s m k 2 2 2 J \ B (m;L1) s m ; Rn;D; :
We also de…ne, for all L 0,

D L = s 2 m; ks s m k 2 2 = L \ B (m;L1) s m ; Rn;D; :
Recall that the contrasted functions satisfy, for every s 2 m and z = (x; y) 2 X R;

(s) (z) (s m ) (z) = 1;m (z) (s s m ) (x) + (s s m ) 2 (x) (40) 
where 1;m (z) = 2 (y s m (x)) : Note that, for all s 2 m,

P 1;m s = 0 (41)
and by (H1),

1;m 1 4A : (42)
Also, for the term C m de…ned in Theorem 5, simple computations give that

C 2 m = 1 4D D 1 X k=0 Var 1;m ' k (43) 
for the Fourier basis (' k ) D 1 k=0 of (m; k k 2 ) : Moreover, it is easy to see that under (H1) we have,

C m max + 2A 3A . ( 44 
)
We also have

0 < p E [ 2 (X)] = k k 2 C m . ( 45 
)
Finally, when (H3) holds (it is the case when (H4) holds), we have by (34),

sup s2m; ksk 2 1 ksk 1 A 3;m p D (46) 
and so, for any orthonormal basis (' k ) D k=1 of (m; k k 2 ), it holds for all k 2 f1; :::; Dg, as P ('

2 k ) = 1, k' k k 1 A 3;m p D . ( 47 
)
We are now in position to prove Theorem 5. The proof of Theorem 5 relies on Lemmas 13, 14 and 15 stated in Section 5.2.1, and that give sharp estimates of suprema of the empirical process on the contrasted functions over slices of interest. Recall that in the Fourier case, assumptions (H3) and (H4) hold, as well as (H5) with R n;D; D p ln n=n.

Proof of inequality (13). Let > 0, r 2 (1; 2] to be chosen later and C > 0

such that rC = D n C 2 m : (48) 
By (H5) there exists a positive integer n 1 such that it holds, for all n n 1 ,

P kb s s m k 2 2 C P kb s s m k 2 2 C \ 1; + n (49)
and also

P kb s s m k 2 2 C \ 1; P inf s2F C P n ( (s) (s m )) inf s2F >C P n ( (s) (s m )) P inf s2F C P n ( (s) (s m )) inf s2F (C;rC] P n ( (s) (s m )) = P sup s2F C P n ( (s m ) (s)) sup s2F (C;rC] P n ( (s m ) (s)) ! : (50) 
Now, by ( 48) and (45) we have

D 2n k k 2 2 C (1 + A 4 n ) 2 D n C 2 m ,
where A 4 is de…ned in Lemma 13. Hence we can apply Lemma 13 with = , A l = k k 2 2 =2 and A 3;m = u m ('). Therefore it holds, for all n n 0 (A 1 ; A cons ; A + ; k k 2 ; ),

P " sup s2F C P n ( (s m ) (s)) 2 1 + L A1;A;um(');k k 2 ;A ; n r CD n C m C # 2n :
(51) Moreover, by using ( 45) and ( 44) in (48) we get

D n k k 2 2 rC D n ( max + 2A) 2 :
We then apply Lemma 15 with

= ; A l = k k 2 2 ; A u = ( max + 2A) 2 and A 1 32B 2 A p 2A u k k 1 2 u m (') A 1 32 p 2B 2 A ( max + 2A) k k 1 2 u m (') ; (52) 
so it holds for all n n 0 (A ; A + ; A; A 1 ; A cons ; B 2 ; u m (') ; max ; k k 2 ; ),

P sup s2F (C;rC] P n ( (s m ) (s)) 2 1 L A ;A;A1; max;k k 2 ;um('); n r rCD n C m rC ! 2n : (53) 
Now, from ( 51) and ( 53) we can …nd a positive constant Ã0 , only depending on A ; A; A 1 ; max ; k k 2 ; u m (') and , such that for all n n 0 (A ; A + ; A; A 1 ; A cons ; B 2 ; u m (') ; max ; k k 2 ; ), there exists an event of probability at least 1 4n on which

sup s2F C P n ( (s m ) (s)) 2 1 + Ã0 n r CD n C m C (54) 
and

sup s2F (C;rC] P n ( (s m ) (s)) 2 1 Ã0 n r rCD n C m rC : (55) 
Hence, from ( 54) and ( 55) we deduce, using ( 49) and ( 50), that if we choose r 2 (1; 2] such that

2 1 + Ã0 n r CD n C m C < 2 1 Ã0 n r rCD n C m rC (56) 
then, for all n n 0 (A ; A + ; A; A 1 ; A cons ; B 2 ; u m (') ; max ; k k 2 ; n 1 ; ) we have

kb s s m k 2 2 C
with probability at least 1 5n . Now, by (48

) it holds r rCD n C m = rC = D n C 2 m ,
and as a consequence Inequality (56) is equivalent to

1 2 Ã0 n r 2 1 + Ã0 n p r + 1 > 0 : (57) 
Moreover, we have by ( 39) and (H5), for all n n 0 A + ; A ; A cons ; Ã0 ; ,

Ã0 n 1 4 (58) 
and so, for all n n 0 A + ; A ; A cons ; Ã0 ; , simple computations involving (58) show that by taking

r = 1 + 48 q Ã0 n (59) 
inequality (57) is satis…ed. Notice that, for all n n 0 A + ; A ; A cons ; Ã0 ; we have 0 < 48 p Ã0 n < 1, so that r 2 (1; 2). Finally, we compute C by (48) and

(59), in such a way that for all n n 0 A + ; A ; A cons ; Ã0 ; ,

C = rC r = 1 1 + 48 p Ã0 n D n C 2 m 1 48 q Ã0 n D n C 2 m > 0 (60) 
which yields the result by noticing that the dependence on max can be released in n 0 and Ã0 since by (H1) we have max A.

Proof of Inequality (14). Let ; C > 0 and 2 0; 1 2 to be chosen later in such a way that

(1 ) C = D n C 2 m ( 61 
)
and

C (1 + A 5 n ) 2 D n C 2 m , (62) 
where A 5 is de…ned in Lemma 14. We have by (H5), for all n n 1 ;

P kb s s m k 2 2 > C P kb s s m k 2 2 > C \ 1; + n (63) 
and also

P kb s s m k 2 2 > C \ 1; P inf s2F C P n ( (s) (s m )) inf s2F >C P n ( (s) (s m )) = P sup s2F C P n ( (s m ) (s)) sup s2F >C P n ( (s m ) (s)) P 0 @ sup s2F ( C 2 ;(1 )C ] P n ( (s m ) (s)) sup s2F >C P n ( (s m ) (s)) 1 A : (64) 
Now by (62) we can apply Lemma 14 with = and we obtain, for all n n 0 (A 1 ; A cons ; A + ; ),

P " sup s2F >C P n ( (s m ) (s)) (1 + A 5 n ) r CD n K 1;m C # 2n (65) 
where A 5 only depends on A; A 3;m ; A 1 ; min ; A and . Moreover, we can take A 3;m = u m (') by Remark 3. Also, by (61), ( 45) and (44) we can apply Lemma 15 with the quantity C in Lemma 15 replaced by C=2,

= , r = 2 (1 ), A u = ( max + 2A) 2 , A l = k k 2 2 and the constant A 1 satisfying A 1 32 p 2B 2 A ( max + 2A) 1 min u m (') ; (66) 
and so it holds, for all n n 0 (A ; A + ; A; A 1 ; A cons ; B 2 ; u m (') ; max ; k k 2 ; ),

P 0 @ sup s2F ( C 2 ;(1 )C ] P n ( (s m ) (s)) 2 1 L A ;A;A1; max;k k 2 ;um('); n q (1 )CD n C m (1 ) C 1 A 2n : (67) 
Hence from (65) and (67), we deduce that a positive constant A 0 exists, only depending on A ; A; A 1 ; max ; k k 2 ; u m (') and , such that for all n n 0 (A ; A + ; A; A 1 ; A cons ; B 2 ; u m (') ; max ; k k 2 ; ) it holds on an event of probability at least 1 4n , sup s2F ( C 2 ;(1

)C ] P n ( (s m ) (s)) 2 1 A 0 n r (1 ) CD n C m (1 ) C (68)
and

sup s2F >C P n ( (s m ) (s)) 2 1 + A 0 n r CD n C m C . (69) 
Now, from ( 68) and (69) we deduce, using ( 63) and ( 64), that if we choose 2 0; 1 2 such that (62) and

2 1 + A 0 n r CD n C m C < 2 1 A 0 n r (1 ) CD n C m (1 ) C (70)
are satis…ed then, for all n n 0 (A ; A + ; A; A 1 ; A cons ; B 2 ; u m (') ; max ; k k 2 ; n 1 ; ),

kb s s m k 2 2 C ,
with probability at least 1 5n :

By (61) it holds r (1 ) CD n C m = (1 ) C = 1 2 D n C 2 m ,
and by consequence, inequality (70) is equivalent to

1 2 A 0 n (1 ) 2 1 + A 0 n p 1 + 1 > 0 . (71) 
Moreover, we have by ( 39) and (H5), for all n n 0 A + ; A ; A cons ; A 0 ; A 5 ; ,

A 0 _ A 5 n < 1 72 (72) 
and so, for all n n 0 A + ; A ; A cons ; A 0 ; , simple computations involving (72) show that by taking

= 6 q A 0 _ p A 5 p n , (73) 
inequalities (71) and (62) are satis…ed and 2 0; 1 2 . Finally, we can compute C by (61) and ( 73), in such a way that for all n n 0 A + ; A ; A cons ; A 0 ;

0 < C = (1 ) C (1 ) = 1 (1 ) D n C 2 m 1 + 12 q A 0 _ p A 5 p n D n C 2 m ; (74) 
which yields the result by noticing that the dependence on max can be released from n 0 and A 0 since by (H1) we have max A.

Technical Lemmas

We state here some lemmas needed in the proofs of Theorem 5. First, in Lemmas 9, 10 and 11, we derive some controls, from above and from below, of the empirical process indexed by the "linear parts" of the contrasted functions over slices of interest. Secondly, we give in Lemma 12 an upper bound for the empirical process indexed by the "quadratic parts"of the contrasted functions over slices of interest.

And …nally, we use all these results in Lemmas 13, 14 and 15 to derive upper and lower bounds for the empirical process indexed by the contrasted functions over slices of interest.

The following lemma is a straightforward adaptation in our context of Lemma 11 in [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF].

Lemma 9 Assume that (H1), (H2) and (H3) hold. Then for any > 0, by setting

n = L A;A 3;m ;k k 2 ; r ln n D _ p ln n n 1=4 ! ;
It holds, for any orthonormal basis

(' k ) D k=1 of (m; k k 2 ), P 2 4 v u u t D X k=1 (P n P ) 2 1;m ' k 2 (1 + n ) r D n C m 3 5 n : (75) 
If (H1) and (H3) hold, then for any > 0; it holds

P 2 4 v u u t D X k=1 (P n P ) 2 1;m ' k L A;A 3;m ; r D _ ln n n 3 5 n : (76) 
In the next lemma, we state sharp lower bounds for the mean of the supremum of the empirical process on the linear parts of contrasted functions of m belonging to a slice of excess risk. This is done for a model of reasonable dimension.

Lemma 10 Let r > 1 and C > 0. Assume that (H1), (H2), (H4) and (35) hold and let ' = (' k ) D k=1 be an orthonormal basis of (m; k k 2 ) satisfying (H4). If positive constants A ; A + ; A l ; A u exist such that

A + n (ln n) 2 D A (ln n) 2 and A l D n rC A u D n ;
and if the constant A 1 de…ned in (38) satis…es Our argument leading to Lemma 10 shows that we have to assume that the constant A 1 introduced in (38) is large enough. In order to prove Lemma 10 the following result is needed.

A 1 32B 2 A p 2A u k k 1 2 u m (') ; (77 
Lemma 11 Let r > 1; > 0 and C 0. Assume that (H1), (H2), (H4) and (35) hold and let ' = (' k ) D k=1 be an orthonormal basis of (m; k k 2 ) satisfying (H4). If positive constants A + ; A and A u exist such that

A + n (ln n) 2 D A (ln n) 2 ; rC A u D n ; and if A 1 16B 2 A p 2A u k k 1 2 u m (')
then for all n n 0 (A ; A + ; A; B 2 ; u m (') ; k k 2 ; ), it holds and also, by using (79) in Inequality (96) applied to m , we get that

E [ m ] B 1 2 p E [ 2 m ] 4A p Du m (') n = 2B 1 2 r D n C m 4A p Du m (') n :
We thus obtain by ( 101), for all "; x > 0;

P m 2 (1 ") B 1 2 r D n C m r 32A 2 x n 1 " + 1 + 1 " x 4A p Du m (') n ! exp ( x) :
(80) So, by taking " = 1 2 and x = ln n in (80), and by observing that D A (ln n) 2 and C m k k 2 , we conclude that, for all n n 0 (A ; A; B 2 ; u m (') ; k k 2 ; ),

P " m B 1 2 2 r D n C m # n : (81) 
Furthermore, combining Bernstein's inequality (97), with the observation that we have, for every k 2 f1; :::; Dg, 1;m ' k 1 4Au m (') by ( 42) and (H4)

P 1;m ' k 2 1;m 2 1 16A 2 by (42)
we get that, for every x > 0 and every k 2 f1; :::; Dg,

P (P n P ) 1;m ' k r 32A 2 x n + 4Au m (') 3 x n 2 exp ( x)
and so P max (83) then, by using (81) and (83), we get for all n n 0 (A ; A; B 2 ; u m (') ; k k 2 ; ), 

A 1 16B 2 p 2A u A 2 k k 1 2 u m (')
then, for all n n 0 (A ; A + ; A; B 2 ; u m (') ; k k 2 ; ), (87) Comparing inequality (87) with (86) and using (84), we obtain the following lower bound for all n n 0 (A ; A + ; A; B 2 ; u m (') ; k k 2 ; ),

P
E 1 2 sup s2F (C;rC] (P n P ) 1;m (s m s) ! 2 p rC v u u t E " D X k=1 (P n P ) 2 1;m ' k !# 4Au m (') D p rC r P h ~ c i 2 r rCD n C m 4Au m (') D p rC r 2D + 1 n : (88) 
We take = 4, and we must have

A 1 32AB 2 p 2A u k k 1 2 u m (') . Since D A + n (ln n) 2 and C m k k 2 under (H2), we get, for all n n 0 (A; A + ; u m (') ; k k 2 ), 4Au m (') D p rC r 2D + 1 n 2 p D r rCD n C m (89) 
and so, by combining (88) and ( 89), for all n n 0 (A ; A + ; A; B 2 ; u m (') ; k k 2 ), it holds

E 1 2 sup s2F (C;rC] (P n P ) 1;m (s m s) ! 2 2 1 1 p D r rCD n C m : (90) 
Now, as D A (ln n) 2 we have for all n n 0 (A ), D 1=2 1=2. Moreover, we have C m k k 2 > 0 by (H2) and rC A l Dn 1 , so we …nally deduce from (90) that, for all n n 0 (A ; A + ; A; B

2 ; A l ; u m (') ; k k 2 ), E 1 2 sup s2F (C;rC] (P n P ) 1;m (s m s) ! 2 2 k k 2 p A l D n : (91) 
We 

P 1;m (s m s) 2 16A 2 rC 16A 2 A u D n
and so we set 2 = 16A 2 A u D n . Now, by (91) we have, for all n n 0 (A ; A + ; A; B

2 ; A l ; u m (') ; k k 2 ), p E [Z 2 ] 2 k k 2 p A l D n : (93) 
Hence, a positive constant

L A;A l ;Au;k k 2 ( max 2A p A u A 1=2 l k k 1 2 ; p 2AA 1=4 l k k 1=2 2
holds) exists such that, by setting

{ n = L A;A l ;Au;k k 2 p D
we get, using (93), that, for all n n 0 (A ; A + ; A l ; A u ; A; B 2 ; u m (') ; A cons ; k k 2 ),

{ 2 n E Z 2 2 n , { 2 n p E [Z 2 ] b n .
Furthermore, since D A (ln n) 2 , we have for all n n 0 (A ; A; A u ; A l ; k k 2 ),

{ n 2 (0; 1) : 

So, using ( 
(P n P ) 1;m (s m s) # 2 1 L A;A l ;Au;k k 2 p D r rCD n C m
and so (78) is proved.

In the following Lemma, we formulate uniform upper bounds for the supremum of the empirical process of second order terms in the contrast expansion when the considered slices are not too small. This lemma follows from the exact same arguments as Lemma 15 of [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF].

Lemma 12 Let A + ; A ; A l ; ; C > 0, and assume (H3) and (35). If C A l D n and A + n (ln n) 2 D A (ln n) 2 , then a positive constant L A ;A l ; exists such that, for all n n 0 (A 1 ; A cons ; A + ; A l ),

P " 8C > C ; sup s2F C (P n P ) (s s m ) 2 L A ;A l ; r CD n Rn;D; # 1 n :
Having controlled the residual empirical process driven by the remainder terms in the expansion of the contrast, and having proved sharp bounds for the expectation of the increments of the main empirical process on the slices, it remains to combine the above lemmas in order to establish the probability estimates controlling the empirical excess risk on the slices.

The following lemma combines Lemma 9 and Lemma 12 and follows from the same lines as Lemma 16 of [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF].

Lemma 13 Let ; A ; A + ; A l ; C > 0. Assume that (H1), (H2), (H3) and (35) hold. A positive constant A 4 exists, only depending on A; A 3;m ; k k 2 ; , such that, if

A l D n C (1 + A 4 n ) 2 D n C 2 m and A + n (ln n) 2 D A (ln n) 2 where n = max nq ln n D ; q D ln n n ; R n;D;
o is de…ned in (39), then for all n n 0 (A 1 ; A cons ; A + ; A l ),

P " sup s2F C P n ( (s m ) (s)) 2 1 + L A1;A;A 3;m ;k k 2 ;A ;A l ; n r CD n C m C # 2n :
The following lemma makes use of Lemma 9, Lemma 13 and Lemma 12 and follows from exactly the same arguments as for Lemma 17 in [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF].

Lemma 14 Let ; A ; A + ; C 0. Assume that (H1), (H2), (H3) and (35) hold. A positive constant A 5 , depending on A; A 3;m ; A 1 ; min ; A and , exists such that, if it holds

C (1 + A 5 n ) 2 D n C 2 m and A + n (ln n) 2 D A (ln n) 2 where n = max nq ln n D ; q D ln n n ; R n;D;
o is de…ned in (39), then for all n n 0 (A 1 ; A cons ; A + ),

P " sup s2F >C P n ( (s m ) (s)) 2 (1 + A 5 n ) r CD n C m C # 2n :
Moreover, when we only assume C 0, we have for all n n 0 (A 1 ; A cons ; A + ),

P sup s2F >C P n ( (s m ) (s)) (1 + A 5 n ) 2 D n C 2 m 2n : (95) 
The following lemma combines Lemma 10 and Lemma 12 and follows from the exact same lines as Lemma 18 of [START_REF] Saumard | Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression[END_REF].

Lemma 15 Let r > 1 and C; > 0. Assume that (H1), (H2), (H4) and (35) hold and let ' = (' k ) D k=1 be an orthonormal basis of (m; k k 2 ) satisfying (H4 o is de…ned in (39).

Probabilistic Tools

We recall here the main probabilistic results that are instrumental in our proofs. Let us begin with the L p -version of Ho¤mann-Jørgensen's inequality, that can be found for example in [START_REF] Ledoux | Probability in Banach spaces[END_REF], Proposition 6.10, p.157.

Theorem 16 For any independent mean zero random variables Y j ; j = 1; :::; n taking values in a Banach space (B; k:k) and satisfying E [kY j k p ] < +1 for some p 1; we have

E 1=p n X j=1 Y j p B p E n X j=1 Y j + E 1=p max 1 j n kY j k p !
where B p is a universal constant depending only on p.

We will use this theorem for p = 2 in order to control suprema of empirical processes. In order to be more speci…c, let F be a class of measurable functions from a measurable space Z to R and (X 1 ; :::; X n ) be independent variables of common law P taking values in Z. We then denote by B = l 1 (F) the space of uniformly bounded functions on F and, for any b 2 B, we set kbk = sup f 2F jb (f )j. Thus (B; k:k) is a Banach space. Indeed we shall apply Theorem 16 to the independent random variables, with mean zero and taking values in B, de…ned by Y j = ff (X j ) P f; f 2 Fg :

More precisely, we will use the following result, which is a straightforward application of Theorem 16. Denote by

P n = 1 n n X i=1 X i
the empirical measure associated to the sample (X 1 ; :::; X n ) and by

kP n P k F = sup f 2F
j(P n P ) (f )j the supremum of the empirical process over F. Theorem 18 Let (" 1 ; :::; " n ) be n i.i.d. Rademacher variables and F : R + ! R + be a convex and increasing function. Furthermore, let ' i : R ! R; i n; be contractions such that ' i (0) = 0. Then, for any bounded subset T R n ;

EF X i " i ' i (t i ) T ! 2EF X i " i t i T ! :
The next tool is the well known Bernstein's inequality, that can be found for example in [START_REF] Massart | Concentration inequalities and model selection[END_REF], Proposition 2.9.

Theorem 19 (Bernstein's inequality) Let (X 1 ; :::; X n ) be independent real valued random variables and de…ne

S = 1 n n X i=1 (X i E [X i ]) : Assuming that v = 1 n n X i=1 E X 2 i < 1
and jX i j b a:s:

we have, for every x > 0,

P jSj r 2v x n + bx 3n 2 exp ( x) : (97) 
We turn now to concentration inequalities for the empirical process around its mean. Bousquet's inequality [START_REF] Bousquet | A Bennett concentration inequality and its application to suprema of empirical processes[END_REF] provides optimal constants for the deviations at the right. Klein-Rio's inequality [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF] gives sharp constants for the deviations at the left, that slightly improves Klein's inequality [START_REF] Klein | Une inégalité de concentration à gauche pour les processus empiriques[END_REF]. 

  all n n 0 (A + ), P ( 1 ) 1 n . Moreover, we set 2 = ( max k2f0;:::;D 1g 2 j(P

m kBk k m for any k 2

 2 N. We also have, for any B = (B k;l ) k;l=0;::;D 1 2 R D D , the following classical formula kBk m

  ::;D 1g j(P n P ) (' k ' l )j (28) and the fact that D A + n 1=2

  assumption of consistency in sup-norm (H5), our analysis will be localized in the subset B (m;L1) s m ; Rn;D; = n s 2 m; ks s m k 1 Rn;D; o of m. Let us de…ne several slices of excess risk on the model m : for any C 0, F C = s 2 m; ks s m k 2 2 C \ B (m;L1) s m ; Rn;D;

P 1;m s 2 16A 2

 22 ::;Dg p rC (P n P ) 1;m ' k q P D j=1 (P n P ) 2 1;m ' j Rn;D; u m (') ' k = sup s2Sm (P n P ) 1;m s ; where S m is the unit sphere of m, that is Thus we can apply Klein-Rio's inequality (101) to m by taking F =S m and use the fact that sup s2Sm 1;m s P 1;m s 1 4A p Du m (') by (41), (42) and (H4). (79) sup s2Sm Var 1;m s = sup s2Sm by (41), (42)

  x = ln n in (82), it comes P " max k2f1;:::;Dg (P n P ) 1;m ' k r 32A 2 ln n n + 4Au m (') ln n 3n # 2D n ;

D

  we have, for all n n 0 (A; A + ; u m (') ; ), 4Au m (') ln n 3n r 32A 2 ln n n and we can check that, since rC A u D n and C m k k 2 , if

  ' k + s m 2 m is equal to rC.

	As a consequence, by (85) it holds				
	" which readily gives the result. max k2f1;:::;Dg p rC (P n P ) 1;m ' k m E 1 2 sup (P n P ) 1;m (s m s) A 1 u m (') ! 2 r s2F (C;rC] E 1 2 2 4 (P n P ) 1;m D !!! 2 ln n n X k;n ' k 1 ~ # We are now ready to prove the lower bound (78) for the expected value of the 2D + 1 n 3 5 largest increment of the empirical process over F (C;rC] : Proof of Lemma 10. Let us begin with the lower bound of k=1 ! 2 k=1 = p rC v u u t E " D ! # X (P n P ) 2 1;m ' k 1 ~ : (86)
	E Furthermore, since by (41) P 1;m ' k = 0 and by (H4) k' k k 1 u m (') for all 1 2 sup s2F (C;rC] (P n P ) 1;m (s m s) ; k 2 f1; :::; Dg ; we have a result that will be need further in the proof. Introduce for all k 2 f1; :::; Dg, k;n = p rC (P n P ) 1;m ' k q P D j=1 (P n P ) 2 1;m ' j D X k=1 (P n P ) 2 1;m ' k D max (P n P ) 2 1;m ' k k=1;:::;D ; = D max k=1;:::;D P 2 n 1;m ' k
	and observe that the excess risk on m of D max P D k=1;:::;D k=1 k;n We also set 1;m ' k ~ = ( max k2f1;:::;Dg k;n ) 16A 2 Du 2 m (') Rn;D; u m (') p D By Lemma 11 we have that for all > 0, if A 1 16B 2 p 2 1 : 2A u A 2 k k 1 then, k=1 k=1 2 u m (') and it ensures E " D X (P n P ) 2 1;m ' k ! 1 ~ # E " D X (P n P ) 2 1;m ' k !# 16A 2 Du 2 m (') P	h	~	c i	:
	for all n n 0 (A ; A + ; A; B 2 ; u m (') ; k k 2 ; ),	
		P ~	1	2D + 1 n	:	(84)
	Moreover, by (H4), we get on the event ~ ,			
		D X	k;n ' k		Rn;D; ;
		k=1		1			
	and so, on ~ ,	s m +	D X k=1	k;n ' k	!	2 F (C;rC] :	(85)

  turn now to the lower bound of E h sup s2F (C;rC] (P n P ) 1;m (s m s) i . First observe that s 2 F (C;rC] implies that (2s m s) 2 F (C;rC] , so that

	"						#	"	#
	E	sup s2F (C;rC]	(P n P ) 1;m (s m s)	= E	sup s2F (C;rC]	(P n P ) 1;m (s m s)	:
								(92)
	In the next step, we apply Corollary 21. More precisely, using notations of Corollary
	21, we set					
	and				F = 1;m (s m s) ; s 2 F (C;rC]
						Z = sup	
						s2F (C;rC]	
								D;	1, we get by (41)
	and (42), for all n n 0 (A + ; A ; A 1 ; A cons ),
		sup f 2F	kf P f k 1 = sup s2F (C;rC]	1;m (s m s) 1 4A Rn;D;	4A
	we set b = 4A. Since we assume that rC A u	D n , it moreover holds by (42),
		sup	Var (f )	sup	
		f 2F			s2F (C;rC]	

(P n P ) 1;m (s m s) :

Now, since for all n n 0 (A + ; A ; A 1 ; A cons ) we have Rn;

  92) and Corollary 21, it holds for all n n 0 (A ; A + ; A l ; A u ; A; B 2 ; u m (') ; k k 2 ),

	"	#			
	E	sup s2F (C;rC] 1 L A;A l ;Au;k k 2 (P n P ) 1;m (s m s) p D E 1 2 sup s2F (C;rC] (P n P ) 1;m (s m s)	! 2	:	(94)

Finally, by comparing (90) and (94), we deduce that for all n n 0 (A ; A + ; A l ; A u ; A; B 2 ; u m ('

) ; k k 2 ), E " sup s2F (C;rC]

  ). If positive constants A ; A + ; A l ; A u exist such thatA + n (ln n) 2 D A (ln n) 2 and A l and if the constant A 1 de…ned in (38) satis…es A 1 32B 2 A p 2A u k k 1 2 u m (') ;then a positive constant L A ;A l ;Au;A;A1;k k 2 ;um('); exists such that, for all n n 0 (A ; A + ; A u ; A l ; A; A 1 ; A cons ; B 2 ; u m (') ; k k 2 ),P n ( (s m ) (s)) 2 1 L A ;A l ;Au;A;A1;k k 2 ;um(');

	P	sup s2F (C;rC]							n	r	rCD n	C m rC	!	2n ;
	where n = max	nq	ln n D ;	q	D ln n n ; R n;D;		
						D n	rC A u	D n	;

  Corollary 17 If F is a class of measurable functions from a measurable space Z to R satisfying ; :::; X n ) are n i.i.d. random variables taking values in Z, then an absolute constant B 2 exists such that,E 1=2 kP n P k 2 F B 2 E [kP n P k F ] + sup f 2F kf P f k 1Another tool we need is a comparison theorem for Rademacher processes, see Theorem 4.12 of[START_REF] Ledoux | Probability in Banach spaces[END_REF]. A function ' : R ! R is called a contraction if j' (u) ' (v)j ju vj for all u; v 2 R. Moreover, for a subset T R n we set kh (t)k T = khk T = sup

	sup z2Z	sup f 2F	jf (z) P f j = sup f 2F	kf P f k 1 < +1
	and (X 1 n	:	(96)

t2T jh (t)j :

  Theorem 20 Let ( 1 ; :::; n ) be n i.i.d. random variables having common law P and taking values in a measurable space Z. If F is a class of measurable functions from Z to R satisfying jf ( i ) P f j b a:s:; for all f 2 F; i n;P kP n P k F E [kP n P k F ]and we can deduce that, for all "; x > 0, it holdsP kP n P k F E [kP n P k F ] P E [kP n P k F ] kP n P k F andagain, we can deduce that, for all "; x > 0, it holds P E [kP n P k F ] kP n P k F Proposition 21 Under notations of Theorem 20, if some { n 2 (0; 1) exists such that

	then, by setting								
		2 F = sup f 2F	P f 2	(P f ) 2 ;
	we have, for all x 0,								
	Bousquet' s inequality :							
				r	2 ( 2 F + 2bE [kP n P k F ])	x n	+	bx 3n	exp ( x)
										(98)
				r	2 2 F	x n	+ "E [kP n P k F ] +	1 "	+	1 3	bx n	exp ( x) :
										(99)
	Klein-Rio' s inequality :							
				r	2 ( 2 F + 2bE [kP n P k F ])	x n	+	bx n	exp ( x)
										(100)
				r	2 2 F	x n	+ "E [kP n P k F ] +	1 "	+ 1	bx n	exp ( x) :
										(101)
	The following proposition is proved in [Sau12], Corollary 25.
		{ 2 n E kP n P k 2 F		2 n
	and	{ 2 n	q	E kP n P k 2 F	b n
	then we have, for a numerical constant A 1; ,		
		q						
	(1 { n A 1; )	E kP n P k 2		

F E [kP n P k F ] :
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