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Interlaced Direct Adaptive Regulation Scheme Applied to a

Benchmark Problem

Ioan Doré Landau∗,Abraham Castellanos Silva∗,

Luc Dugard∗, Xu Chen†.

Abstract—Direct adaptive regulation schemes using Internal
Model Principle and FIR Youla-Kučera controller parametriza-
tion have been extensively used for attenuation of multiple
unknown and time varying narrow band disturbances [10],
[5], [2].This approach provides very good results but requires
a very careful design of the central controller in order to
keep the water bed effect on the output sensitivity function
at a an acceptable level. To simplify the design of the central
controller, an adaptive regulation scheme is proposed in this
paper which will incorporate a particular adaptive IIR Youla-
Kučera Filter, called ρ-notch structure (the denominator is a
projection inside the unit circle of the poles of the model of the
disturbance which has roots on the unit circle). The adaptive
scheme estimates separately the numerator and denominator
parameters of the IIR Youla-Kučera Filter. The use of this
approach drastically simplify the design of the central controller
and provides even better results than [2] with the advantage to
use a single central controller independently of the number of
narrow band disturbances. Real-time results obtained on an
active vibration control system will illustrate the potential of
this approach. Comparison with other approaches applied to
the same system are also provided.

Index Terms—Adaptive Regulation, Active Vibration Control,
Inertial Actuators, Multiple Narrow Band Disturbances, Youla-
Kučera Parametrization, Internal Model Principle

I. INTRODUCTION

The problem come from the fact that the Internal Model

Principle does too much by assuring asymptotically total

rejection of the disturbance while in practice attenuation of

narrow band disturbances by 40 to 60 dB is largely enough.

A first approach for overcoming the problem induced

by the Internal Model Principle has been considered in

[1]. Instead of the IMP one uses Band Stop Filters (BSF)

centered at the frequencies of the spikes which allow to

introduce a finite attenuation. The implementation use an

indirect adaptation scheme which time consuming.

The novel approach proposed in this paper is based on the

use of an IIR Youla Kucera parametrization. The objective is

to use the degree of freedom offered by the denominator

of the IIR Youla Kucera filter in order to assign in real

time additional poles to the closed loop which will allow

to reduce the water bed effect and to improve robustness.

To do this it was found convenient to to use the ρ− notch

filters of the form Dp(z
−1)/Dp(ρz−1) with 0 < ρ < 1 where

Dp(z
−1) is the denominator of the model of the narrow band

disturbance ( with roots on the unit circle). This approach will

be comparatively evaluated with repsect to the best results

obtained previously within the EJC Benchmark on adaptive

regulation [6]

II. PLANT DESCRIPTION AND PROBLEM STATEMENT

A photo of the active vibration control experimental set up

used in this study is presented in fig. 1 along with the basic

actions performed by the system. A detailed description can

be found in [6].
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Fig. 1. Active vibration control using an inertial actuator (photo).

The system consists of a passive damper, an inertial

actuator, a mechanical structure, a transducer for the residual

force, a controller, a power amplifier and a shaker. The system

input, u(t) is the position of the mobile part (magnet) of

the inertial actuator, the output y(t) is the residual force

measured by a force sensor. The transfer function between

the disturbance force (δ (t)) and the residual force (y(t)) is

called primary path. The plant transfer function (G = q−d B
A

)

between the input of the inertial actuator (u(t)) and the

residual force is called secondary path. The parametric model

of the secondary path can be straightforwardly obtained by

system identification techniques. The sampling frequency is

fs = 800 Hz.

The frequency range of operation is between 50 and 95

Hz. In this frequency range, 1 to 3 narrow band disturbances

are introduced to the system. The objective is to strongly at-

tenuate these disturbances. Outside the operation zone, there

are robustness constraints in terms of modulus margin and

noise amplification. Basically the modulus of the sensitivity

functions should be kept at very low values. Specifications

for the ”waterbed” effect are also considered by imposing a
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maximum allowed amplification. See [6] for more details of

benchmark specifications and measurement procedures.

A. Plant and controller description

Consider the adaptive regulation scheme depicted in fig. 2

where the IIR YK-parametrized controller is shown. The

linear case with known disturbances will be considered

subsequently in order to clarify the plant and controller

structure (the adaptive loop is dropped out).

The structure of the identified linear time-invariant

discrete-time model of the plant (the secondary path) used

for controller design is:

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−d−1B∗(z−1)

A(z−1)
, (1)

with d is equal to the plant integer time delay (number of

sampling periods),

A(z−1) = 1+ a1z−1 + · · ·+ anA
z−nA ; (2)

B(z−1) = b1z−1 + · · ·+ bnB
z−nB = z−1B∗(z−1) ; (3)

B∗(z−1) = b1 + · · ·+ bnB
z−nB+1 , (4)

where A(z−1), B(z−1), B∗(z−1) are polynomials in the com-

plex variable z−1 and nA, nB and nB − 1 represent their

orders1. Details on system identification of the models con-

sidered in this paper can be found in [11], [9], [8].

Adaptive Part

Central Controller

Fixed Part

Fig. 2. Direct adaptive scheme using an IIR YK-parametrization of the
controller. Dashed box: fixed part, Point-dash box: adaptive part.

The controller used in this paper corresponds to an IIR

Youla-Kučera parametrized RS polynomial digital controller

([7], [11] - see also figure 2). The controller is divided in

a fixed (constant) part which will assign part of the closed

loop poles and an IIR-YK filter (BQ(z
−1/BQ(z

−1), which

will compensate the effect of the disturbance by introduc-

ing the internal model of the disturbance in the controller

(polynomial BQ(z
−1)) and a polynomial BQ(z

−1 which will

introduce new poles to the closed loop and will have a strong

influence upon the ”waterbed” effect on the shape of the

sensitivity functions. When the disturbances are of unknown

frequency, the parameters of the IIR-YK filter will be adapted

(the estimated values will be denoted by ÂQ and B̂Q).

In this scheme, the central controller is described through

R0(z
−1) and S0(z

−1), which are polynomials in z−1 having

1The complex variable z−1 will be used for characterizing the system’s
behavior in the frequency domain and the delay operator q−1 will be used
for describing the system’s behavior in the time domain.

the orders nR0
and nS0

, respectively, with the following

expressions:

R0 = r0
0 + r0

1z−1 + . . .+ r0
nR0

z
−nR0 = R′

0(z
−1) ·HR0

(z−1) ;

(5)

S0 = 1+ s0
1z−1 + . . .+ s0

nS0
z
−nS0 = S′0(z

−1) ·HS0
(z−1) , (6)

where HR0
and HS0

are pre-specified parts of the controller

(used for example to incorporate the internal model of a

disturbance or to open the loop at certain frequencies).

R0(z
−1) and S0(z

−1) are minimal degree solutions of

P0(z
−1) = A(z−1)S0(z

−1)+ z−dB(z−1)R0(z
−1), (7)

where P0(z
−1) defines the nominal closed loop poles related

to the central controller.

Under the Youla Kucera parametrization the controller

polynomials are defined as follows2:

R = AQR0 +HS0
HR0

ABQ (8)

S = AQS0 −HS0
HR0

z−dBBQ (9)

where the optimal Q-filter has the following structure:

Q(z−1) =
BQ(z

−1)

AQ(z−1)
=

b
Q
0 + b

Q
1 z−1 + · · ·+ b

Q
nBQ

z
−nBQ

1+ a
Q
1 z1 + · · ·+ a

Q
nAQ

z
−nAQ

. (10)

One defines the following sensitivity functions:

• Output sensitivity function:

Syp(z
−1) =

A(z−1)S(z−1)

P(z−1)
; (11)

• Input sensitivity function

Sup(z
−1) =−

A(z−1)R(z−1)

P(z−1)
, (12)

where

P = AS+ z−dBR = AQP0

= AQ

(

AS0 + z−dBR0

)

(13)

defines the poles of the closed loop (roots of P(z−1)).
One can write the output of the system as:

y(t) =
A(q−1)S(q−1)

P(q−1)
· p(t) = Syp(q

−1) · p(t) . (14)

B. Disturbance description

A deterministic disturbance p(t) can be represented as the

output of a filter excited by a Dirac pulse as

p(t) =
Np(q

−1)

Dp(q−1)
·δ (t) , (15)

where δ (t) is a Dirac pulse and Np(z
−1), Dp(z

−1) are

coprime polynomials in z−1, of degrees nNp and nDp , respec-

tively. In the case of persistent (stationary) disturbances the

roots of Dp(z
−1) are on the unit circle (which will be the

case in the present context).

2The arguments (z−1) and (q−1) will be omitted in some of the following
equations to make them more compact.
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The disturbances considered in the benchmark can in fact

be represented by a sum of sinusoidal disturbances.

p(t) =
n

∑
i=1

Ci sin(ωit +βi) , (16)

where {Ci,ωi,βi} 6= 0 and n is the number of narrow band

disturbances. In this case, Dp(z
−1) in (15) has the expression:

Dp(z
−1) =

n

∏
i=1

(

1− 2cos(ωi)z
−1 + z−2

)

, (17)

where ωi = 2π fiTs, fi is in Hz and Ts = 1/ fs is the sampling

time. Under this mirror structure, no matter the values of ωi,

the roots of Dp remains on the unit circle.

III. INTERNAL MODEL PRINCIPLE WITH YK IIR

PARAMETRIZATION

Consider the case when the frequencies of the disturbance

are known, i.e. Dp(z
−1) is known and a given central con-

troller R0(z
−1) and S0(z

−1) is already computed3.

Consider eq. (14). In order to asymptotically reject the

effect of p(t) over y(t), the polynomial S(z−1) should incor-

porate the denominator Dp(z
−1) (Internal Model Principle -

[4]), as is shown next:

S(z−1) = S′(z−1) ·HS(z
−1)

= S′(z−1) ·
(

HS0
(z−1) ·Dp(z

−1)
)

. (18)

Looking at the eq. (9), is possible to define a diophantine

equation allowing to compute the optimal Q-IIR filter which

introduces the model of the disturbance into the controller.

The diophantine equation is

S′Dp +HR0
z−dBBQ = AQS′0, (19)

where the common term HS0
(z−1) has been eliminated. Here

Dp(z
−1), HR0

(z−1), d, B(z−1) and S′0(z
−1) are known, and

BQ(z
−1) and S′(z−1) are unknown. In order to eq. (19) be

solvable, AQ(z
−1) should be defined. Suppose temporarily

that AQ(z
−1) is known and asymptotically stable (a.s.) ,since

this polynomial will define additional poles for the closed-

loop (see eq. (13)). Then, eq. (19) has a unique and minimal

degree solution for S′(z−1) and BQ(z
−1) with nAQ

+nS′0
−1≤

nDp + nHR0
+ nB + d − 1, nS′ = nB + d + nHR0

− 1 and nBQ
=

nDp − 1.

A. Structure of AQ(z
−1)

In eq. (19), the computed numerator BQ(z
−1) intro-

duces zeros in the polynomial S(z−1), through the YK-

parametrization. This allows the rejection of the narrow-

band disturbance. But this does not guarantee a satisfactory

modulus margin (∆M - see [11]) and a limited water bed

effect at other frequencies.

Instead of a BSF approach used in [1], the idea is to

consider a particular notch filter structure, the ρ - filter

3Pole placement with sensitivity function shaping is used as computation
method but any other technique can be used for the central controller. The
central controller generally includes all the stable poles of the plant model,
additional auxiliary real poles for robustness and a fixed part HR0

(z−1) =
1− z−2 for opening the loop at 0 fs and 0.5 fs .

introduced in [3]. a particular notch type structure is directly

used for the YK-IIR filter:

BQ(z
−1

AQ(z−1
=

Dp(z
−1)

Dp(ρz−1)
(20)

AQ(z
−1) = Dp(ρz−1) = 1+ραz−1+ρ2z−2, (21)

where α =−2cos(2π f Ts) and using a constant ρ ,0< ρ < 1.

Dp(z
−1) has its roots over the unit circle (see eq. (17)). As

a consequence of the change of z−1 to ρz−1, the roots of

AQ(z
−1) are located in the same radial line but inside of

the unit circle, and therefore it is asymptotically stable. In

this approach the constant ρ is defined as a function of the

desired attenuation. This is also a parameter for tuning the

robustness, since it has influence over the waterbed effect in

Syp(z
−1).

In Fig. 3 the magnitude of the frequency responses of the

output sensitivity function with a single central controller but

for different structures of the YK filter used for disturbance

compensation are shown. The first case corresponds to the

use of an YK-FIR filter (as used in [2]) for implementing

the model of the disturbance and it is depicted using a

dotted line. The amplifications outside of the frequency of

the disturbance are important and could lead to insufficient

robustness (the computed modulus margin - ∆M - is 0.0961

corresponding to an amplification of 20.6 dB). The second

case, represented with a dashed line, corresponds to the

use of a BSF filter approach (as in [1]) for computing the

optimal BQ(z
−1) and AQ(z

−1). The BSF was computed using

the disturbance frequency, a desired attenuation of -60 dB

and a denominator damping of 0.09 (the ∆M is 0.4318

corresponding to an amplification of 7.3 dB). The third case,

represented with a solid line corresponds to ρ-notch type

filter structure with AQ given in (21). A constant ρ = 0.97

was used for this case (the numerator structure corresponds

to the YK-FIR case considered earlier). The computed ∆M

is 0.4527 corresponding to an amplification of 6.9 dB.

Clearly the ρ-notch type structure requires can achieve a

strong reduction of the water bed effect.Only an estimation

of α and a given constant ρ are required for directly

implementing the YK-IIR filter. For that reason this type of

structure has been chosen for the denominator AQ(z
−1) in

order to develop an interlaced direct adaptive scheme.

IV. PARAMETER ADAPTATION ALGORITHMS

Consider eqs. (14) and (9). From fig. 2, the signal w(t +1)
is defined as follows

w(t + 1) = A(q−1)y(t + 1)−B∗(q−1)u(t − d)

= A(q−1)p(t + 1), (22)

then, the output of the closed-loop system can be expressed

as follows

y(t) =

[

ÂQS0 −HS0
HR0

q−dBB̂Q

]

ÂQP0

w(t). (23)

Using the ρ type YK-IIR filters it is necessary to estimate

first the parameters of Dp(z
−1). Then one estimates the

parameters of B̂Q(z
−1).
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Fig. 3. Zoom of the frequency response of the output sensitivity function
for different YK-filters. FIR case: dotted line, BSF case: dashed line and
ρ-notch case: solid line.

A. Estimation of Dp(q
−1)

Assume that the signal p(t) contains n narrow-band com-

ponents. p(t) will then satisfy

n

∏
i=1

(

1− 2cos(ωi)z
−1 + z−2

)

p(t) = 0, (24)

where ωi (i = 1, . . . ,n) is the frequency of the ith narrow-band

component in p(t). Eq (24) can be equivalently written:

Dp(z
−1)p(t + 1) = 0. (25)

The disturbance model can be expressed by:

p(t + 1) =−
n−1

∑
i=1

αi [p(t + 1− i)+ p(t+ 1− 2n+ i)]−·· ·

· · ·−αn p(t + 1− n)− p(t+ 1− 2n) = θ T
Dp

φDp(t).

(26)

where the parameter vector is:

θDp = [α1,α2, . . . ,αn]
T . (27)

and regressor vector at the time t is:

φDp(t) =
[

φ1,Dp(t),φ2,Dp(t),φn,Dp(t)
]T

, (28)

where

φ j,Dp(t) =−p(t + 1− j)− p(t+ 1− 2n+ j) , j = 1, . . . ,n− 1

(29)

φn,Dp(t) =−p(t + 1− n). (30)

Eq. (26) can then be simply represented by

p(t + 1) = θ T
Dp

φDp(t)− p(t + 1− 2n). (31)

One defines the a priori prediction of p(t + 1):

p̂0(t + 1) = θ̂ T
Dp
(t)φDp(t)− p(t + 1− 2n), (32)

where θ̂Dp(t) is the predicted parameter vector at time t.

The a priori prediction error is given by

e0(t + 1) = p(t + 1)− p̂0(t + 1) =−θ̃ T
Dp
(t)φDp(t), (33)

where θ̃Dp(t) = θ̂Dp(t)− θDp is the parameter estimation

error.

The following a posteriori signals are defined:

• the a posteriori prediction of p(t + 1):

p̂(t + 1) = θ̂ T
Dp
(t + 1)φDp(t)− p(t + 1− 2n), (34)

• the a posteriori prediction error:

e(t + 1) = p(t + 1)− p̂(t + 1) =−θ̃ T
Dp
(t + 1)φDp(t).

(35)

Equation (35) has the standard form of an a posteriori

adaptation error which allows to associate the standard pa-

rameter adaptation algorithm (PAA) introduced in [7]

θ̂Dp(t + 1) = θ̂Dp(t)+
F2(t)φDp(t)e

0(t + 1)

1+φDp(t)
T F2(t)φDp(t)

(36)

e0(t + 1) = p(t + 1)− p̂0(t + 1) (37)

p̂0(t + 1) = θ̂ T
Dp
(t)φDp(t)+ p(t + 1− 2n) (38)

F2(t + 1)−1 = λ1(t)F2(t)
−1 −λ2(t)φDp(t)φDp(t)

T (39)

0 < λ1(t)≤ 1; 0 ≤ λ2(t)< 2; F2(0)> 0

B. Estimation of BQ(z
−1)

Consider eqs. (14) and (9). From fig. 2, the signal w(t +1)
is defined as follows

w(t + 1) = A(q−1)y(t + 1)−B∗(q−1)u(t − d)

= A(q−1)p(t + 1), (40)

then, the output of the closed-loop system can be expressed

as follows

y(t) =

[

ÂQS0 −HS0
HR0

q−dBB̂Q

]

ÂQP0

w(t). (41)

Following the principles given in [10] and [8], it is possible

to develop a direct adaptive algorithm for estimating B̂Q

provided that ÂQ is available. Using eq. (41), the a posteriori

error is defined as

ε(t + 1) = v1(t + 1)+ · · ·

· · ·
(

BQ − B̂Q(t + 1)
)

w f (t + 1) · · ·

−
(

A∗
Q − Â∗

Q(t + 1)
)

û
f
Q(t)−A∗

Qε(t) (42)

where

w f (t + 1) =
HS0

HR0
q−dB

P0

w(t + 1) (43)

û
f
Q(t) =

HS0
HR0

q−dB

P0

ûQ(t) (44)

v1(t + 1) =
S′HS0

ANp

AQP0

δ (t + 1) (45)

(see also Fig. 2). The signal v1(t + 1) tends asymptotically

towards zero (an asymptotically stable system excited by a

Dirac pulse) and can be neglected.
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TABLE I
COMPARISON OF ALGORITHMS FOR THE ADAPTATION OF THE

NUMERATOR PARAMETERS BQ(z
−1)

Adaptation Prediction Regressor Positive Observations
error error vector Real Cond.

v(t +1) ε(t +1) Φ1(t) H′(z−1)

ε(t +1) Eq. (46) φ1(t)
1

AQ
− λ2

2
-

ÂQε(t +1) Eq. (46) φ1(t)
ÂQ

AQ
− λ2

2
-

ε(t +1) Eq. (46) φ
f

1 (t)
ÂQ

AQ
− λ2

2
-

ε(t +1) Eq. (46) φ
f

1 (t)
ÃQ(t)

AQ
− λ2

2

Local
Convergence

The equation for the a posteriori error takes the form

ε(t + 1) =
1

AQ

[

θ T
1 − θ̂ T

1 (t + 1)
]

φ1(t + 1)+ · · ·

· · ·+ v
f
1(t + 1)+ v2(t + 1), (46)

where

v
f
1(t + 1) =

1

AQ

v1(t + 1)→ 0, since AQ is a.s. (47)

v2(t + 1) =
1

AQ

(

A∗
Q − Â∗

Q(t + 1)
)

(

−û
f
Q(t)

)

→ 0, (48)

θ1 =
[

b
Q
0 , · · · ,b

Q
2n−1

]T

(49)

θ̂1(t + 1) =
[

b̂
Q
0 (t + 1), · · · , b̂Q

2n−1(t + 1)
]T

(50)

φ1(t + 1) =
[

w f (t + 1), · · · ,w f (t + 2− 2n)
]T

(51)

where n is the number of narrow-band disturbances. (46) has

the standard form of an adaptation error equation [7], and

the following PAA is proposed:

θ̂1(t + 1) = θ̂1(t)+F1(t)Φ1(t)ν(t + 1) (52)

ν(t + 1) =
ε0(t + 1)

1+ΦT
1 (t)F1(t)Φ1(t)

(53)

ν0(t + 1) = w1(t + 1)− θ̂ T
1 (t)Φ1(t) (54)

w1(t + 1) =
S0

P0

w(t + 1) (55)

F1(t + 1)−1 = λ1(t)F1(t)
−1 −λ2(t)Φ1(t)Φ

T
1 (t) (56)

0 < λ1(t)≤1; 0 ≤ λ2(t)< 2; F1(0)> 0 (57)

Since in the equation of the a posteriori error (46 there is a

term 1/AQ, according to [7] there will be a sufficient positive

real condition to be satisfied. There are several possible

choices for the regressor vector Φ1(t) and the filtering of

the adaptation error in order to satidfy this condition. Table I

gives the various options and the corresponding sufficient

positive real condition. A stability analysis can be found in

[?].

V. APPLICATION TO THE EJC BENCHMARK

The Pole Placement with sensitivity function shaping [11]

is used to calculate the central controller. All the stable poles

of the system are included in P0(z
−1) . Also 6 real poles are

added for robustness reasons. Four band stop filters have been

TABLE II
REAL-TIME RESULTS FOR THE YK-IIR ALGORIHTM - SIMPLE STEP

TEST.

Level Case (Hz) GA (dB) DA (dB) MA (dB@Hz) TD %

50 34.5 40.3 9.3@62.5 92.2
55 33.1 45.4 8.2@50.0 100
60 33.3 45.6 6.8@125.0 100

1 65 31.8 45.4 9.1@56.3 100
GA≥30 70 29.9 45.6 8.1@131.3 100
DA≥40 75 30.3 47.9 8.6@70.3 100
MA≤6 80 29.5 48.6 7.7@6.3 100

85 29.5 43.6 6.3@117.2 100
90 29.1 43.7 7.5@117.2 100
95 27.1 39.0 6.8@375.0 100

50-70 38.2 40.9-43.9 10.3@64.1 100
2 55-75 35.9 46.1-47.2 11.9@60.9 100

GA≥30 60-80 37.8 45.6-45.9 7.9@70.3 100
DA≥40 65-85 35.2 42.9-42.9 7.9@212.5 100
MA≤7 70-90 36.1 43.7-44.9 10.0@115.6 100

75-95 35.0 44.9-40.0 9.9@128.1 100

3 50-65-80 40.1 38.3-39.7-43.7 8.9@125.0 100
GA≥30 55-70-85 40.1 45.2-45.1-42.7 7.8@78.1 100
DA≥40 60-75-90 38.7 45.2-42.2-43.3 10.8@78.1 100
MA≤9 65-80-95 38.8 43.9-41.7-40.5 10.2@85.9 80.9

introduced in HR0
(z−1) in order to shape Sup(z

−1) outside

the operation zone. The loop is opened at 0 fs and 0.5 fs.

HS0
(z−1) = 1

A value of ρ = 0.97 has been used for all the levels and

all the test. This value provides a good compromise between

performance and robustness. The value is not very critical.

A. Real-time results

Table II summarizes the real-time results for the Simple

Step Test. The performance objective are shown in column

1. DA is the disturbance attenuation, GA is the global

attenuation, MA is the maximum amplification. TD indicates

the percentage of fulfilment of the transient duration (2s).

The specifications for DA,GA and TD are achieved in most of

the cases. However the limits for the maximum amplification

(MA) are violated for a number of cases ( But this is the case

also for the schemes considered in [1], [3] and [2])

B. Performance Comparison

The results which have been presented has to be evaluated

comparatively with the the most relevant schemes presented

for the EJC benchmark [6]. This comparison will be done

on a global basis using the procedure presented in [6]. The

results presented above will be compared with those of [1],

[3] and [2].

The following two global evaluation criteria are considered

for comparison

• Benchmark Satisfaction Index (BSI) for steady state

performance, known also as Tuning capabilities. This

criterion uses the results from the Simple Step Test

in order to show how ”good” is the performance of

a specified scheme, by measuring the fulfilment of the

specifications (column Level in Table II) and assigning

a percentage.
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• Complexity evaluation is done in terms of measurement

of the Task Execution Time4. The value of the crite-

rion is obtained from the average task execution time

(TET) measured in the xPC-Target environment from

MATLAB. Low values correspond to less complexity

of the control scheme.

In Fig. 4 the comparison of the BSI for the steady state

performance is presented for the four approaches mentioned.

As shown, the adaptive scheme proposed in this paper

(named YK-IIR) achieves the highest performance in real-

time for the first level (BSI1-RT), a very good performance

for the second level (BSI2-RT) and the second best (only

behind [2]) for the third level (BSI3-RT).

Fig. 4. Benchmark Satisfaction Index (BSI) comparison for four approaches
in the three levels. RT = Real Time, Sim = Simulation.

Finally, in terms of complexity, the YK-IIR has a signif-

icant increases ∆TET compared to the one obtained in [2]

(which is the lowest) using FIR Youla Kucera parametriza-

tion. However this value is still significantly smaller than the

∆TET of [1] and comparable with ∆TET of [3].

4In fact the difference between the task execution time in closed loop and
in open loop is considered in the criterion.

VI. CONCLUDING REMARKS

The results on this paper suggest that with an adaptive

IIR Youla-Kučera Filter it is possible to achieve similar and

even better results that with an FIR Youla-Kučera Filter for

the strong attenuation of multiple unknown and time-varying

disturbances. The advantages of using this approach is on one

hand the drastic simplification of the design of the central

controller and on the other hand the possibility of using

a single central controller independently of the number of

narrow band disturbances to be attenuated.
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