N

N

Natural hazards, vulnerability and structural resilience:
tsunamis and industrial tanks
Ahmed Mebarki, Sandra Jerez Barbosa, Gaetan Prodhomme, Mathieu

Reimeringer

» To cite this version:

Ahmed Mebarki, Sandra Jerez Barbosa, Gaetan Prodhomme, Mathieu Reimeringer. Natural hazards,
vulnerability and structural resilience: tsunamis and industrial tanks. taylor and francis group, 2016,
7 (supl), pp.5 - 17. 10.1080/19475705.2016.1181458 . hal-01314527

HAL Id: hal-01314527
https://hal.science/hal-01314527

Submitted on 5 Sep 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01314527
https://hal.archives-ouvertes.fr

GEOMATICS, NATURAL HAZARDS AND RISK, 2016 Tavlor & F .
VOL. 7, NO. §1, 517 e aylor & Francis
Taylor &Francis Group

http://dx.doi.org/10.1080/19475705.2016.1181458

3 OPEN ACCESS

Natural hazards, vulnerability and structural resilience: tsunamis
and industrial tanks

Ahmed Mebarki®, Sandra Jerez®, Gaetan Prodhomme® and Mathieu Reimeringer

?Laboratoire Modelisation et Simulation Multi Echelle, University Paris-Est, Marne-La-Vallee, France; ®Grupo de
Investigacion en Estructuras y Materiales, Escuela Colombiana de Ingenieria, Bogota, Colombia; “Unit Sécurité des
Structures, Institut National de I'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France

ABSTRACT ARTICLE HISTORY

The paper presents an integrated framework which deals with natural Received 20 October 2015
hazards (tsunamis), physical vulnerability modelling, risk of failure for Accepted 12 April 2016
industrial structures (metal structures) and structural resilience provided KEYWORDS

by plastic adaptation. Simplified models are proposed to describe the run- Hazards; Tsunamis; resilience;
up and wave height attenuation in case of tsunamis. The results are structures; industrial tanks;
calibrated in the case of important tsunamis having taken place in Asian fragility curves; vulnerability
region. The mechanical vulnerability of cylindrical metal tanks erected

near the shoreline is also investigated. The fragility curves are then

developed in order to describe the multimodal failure: overturning,

rupture of anchorages and sliding, buoyancy, excessive bending effects or

buckling. Corresponding fragility curves are developed under various

conditions: height of tsunami waves, filling ratios and service conditions of

the tanks, friction tank/ground as well as dimensions effects. Probabilistic

description of the natural hazard and the fragility curves are presented.

Sensitivity analysis is also performed in order to investigate the effect of

various governing parameters. Furthermore, resilience concepts and

metrics are proposed. Theoretical description of the damages and post-

disaster recovery functions are discussed: plastic adaptation as well as

elastic and plastic attractors.

1. Introduction

Resilience is becoming a powerful and integrated concept able to deal with the case of individual
structures as well as sets of structures at large scales such as industrial plants, urban or regional
infrastructures. It is actually well adapted for quantitative description of the system post-disaster
behaviour or capacity. This capacity may concern mechanical and physical response as well as
socio-economic aspects.

However, objective resilience measurement requires adequate metrics and effective description of
the system recovery functions at post-disaster stages as well as the assessment or prediction of the
damage that may be caused by the potential hazards. For instance, during 2011 Tohuku earthquake
and tsunami event, several industrial plants have suffered irreversible damages and have generated
important socio-economic consequences, with domino effects since first damages propagated and
caused subsequent failures and disturbance in the interrelated dependent systems. Obviously, the
structural residual capacity and the socio-economic recovery functions depend on the losses extent,
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Figure 1. Integrated framework: hazard — vulnerability — risk — resilience (Mebarki et al. 2014a, 2014b; Mebarki and Barroca
2015). (a) General framework and (b) utility functions and post-disaster recovery.

i.e. damages, the available resources and the post-disaster management. It is then of crucial impor-
tance to develop adequate functions and metrics able to define, see figure 1:

e The utility functions of a system at each instant time ¢, i.e. Fx(.) which expresses the mechani-
cal capacity or socio-economic aspects and its threshold value Fg ;, for ‘survival” and possible
upper bound value Fx ax,

o the potential hazards (natural or industrial),

¢ the vulnerability and fragility functions of the system, for each intensity of the hazard,

¢ the conditional damages and losses caused to the utility functions, conditional to each hazard
intensity,

e the system ‘survival’ after the disaster is triggered (at ¢;; and lasting until ¢,;) and

e the recovery functions according to the available resources (intern resources due to adaptation
between the system components, or extern resources by flow exchanges) and the adequate
management or by change of use (and subsequent utility functions) and threshold value for
resilient systems (Fg op), during a reference period for recovery (T).

For illustrative purposes, cylindrical metal tanks, erected in a petrochemical plant at a coastal
zone, are studied. Simplified probabilistic tsunamis models are developed and calibrated according
to the real wave heights and collected run-ups values. The structural behaviour of the tanks and their
fragility functions are also elaborated. The potential and conditional damages that may be caused to
the tanks are also described by probabilistic models. Sensitivity analysis and discussion about met-
rics for resilience are also proposed.

2. Resilience and metrics

The resilience is widely used for dynamic systems in order to describe their ability to absorb, stand
and recover from catastrophic events. However, the most common resilience analyses deal with
descriptive and qualitative analysis. It is then still challenging to define consensual metrics for quan-
titative resilience analysis (Hollnagel et al. 2008; Johnston et al. 2008; Hollnagel et al. 2011; Stewart
& Yuen 2011; Barker et al. 2012; Dinh et al. 2012; Miller-Hooks et al. 2012; Shirali et al. 2012;
Francis & Bekera 2014; Manyena 2014; Matthews et al. 2014; Pant et al. 2014; Roege et al. 2014; Sha-
fieezadeh & Burden 2014; Aldunce et al. 2015; Angeon & Bates 2015; Bond et al. 2015; Cardoso et al.
2015; Chopra & Khanna 2015; Dijkstra & Viebahn 2015; Kelman et al. 2015; Khalili et al. 2015;
Labaka et al. 2015; Lindbom et al. 2015; Lundberg & Johansson 2015; Mugume et al. 2015; Oken
et al. 2015; Ouyang & Wang 2015; Righi et al. 2015; Sahebjamnia et al. 2015).
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Quantitative and relevant resilience metrics obtained as improvements of metrics already issued
can be expressed as (Mebarki et al. 2014a, 2014b; Mebarki & Barroca 2015):

FR(t) :FR(t | V,3V,TREF) = [FR<td~,i)'(1 - [H(t —ta= O)DFY(td)D} . [(1 +(I)ﬂ(t - td)'Xmﬁ'Xm,r] (1)

®,(t—ty) > 0: if the system recovers (strengthening or hardening)
D,(t—t4) :  P,(t—1ty)=0: if the system stays at stationary state or plastic perfect (2)
®,(t—t4) <0: if the system state decreases (worsening or softening)

{ Xb., o for parallel events, i.e. need for both external and internal resources for recovery

KX = xX . for serial events, i.e. need for either external or internal resources for recovery
3)
I it _ext | 1: if external as well as internal resources are potentially available @)
Kimr = Xmr-Xim.r *\ 0. if neither external nor internal resources are potentially available

. 1: if either external or internal resources are available
Xy =1= (L=t ) (L= xot) s 4 " ) :
’ ’ ’ 0: if neither external nor internal resources are available

(5)

1: if (t—14)>0
0: else

H(t—ty 20)={ (6)

where Fg(.) = resilience index or utility function value at instant #; ¢;; = instant at which the haz-
ard is triggered, such as the tsunamis’ flows arrival time; (¢; = t;) = end of the hazard application
such as tsunamis sequence end (for short duration events such as earthquake or explosion: t; = t4y
= t4,); Dp(.) = damage value or physical vulnerability ranging within [0..1] which corresponds to
the resilience drop caused by the disaster; H(.) = Heaviside function; V = entire system volume
(local or global scale); jV = its frontier; T,.s = reference or conventional period for expected recov-
ery; ®@,(f) = adaptation and recovery evolution function under given hypothetic availability of
resources and adequacy of management; X,, = probability measure of readiness and adequate man-
agement for ‘resilience capability and resources availability’ function which depends on ¥, , = prob-
ability of having available resources within the system volume or/and as flow exchanges at its
frontiers and x,,. = probability of adequate management by ‘resilience building capacity’ which
expresses the actual capacity to react adequately. This later depends mainly on past experience, edu-
cation, knowledge and readiness to react, ‘faith’ in possible solution, as well.

According to the resilience index value along the reference period, the system will be then consid-
ered as:

e non-resilient if {(Fr) < (Frmin)}
o resilient if {(Fg) € [Frmins Froptl}>
® over-resilient if {(Fr) > Fg opi}.

3. Case of metal tanks and industrial plants: resilience, basins and attractors

For illustrative purposes, the case of metal tanks erected in a petrochemical plant under the lateral
pressure of tsunamis is investigated. Though they have usually tubular cross sections, for the sake of
simplicity in the present analytical developments, the case of rectangular cross sections is developed
whereas the equivalent metal beams are supposed to have either one or two fixed supports, see
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Figure 2. Metallic tanks and equivalent structural beam models under uniform lateral pressure. (a) One fixed support tank and
structural model and (b) two fixed supports, cross-section and structural model.

figure 2. A conventional quantitative structural resilience Fz(.) can be expressed as:

F(r) = B0 )

el

with gg(.) = the residual bearing capacity, i.e. the maximal tsunami pressure that can still be
resisted by the structure; g4 = the ‘elastic pressure’ for which the extreme fibre of the structure
reaches the yielding stress f,.

The conventional resilience is so that the structure is expected to absorb at any time a load able to
generate a maximum stress strictly equal to the yield stress f, of the constitutive tank metal. A resil-
ient system will recover, by plastic adaptation, so that its residual capacity satisfies:

>
Fr(t)], =1 (8)
It is also necessary to define a corresponding conventional potential for resilience, such as:

O(1)

Tret =1- FR(t) | Tref (9)
Therefore, several particular values of this potential resilience can be defined:
o [nitial state: before any damage affects the structure, the potential for resilience is:

Or(t <ty)

T, = 1 (10)

® Elastic attractor: when the bearing capacity is equal to the elastic value g, the potential for
resilience becomes:

Or(t=ta)|, =0 (11)

This value defines, therefore, the reference line (elastic attractor) above which the structure is
non-resilient.

® Resilience drops due to damages at critical sections: when the critical sections suffer damages
(edge or mid-span damages), then the potential increases and the system needs to return to
negative values of this potential in order to become resilient. Due to plastic resources available
at the damaged critical section, the potential for resilience moves towards the plastic attractor
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defined by:
1— Fe=1— (1 — D{")2.Gyrea: case of structure with one full support
Or(t=t =
Al o) Tret 1-Fg<= (1 +(1- Dzdge)z) : case of structure with two full supports
(12)
Dy = Dzdge = damage at the edge (drop of residual resisting height h)
W, b.h*/4 (13)
Garea = —2 where Gyrea = bk /1) = 1.5 for rectangular cross section
We b.h? / 6

® Final basin attractor due to complete use of available resources for recovery and interaction
between critical sections: when the whole resources (plastic behaviour) are used for the capacity
recovery, the structure reaches the final resilience basin. For the case of one full support, the
final resilience basin is at the same resilience potential value than the plastic attractor. For the
two full supports case, this final basin depends on the resources available at the mid-span (full
section yielding capacity). The post-recovery basin becomes then:

1-F=1—(1— D;dge)z.Garea: case of one full support

Or(t=teec)|, = 2.G
16/ | g 1 — Fiec = % ) ((1 - Dzdg*’)2 +(1— DZPa“)Z) : case of two full supports
(14)
DZP " = damage at the mid-span cross section of the metal beam (15)

(drop of residual resisting height h)
Hypothesis - In order to express the time-dependent recovery process and simulate the load evo-

lution vs. time, the load q is supposed to vary uniformly with the time, i.e. it is supposed to increase
or decrease with the same velocity, i.e.:

q= ’ % ’ = constant (16)

Various damage conditions are considered. The resulting resilience as well as the corresponding
potential for resilience is reported:

e TFor a metal tank with one full support, see figure 3: the structure is resilient as long as the bot-

tom section damage satisfies:
2
D;dgeg{1 - \/52 0.184}

e For a metal tank with two full supports at the bottom and at its top (rigid roof), see figure 4: the
structure is resilient as long as the damages caused at the bottom and the top sections satisty
the condition:

, see equations (12—13)

(1= D)’ + (1= D) =1

, see equations (12—13).
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Figure 3. Beam on one fixed support and potential resiliency: basins and attractors. (a) Resilient tank: Dy, :DZOIge = 0.1and (b)
non-resilient tank: Dy, = Dnge = 0.3.
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Figure 4. Beam on two fixed supports and potential resiliency: basins and attractors. (a) Resilient tank: D;dge = 0.3; D" = 0.15
and (b) non-resilient tank: Dzdge = 0.3; D™ = 0.5.

4. Hazard modelling: case of tsunami

Numerous investigations have focused on tsunamis modelling, simulations and observations analy-
sis (Abe 1993; Demetracopoulos et al. 1994; Abe 1995; Haugen et al. 2005; Wijetunge 2006; Burwell
et al. 2007; Helal & Mehanna 2008; Constantin 2009; Heidarzadeh et al. 2009; Liu et al. 2009; Zhang
et al. 2009; Madsen 2010; Lovholt et al. 2012; Cheung et al. 2011; Flouri et al. 2013; Goto et al. 2011;
Nandasena et al. 2011; Pophet et al. 2011; Zhao et al. 2011). A probabilistic simplified model,
adapted from attenuation models for earthquakes, is developed and presented for evaluation of the
peak water heights (H) and run-ups (Hy) during tsunamis (Mebarki 2009; Mebarki et al. 2014a,
2014b; Mebarki & Barroca 2015). A Gamma distribution is adopted to describe the uncertainties
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Figure 5. Tsunami path from the epicentral zone towards the shore and inlands.
affecting the model and the parameters, see figure 5:
H e*ﬂ.Dh
= (17)
Hy 1+ Dj.e~(Mv—Mo)
log(HO) =0.5M, — 3.3+ C(Abe 1993) (18)

V=1g(h+H) (19)

where H (m) = peak water height; 4 (m) = water depth; D), (km) = hypocentral distance; M,, =
earthquake moment magnitude; H, (in m) = reference uplift at the epicentral zone, M, = threshold
magnitude and S are fitting parameters; C = constant value considered as fitting parameter depend-
ing on the kind of subduction zone (Abe 1993, 1995); and V: velocity of the tsunamis.

Near the shoreline, the seabed is supposed to be represented by a straight line from an interface
distance until it reaches the shoreline (SL), see figure 6. The peak water height at the shoreline is

! ~
- |
/
- I -
! H, My J I Hehy

/ 1 |

/ i
h h
R=Dh

Validity domain: 100-1600 km Interface: Distance (local bathymetry)

Figure 6. Run-up and slopes between interface zones and shorelines.
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obtained by energy conservation, when no attenuation is considered, i.e.:

Hszl \% HSl = H12nt . (hint + Hint) (20)

Due to the energy dissipation (attenuation), the final peak water height at the shoreline becomes
then:

efﬂ-Dinl

"1+ Djpp.e~ (Mu—Mo) @D

HSI = (lem (hint + Hint))2/3

where Hy (in m) = peak water height at the shoreline, H,; (in m) = peak water height at the
interface zone, h;,, (in m) = depth of the sea at the interface zone, Dy, (in km) = horizontal projec-
tion of the distance from the interface zone towards the shoreline.

To calibrate the model, the peak water heights observed during Akita Oki earthquake (Japan on
25 May 1983 with moment magnitude M,, = 7.9 (Abe 1995)) are simulated according to the
bathymetry collected for the zones under study (GEBCO 2012). The model provides theoretical val-
ues that are in good accordance with the observed heights (H,y,), see figure 7. Furthermore, the the-
oretical confidence interval (Hsy, up to Hogsy,) contains 95% of the experimental values, i.e. more
than the acceptable ratio of 90%, when the gamma distribution and a coefficient of variation C, =
45% are adopted for the error model.

5. Mechanical fragility, vulnerability and damages due to tsunamis

The tsunamis hydrodynamic effects on the tanks may cause various mechanical failures and dam-
ages, see figure 8 (Godoy 2007; Goto 2008; Koshimura 2009; Leone et al. 2011; Lukkunaprasit 2009;
Mebarki 2009; Sakakiyama & Matsuura 2009; Nistor et al. 2010; Norio et al. 2011; Chen 2012; Naito
et al. 2013; Mebarki et al. 2014a, 2014b; Mebarki & Barroca 2015):

¢ Uplift phenomena due to buoyancy,

® debris impacts, perforation or collapse of tanks or rupture of the pipes connected to the tanks
and the metal roofs, with subsequent leakages of stored products (oil, other liquids and gases),

® excessive bending or shear as well as circumferential and longitudinal buckling of the metallic
shells,

¢ rigid sliding by anchors failures and overturning,

e various exploitation conditions, dimensions and ground support conditions are considered in
order to investigate the tanks vulnerability under the tsunami effects (Mebarki 2009; Mebarki
et al. 2014a, 2014b, Mebarki & Barroca 2015),

¢ the quality of the contact of the tanks on the supporting concrete slabs is described by a fric-
tion coefficient assumed to have a constant value all over the concrete support and

¢ depending on the exploitation conditions and tsunami occurrence, the tank may be empty, full
or partially filled. The level of the stored product in the tank is assumed to follow a random
Gamma distribution (extreme events).

The tank failure corresponds to the first occurrence of any limit state among the potential list of
mechanical failures: uplift, overturning, sliding or buckling. The debris effects such as containers or
boulders impacts for instance are not reported in the present study. The failure event, Ej; is therefore
described as being a serial combination of independent probabilistic elementary failures:

N,
Ef= iL:Jl Ey i and Py = P[Ef] (22)
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Figure 7. Tsunamis height. (a) Several failure modes and (b) tanks : forms and dimensions.
(Note: H,ps = observed value; Gean, Gsy Goso, = predicted mean value, fractiles 5% and 95%, respectively).

where E; = failure event of the system; P = failure probability or vulnerability; E;; = i-th failure
event among the total number N, of failure events.

Monte Carlo simulations are used to calculate the risk of failure. The fragility curves express the
probability of failure vs. tsunami height (H,,). The risk analysis of the entire industrial plant, erected
in a zone prone to tsunamis, relies on the use of these fragility curves specific to each type of tank,
see figure 9. The simulation results show that failure by sliding occurs prior to buckling, buoyancy
or overturning in the case of small tanks (8 m height and 5.7m radius) even if they are not empty. It
is also shown that the sliding failure which occurs as first limit state even for large tanks (30 m high
and 40m radius). It is then recommended to erect lateral and circumferential protective barriers.
Otherwise, these tanks could slide and the pipes connected to them could break even if the tsunami
is less than 3 m high for small tanks and 6—8 m high for larger tanks. With adequate barriers and
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well-designed anchors against sliding, these tanks can withstand tsunamis of almost 10 m before
buckling and 15 m before they are damaged by buoyancy or overturning effects.

6. Conclusions

Metrics for resilience are proposed in the case of coastal industrial plants and the tanks vulnerability
analysis is investigated under tsunamis effects. The resilience depending on plastic adaptation is dis-
cussed in the case of metallic tanks with single full support (rigid basis) or double full supports (rigid
basis and roof). The resilience indicators and attractors are investigating for various cases of cross-
sections drops caused by physical damage due to first hazard occurrence, corrosion, debris impacts
or prior excessive stresses by bending or shear for instance.

A unified methodology for reliability analysis is also developed. It proposes a new simplified
probabilistic model able to predict the tsunami wave height as well as the run-up at the shoreline.
Calibrated for real tsunamis, its theoretical predictions are in accordance with the in-situ tsunamis
wave heights observed in Asian region at distances ranging from hundreds to thousands or kilo-
metres from the seismic hypocentre (case of tsunamis triggered by earthquakes).
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As the tsunamis may cause tanks mechanical failure by rigid sliding, buoyancy uplift, buckling or
rigid overturning, theoretical fragility curves vs. tsunami height are established. They concern tanks
with various dimensions: heights ranging from 8 to 30 m with diameters ranging from 10 to 80 m,
used for oil storage.

The theoretical results show that sliding occurs prior to buckling, buoyancy or overturning in the
case of small tanks, even if they are not empty. Therefore, lateral and circumferential protective bar-
riers should be erected even for large tanks since their resistance to sliding is also very weak. Other-
wise, these tanks could slide and the pipes connected to them could break even if the tsunami is less
than 3 m high. With adequate protections and better anchors resistance against sliding, the investi-
gated tanks can withstand tsunamis of almost 10 m before buckling and 15 m before they are dam-
aged by buoyancy or overturning effects.

The proposed framework is very helpful for coastal industrial plants, erected in regions prone to
flooding by tsunamis for instance. Sensitivity analysis may help the risk managers for their pre-
paredness in facing tsunamis and floods or to design adequate protective barriers such as dikes.
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