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Abstract

The long-range interaction between one incompressible fluid sur-
rounding solid objects is quite common and includes suspensions, sedi-
mentation, fluid motion around obstacles, and erosion. Concerning the
active research field of fluid-solid interactions, the challenging point
nowadays is to describe the fluid dynamics in the pore space of soils or
concrete samples and to establish a full coupling between the fluid and
the movable deformable solid phase. This paper describes an extension
of the material-point method (MPM) to modelling the interactions of
incompressible fluids and multi-body deformable particles, which are
discretized by a collection of unconnected, Lagrangian, material points.
Primary variables, such as displacement, velocity, pressure and accel-
eration, and material variables, such as mass, stress and strain are
associated with these points. To solve the equations of motion, data
mapped from the material points are used to update variables on a
background Eulerian mesh. The mesh solution is then mapped back
to material points. This standard particle-like method treats all ma-
terials in a uniform way, thus avoiding complicated mesh construction
and automatically possessing a no-slip contact algorithm at no addi-
tional cost.
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In this study, the solid phase is treated as elastic, but general in-
elastic descriptions can also be later included to explore the interaction
with the fluid phase. On the other hand, problems of incompressibility
introduce numerical difficulties which need to be treated. Hence the
enhanced strain method is adapted to the MPM analysis and spec-
ified to the study of long-range hydrodynamic interactions between
incompressible fluid and solid deformable objects. Numerical exam-
ples including a fluid flow around an obstacle, the collapse of a water
column and a sedimentation test are used to illustrate the proposed
approach and its potential. The results of the MPM are compared
with those obtained with classical FEM, XFEM and a modified im-
mersed boundary method. In addition, the MPM results also compare
well with existing experimental measurements of the collapsing water
problem.

Keywords: Material Point Method (MPM); Fluid-Solid Interaction (FSI);
Incompressible fluid; Enhanced Strain Method

1 Introduction

The long-range interaction between one incompressible fluid surrounding
solid objects is quite common and includes suspensions, sedimentation, fluid
motion around obstacles, and internal erosion. For example, the modelling of
internal erosion at the scale of pore constrictions requires a complete descrip-
tion of both the grains/particles and the fluid within the pores [12]. While
continuous methods are used at the scale of civil engineering structures, such
as embankment dams [4] or sandstones reservoirs [19], discrete and micro-
mechanical methods are being developed to describe the fluid dynamics in
the pore space of soils and to establish a full coupling between the fluid and
the movable deformable solid phase.

Concerning the active research field of fluid-solid interactions (FSI), a
number of numerical methods are been developed [10]: Eulerian-Eulerian,
Lagrangian-Lagrangian and Eulerian-Lagrangian methods.

Lagrangian-Lagrangian methods are based on the idea that calculation
points (i.e. nodes or particles) of both phases are fixed to the domain being
modelled throughout the analysis. This leads to the disappearance of convec-
tive terms in the governing equations of the model. The codes are then con-
ceptually simpler and faster in this aspect, in contrast to Eulerian-Eulerian
approaches. Since nodes/particles are placed and remain on material sur-
faces, interface tracking should be trivial. Those methods can be further
subclassified into grid-based methods and meshless/particles methods. Un-



like grid-based methods [1, 15], meshless or particles methods approximate
partial differential equations only based on a set of points without the need
for an additional mesh (no nodal connectivity is introduced) [5]. The advan-
tages of those methods, absence of a mesh, continuity of the shape functions
and convergence, are damped by a few difficulties such as the application of
essential boundary conditions, the computational effort and a certain sensi-
tivity of the solutions to the inhomogeneous repartition of the particles.

The material point method (MPM) is a particle method that is based on
the approximation of the weak form of partial differential equations [23, 24].
Aside from the advantages from the Lagrangian frame of reference and from
the particle approach in terms of interface tracking, the key characteristic of
the MPM is to use a background finite element mesh to solve the governing
equations. Since this mesh does not carry any information, a regular grid
can be utilized throughout the simulations. Thereby, the MPM combines
the good features of both the finite element methods and the purely particle
based methods. Finally, the MPM enjoys a single-valued velocity field which
allows a natural treatment of no-slip contact and hence straightforward sim-
ulations of multi-phase materials.

Regarding geomechanical problems, different numerical methods have
been applied to FSI problems with some success [2, 17, 12]. However, sev-
eral drawbacks remain and there exists a need for a method combining the
possibility of accurate representation of large deformation and displacement,
together with an easy representation of solid-fluid interfaces and particles
of random size and shape. At the moment, the use of the MPM is in the
development of the research activities of our group [20, 8, 16] and pertains
to a wider project targeting the development of grain contact laws in a fluid
environment for the DEM. In this context, this work is a first step to es-
tablish a numerical framework and tools for the investigation of fluid-solid
interactions, towards the ultimate goals of exploring immersed grains and
developing corresponding DEM contact laws in the next step.

This paper describes an extension of the MPM to model the interactions
of incompressible fluids and multi-body deformable particles. In the second
section of this article, the governing equations are presented and the frame-
work of the MPM is briefly addressed. The third section is devoted to the
weak form of the governing equations, in which an enhanced strain element
is used to represent the incompressible fluid phase. To highlight the poten-
tials of the proposed method, we present in a final section three numerical
examples: a fluid flow around an obstacle, the collapse of a water column
and a sedimentation test.



2 Governing equations

In this section, the fundamental equations governing the problem are intro-
duced: i.e. balance equations, and constitutive laws for the solid and liquid
phases. Prior to the weak form, the MPM framework is presented which
implies the spatial discetisation of each phases with material points endowed
with point masses.

Motion of a continuum is governed by conservation of momentum and
mass. Let’s introduce the following global notations: ρ is the mass density, a
is the acceleration, v is the velocity, σ is a symmetric Cauchy stress tensor,
and b is the specific body force. For the whole domain (both the fluid and
the solid phases), the global balance of momentum in the Lagrangian frame
of reference and the global balance of mass read,

divσ + ρb = ρa ,

ρ̇ = −ρ div v ,
(1)

For solid and fluid material points, the general form of the constitutive
equation relates the stress rate, or the stress, to the strain rate via a tangent
modulus,

σ̇s = Ts : ε̇ ,

σf = λf tr(ε̇) I + 2µf ε̇ = Tf : ε̇ ,
(2)

with λf = 2νfµf/(1 − 2νf ) the Lamé parameter, µf the dynamic viscos-
ity and νf the Poisson’s ratio. Clearly, as νf → 1

2 , the Lamé parameter
approaches infinity, so that nearly incompressible cases are characterised by
µf � λf . For simplicity, constitutive equations are presented in terms of the
small deformation theory, and the strain rate tensor is related to the velocity
through,

ε̇ =
1

2

[
∇v + (∇v)T

]
= ∇∗v . (3)

More general responses for the solid have already been implemented in
the MPM [26, 16, 13] and are left for future work.

This work pertains to the classical MPM framework [23, 24], so that the
governing equations are solved in a Lagrangian frame on a finite element
mesh and the global mass density can then be written as a sum of point
masses Mp by use of the Dirac delta function,



ρ(x) =
np∑
p=1

Mpδ(x−Xp) . (4)

The superscript p indicates a material point which is endowed with a
fixed mass Mp, a position Xp, a stress σ(Xp) and specific material param-
eters. Specific to our FSI problem, elements can be mixed, i.e. composed
of both solid and fluid phases. However, material points are either solid or
fluid. Hence, the finite collection of material points np gathers both the fluid
material points npf and the solid ones nps, i.e. np = npf +nps. As a consequence,
the grid forces accumulate the internal forces from both phases,

fi ∝
np
f∑

p=1

Mpdiv σ̄f (Xp) +

np
s∑

p=1

Mpdiv σ̄s(X
p) =

np∑
p=1

Mpdiv σ̄(Xp) . (5)

3 Method of solution

Problems of incompressibility are well known to introduce numerical difficul-
ties, such as mesh locking, in finite element (FE). The numerous solutions
developed in the realm of fluid mechanics are summarized in the compre-
hensive reviews of [7, 11]. A review of those methods is beyond the scope
of this paper. Rather, a simple approach is tested here within the MPM
and prove quite effective for our purpose (See section 4). This approach as-
sumes a nearly incompressible fluid and uses the assumed strain method [21].
The weak form of the problem, specified to FSI problems and the MPM, is
summarized below.

First, let’s assume strain and stress discontinuity across the grid elements
[25] holding fluid particles. The key point is to use a three-field variational
formulation for the fluid domain Ωf and a standard formulation for the solid
domain Ωs. Regarding the fluid phase we introduce the following enhanced
forms of the strain rate field ε̇ and the strain rate variation field γ,

ε̇ = ∇∗v + ˜̇ε
γ = ∇∗(δv) + γ̃

(6)

in which ∇∗v is the symmetric gradient of the velocity field v and δv is
the velocity variation field. Within the three-field formulation, two stresses
are introduced: σ the actual stress tensor and σε the stress tensor which



satisfies the constitutive equation (2)2. In addition, δσ is the stress variation
field. Next, we consider the three standard variational equations:∫

Ω
δv · (divσ + ρb− ρa) dΩ = 0,∫
Ωf

δσ · (∇∗v − ε̇) dΩf = 0,∫
Ωf

γ ·
(
−σ + σε

)
dΩf = 0.

(7)

A modified form of this latter formulation is obtained by performing a
series of steps: integrate by part the divergence term and use the divergence
theorem, split the obtained stress term in two parts related to Ωs and Ωf ,
substitute eq. (6)1 into (7)2 and (6)2 into (7)3, and acknowledge that the
standard strain rate variation ∇∗(δv) and the enhanced strain rate variation
γ̃ are independent [21]. Finally, by following the second idea of the assumed
strain method [21], the explicit presence of the stress term (within the fluid
domain) is eliminated from the modified three-field variational formulation
by choosing the space of the stress field L2-orthogonal to the space of en-
hanced strains. As a result, the following modified three-field variational
problem writes,

∫
Ωs

∇∗(δv) : σ dΩs +

∫
Ωf

∇∗(δv) : σε dΩf +

∫
Ω
δv · ρa dΩ =∫

Ω
δv · ρb dΩ +

∫
Γt
s

δv · t dΓt
s.∫

Ωf

γ̃ · σε dΩf = 0.

(8)

in which σs · n = t on ∂Ωt
s and n is the unit vector outward normal to

the boundary. Specific to this FSI framework, no distinction is introduced
between the actual stress tensor of the solid phase and the stress tensor which
satisfies the constitutive equation (2)1.

The following development follows the standard MPM approach [23]. The
substitutions of eq. (4) into eq. (8) convert integrals to sums of quantities
evaluated at material points,



np
s∑

p=1

Mp

ρp
∇∗(δv)|x=Xp : σ(Xp) +

np
f∑

p=1

Mp

ρp
∇∗(δv)|x=Xp : σε(Xp)

+
np∑
p=1

Mpδv(Xp) · a(Xp) =
np∑
p=1

Mpδv(Xp) · b(Xp) +

∫
Γt
s

δv · t dΓt
s

np
f∑

p=1

Mp

ρf
γ̃(Xp) · σε(Xp) = 0.

(9)

The Galerkin method is adopted for the spatial discretization of vari-
ables and test functions. The spatial discretization uses an enhanced strain
element. Each element is endowed with four displacement nodes and five
enhanced strain nodes (Q1E5) [21]. A grid of isoparametric quadrilateral
elements is used to define standard nodal basis functions, Nu(x), with nnu
being the total number of displacement nodes,

δu(x) =

nn
u∑

i=1

δue
iN

i
u(x) = Nu(x) δue, δv(x) = Nu(x) δve,

u(x) = Nu(x) ue, v(x) = Nu(x) ve, a(x) = Nu(x) ae

γ̃(x) = G(x) γ̃e, ˜̇ε(x) = G(x) ˜̇εe,

(10)

while G(x) is the enhanced strain rate interpolation matrix of size 5× 4, for
a 2D plain strain problem. δue

i , δv
e, ue

i , ve
i , ae

i , γ̃
e and ˜̇εe denote the nodal

vectors of the approximated functions.
For an arbitrary field δve and by use of definitions (2)2 and (6)1, the

fluid contribution to the internal force vector may be expressed as,

np
f∑

p=1

V pBT(Xp)σεf (Xp) =

np
f∑

p=1

V pBT(Xp)Tf

(
∇∗v(Xp) + ˜̇ε(Xp)

)
=

np
f∑

p=1

V pBT(Xp)Tf

(
B(Xp)ve + G(Xp) ˜̇εe

)
(11)



in which B(Xp) = ∇Nu(x)|x=Xp is the strain displacement matrix evaluated
at Xp. Finally, the matrix form of the system is obtained for the arbitrary
components δve and γ̃e,

Ke(Xp) ue + De(Xp) ve + Me(Xp) ae + (Γe(Xp))T˜̇εe = Fe
v(Xp)

+ Θe(x),

Γe(Xp) ve + He(Xp) ˜̇εe = 0,

(12)

in which we have introduced the discrete stiffness matrix Ke(Xp), the dis-
crete diffusion matrix De(Xp), the discrete mass matrix Me(Xp), the discrete
coupled matrix Γe(Xp), the discrete body force vector Fe

v(Xp), the discrete
traction vector Θe(x) and the discrete enhanced strain rate matrix He(Xp).
The definitions of those matrices are given in Appendix A.

The system of equations (12), which is a compact system of (ndim ×
nnu + nnε) equations and unknowns, is solved fully implicitly by use of a
standard Newmark scheme and a Newton Raphson procedure. The obtained
formulation is further condensed out so that the enhanced strain unknowns
disappear. It is proposed that the obtained formulation be simulated with
the MPM. The idea is straightforward in that the algorithm is setup as any
other type of MPM simulation. More details on the complete algorithm can
be found in the following seminal references [23, 24].

4 Results and discussions

The potentials of the proposed method are highlighted with three numerical
simulations, in two-dimensions. First a fluid flow around a cylindrical obsta-
cle demonstrates the performance of the proposed algorithm for incompress-
ible fluids. Next, the method is tested for problems involving free surfaces.
The classic results of a collapsing water column are compared with experi-
mental and XFEM numerical data. Finally, the accuracy of the method is
tested on a sedimentation test. It was found that the results obtained with
the MPM are more accurate than those of an immersed boundary method.

4.1 Fluid flow around a cylindrical obstacle

To test the properties of the model for an incompressible fluid, several cal-
culations are performed by using a fixed elastic but very stiff obstacle. Fluid
flow is scrutinized past a unit-radius (r) cylindrical obstacle located at the
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Figure 1: The particles defining the incompressible fluid and the obstacle
along an axis of symmetry are shown for a 24 × 16 grid with 9 MPs per
Q1E5 element. The horizontal velocity and the pressure contours reflect the
good capabilities of the method, while the streamlines and the vorticity are
characteristic of ‘sticky’ Stokes flows.

center of the following domain −3 ≤ x ≤ 3 and −2 ≤ y ≤ 2 [7]. The sym-
metry of the setup allows us to restrict ourselves to the upper half of the
domain. The boundary conditions are as follows: vx = v0f(t/tendload) and
vy = 0 at the inlet (x = −3) with f(x) = x3 ∗ (10 − 15 ∗ x + 6 ∗ x2) for
x < 1, f(x) = 1 for x ≥ 1 and tendload being the acceleration time constant;
traction free boundary conditions at the outlet (x = 3) and symmetry else-
where (y = 0 and y = 2) with vy = 0. Initial velocities assume a no-flow
configuration. The time step in the Newton Raphson scheme is chosen as



∆t = 0.001 s. The characteristic lengths defining the Reynolds number are
v0 = 5 × 10−6 m/s, νf = 0.1m2/s and r = 1m. The flow regime is hence
close to a Stokes flow.

The calculated response is examined to test linear stability (Figure 1).
The particles defining the incompressible fluid and the obstacle are attached
to a 24 × 16 uniform grid on which the system (12) solved. Both the hor-
izontal velocity and the pressure contours are reasonable, the latter being
symmetric about x = 0 and close to zero at the exit [7]. Note that the pres-
sure solution in mixed elements (in the vicinity of the obstacle) is inaccurate
highlighting the limit of the method. The streamlines in Figure 1 show the
‘large’ displacement thickness characteristic of ‘sticky’ Stokes flows; while
the vorticity has diffused in a nearly-symmetric shape.

Clearly, the classical FEM would lead to results of greater quality in the
vicinity of the obstacle to the price of adapting the mesh to this obstacle. A
similar result, would be obtained with the MPM and an unstructured mesh
that respects the boundary of the obstacle. Yet the aim here is to show that
even with an unstructured coarse mesh consisting of 24 × 16 elements, the
MPM can provide sufficiently accurate results.

4.2 A collapsing water column

This test case considers a domain of size 0.584m×0.45m containing a water
column on the left-hand-side of size a × b =0.146m×0.292m [6, 14]. While
the water properties are ρf = 1000 kg/m3 and µf = 1 × 10−3 Pa.s, the
rest of the domain is filled with an incompressible fluid endowed with the
following properties ρ = 1 kg/m3 and µ = 1×10−5 Pa.s, representing air. No
surface tension is considered. The loading is merely restricted to a volumetric
gravitation force g = −9.81m/s2. Free-slip boundary conditions are assumed
along the boundaries of the domain. Two meshes are used, consisting of 12×9
and 36× 27 elements. Each mesh is endowed with 36 MPs per cell and the
simulation time is restricted to 0.3 s with ∆t = 3× 10−4 s.

The water column positions and pressure contour at some selected points
in time are compared in Figure 2. The evolutions of the dimensionless wa-
ter column width and height with dimensionless times are compared with
experimental data [14] and the intrinsic XFEM solution [6] in Figure 3. Di-
mensionless displacements and times are defined as follows,

w∗ =
w

a
, h∗ =

h

b
, τw = t

√
2g

a
, τh = t

√
2g

b
(13)
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Figure 2: Water column position and pressure contour at 5 selected times
for the Q1E5 element. The 36× 27 elements mesh uses 36 MPs per cell.
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Figure 3: Dimensionless (left) width and (right) height over time, see eq.
(13), for the collapsing water column test case. Each MPM mesh uses 36
MPs per cell. The MPM solution agrees well with other results in spite of
the coarse nature of the meshes.

in which w and h correspond to the intersection points of the water column
interface with the bottom and left walls of the domain, respectively, so that at
t = 0, w∗ = h∗ = 1. An excellent agreement of the MPM solution with other
results is found where classical FEM results are known to be unsatisfactory
[6].

4.3 Sedimentation test

This last test case mimics the sedimentation of a deformable cylinder in an
incompressible fluid. We calculate the motion of the circular cylinder of
radius a in between two parallel walls, of width 2L = 2.0m. The motion
of the cylinder, directed perpendicular to its axis with its axis positioned
midway between the walls, is solely induced by gravity g = −9.81m/s2. The
cylinder properties are ρs = 2700 kg/m3, Es = 36GPa and νs = 0.25 and



the incompressible fluid properties are ρf = 1000 kg/m3 and µf = 1000Pa.s.
The boundary conditions assume zero vertical and horizontal velocities on
the vertical boundaries and zero vertical velocities only on the horizontal
boundaries. The time step in the Newton Raphson scheme is chosen as
∆t = 0.001 s.

For a cylinder settling along the axis of an infinite channel, Faxen [3]
presents a close form solution for small a/L that relates the ratio a/L to
the steady state vertical velocity v∞y (reported in Happel and Brenner [9],
p. 345). This theory is compared to MPM simulations and to the work of
Sulsky and Brackbill [22] for cylinders of various radius in Table 1.

The results are in agreement with the approximated theory [3] and the
error remains small for a/L < 0.5. By using a modified immersed boundary
technique, Sulsky and Brackbill [22] report an error decreasing in magnitude
with increased resolution of the cylinder (a/∆x) and increasing in magnitude
up to 10% error with a/L = 0.4. In comparison, the error on the MPM
solution seems less dependent of the mesh resolution and is most probably
due to the influence of mixed elements.

a/L a/∆x v∞y [m/s] v∞y [m/s] error% error%
theory MPM MPM Sulsky and Brackbill [22]

0.1 5 0.0585 0.0591 -0.96 1.8

0.2 10 0.1267 0.1263 0.38 2.6

0.3 15 0.1611 0.1594 1.05 -0.8

0.4 20 0.1549 0.1557 -0.52 -10.5

Table 1: Velocity comparison of a settling cylinder between two rigid walls
computed on a 50 × 100 grid with 9 MPs per cell. In comparison with the
results of Sulsky and Brackbill [22], the MPM response is less dependent on
the mesh resolution (a/∆x) and remains accurate within ≈ 1 % for a/L ≤
0.4.

5 Conclusion

The MPM is applied to the interaction of incompressible fluids and de-
formable particles. This method uses Lagrangian material points and an



Eulerian grid or mesh to define the computational domain. The material
points move through the Eulerian grid on which the balance equations are
solved. This paper presents the modifications necessary to simulate the in-
teractions between incompressible fluids and solid materials by using the
assumed strain method. The spacial discretisation uses an enhanced strain
element (Q1E5) [21].

Several two-dimensional test problems are presented to demonstrate the
methodology. A fluid flow test past an obstacle is used to test the incom-
pressible fluid model, for Stokes flows. The method performs well despite
the fact that the mesh does not fit the obstacle. Next, a collapsing water
column test is presented to evaluate the accuracy of the method. The MPM
response compares very well with both experimental [14] and XFEM results
[15]. Finally, a sedimentation test is performed to validate the fluid-solid
interactions. Again the proposed method performs well with respect to the
analytical solution [3] and better than other numerical methods such as the
modified immersed boundary formulation [22].

The enhanced strain element Q1E5 used throughout this paper matches
well the MPM procedure since it is compatible with the use of a lumped
mass matrix during the initialization step. Yet this element does not satisfy
of the inf-sup test so that one possible extension of the method is to test
other elements such as the combined mixed displacement/pressure enhanced
finite element [18]. Also the proposed element does not satisfy strictly the
incompressibility condition div v = 0 and the results presented herein will be
compared in a near future with that obtained with a bi-linear mixed element
Q1P0 [7].
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A Discrete matrices used in eq. (12)

The discrete coupled matrix Γe(Xp), the discrete diffusion matrix De(Xp),
and the discrete enhanced strain rate matrix He(Xp) write,



Γe(Xp) =

np
f∑

p=1

V pGT(Xp)TfB(Xp),

De(Xp) =

np
f∑

p=1

V pBT(Xp)TfB(Xp),

He(Xp) =

np
f∑

p=1

V pGT(Xp) Tf G(Xp).

(14)

Also we have introduced the discrete mass matrix Me(Xp), the discrete
body force vector Fe

v(Xp), the discrete traction vector Θe(x) and the discrete
stiffness matrix Ke(Xp) as,

Me(Xp) =
np∑
p=1

MpNT
u (Xp)Nu(Xp),

Fe
v(Xp) =

np∑
p=1

MpNT
u (Xp)b(Xp),

Θe(x) =

∫
Γt
s

NT
u (x) t dΓt

s,

Ke(Xp) =

np
s∑

p=1

V pBT(Xp) Ts B(Xp)

(15)

It is worth noting that the number of integration points used to obtain the
various discrete matrices is adapted depending on the nature of each term,
i.e. the diffusion, coupled and enhanced strain rate matrices are summed
over the fluid material points, the stiffness matrix is summed over the solid
material points, and the mass matrix is evaluated using all material points
of the element.
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