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Introduction

The long-range interaction between one incompressible fluid surrounding solid objects is quite common and includes suspensions, sedimentation, fluid motion around obstacles, and internal erosion. For example, the modelling of internal erosion at the scale of pore constrictions requires a complete description of both the grains/particles and the fluid within the pores [START_REF] Lominé | Modeling of fluid-solid interaction in granular media with coupled lattice boltzmann/discrete element methods: application to piping erosion[END_REF]. While continuous methods are used at the scale of civil engineering structures, such as embankment dams [START_REF] Fell | Internal erosion of dams and their foundations[END_REF] or sandstones reservoirs [START_REF] Papamichos | Sand erosion with a porosity diffusion law[END_REF], discrete and micromechanical methods are being developed to describe the fluid dynamics in the pore space of soils and to establish a full coupling between the fluid and the movable deformable solid phase.

Concerning the active research field of fluid-solid interactions (FSI), a number of numerical methods are been developed [START_REF] Ii | An implicit full eulerian method for the fluid-structure interaction problem[END_REF]: Eulerian-Eulerian, Lagrangian-Lagrangian and Eulerian-Lagrangian methods.

Lagrangian-Lagrangian methods are based on the idea that calculation points (i.e. nodes or particles) of both phases are fixed to the domain being modelled throughout the analysis. This leads to the disappearance of convective terms in the governing equations of the model. The codes are then conceptually simpler and faster in this aspect, in contrast to Eulerian-Eulerian approaches. Since nodes/particles are placed and remain on material surfaces, interface tracking should be trivial. Those methods can be further subclassified into grid-based methods and meshless/particles methods. Un-like grid-based methods [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF][START_REF] Mindel | Interface tracking and solid-fluid coupling techniques with coastal engineering applications[END_REF], meshless or particles methods approximate partial differential equations only based on a set of points without the need for an additional mesh (no nodal connectivity is introduced) [START_REF] Fries | Classification and overview of meshfree methods[END_REF]. The advantages of those methods, absence of a mesh, continuity of the shape functions and convergence, are damped by a few difficulties such as the application of essential boundary conditions, the computational effort and a certain sensitivity of the solutions to the inhomogeneous repartition of the particles.

The material point method (MPM) is a particle method that is based on the approximation of the weak form of partial differential equations [START_REF] Sulsky | A particle method for historydependent materials[END_REF][START_REF] Sulsky | Application of a particlein-cell method to solid mechanics[END_REF]. Aside from the advantages from the Lagrangian frame of reference and from the particle approach in terms of interface tracking, the key characteristic of the MPM is to use a background finite element mesh to solve the governing equations. Since this mesh does not carry any information, a regular grid can be utilized throughout the simulations. Thereby, the MPM combines the good features of both the finite element methods and the purely particle based methods. Finally, the MPM enjoys a single-valued velocity field which allows a natural treatment of no-slip contact and hence straightforward simulations of multi-phase materials.

Regarding geomechanical problems, different numerical methods have been applied to FSI problems with some success [START_REF] Bui | Numerical simulation of soilwater interaction using smoothed particle hydrodynamics (sph) method[END_REF][START_REF] Oñate | Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows[END_REF][START_REF] Lominé | Modeling of fluid-solid interaction in granular media with coupled lattice boltzmann/discrete element methods: application to piping erosion[END_REF]. However, several drawbacks remain and there exists a need for a method combining the possibility of accurate representation of large deformation and displacement, together with an easy representation of solid-fluid interfaces and particles of random size and shape. At the moment, the use of the MPM is in the development of the research activities of our group [START_REF] Rognon | Soft dynamics simulation. 1. normal approach of two deformable particles in a viscous fluid and optimal-approach strategy[END_REF][START_REF] Guiamatsia | Crack modelling using the material point method and a strong discontinuity approach[END_REF][START_REF] Nguyen | An enriched constitutive model for fracture propagation analysis using the material point method[END_REF] and pertains to a wider project targeting the development of grain contact laws in a fluid environment for the DEM. In this context, this work is a first step to establish a numerical framework and tools for the investigation of fluid-solid interactions, towards the ultimate goals of exploring immersed grains and developing corresponding DEM contact laws in the next step. This paper describes an extension of the MPM to model the interactions of incompressible fluids and multi-body deformable particles. In the second section of this article, the governing equations are presented and the framework of the MPM is briefly addressed. The third section is devoted to the weak form of the governing equations, in which an enhanced strain element is used to represent the incompressible fluid phase. To highlight the potentials of the proposed method, we present in a final section three numerical examples: a fluid flow around an obstacle, the collapse of a water column and a sedimentation test.

In this section, the fundamental equations governing the problem are introduced: i.e. balance equations, and constitutive laws for the solid and liquid phases. Prior to the weak form, the MPM framework is presented which implies the spatial discetisation of each phases with material points endowed with point masses.

Motion of a continuum is governed by conservation of momentum and mass. Let's introduce the following global notations: ρ is the mass density, a is the acceleration, v is the velocity, σ is a symmetric Cauchy stress tensor, and b is the specific body force. For the whole domain (both the fluid and the solid phases), the global balance of momentum in the Lagrangian frame of reference and the global balance of mass read,

div σ + ρb = ρa , ρ = -ρ div v , (1) 
For solid and fluid material points, the general form of the constitutive equation relates the stress rate, or the stress, to the strain rate via a tangent modulus, σs = T s : ˙ ,

σ f = λ f tr( ˙ ) I + 2µ f ˙ = T f : ˙ , (2) 
with λ f = 2ν f µ f /(1 -2ν f ) the Lamé parameter, µ f the dynamic viscosity and ν f the Poisson's ratio. Clearly, as ν f → 1 2 , the Lamé parameter approaches infinity, so that nearly incompressible cases are characterised by µ f λ f . For simplicity, constitutive equations are presented in terms of the small deformation theory, and the strain rate tensor is related to the velocity through,

˙ = 1 2 ∇v + (∇v) T = ∇ * v . (3) 
More general responses for the solid have already been implemented in the MPM [START_REF] York | Fluid-membrane interaction based on the material point method[END_REF][START_REF] Nguyen | An enriched constitutive model for fracture propagation analysis using the material point method[END_REF][START_REF] Love | An energy-consistent material-point method for dynamic finite deformation plasticity[END_REF] and are left for future work. This work pertains to the classical MPM framework [START_REF] Sulsky | A particle method for historydependent materials[END_REF][START_REF] Sulsky | Application of a particlein-cell method to solid mechanics[END_REF], so that the governing equations are solved in a Lagrangian frame on a finite element mesh and the global mass density can then be written as a sum of point masses M p by use of the Dirac delta function,

ρ(x) = n p p=1 M p δ(x -X p ) . (4) 
The superscript p indicates a material point which is endowed with a fixed mass M p , a position X p , a stress σ(X p ) and specific material parameters. Specific to our FSI problem, elements can be mixed, i.e. composed of both solid and fluid phases. However, material points are either solid or fluid. Hence, the finite collection of material points n p gathers both the fluid material points n p f and the solid ones n p s , i.e. n p = n p f +n p s . As a consequence, the grid forces accumulate the internal forces from both phases,

f i ∝ n p f p=1 M p div σf (X p ) + n p s p=1 M p div σs (X p ) = n p p=1 M p div σ(X p ) . ( 5 
)
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Method of solution

Problems of incompressibility are well known to introduce numerical difficulties, such as mesh locking, in finite element (FE). The numerous solutions developed in the realm of fluid mechanics are summarized in the comprehensive reviews of [START_REF] Gresho | Incompressible flow and the finite element method[END_REF][START_REF] Langtangen | Numerical methods for incompressible viscous flow[END_REF]. A review of those methods is beyond the scope of this paper. Rather, a simple approach is tested here within the MPM and prove quite effective for our purpose (See section 4). This approach assumes a nearly incompressible fluid and uses the assumed strain method [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF].

The weak form of the problem, specified to FSI problems and the MPM, is summarized below.

First, let's assume strain and stress discontinuity across the grid elements [START_REF] Washizu | Variational methods in elasticity and plasticity[END_REF] holding fluid particles. The key point is to use a three-field variational formulation for the fluid domain Ω f and a standard formulation for the solid domain Ω s . Regarding the fluid phase we introduce the following enhanced forms of the strain rate field ˙ and the strain rate variation field γ,

˙ = ∇ * v + ˜ γ = ∇ * (δv) + γ (6) 
in which ∇ * v is the symmetric gradient of the velocity field v and δv is the velocity variation field. Within the three-field formulation, two stresses are introduced: σ the actual stress tensor and σ the stress tensor which satisfies the constitutive equation ( 2) 2 . In addition, δσ is the stress variation field. Next, we consider the three standard variational equations:

Ω δv • (div σ + ρb -ρa) dΩ = 0, Ω f δσ • (∇ * v -˙ ) dΩ f = 0, Ω f γ • -σ + σ dΩ f = 0. (7) 
A modified form of this latter formulation is obtained by performing a series of steps: integrate by part the divergence term and use the divergence theorem, split the obtained stress term in two parts related to Ω s and Ω f , substitute eq. ( 6) 1 into (7) 2 and (6) 2 into (7) 3 , and acknowledge that the standard strain rate variation ∇ * (δv) and the enhanced strain rate variation γ are independent [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF]. Finally, by following the second idea of the assumed strain method [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF], the explicit presence of the stress term (within the fluid domain) is eliminated from the modified three-field variational formulation by choosing the space of the stress field L 2 -orthogonal to the space of enhanced strains. As a result, the following modified three-field variational problem writes,

Ωs ∇ * (δv) : σ dΩ s + Ω f ∇ * (δv) : σ dΩ f + Ω δv • ρa dΩ = Ω δv • ρb dΩ + Γ t s δv • t dΓ t s . Ω f γ • σ dΩ f = 0. (8) 
in which σ s • n = t on ∂Ω t s and n is the unit vector outward normal to the boundary. Specific to this FSI framework, no distinction is introduced between the actual stress tensor of the solid phase and the stress tensor which satisfies the constitutive equation (2) 1 .

The following development follows the standard MPM approach [START_REF] Sulsky | A particle method for historydependent materials[END_REF]. The substitutions of eq. ( 4) into eq. ( 8) convert integrals to sums of quantities evaluated at material points,

n p s p=1 M p ρ p ∇ * (δv)| x=X p : σ(X p ) + n p f p=1 M p ρ p ∇ * (δv)| x=X p : σ (X p ) + n p p=1 M p δv(X p ) • a(X p ) = n p p=1 M p δv(X p ) • b(X p ) + Γ t s δv • t dΓ t s n p f p=1 M p ρ f γ(X p ) • σ (X p ) = 0. (9) 
The Galerkin method is adopted for the spatial discretization of variables and test functions. The spatial discretization uses an enhanced strain element. Each element is endowed with four displacement nodes and five enhanced strain nodes (Q1E5) [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF]. A grid of isoparametric quadrilateral elements is used to define standard nodal basis functions, N u (x), with n n u being the total number of displacement nodes,

δu(x) = n n u i=1 δu e i N i u (x) = N u (x) δu e , δv(x) = N u (x) δv e , u(x) = N u (x) u e , v(x) = N u (x) v e , a(x) = N u (x) a e γ(x) = G(x) γe , ˜ (x) = G(x) ˜ e , (10) 
while G(x) is the enhanced strain rate interpolation matrix of size 5 × 4, for a 2D plain strain problem. δu e i , δv e , u e i , v e i , a e i , γe and ˜ e denote the nodal vectors of the approximated functions.

For an arbitrary field δv e and by use of definitions (2) 2 and (6) 1 , the fluid contribution to the internal force vector may be expressed as,

n p f p=1 V p B T (X p )σ f (X p ) = n p f p=1 V p B T (X p )T f ∇ * v(X p ) + ˜ (X p ) = n p f p=1 V p B T (X p )T f B(X p )v e + G(X p ) ˜ e (11)
in which B(X p ) = ∇N u (x)| x=X p is the strain displacement matrix evaluated at X p . Finally, the matrix form of the system is obtained for the arbitrary components δv e and γe , K e (X p ) u e + D e (X p ) v e + M e (X p ) a e + (Γ e (X p )) T ˜ e = F e v (X p ) + Θ e (x),

Γ e (X p ) v e + H e (X p ) ˜ e = 0, (12) 
in which we have introduced the discrete stiffness matrix K e (X p ), the discrete diffusion matrix D e (X p ), the discrete mass matrix M e (X p ), the discrete coupled matrix Γ e (X p ), the discrete body force vector F e v (X p ), the discrete traction vector Θ e (x) and the discrete enhanced strain rate matrix H e (X p ). The definitions of those matrices are given in Appendix A.

The system of equations [START_REF] Lominé | Modeling of fluid-solid interaction in granular media with coupled lattice boltzmann/discrete element methods: application to piping erosion[END_REF], which is a compact system of (n dim × n n u + n n ) equations and unknowns, is solved fully implicitly by use of a standard Newmark scheme and a Newton Raphson procedure. The obtained formulation is further condensed out so that the enhanced strain unknowns disappear. It is proposed that the obtained formulation be simulated with the MPM. The idea is straightforward in that the algorithm is setup as any other type of MPM simulation. More details on the complete algorithm can be found in the following seminal references [START_REF] Sulsky | A particle method for historydependent materials[END_REF][START_REF] Sulsky | Application of a particlein-cell method to solid mechanics[END_REF].

Results and discussions

The potentials of the proposed method are highlighted with three numerical simulations, in two-dimensions. First a fluid flow around a cylindrical obstacle demonstrates the performance of the proposed algorithm for incompressible fluids. Next, the method is tested for problems involving free surfaces. The classic results of a collapsing water column are compared with experimental and XFEM numerical data. Finally, the accuracy of the method is tested on a sedimentation test. It was found that the results obtained with the MPM are more accurate than those of an immersed boundary method.

Fluid flow around a cylindrical obstacle

To test the properties of the model for an incompressible fluid, several calculations are performed by using a fixed elastic but very stiff obstacle. Fluid flow is scrutinized past a unit-radius (r) cylindrical obstacle located at the The calculated response is examined to test linear stability (Figure 1). The particles defining the incompressible fluid and the obstacle are attached to a 24 × 16 uniform grid on which the system (12) solved. Both the horizontal velocity and the pressure contours are reasonable, the latter being symmetric about x = 0 and close to zero at the exit [START_REF] Gresho | Incompressible flow and the finite element method[END_REF]. Note that the pressure solution in mixed elements (in the vicinity of the obstacle) is inaccurate highlighting the limit of the method. The streamlines in Figure 1 show the 'large' displacement thickness characteristic of 'sticky' Stokes flows; while the vorticity has diffused in a nearly-symmetric shape.

Clearly, the classical FEM would lead to results of greater quality in the vicinity of the obstacle to the price of adapting the mesh to this obstacle. A similar result, would be obtained with the MPM and an unstructured mesh that respects the boundary of the obstacle. Yet the aim here is to show that even with an unstructured coarse mesh consisting of 24 × 16 elements, the MPM can provide sufficiently accurate results.

A collapsing water column

This test case considers a domain of size 0.584 m×0.45 m containing a water column on the left-hand-side of size a × b =0.146 m×0.292 m [START_REF] Fries | The intrinsic xfem for two-fluid flows[END_REF][START_REF] Martin | An experimental study of the collapse of liquid columns on a rigid horizontal plane[END_REF]. While the water properties are ρ f = 1000 kg/m 3 and µ f = 1 × 10 -3 Pa.s, the rest of the domain is filled with an incompressible fluid endowed with the following properties ρ = 1 kg/m 3 and µ = 1 × 10 -5 Pa.s, representing air. No surface tension is considered. The loading is merely restricted to a volumetric gravitation force g = -9.81 m/s 2 . Free-slip boundary conditions are assumed along the boundaries of the domain. Two meshes are used, consisting of 12×9 and 36 × 27 elements. Each mesh is endowed with 36 MPs per cell and the simulation time is restricted to 0.3 s with ∆t = 3 × 10 -4 s.

The water column positions and pressure contour at some selected points in time are compared in Figure 2. The evolutions of the dimensionless water column width and height with dimensionless times are compared with experimental data [START_REF] Martin | An experimental study of the collapse of liquid columns on a rigid horizontal plane[END_REF] and the intrinsic XFEM solution [START_REF] Fries | The intrinsic xfem for two-fluid flows[END_REF] in Figure 3. Dimensionless displacements and times are defined as follows, in which w and h correspond to the intersection points of the water column interface with the bottom and left walls of the domain, respectively, so that at t = 0, w * = h * = 1. An excellent agreement of the MPM solution with other results is found where classical FEM results are known to be unsatisfactory [START_REF] Fries | The intrinsic xfem for two-fluid flows[END_REF].

w * = w a , h * = h b , τ w = t 2g a , τ h = t 2g b (13) 

Sedimentation test

This last test case mimics the sedimentation of a deformable cylinder in an incompressible fluid. We calculate the motion of the circular cylinder of radius a in between two parallel walls, of width 2L = 2.0 m. The motion of the cylinder, directed perpendicular to its axis with its axis positioned midway between the walls, is solely induced by gravity g = -9.81 m/s 2 . The cylinder properties are ρ s = 2700 kg/m 3 , E s = 36 GPa and ν s = 0.25 and the incompressible fluid properties are ρ f = 1000 kg/m 3 and µ f = 1000 Pa.s. The boundary conditions assume zero vertical and horizontal velocities on the vertical boundaries and zero vertical velocities only on the horizontal boundaries. The time step in the Newton Raphson scheme is chosen as ∆t = 0.001 s.

For a cylinder settling along the axis of an infinite channel, Faxen [START_REF] Faxen | Hydrodynamical resistance formula[END_REF] presents a close form solution for small a/L that relates the ratio a/L to the steady state vertical velocity v ∞ y (reported in Happel and Brenner [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF], p. 345). This theory is compared to MPM simulations and to the work of Sulsky and Brackbill [START_REF] Sulsky | A numerical method for suspension flow[END_REF] for cylinders of various radius in Table 1.

The results are in agreement with the approximated theory [START_REF] Faxen | Hydrodynamical resistance formula[END_REF] and the error remains small for a/L < 0.5. By using a modified immersed boundary technique, Sulsky and Brackbill [START_REF] Sulsky | A numerical method for suspension flow[END_REF] report an error decreasing in magnitude with increased resolution of the cylinder (a/∆x) and increasing in magnitude up to 10% error with a/L = 0.4. In comparison, the error on the MPM solution seems less dependent of the mesh resolution and is most probably due to the influence of mixed elements. 1: Velocity comparison of a settling cylinder between two rigid walls computed on a 50 × 100 grid with 9 MPs per cell. In comparison with the results of Sulsky and Brackbill [START_REF] Sulsky | A numerical method for suspension flow[END_REF], the MPM response is less dependent on the mesh resolution (a/∆x) and remains accurate within ≈ 1 % for a/L ≤ 0.4.

a/L a/∆x v ∞ y [m/s] v ∞ y [m/s]

Conclusion

The MPM is applied to the interaction of incompressible fluids and deformable particles. This method uses Lagrangian material points and an Eulerian grid or mesh to define the computational domain. The material points move through the Eulerian grid on which the balance equations are solved. This paper presents the modifications necessary to simulate the interactions between incompressible fluids and solid materials by using the assumed strain method. The spacial discretisation uses an enhanced strain element (Q1E5) [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF].

Several two-dimensional test problems are presented to demonstrate the methodology. A fluid flow test past an obstacle is used to test the incompressible fluid model, for Stokes flows. The method performs well despite the fact that the mesh does not fit the obstacle. Next, a collapsing water column test is presented to evaluate the accuracy of the method. The MPM response compares very well with both experimental [START_REF] Martin | An experimental study of the collapse of liquid columns on a rigid horizontal plane[END_REF] and XFEM results [START_REF] Mindel | Interface tracking and solid-fluid coupling techniques with coastal engineering applications[END_REF]. Finally, a sedimentation test is performed to validate the fluid-solid interactions. Again the proposed method performs well with respect to the analytical solution [START_REF] Faxen | Hydrodynamical resistance formula[END_REF] and better than other numerical methods such as the modified immersed boundary formulation [START_REF] Sulsky | A numerical method for suspension flow[END_REF].

The enhanced strain element Q1E5 used throughout this paper matches well the MPM procedure since it is compatible with the use of a lumped mass matrix during the initialization step. Yet this element does not satisfy of the inf-sup test so that one possible extension of the method is to test other elements such as the combined mixed displacement/pressure enhanced finite element [START_REF] Pantuso | A four-node quadrilateral mixedinterpolated element for solids and fluids[END_REF]. Also the proposed element does not satisfy strictly the incompressibility condition div v = 0 and the results presented herein will be compared in a near future with that obtained with a bi-linear mixed element Q1P0 [START_REF] Gresho | Incompressible flow and the finite element method[END_REF].

Figure 1 :

 1 Figure 1: The particles defining the incompressible fluid and the obstacle along an axis of symmetry are shown for a 24 × 16 grid with 9 MPs per Q1E5 element. The horizontal velocity and the pressure contours reflect the good capabilities of the method, while the streamlines and the vorticity are characteristic of 'sticky' Stokes flows.

Figure 2 :1

 2 Figure 2: Water column position and pressure contour at 5 selected times for the Q1E5 element. The 36 × 27 elements mesh uses 36 MPs per cell.

Figure 3 :

 3 Figure 3: Dimensionless (left) width and (right) height over time, see eq. (13), for the collapsing water column test case. Each MPM mesh uses 36 MPs per cell. The MPM solution agrees well with other results in spite of the coarse nature of the meshes.
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A Discrete matrices used in eq. [START_REF] Lominé | Modeling of fluid-solid interaction in granular media with coupled lattice boltzmann/discrete element methods: application to piping erosion[END_REF] The discrete coupled matrix Γ e (X p ), the discrete diffusion matrix D e (X p ), and the discrete enhanced strain rate matrix H e (X p ) write,

Also we have introduced the discrete mass matrix M e (X p ), the discrete body force vector F e v (X p ), the discrete traction vector Θ e (x) and the discrete stiffness matrix K e (X p ) as,

It is worth noting that the number of integration points used to obtain the various discrete matrices is adapted depending on the nature of each term, i.e. the diffusion, coupled and enhanced strain rate matrices are summed over the fluid material points, the stiffness matrix is summed over the solid material points, and the mass matrix is evaluated using all material points of the element.