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ABSTRACT

This paper deals with the problem of three-dimensional vol-
ume reconstruction from two-dimensional projections with
unknown orientations. This situation occurs in cryo-electron
microscopy. A method determining the orientations and re-
constructing the volume jointly from scratch (ab initio) is pre-
sented in this work. It is based on a heuristic cost minimiza-
tion including a comparison of the input projections with the
projections obtained from the image being reconstructed and
the orientations information and a data fitting based on the
common-lines. The method is tested on synthetic data and
compared to SIMPLE software on real data.

Index Terms— Tomography, Ab-initio Reconstruction,
Unknown Directions, 2D, Gray-level Image.

1. INTRODUCTION AND STATE OF THE ART

The problem of tomographic reconstruction from projections
with unknown directions is encountered in various domains
as medical imaging (e.g. when the patient is moving during
a X-ray scanner acquisition) and cryo electron microscopy
(cryo-EM). In cryo-EM, a thin vitreous ice layer containing
multiple specimens is magnified with an electron microscope.
Each cryo-EM image is a 2D projection of the 3D scattering
density. Because the orientations of the 3D specimens relative
to the microscope are not known, it follows that each image
is related to an unknown-orientation 2D projection of the 3D
specimen. In fact, unlike what is essentially done in medical
imaging, cryo-EM don’t allow to rotate the 3D specimen and
to take a series of images with known relative orientations be-
cause the specimen is rapidly damaged by the electron beam.
Therefore, taking multiple images of one specimen in differ-
ent orientations is replaced by taking one image of many iden-
tical specimens where each specimen is in a different random
unknown orientation.

The image to reconstruct is a 3D image. Generally, in
the first step, the projection directions are estimated. In 3D,
it relies on algorithms derived from common line correlation
[1]. If the molecule is known to have some preferred ori-
entation, then it is possible to find an ab initio 3D structure

using the random conical tilt method [2]. It exists solutions
to the ab initio estimation problem of the 3D structure that
do not involve tilting [3], [4]. To cope with the high dimen-
sional space of the data, the direction-assignment algorithms
use dimension reduction [5] or optimization [6, 7]. To re-
duce variability, class averages are typically computed from
particle images that have already been rotationally and trans-
lationally aligned [8]. The choice of reference images for the
alignment is, however, arbitrary and can represent a source
of bias in the classification process. Ideally one would want
to do the 3D reconstruction directly from projections in the
form of raw images. This therefore sets the goal for an ab ini-
tio reconstruction algorithm that requires as little averaging as
possible.

Once the direction estimation is done, the second step is
the reconstruction with known directions. The main families
of reconstruction methods are [2]: the algebraic methods, it-
erative filtered back projection, and those using the Fourier
transform. In the ab-initio case, the sequence of these two
steps gives a first reconstructed image whose quality is not
always sufficient, and then requires a refinement step. The
reconstructed image is used to refine the projection directions
and these directions can then be used to improve the data re-
construction. This iteration reflects the fact that if the esti-
mated directions influence the image reconstruction, the im-
age estimation also affects the estimation of directions. But
this does not allow the estimated image to play its full role in
the estimation of directions, since it was built later. We pro-
pose a method that offers this possibility. It is based on a joint
estimation of projection directions and image.

The novelty of our method lies in the fact that the image
and directions as a single object to reconstruct and that they
are jointly estimated. It generalizes our article focused on 2D
gray-level image reconstruction [9].

The rest of the paper is structured as follows: in Sec. 2,
a model of the acquisition is shown and the problem is speci-
fied, the resolution method is detailed and the associated cost
function is studied then results are given in Sec. 3. A conclu-
sion and perspectives end this paper.



2. PROBLEM AND METHOD

In cryo-EM, 2D images modeled as projections of a 3D single
object in different directions are provided. We assume here
that the shortcomings of the acquired data (defocusing, con-
trast transfer function, aberrations) have been corrected dur-
ing a pre-processing step. These projections come down from
the X-ray transform of the object. We first introduce some
necessary notations before defining the X-ray transform.

Let B3 = {x ∈ R3| ‖x‖ ≤ 1} be the unit ball of R3. We
call K the set of the bounded measurable functions f (for the
usual measure of Lebesgues) from the unit ball B3 in R+ such
that f is derivable and ‖∇f‖1 =

∫
B3
|∇f | <∞.

Remark 2.1. As f is bounded, ‖f‖2 =
∫
B3
|f |2 <∞.

Definition 2.2 (X-ray transform). Let f a function of K. The
X-ray transform of f is given by

Xf (θ, s) =

∫
R
f(s+ u · θ)du (1)

where θ ∈ S3 and s ∈ θ⊥.
The function f is called object and the measurable function
s 7→ Xf (θ, s) is called projection of f in the direction θ and
denoted π2(θ, f) or π(θ, f) if there is no ambiguity.

π(θ, f) belongs to the set of bounded measurable func-
tions with support in B2, denoted B. The projections have the
following property that will be exploited for the reconstruc-
tion.

Proposition 2.3 (Common line). Let π2(θ1, f) and π2(θ2, f)
two projections of the function f . Let d = θ1 ∧ θ2, γ12 =
d⊥ ∩ θ⊥1 and γ21 = d⊥ ∩ θ⊥2 . Then one has the following
equality:

π1(γ12, π2(θ1, f)) = π1(γ21, π2(θ2, f))

where π1(α, g) is the 1D projection of the 2D function g in
the direction α.

Practically, the planes of projections associated to the two
images intersect in a line d called the common line; see Fig. 1
for an illustration.

Fig. 1. Common line principle on two projections

Hence, the 1D orthogonal projections of the two images
onto the common line are equal. Note that there is a version
of the common line property in the Fourier’s space.

Our proposal for reconstructing a 3D function f (standing
for a density electron map in the cryo-EM frame) from a set
of its 2D projections (P1, . . . , Pn) with unknown directions
is to solve the following minimization problem:

(f̃ , Θ̃) = argmin
f,Θ

GP (f,Θ) (2)

where

GP (f,Θ) = βJP (f,Θ) + (1− β)KP (Θ) (3)

β ∈]0, 1] is a weight factor.
The cost function GP is based on three elements which

are the current image, current directions and the given projec-
tions. GP is formed of a residual norm JP between the given
projections and the estimated projections and an attach to the
dataKP depending only on the given projections and the cur-
rent directions. Implementation of (2) relies on the definition
of the cost function GP and on an optimization method. In
this paper, JP is classically formed of a residual norm that
estimates an error between the given projections P and cur-
rent projections {π(θ, f crt), θ ∈ Θcrt} which are two finite
subsets of B:

JP (f,Θ) =

n∑
i=1

‖Pi − π2(θi, f)‖22

and KP gives a direction consistency based on the common
line property

KP (Θ) =

n∑
i=1

n∑
j=i+1

‖Li,j − Lj,i‖22 ,

where
Li,j = π1(γij , Pi), ∀i, j ∈ 1, .., n

To calculate the minimum of the cost functionGP we use
the metaheuristic optimization algorithm, the Simulated An-
nealing, that gives good results to our work in the 2D case [9].
Since this method is an ab initio reconstruction method, the
algorithm is initialized with an empty cube and an initial tem-
perature T = T0. At each iteration an elementary modifica-
tion of the system is applied and evaluated by the variation of
cost function. If the variation is negative, the proposed mod-
ification is accepted. Otherwise, it is accepted with a proba-
bility e

−∆GP
T . The temperature T decreases at each iteration

toward zero following some annealing schedule. The elemen-
tary modification of (Θ, f) is based on: (1) a modification in
the object f by picking randomly a voxel and assigning to it
a random value. (2) a modification in the set Θ by selecting
randomly a projection and assigning to it a random direction.
The process is stopped when the modifications are rejected n0

times. Different types of temperature decay functions have
been tested. The exponential decreasing functions give the



better results with low decay rates λ = 10−3 and high initial
temperatures T0 = 100. The algorithm of the minimization
process is shown in Algo 1.

Algorithm 1 Reconstruction algorithm

initialization f (0),Θ(0), T0

while iter < itermax do
if iteration is pair then

elementary modification of the current image f crt

else
elementary modification of the current set Θcrt

end if
if ∆GP < 0 then

modification accepted
else

r ← random value ∈ [0, 1]

if r < e−
∆GP

T then
modification accepted

else
modification rejected
iter ← iter + 1

end if
end if
T ← T0e

−λT

end while
return f crt

One of the most important parameters of the algorithm is
the weight factor β. The best value is experimentally deter-
mined as β = 0.2. Table 1 shows the different reconstruction
errors depending on this parameter. Note that the two terms of
GP are normalized with the number of projections, the image
size and max(Pi) to have a meaningful balance with β.

β 0 0.2 0.4 0.6 0.8 1
MSE f (%) n.a. 0.9 1.9 1.8 2.4 6.7
MSE Θ (%) 3.1 2.2 2.6 2.6 3.2 8.4

Table 1. The reconstruction quality in function of β.

The fact that the best value for β is not 0 means that es-
timate the directions only from the projections does not give
the best results. A consequence is that the choice of recon-
struct first the directions and secondly the image (as in the
classical methods) does not lead to the best reconstruction. It
justifies our proposal of a joint reconstruction of the object
and the directions.

3. RESULTS

The proposed method have been applied to 20 gray-level 3D
images of different resolutions (m3,m ∈ 16, 32, 64, 128) and
different gray-level numbers (2p, p ∈ 1, .., 8), referred to as
phantom images (an example is given Fig. 2).

Fig. 2. Example of a phantom from the test database.

The phantoms are generated randomly by a Matlab pro-
gram1. For each resolution m, a set of np = 1.7 × m pro-
jections uniformly distributed have been computed from the
phantoms. A random direction have been assigned to each
projections. The importance of the different parameters (ini-
tial temperature, temperature decay, acceptance probability,
length of each reconstruction phase) has been evaluated ex-
tensively, but the study can not be shown here due to the lack
of place. The parameters used for the simulation come from a
compromise between the reconstruction quality and the pro-
cess time. For each of the 20 phantoms, 20 reconstructions
have been carried out and only the one with the minimum cost
value is retained. The reconstructed volumes have been com-
pared to the phantoms and evaluated in term of Mean Square
Error (MSE) after rigid registration. The MSE is normalized
with the number of gray-scale and the volume of the sphere
inscribed in the image support:

MSE =
3

ng4π(N2 )3

N∑
i=1

N∑
j=1

N∑
k=1

(I(i, j, k)−Ĩ(i, j, k))2 (4)

where ng is the number of gray-levels.
Tab. 2 displays the MSE scores for the different image

sizes with 256 gray-level number. For all the tested resolu-

Resolution 163 323 643 1283

MSE (%) 2.8± 1.2 2.7± 1.2 4.1± 1.8 14.2± 7.4

Exec. Time 50 sec 20 min 20 hours 9 days

Table 2. Quantitative evaluation of the reconstruction perfor-
mance on the phantom base in term of Mean Square Error.

tions except 1283, the error remains under 5% of wrong pix-
els. The worse result for the resolution 1283 is due to the high
dimension of the research space. It shows the difficulty of
the ab-initio reconstruction and our future work will exploit
the lower resolution reconstructions to improve the result for
higher resolution by including a multi-resolution process.

The robustness of the method against white noise has been
evaluated. The proposed method has also been applied to real
data composed of 225 averaged 1603 projections from the
complex TAF7. Fig. 3 shows some examples of these classes.
The signal to noise ratio is estimated at 10.02dB. The same
protocol as for the phantom reconstruction has been used at

1Images and program are available at http://rhodes.unistra.
fr/Tomo/Data/ISBI15/DB_resol_gr.zip



Fig. 3. Example of averaged projections of the complex
TAF7.

the resolutions 403 and 1603 but a positive result has been ob-
tained only at the resolution 403. A comparison is made with
a reconstruction from the averaged projections with SIMPLE
software [10]. Then the obtained ab-initio reconstructions are
compared to a reference reconstruction obtained with a tilt
acquisition. The MSE and the correlation are resp. 1.9784
and 85% for our method and resp 1.5 × 106 and 31% for
SIMPLE software. It shows that our method obtains a bet-
ter ab-initio reconstruction than the SIMPLE software on the
complex TAF7. Fig. 4 shows isosurfaces for the obtained and
the tilt volumes after registration.

Fig. 4. Reconstructions of the complex TAF7 with SIMPLE
software (left), with our method (center) and with the angular
information from a tilt serie (right).

4. CONCLUSION

This paper presents a reconstruction method for the 3D case
where the projection orientations are unknown. The method
is based on the minimization of a cost depending on the image
voxels and the orientations. The minimization uses a simulat-
ing annealing process. The proposed method has been tested
on 20 synthetic images at 4 resolutions and on real data com-
posed of projection averaged classes from the TAF7 complex
at resolution 403. The results are promising for the synthetic
data and the reconstruction is successful on the real data and
shows a good similarity with reference volume.

In the futur, we plan to introduce multiresolution in the
method so as to speed up the process and to achieve recon-
struction at higher resolutions.
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