
HAL Id: hal-01314335
https://hal.science/hal-01314335v1

Submitted on 11 May 2016 (v1), last revised 3 Apr 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Is the market really a good teacher ?
Pascal Seppecher, Isabelle Salle, Dany Lang

To cite this version:
Pascal Seppecher, Isabelle Salle, Dany Lang. Is the market really a good teacher ?: Market selection,
collective adaptation and financial instability. 20th Conference of the Research Network Macroeco-
nomics and Macroeconomic Policies - Towards Pluralism in Macroeconomics? , Research Network
Macroeconomics and Macroeconomic Policies (FMM), Oct 2016, Berlin, Germany. �hal-01314335v1�

https://hal.science/hal-01314335v1
https://hal.archives-ouvertes.fr
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Abstract

This paper proposes to model market mechanisms as a collective learning process
for firms in a complex adaptive system, namely Jamel, an agent-based, stock-flow
consistent macroeconomic model. Inspired by Alchian’s (1950) “blanketing shotgun
process” idea, our learning model is an ever-adapting process that puts a significant
weight on exploration vis-à-vis exploitation. We show that decentralized market se-
lection allows firms to collectively adapt their overall debt strategies to the changes
in the macroeconomic environment so that the system sustains itself, but at the cost
of recurrent deep downturns. We conclude that, in complex evolving economies,
market processes do not lead to the selection of optimal behaviors, as the charac-
terization of successful behaviors itself constantly evolves as a result of the market
conditions that these behaviors contribute to shape. Heterogeneity in behavior re-
mains essential to adaptation in such an ever-changing environment. We come to
an evolutionary characterization of a crisis, as the point where the evolution of the
macroeconomic system becomes faster than the adaptation capabilities of the agents
that populate it, and the so far selected performing behaviors suddenly cease to be,
and become instead undesirable.
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1 Introduction

A market operates on a decentralized ground: it is a place where a collection of hetero-

geneous agents locally and constantly interact, without seeing the resulting whole picture.

This property poses a challenge to the use of a representative agent with rational expect-

ations, and raises the question of how to model agents’ behaviors and learning in market

economies. This paper proposes a decentralized adaptation model rooted in the function-

ing of the market itself: the selection mechanism operates through market competition,

as firms that use non performing strategies are driven out of the market by bankruptcy.

The idea that market mechanisms determine the aggregate behavior of the system,

by selecting appropriate behaviors and discarding inappropriate ones, without the need

to model any rationality, foresight of adaptive behavior from the individual agents is

originally due to Alchian (1950). Alchian (1950, p. 219) calls such a process the “blanket-

ing shotgun process” (BSP hereafter): a multitude of agents randomly select strategies,

without assuming any intentional decision making at the individual level, and the market

selects the best-performing behaviors by excluding the unsuccessful ones. This process

requires individual heterogeneity and market interactions, and postulates that the col-

lective adaptation force of the system is superior to the one of the individual agents.

This process also puts more emphasis on the exploration for potential strategies than on

the exploitation of already discovered strategies. The BSP therefore appears particularly

well-suited to represent adaptation of a population in an ever-changing environment. We

believe that all these features, rather than referring to the principle of the survival of

the fittest as a defense of profit maximization, bring simple but relevant principles that

are reconcilable with, and even precursory of both the theory of bounded rationality (Si-

mon 1961) and evolutionary economics (Nelson & Winter 1982), and may be useful for

modeling behavior in macro ABMs.

In this paper, we introduce investment and capital depreciation in the Jamel model1,

along with refinements in the banking sector. We then apply the principles of the BSP
1Jamel stands for Java Agent-based MacroEconomic Laboratory, see Seppecher (2012b,a), Seppecher

& Salle (2015).
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to the determination of firms’ leverage strategies. We choose this model as a playground

because it is simple enough to get a grip on the emerging dynamics, while allowing for rich

monetary and real interactions between agents, and especially between firms, in a fully

stock-flow consistent framework. We choose the leverage strategies for testing the BSP

because this decision is in several ways particularly challenging from the firms’ perspective.

First, in an ABM, not even the modeler would be able to identify an “optimal” solution.

What is more, investment dynamics brings instability into the macroeconomic dynamics

of the model compared to previous versions, and reinforces market competition. Leverage

decisions amount specifically to solving a “growth-safety trade-off”: a high indebtedness

allows the firm to quickly gain market shares, but at the risk of an increased financial

fragility; a low indebtedness may be insufficient to renew depreciating capital and may

drive the firm out of the market. The debt behaviors of firms in turn collectively contribute

to shape the macroeconomic environment, so that the environment constantly changes,

and complex dynamics emerge. In such an hostile and selective environment, we let the

leverage strategies of a collection of competing firms evolve on a completely random basis,

and the only selection pressure comes from bankruptcies.

With the Jamel model as a playground, we perform a theoretical exercise that aims

to assess to what extent the process of “natural” market selection constitutes a suitable

adaptation model for agents in a complex system. This amounts to characterizing the

dynamics that emerge from ever-adapting individual behaviors under the sole selection

pressure of market conditions, that they in turn contribute to shape: Can the system

settle down on an “equilibrium”? Otherwise, what are the emerging dynamics?

Our results are as follows. Decentralized market selection allows the firms to collect-

ively adapt the overall leverage level to the changes in the macro environment in a way

that the system can sustain itself. However, this regulation comes at the price of wild

fluctuations and deep downturns. This emerging macro dynamics are caused by a clear

alternating pattern between a sustained rise in indebtedness along the boom phase, that

feeds back into the goods demand, and brutal deleveraging movements along the busts,

once the financial fragility of firms, combined with increased interest rates and excess
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production capacities, increases to the point where insolvency and bankruptcies are un-

avoidable. We conclude that, even if the “natural” market selection process allows for a

certain resilience and adaptatibility of the system, it does not deliver any convergence

towards an “optimal” equilibrium. Our conclusion stands in sharp contrast to the view,

dating back to Friedman (1953), that systematically advocates market selection to justify

full rationality assumptions and equilibrium reasoning.

Furthermore, we observe that debt behaviors that are rewarded along the boom turns

out to be vicious along the busts, and firms need to constantly adapt along the different

phases of the business cycles. We then make the point that heterogeneity of behavi-

ors is essential to the adaptation process of a population in an unstable, and quickly

evolving environment. The BSP allows us to make this heterogeneity endogenous and

dynamic: it combines converging forces (market selection and imitation) with diverging

forces (exploration), so that behaviors co-evolve with the macroeconomic dynamics that

they contribute to shape. This is a major point, because it allows us to show that, while

individual and aggregate behaviors appear to commonly self-reinforce each other, they

can suddenly disconnect from each other. This observation leads us to suggest an evolu-

tionary characterization of a crisis, as the point when the evolution of the macro system

becomes faster than the adaptation capabilities of the agents that populate it. One par-

ticular strength of our framework is to be able to robustly account for such a phenomenon

as a result of simple, random and individual adjustments.

The rest of the paper is organized as follows. Section 2 discusses the non-trivial prob-

lem of modeling individual behaviors in complex systems, Section 3 details the Jamel

model and our implementation of the BSP, Section 4 presents the results from the numer-

ical simulations, Section 4.3 discusses the characterization of a crisis in the model, and

Section 5 concludes.
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2 Modeling individual behaviour in macro ABMs: learn-

ing and adaptation

This section paves the way to the introduction of the adaptation process based on the

BSP in the Jamel model. We first discuss the challenges posed by the modeling of agents’

behavior in macro ABMs. We then define the concepts of adaptation and learning and

stress their importance in this type of models. We finally contrast individual versus social

learning by focusing on evolutionary models and discuss their limitations.

2.1 Modeling individual behavior in macro ABMs: particularities

and challenges

The “wilderness of bounded rationality” The functioning of ABMs is rooted in a

multitude of heterogeneous agents who repeatedly interact in a decentralized way. Those

interactions generate complexity, in the sense that even the perfect knowledge of indi-

vidual behavior is not enough to anticipate the resulting macroeconomic outcomes. In

such a complex world, no agent is endowed with the whole picture of the economy, and

uncertainty is both strategic and radical: because of the uncertainty regarding all other

agents’ behavior, there is no trivial probabilistic mapping between the entire set of pos-

sible actions of an agent and the resulting states of the world and associated pay-off.

Neither the agents nor the modeler may be able to define what the fully rational/optimal

decision is (Dosi et al. 2003). As a consequence, the use of the standard microeconomic

maximization tools is not suited in ABMs, and there is a priori no trivial alternative.

In such complex worlds, agents’ rationality can only be bounded, in the sense of Simon

(1955), i.e. procedural and adaptive, but the challenge is how to model this boundedly

rational behavior. This is a challenge because the modeler has to cope with the so-called

“wilderness of bounded rationality” (Sims 1980): while there is one single way of solving

an optimization program, there are many ways of being boundedly rational, and the ques-

tion is how to discriminate between the multitude of alternative behavioral rules. This
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is a crucial question as the dynamics of the ABM, and the conclusions drawn from their

analysis, are likely to depend on the behavioral rules that have been incorporated into it.

Empirical observations as the main guideline We argue that what we can observe

from real-life behavior should be the main ground for modeling agents’ behavior in artifi-

cial economies. Common sense and guesswork cannot be sufficient, as there is obviously

no guarantee that they will result in mimicking real behavior (Farmer & Foley 2009).

This idea was already present in Cohen (1960, p. 536):

Trying to formulate a detailed computer model of the actions of individual

households or firms spotlights the kind of empirical information needed to

obtain a better understanding of these activities.

Ever since, the growing amount of experimental evidence from controlled lab envir-

onments with human subjects in economics, sociology and psychology, as well as the

increasing availability of survey data has fueled our knowledge of how agents actually be-

have under alternative environments. This collection of evidence constitutes an obvious

ground for the derivation of behavioral rules in ABMs.

However, such an exercise is not straightforward: agents’ behavior in the real world

do not always find a clear-cut interpretation, they can be highly heterogeneous and vary

between agents, and from one period to the next.2 The behaviors of agents and the

system as a whole can be then path-dependent (Bassi & Lang 2016). In other words, real

agents’ behaviors are unstable, and any attempt to summarize agents’ reaction by a fixed

behavioral rule derived from a sample of empirical observations may pose a problem of

realism. Such an attempt could be acceptable if the behavior under study does not appear

as a central issue for the research question that the model has been built to address, or

if the model is only aimed at the analysis of very short-run dynamics, over which we

can consider that agents’ behavior is fixed. However, when it comes to the analysis of

longer-run dynamics, this modeling strategy introduces an ad-hoc, exogenous stickiness
2For instance, Lainé forthcoming shows the challenge posed by the heterogeneity of the observed

investment behavior of firms if one seeks to derive a model of investment decisions.

6



in the model that may distort the conclusions. When it comes to policy analysis and

the comparison of different model scenarios, this strategy does not allow to address the

so-called Lucas critique: fixing behavioral rules amounts to performing ceteris paribus

analysis, and ignoring that policy changes are likely to affect in turn micro behavior.

This was also the criticism made by Keynes to Tinbergen’s macroeconometric models

(Keuzenkamp 1995). What is more, we argue that this is a gross contradiction with the

decentralized and autonomous nature of ABMs: in an ABM, agents should be autonomous

and free to interact and adapt without any intervention of the modeler (Gaffeo et al. 2008,

Delli Gatti et al. 2010).

Modeling adaptation and learning The alternative to the use of a fixed set of beha-

vioral rules is to endow agents with a genuine ability to adapt or, in other words, to learn

(Farmer & Geanakoplos 2009). Modeling learning shall be understood as designing beha-

viors that agents constantly and endogenously adapt as a reaction to the feedback that

they receive from their environment. As stressed by Delli Gatti et al. (2010), modeling

learning can combine heuristics based on empirical observations and adaptation:

The solution we advocate is a bottom-up approach: let us start from the

analysis of the behaviour of heterogeneous constitutive elements (defined in

terms of simple, observation-based behavioural rules) and their local interac-

tions, and allow for the possibility that interaction nodes and individual rules

change over time (adaptation). (Delli Gatti et al. 2010, p. 4)

This idea is also at the root of the heterogeneous agent literature in which agents en-

dogenously switch between a fixed (Brock & Hommes 1997) or evolving (Anufriev et al.

2015) set of heuristics according to their relative pay-off performances.

Learning introduces an additional layer of complexity to ABMs in a twofold way. On

the one hand, agents adapt their behavior as a result of the macro environment, so that

the macro level feeds back into the micro level. On the other, there is an interdependence

between individual learning behavior. This is precisely what March (1991, p. 81) defines

as an “ecology of competition”:

7



External competitive processes pit organizations against each other in pursuit

of scarce environmental resources and opportunities. . . . In these ecologies

of competition, the competitive consequences of learning by one organization

depend on learning by other organizations.

Learning induces an intricate co-evolution between the micro and the macro dynamics

(Winter 1971). The environment in which agents interact cannot be considered as exo-

genous and is, on the contrary, ever-changing, as emphasized by Dosi et al. (2003, p.

30):

. . . in population-based adaptive frameworks, the systematic appearance of

novelties implies also an ever-expanding payoff matrix, continuously deformed

by the interaction with new events and strategies.

This idea is a crucial component of complex adaptive systems as discussed by Holland

(1992). Because the environment is constantly changing, this type of systems cannot be

comprehended in terms of fixed point analysis, in which the equilibrium of the system

is the fixed point of the mapping between beliefs and realizations, as this is the case for

rational expectations macro models.

2.2 Why social learning in ABMs?

Learning can be modeled at the individual level or the social level (Vriend 2000). In-

dividual learning assumes that each agent is endowed with an evolving set of strategies

that can be interpreted as his search capacities. Social learning envisions each agent as a

single strategy and adaptation intervenes at the population level.

Individual learning can be understood as a trial-and-error process. On its own, it

is certainly slow, as a time step is necessary to evaluate one strategy (unless the agent

makes use of some foregone/“what-if” pay-off functions). By contrast, social learning

allows the agents to parallelize the evaluation of the available strategies, so that the

larger the population, the quicker the evaluation process. Allen & Carroll (2001) and
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Palmer (2012) illustrate this difference within the simple framework of the buffer-stock

consumption rule; see also Salle & Seppecher (2016).

Most importantly, if the environment is itself ever-changing, as argued above in a

complex adaptive system, a trial-and-error individual learning becomes unfeasible:

In a static environment, if one improves his position relative to his former

position, then the action taken is better than the former one, and presumably

one could continue by small increments to advance to a local optimum. . . . [in

a changing environment] there can be no observable comparison of the result

of an action with any other. Comparability of resulting situations is destroyed

by the changing environment . . . the possibility of an individual’s converging

to the optimum activity via a trial-and-error process disappears. (Alchian

1950, p. 219)

For this reason, we show in this paper how social learning can instead be used to model

adaptation in an ABM. We take social learning in a broad sense:

Social learning means all kinds of processes, where agents learn from one

another. Examples for social learning are learning by imitation or learning by

communication. (Riechmann 2002, p. 46)

Social learning in market economies is derived from the “Darwinian” archetype (Dosi

et al. 2003, p. 62). This is also the “as if” interpretation of rational behavior (Friedman

1953): selection between individual strategies operates according to the principle of the

survival of the fittest, so that the least performing strategies in terms of pay-off are

eliminated from the population, and replaced by the best performing ones. Because of

this Darwinian analogy, social learning in a decentralized economy is often represented

by the means of evolutionary algorithms, such as genetic algorithms (GAs hereafter) –

see Arifovic (2000) for a survey of GA in stylized macro models. GA learning dynamics

is driven by two main forces: innovation that constantly introduces new behaviors in the

system, and selection pressure that duplicates the best performing ones at the expense of

the other.
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However, GAs are not exempt of limitations. Their operators do not always find an

easy economic interpretation (Chattoe 1998, Salle & Seppecher 2016). Most importantly,

because they have been initially developed to find optima in complicated static problems

(Holland 1975), they have been used in economics as a way for agents to learn how to max-

imize their profits or utility functions, and the focus has been put on the conditions under

which agents end up coordinating on the optimal state of the model under GA learning

(Arifovic 1990). In these set-ups, the mapping between strategies and pay-off is supposed

to be time-invariant. In face of perpetually evolving environment, as in complex adaptive

systems, GAs perform badly because they assimilate adaptation with convergence on an

equilibrium and individual coordination (which implies a progressive loss of diversity in

the strategy population). This is even sometimes obtained at the price of ad-hoc mech-

anisms such as an exogenous decrease in the innovation force of the algorithm (Arifovic

et al. 2013). We believe that this is a major flaw of the macroeconomic learning liter-

ature: the neoclassical paradigm has contributed to reduce learning to convergence on

a fixed optimum. On the contrary, an ABM is an ever-evolving system. We therefore

argue that decentralized learning mechanisms and market selection can be represented

in ABMs without the use of GAs, precisely because ABMs allow to model directly these

mechanisms in a simpler and more realistic way.3 The purpose of this paper is to provide

such a proof-of-concept.

2.3 The “blanketing shotgun process”

We now develop a learning model based on the “blanketing shotgun process” of Alchian

(1950, p. 219) because the BSP consists precisely in constantly and randomly covering

the space of strategies, instead of modeling learning as an individual converging search.

We support the idea that Alchian (1950) can be considered as a major precursor of the

evolutionist/post-Schumpeterian school of thought because this author provided a precise

description of the co-evolution between market selection and behavior adaptation.
3As stressed by Dosi & Winter (2003, p. 396), nor are necessary aggregate/centralized interaction

models like the replicator dynamics. We could make a similar point for the heuristic switching model à
la Brock & Hommes (1997).
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Three operators The BSP encompasses three operators, all inspired by the biological,

Darwinian metaphor (Alchian 1950). First, profits stand for the natural selection process :

firms with positive profits are considered successful and survive, while those with losses

go bankrupt and disappear. We notice that Alchian stresses that positive, not maximal

profits, are the success criterion:

Adaptive, imitative, and trial-and-error behavior in the pursuit of “positive

profits” is utilized rather than its sharp contrast, the pursuit of “maximized

profits.” (Alchian 1950, p. 211).

This fitness measure is also in line with the satisfycing principle of Simon (1955). Second,

imitation stands for heredity: operating characteristics (or “routines” in the terminology

of Nelson & Winter (1982)) of successful firms are copied by others. Third, innovation

(or mutation or individual experimentation) intervenes twice: once during the imitation

process because the copy of the firm’s strategies is not exact4, and at any time, even

in case of positive profits, during a “trial-and-error” process. This type of innovations

maintains a constant diversity in the population of strategies, which ensures the ergodicity

of the learning process, and can be quite drastic (Alchian 1950, p. 219). Trial-and-error

processes may for instance represent internal organizational changes, whether voluntary

or not. They may happen even if the firm is making profits (Winter 1964). We also refer

here to the concept of “persistent search” in Winter (1971):

By “persistent search” is meant a search process that continues indefinitely,

regardless of how satisfactory or unsatisfactory performance may be - although

the search may be slow, sporadic, or both. (Winter 1971, p. 247)

BSP versus GA Even if, at a first glance, the three operators of the BSP seem to

have a lot in common with those of a GA, there are important differences. In a GA,

changes in behavior are triggered by exogeneously fixed probabilities, and the imitated
4This can be because the firm’s operating characteristics are not perfectly observable by its com-

petitors, or because the firm’s routines cannot exactly transferred to another firm. Alchian (1950, pp.
218-219) uses the concept of “rough-and-ready imitative rules”.
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agents are selected in relation to their relative performances, e.g. through a tournament

or roulette-wheel selection process. By contrast, in our implementation of the BSP, both

the frequency of imitation and the firm to be imitated are endogenous and driven by

the market selection pressure: this is a major, decentralized feature of our learning al-

gorithm.5 The market triggers the adaptation reaction of the firms and the imitation

process: after if going bankrupt, a firm is taken over by a new management team, its

operating characteristics disappear and are replaced by the ones of a randomly chosen

firm in the population of surviving firms.

Furthermore, the BSP and GAs differ in the relative weight that they give to explor-

ation versus exploitation. Indeed, any learning mechanism implies a trade-off between

exploitation of existing, well-performing strategies, and exploration in search of poten-

tially better ones (March 1991). A weak selective pressure favors exploration and allows

for the survival of poor-performing strategies. Such systems may end of with “many

undeveloped new ideas and too little distinctive competence” (March 1991, p. 1971).

Conversely, a strong selection process puts much emphasis on exploitation at the expense

of exploration, and exposes the system to the risk of a premature loss of diversity and

homogenization of the strategies on poor ones. The adaptive process is then potentially

self-destructive (March 1991, p. 85). Consequently, the ability of a system to adapt and

survive relies heavily on the balance between exploitation and exploration. GA-based

learning algorithms have been primarily designed to coordinate individual behaviors on

a fixed optimal strategy. This coordination requires a progressive homogenization of the

strategy population. GA-based learning therefore allows for the adaptation of the agents,

and emphasizes exploitation over exploration. By contrast, the BSP favors exploration,

by keeping a perpetual dispersion of the strategies, and therefore reinforces the adaptabil-

ity of the system. In Section 4.2.1, we show that this dimension turns out to be crucial in

shaping the emerging macroeconomic dynamics. We believe that this feature of the BSP

is very much in line with the evolutionary metaphor of Darwinian selection:
5 We neither model any counter-part of the cross-over operator as we find little interpretation for it

in economics, see Salle & Seppecher (2016) for further discussion.
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Conversely, in the opposite “Darwinian” archetype, nobody learns and system

dynamics is driven by selection operating upon blindly generated variants of

e.g. behaviour, technologies, etc., (taken literally this is also the “as. . . if”

interpretation of rational behaviour). (Dosi et al. 2003, p. 62)

We argue that this feature is most convincing in a dynamic market environment in which

firms have to compete without being able to derive an optimal strategy. We now apply the

BSP learning algorithm in a simple macro ABM – Jamel – and ask the question whether

“the market is indeed a good teacher” (Day 1967, p. 303).

3 Learning and adaptation in a simple macro ABM

The first innovation of this paper is to model the firms’ leverage strategies through the

BSP. We therefore introduce capital accumulation and depreciation in the model in the

Jamel model. The size of the firms evolves endogenously as a result of their investment

decisions. We also refine the specification of the banking sector. We intend to provide here

a self-contained presentation of Jamel, and we pay a specific attention to the description

and the explanation of the new features that this paper introduces. We refer the interested

reader to Seppecher & Salle (2015) for an exhaustive discussion and justification of the

rest of the assumptions of the model. Appendix B provides the pseudo-code of the model

that makes the timing of events together with each equation explicit, and defines each

variable and each parameter. We refer the reader to this appendix for the detail of the

model design. The open source code (in java) as well as an executable demo are available

on the corresponding author’s website at http://p.seppecher.free.fr/jamel/, as we

believe that this is a necessary step for the transparency and credibility of the simulation

results.

We now describe the main features of Jamel, then detail the firms’ behavior and finally

the rest of the model.
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3.1 The main features of Jamel

Jamel exhibits two essential features: full decentralization and stock-flow consistency.

Decentralization ensures that aggregates, such as prices and wages, stem from the local

interactions in the markets: there is no planner, no auctioneer and all interactions are

direct and individual. The resulting emerging patterns, such as income distribution, are

therefore endogenous. Stock-flow consistency links all agents’ balance sheets together

and guarantees that micro behaviors are correctly aggregated (Godley & Lavoie 2007).

In Appendix C, we provide the accounting identities of stocks and flows as well as the

balance sheets matrices of all types of agents in the model (households, firms and the

bank), so as to make the stock-flow consistent nature of the model explicit. Furthermore,

for the sake of internal consistency, the design of the behavioral rules in Jamel follows

mostly a common general pattern: agents successively adjust their behavior by observing

imbalances between their actual and some targeted, satisfycing levels of their variables.

These behavioral rules translate both a principle of reaction to stress and a principle of

conservatism or “smoothing” (Cyert & March 1963). Those rules are also partly stochastic,

so that even with the same values of their state variables and the same information,

agents keep heterogeneous behavior. This persistent heterogeneity is crucial to account

for adaptation of the system, as stressed in Section 2.

The economy is populated by h heterogeneous households (indexed by i = 1, ..., h),

f heterogeneous firms (indexed by j, j = 1, ..., f) and one bank (indexed by b). The

firms produce homogeneous goods by using labor, supplied by households, and fixed

capital, resulting from their investment decisions. Labor and capital are complementary

production factors. One unit of fixed capital lasts for an exogenous and stochastic number

of periods (this should be interpreted as the time before a machine breaks and becomes

irreversibly unproductive). Both households, for consumption purposes, and firms, for

investment purposes, purchase the goods. There is a capital accumulation dynamics

through investment, but no technical progress, as the productivity of capital (parameter

prk hereafter) remains fixed and common to all firms. The bank provides loans to the
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firms to finance their production (wage bill and capital investment). The firms and the

bank are assumed to be owned by households, who then receive dividends.

3.2 The firms

Firms have the most detailed behavior in the model. We now describe each of their

decision rules.

3.2.1 Production

Each firm j is endowed with an integer kj,t of fixed capital, that can be understood as its

number of machines. Each machine can be used in combination with at most one unit of

labor (one worker) in every period. One unit of labor increments the production process

of the machine by one step in each period. Each machine needs dp time steps to deliver

an output and, after completion, this output represents dp · prk units of goods, and adds

to the firm’s inventories level, denoted by inj,t. The firms allocate the workforce over the

production processes, trying to smooth their output over time.

3.2.2 Goods supply

We assume that each firm maintains a fraction 1 − µF of its inventories inj,t as a buffer

to cope with unexpected variations of its demand and intends to put in the goods market

the fraction µF . We assume also that the maximum market capacity of each firm is

proportional to the potential output of the firm: dm · prk · kj,t. Hence, in each period t,

each firm j’s goods supply is given by: max(µF · inj,t, dm · prk · kj,t)

3.2.3 Labor demand

For the sake of parsimony, we assume that the targeted/normal level of inventories is

the maximum market capacity, i.e inTj,t = dm · prk · kj,t. The firms take the variations

in the level of their inventories as a proxy for the variations in the goods demand that

is addressed to them: if their inventories inj,t are lower (resp. higher) than their target
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inTj,t, this may be a sign of excess demand (resp. lack of demand), and firms are likely

to increase (resp. decrease) their production and, hence, their labor demand nTj,t.6 The

firms proceed by small, stochastic adjustments in the corresponding direction. In the

case where nTj,t > nj,t, where nj,t denotes the current workforce of firm j, it seeks to hire

nTj,t − nj,t workers. Otherwise, it fires nj,t − nTj,t workers, on a first hired-first fired basis.

3.2.4 Price setting

Each firm increases (resp. decreases) its price in case of lower-than-targeted (resp. higher-

than-targeted) level of inventories and if it was (resp. was not) able to sell all its supply

during the last period. Each firm proceeds by tâtonnement, and keeps track of a floor

price P j,t (that can be understood as a a price thought to be lower than the market price),

and a ceiling price P j,t (a price thought to be higher than the market price). The floor and

the ceiling prices constitute the range in which the new price is randomly and uniformly

picked up in case of adjustment. In case of a price increase, P j,t is set to the last price for

which the firm was able to sell all its supply, and P j,t is increased by a factor (1+δP ). An

exact symmetric routine operates in case of a price decrease. The idea is that the search

area for the suitable price [P j,t, P j,t] increases when the firm keeps on adjusting its price

in the same direction, and decreases when the firm reverts its price trend. Therefore, in

a strong inflationary environment (resp. deflationary environment), the firm can quickly

increase (resp. decrease) its price, and adapt in order to “catch-up” with the price level

in the economy. Parameter δP measures the strength of this adaptation, and hence price

flexibility: the higher, the more flexible the prices (see Appendix B for the equations).

3.2.5 Wage offer

Each firm j updates its wage offer according to one of the two following routines. The

first routine is the same mechanism as the price updating process just described. The firm

computes its vacancy rate ρj,t ≡ nT
j,t−1−ni,t−1

nT
j,t−1

, and compares it to its targeted, normal level

6We follow, inter alia, Cyert & March (1963) on the twofold role of inventories, both as a buffer and
as a proxy for the variations in the goods demand that the individual firms face.

16



of vacancies, that is exogenously fixed to ρT for all firms. A higher-than-targeted (resp.

lower) vacancy rate indicates an excess of labor demand (resp. supply) and leads to an

increase (resp. decrease) in the offered wage Wj,t. The wage adjustment is computed in

the same way as the price adjustment, a parameter δW measures wage flexibility, and the

firm keeps track of a floor and a ceiling wage levels. Such a routine is easy to implement

in the case of prices, as firms interact with consumers and/or investors in the goods

market in every period. However, firms go irregularly in the labor market (only in periods

when they need to renew a contract or increase their workforce), so that the information

that they collect by interacting with households is fragmented, and may be insufficient

to set wages that are compatible with market conditions. Moreover, the vacancy level is

indicative only if the firm’s size is large enough, but is of little informational content for

a small firm. For instance, in case of a single employee, this information is binary: either

0 or 100% of vacancies.

We therefore introduce a second wage setting routine that is akin to a convention or a

norm in the wage determination: each firm observes a sample g′ of other firms, and copies

the wage offered by the first-observed bigger firm in the sample (i.e. the first-observed

firm in the sample that employs more workers than it does). If there is no bigger firm, it

follows the first wage setting procedure based on vacancy rate.7

The duration of an offered contract is set to dw > 1 periods, and the wage remains

fixed for this whole period. Note that this is a maximum duration period, as the firms can

fire workers in any period in case of a decrease in their workforce needs, on a first-hired-

first-fired basis. This also implies that firms may pay different wages to their employees.

We shall stress that these pricing rules imply flexible and independently-fixed prices

and wages. The only rigidity stems from the dependence on the previous price and wage

levels. For the purpose of this paper, it appears to us important not to impose exogenous

constraints such as menu costs, or fixed pricing rules, such as a mark-up procedure, on

the firms, in order to let the market exert the only pressure on the firms.
7This amounts to assuming that the smaller firms are wage-followers, while the bigger ones are wage-

makers. Moreover, copying another firm’s wage offer can be easily justified as every machine, and hence
every worker, has exactly the same productivity.
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3.2.6 Financial decisions and investment

Payment of dividends At the beginning of each period, the firm distributes to its

owners a share of its equities Ej,t as dividend. The higher the level of its equity relative

to its target, the higher the dividend, in the limit of κd of the equity.

Borrowing The firm may have to obtain loans from the bank. There are four types

of loans. Short-run (non-amortized) loans allow the firm to finance wages if its available

cash-on-hand is not enough to fully cover its expected wage bill. Short-run (amortized)

loans partly finance its investment (see below), and investment is primary financed with

(amortized) long-run loans. The bank also grants short-run loans as overdraft facility

in case where a firm does not have enough cash-on-hand to cover any of its monthly

repayment (see Sub-section 3.3.2 how the loans are granted).

Investment decisions The BSP endogenously determines the firms’ investment fin-

ancing strategies (i.e. their leverage/indebtedness strategies) and, indirectly, the pace

and size of the investment decisions. We now present in detail the investment procedure,

but as shown in the pseudo-code in Appendix B, this procedure is rather simple in its

implementation.

Each firm has a targeted level of equity ET
j,t ≡ (1 − `Tj,t)Aj,t, where Aj,t denotes the

total assets of the firm j in time t, and `Tj,t ∈ [0, 1] its target debt ratio. Its equity target

is the amount of its assets that the firm is not willing to finance by debt. Each firm

compares its equity target to its actual level Ej,t. Only if Ej,t > ET
j,t will the firm consider

to invest.8

In this case, the firm computes the size of the investment by applying an expansion

factor, or “greediness” factor β > 1, to its average past sales (in quantities and computed

over the past window periods), denoted by s̃j,t. Its sales expansion objective is therefore

given by sej,t = β · s̃j,t. Note that this investment objective includes de facto both the

renewing of obsolete, aging machines and the purchase of new ones.
8See e.g. Kalecki (2010), who stresses that the amount of the entrepreneurial equity is the main

limitation to the expansion of a firm.
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As there is no intermediate consumption good, the firms willing to invest buy and

transform the homogeneous goods into machines. Firms need vk goods to deliver a ma-

chine. Once purchased, we assume that those goods are transformed into machines im-

mediately and at no cost.9 We assume that each firm uses the net present value (NPV)

analysis to choose the number of machines to purchase.10 The firm randomly samples g

sellers in the goods market to estimate the price of the investment goods. The NPVm of

an investment project m, i.e. buying m ≥ 0 machines is given by:

NPVm ≡
CFm

rt

(
1− 1

rt(1 + rt)d
k

)
− Im (1)

where Im is the initial outlay (the price of the m new machines), rt is the discount factor,

which is equal to the risk-free interest rate of the bank it (see below) discounted by average

past inflation πt (over window periods), dk is the average expected life-time of a machine,

and CFm is the expected cash-flow of the project, based the firm’s current price and

wage:11

CFm = min(sej,t,m · prk) · Pj,t −m ·Wj,t (2)

where the min term ensures that the future sales cannot exceed the maximum market

capacity of the firms.

The firms reviews investment projects by starting from m = 0 (i.e. buying 0 machine),

then m = 1, etc. until the NPV of the project m+ 1 is less than the NPV of the project

m previously considered. The firm then chooses the previously considered project m, and

buys m machines.

Figure 1a shows the pace of investment decisions for an arbitrary chosen firm in the

baseline simulation: only when the effective level of debt lies below its target can invest-
9This is a simplifying assumption in order to avoid to complicate the model by introducing a second

industrial sector. An upcoming version of the model does encompass two sectors.
10This is a quite standard procedure in corporate finance, this is the reason why we use it. How-

ever, other types of investment functions could be easily envisioned, and will be considered in further
developments of the model.

11The price and wage could be computed in a more complicated way, such as a trend projection of
past values over the next window periods. However, this would complicated the decision making of firms,
without adding much to the qualitative simulation results.
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Figure 1: An individual example of a firm’s investment and financing behaviors from the
baseline simulation: periods 750–1250

ment be performed, but this is not a sufficient condition though. The NPV also integrates

expected demand, real interest rates and profitability considerations.

Once the firm decides to purchase m new machines, it computes the share `Tj,t of the

total price Ij,t = Im that is financed using a long-run, amortized loan, for a total amount of

`Tj,tIm. For simplification, we assume that the length of a long-run loan equals the average

expected lifetime of the machines dk. If the firm’s cash-on-hand is not enough to cover the

share 1−`Tj,t of the investment, the firm uses an amortized short-run loan. This procedure

ensures that the firm is never constrained by insufficient cash-on-hand whenever it has

decided to invest. The firm’s debt may temporary exceed its debt objective due to the

additional short-run loan, but the gap progressively closes, as illustrated in Figure 1a for

the same, arbitrary chosen firm in the baseline simulation.

Each new machine adds to the firm’s assets Aj,t at its purchasing price Ij,t
m

(i.e. the

price of the goods necessary to produce it), and is uniformly depreciated by a fraction

1
dk

of its initial value in every period, unless it breaks down before dk periods, and its

value then falls to zero (see Appendix A). The fixed capital depreciation on the asset side

of the balance sheet, together with the long run loan amortization on the liability side,

allow the firms to roughly maintain the ratio between long run loans and fixed assets in

line with their debt objective throughout the life of the machines (see Figure 1b).
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3.2.7 Firms’ adaptation through the BSP

Firms adapt their indebtedness strategy `Tj,t though the BSP. We choose to make this

behavior subject to the BSP because it is at the core of the market competition in the

model. Indeed, it summarizes the “growth-safety trade-off” (Crotty 1990, 1992, 1993,

Crotty & Goldstein 1992) that firms face between a continuous, debt-financed increase

in market capacities, and financial safety, that preserves a low debt level, but at the risk

of loosing market shares. The higher the debt target, the more likely the investment to

be realized and the quicker the market expansion, because the firm needs less of its own

equity to finance it; but the higher the risk of insolvency and bankruptcy. This trade-off

is made particularly complicated in the ABM, as the market conditions and, hence, the

selection pressure, in turn depend on the firms’ indebtedness strategies. Even for the

modeler, there is no trivial optimal strategy to deal with this issue. Therefore, in light of

what we discussed in Section 2, we believe that the debt behavior is a good playground

for modeling adaptation through the BSP.

Innovations and trial-and-error processes In order to introduce a permanent trial-

and-error innovation process, we follow here Alchian’s “extreme” hypothesis by modeling

a completely random, blind and unintended model of exploration (Alchian 1950, p. 211).

In each period, with a given probability probaBSP , firms perturb their debt objective `Tj,t

by a Gaussian noise, with the same standard deviation σBSP as the one applied during

the imitation process. Those innovations constantly introduce heterogeneity in the firms’

debt strategies, which allows for exploration. This heterogeneity is counteracted by an

endogenous selection and imitation process, which allows for exploitation.

Bankruptcy and imitation through the BSP Firms can go out of business in two

ways: bankruptcy by insolvency when negative profits exhaust their equity (i.e. their

liabilities exceed their assets), and the loss of productive capacities, in the case where

they do not succeed in investing to renew their aging machines. We simplify here the
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entry-exit process of firms and assume that the failed firm does not disappear.12 The firm

is bailed out by the bank, its ownership is changed (see Subsection 3.3.2 for details), its

management team is fired, and replaced by another team coming from a more successful

firm. Concretely, its debt objective `Tj,t is copied on a randomly chosen surviving firm.

The copy is not exact though, as a (small) Gaussian noise is introduced (with the same

standard deviation σBSP across all firms).

It should be noted that we do not claim that deliberate individual learning plays no

role in the real world but, following Alchian, we abstract from it in this paper in order to

focus on social learning stemming from regulation by market competition. At most, we

model individual learning as blind individual experimentation (“random mutations”) that

is on average ineffective (i.e. the average change in strategies is zero at the population

level).

3.3 The rest of the model

3.3.1 The households

In the labor market, each household i is endowed with a constant one-unit labor supply

and a reservation wage W r
i,t. If employed, his reservation wage equals his wage, i.e.

W r
i,t = Wi,t. If unemployed, his reservation wage is adjusted downward, depending on his

unemployment duration dui,t: the longer the unemployment period, the more likely the

downward adjustment. After dr periods, the adjustment is systematic.

Regarding consumption decisions, the households follow a buffer-stock rule à la Allen

& Carroll (2001) to smooth their consumption in face of unanticipated income variations

by building precautionary savings (at a zero-interest rate). Households cannot borrow

and consumption is budget-constrained in every period.
12Our assumption is in line with empirical evidence that suggests that a number of new firms replace a

similar number of obsolete firms, without significantly affecting the total number of firms in the market
(see, notably, Bartelsman et al. (2003)).
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3.3.2 The bank

The functioning of the banking system is very stylized in our model. The bank hosts firms

and households deposits at a zero-interest rate, and grants to firms short-run credits for

a period of dl months and long-run credits for dL months. For simplification, we assume

that the interest rate is the same for the two types of loans and is equivalent to the risk-

free interest rate. The risk-free interest rate is set by a central bank according to a most

simplified Taylor rule that aims to stabilize inflation πt around a target πT (assuming the

natural rate is zero): it = max
(
φπ(πt − πT ), 0

)
.

At a first step, the bank is fully accommodative, and satisfies all the credit demands.

However, when a firm is not able to pay off a loan in due terms, the firm receives a new

short-term loan to cover its repayments (an overdraft facility) at a higher interest rate

it + rp. Parameter rp > 0 translates a risk premium, due to the higher risk of the loan,

and is assumed to be the same for all firms. If a firm j becomes insolvent (if its liabilities

exceed its assets, Lj,t > Aj,t), it goes bankrupt and the bank starts a foreclosure procedure.

The bank first recapitalizes the failed firm : it computes the targeted value of the failed

firm, ET
j,t = κsAj,t and then erases the corresponding amount of debt: Lj,t − Aj,t + ET

j,t,

absorbing this loss through its own resources Eb,t. Then the bank attempts to resell the

restructured firm at its new book value Ej,t=ET
j,t, by soliciting households that hold more

than a threshold fraction of the restructured firm value in cash-on-hand, and progressively

decreasing this threshold if not enough funds can be raised. In the case where the capital

of the bank is not enough to recapitalize the bankrupted firm, the bank goes bankrupt

and the simulation breaks off.13

The bank also distributes dividends to its owners. We assume that it simply distributes

its excess net worth, if any, compared to its targeted one ET
b,t (a share κTb of its total assets

Ab,t).
13We document the frequency of this event in the simulations in Section 4, see Footnote 17. This is due

to the very simplistic design of the banking sector in Jamel, a feature that is intended to be abandoned
in future versions of the model.
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3.3.3 Markets and aggregation

The markets operate through decentralized interactions based on a standard tournament

selection procedure. In the labor market, each firm posts max(nTj,t−nj,t, 0) job offers at a

given wage Wj,t. Each unemployed household i consults g job offers, and selects the one

with the highest wage, provided that this wage is at least as high as its reservation wage

W r
i,t. Otherwise, it stays unemployed.

In the goods market, each firm j posts sTj,t goods at a price Pj,t, each household i

enters with its desired level of consumption expenditures CT
i,t, and each investing firm

enters with an investment budget Ij,t. Firms first meet investor-firms, and then interact

with households.14 Each household selects a subset of g firms, and chooses to buy to the

cheapest one. These processes are repeated until one side of the markets is exhausted.

As usual in ABMs, aggregate variables are computed as a straightforward summation

of individual ones.

3.4 Simulation protocol

We use a baseline scenario of the model derived from the empirical validation exercise

performed in Seppecher & Salle (2015), but we do not attempt to statistically match

empirical micro- or macroeconomic regularities in this paper. We use the model as a

virtual macroeconomic playground to test the simple idea of adaptation through the BSP

learning model. This playground is nevertheless qualitatively realistic in the following im-

portant dimensions for the purpose of our study: it is a complex, monetary and stock-flow

consistent market economy. Regarding the new parameters that have been introduced,

the lifetime dk of the machines is a random draw in N (120, 15), and we set vk = 500,

where vk represents the real cost of an investment/a machine. This positive cost of capital

shall be counter-balanced by a decrease in the length of production of a machine dp (that

we now set at 4 instead of 8 periods in the previous versions with a fixed endowment of
14This matching order ensures that the biggest purchasers first enter the market, which appears as

reasonable. However, this order does not matter as all simulations show that households’ rationing in
the goods market remains a rare and negligible event, which would not be realistic otherwise.
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free machines) to maintain a similar profit share; see Seppecher (2014) for further dis-

cussion. We set the firms’ greediness at β = 1.2, which translates into a intended 20%

increase in productive capacities. This could appear ambitious at a first glance, but it

is actually rather conservative: recall that this investment objective includes both the

renewing of aging machines and the purchase of new ones. We fix the individual experi-

mentation parameters of the BSP to small values (probaBSP = σBSP = 0.05) in order to

keep a constant but small noise in individual strategies, as usual in the learning literat-

ure discussed in Section 2. We set the parameters of the Taylor rule to standard values

(φπ = 2 and πT = 2%). We set δP = 0.04 and δW = 0.02, which implies more flexible

prices than wages. This relative wage rigidity is necessary to dampen, and even inter-

rupt deflationary dynamics along the bust dynamics, so that the single bank does not go

bankrupt (see Seppecher & Salle (2015) for more detail).15 For the same purpose, the risk

premium rp on doubtful debt is set to 4% (monthly) and the recapitalization rate in case

of bankruptcy is κs = 20%. The number of wage observations is set to g′ = 3. However,

the qualitative dynamics of the simulation does not seem sensitive to these three specific

values. Appendix A lists all parameter values used in the sequel, and the initialization of

the model is described in Appendix B.

4 Numerical results

We now give a broad description of the cyclical dynamics that comes out as a robust

pattern of the simulations, and then zoom on one cycle to highlight the mechanisms at

play.

4.1 Overview of the macroeconomic dynamics

In a first step, Figure 2 reports typical time series of one run of the baseline scenario:

demand and supply in the goods and the labor markets, the corresponding (downward
15This firstly comes from our very stylized banking system and the absence of government intervention

besides the Taylor rule that is ineffective in deflationary downturns.
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sloping) Phillips and Beveridge curves, nominal and real interest rates, the level of firms’

indebtedness, the number of firms’ bankruptcies as well as financial fragility.16 We refer

as financial fragility as the ratio between the aggregate debt level and the aggregate

net profits (i.e. the firms’ profits minus the interests). It is clear from the dynamics

of all aggregate variables displayed that the macroeconomic dynamics of the model is

characterized by a cyclical pattern, with alternating periods of booms and busts.
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Figure 2: Baseline simulation

16The contribution of each figure to our argumentation will be presented throughout the whole section.
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mean std. dev. maximum minimum
GDP growth rate 0.00226 0.06493 0.12335 -0.21521

(0.00092) (0.0028) (0.01408) (0.01502)
Inflation rate 0.03852 0.04709 0.15261 -0.06213

(0.00547) (0.00283) (0.01128) (0.0143)
Bankruptcy rate 0.0075 0.01054 0.0628 0

(0.00065) (0.00122) (0.01057) (0)
Financial fragility 2.18919 1.74851 12.53134 0.96359

(0.05951) (0.26648) (3.26673) (0.01974)
Firms’ leverage 0.5976 0.0551 0.73687 0.49978

(0.00621) (0.00334) (0.00969) (0.01391)
Investment growth rate 0.11017 0.47834 2.99064 -0.60634

(0.01198) (0.05258) (0.81132) (0.06073)

Table 1: Average (and standard deviation between brackets) computed over all periods
(discarding the first 500 periods) over 30 replications of the baseline scenario.

These cycles are a robust feature of our model, that we observed in all simulations that

we have run, albeit irregular and of various amplitudes.17 In order to show so, Table 1

presents descriptive statistics of the model outcomes over 30 replications of the baseline

scenario with different seeds of the RNG. The similarity between the replications of the

baseline scenario is clear from the low values of the standard deviations between runs, for

all macroeconomic indicators that we report (see all numbers in brackets). As for the

cyclical pattern, it is reflected by the particularly high values of the standard deviation

of these indicators compared to their average values. For instance, on average between

all runs, the GDP growth rate is 0.2%18, but with a standard deviation of 0.065. This

clearly depicts a strong macroeconomic volatility.

The main conclusion that we can draw from our observations is that there seems to

be no such thing as equilibrium or collective optimization, but the system exhibits some

regularities and is sustainable. There is no explosive dynamics. The macroeconomic

system survives and reproduces itself but at the price of a strong volatility. Market
17 Because the model is randomly initialized and the single bank bears alone all the costs of firms’

losses (see Appendix B), the required adjustments may be too drastic for the single bank to absorb firms’
losses, and the simulation may break off at the beginning. We observe that this is the case in roughly
15% of the simulations. We do not report those runs in Table 1. However, once the economy survives
this take-off period, we have always observed the same cyclical aggregate pattern.

18Recall that the model does not encompass any technological progress nor population changes. An
average growth rate closes to zero is therefore an expected outcome.
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pressure does work as a selection device between a multitude of randomly generated

firms’ behaviors, but the market discipline is “brutal”, not stabilizing, as reflected by the

pace of bankruptcies (Figure 2e).

Giving a closer look at the cycles that emerge from the model, we notice that the

emerging boom and the bust phases differ in terms of both length and magnitude. For

instance, in Figure 2, the recession around period 800 is the deepest in this simulation,

while fluctuations between periods 1400 and 1800 are the most dampened of the simula-

tion. This reflects the complex nature of the ABM. The timing as well as the size of the

downturns are an endogenous product of the model, and result from the intricate relations

between the collective adaptive behavior of firms and market selection. We now analyze

in detail a cycle in order to shed light on this mechanism.

4.2 Analysis of a typical cycle

In this section, we zoom on a typical cycle (between periods 750 and 1250) of the baseline

simulation displayed in Figure 2.

4.2.1 Firms’ adaptation

We now show that the very core mechanism at play in generating the cycles is the al-

ternating of two phenomena: a sustained increase trend in firms’ indebtedness, followed

by a brutal correction through a chain of bankruptcies. This is particularly clear from

the evolution of the targeted debt ratio of firms weighted by their assets (blue curve in

Figure 2g). To provide further insights into firms’ behavior over a business cycle, Figures

3 report the debt objectives `T versus the sizes of the firms (in number of machines) at

six different phases of a cycle, in the following order: the start of the downturn, the bust,

the bottom of the bust, the beginning of the recovery, the boom and the top of the boom.

We can draw the following insights.

It should be first recalled the growth-safety trade-off that the firms face in the model:

the higher the financial risk (the further on the right side on the scatterplots of Figure
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(a) t = 1000: start of the downturn
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(b) t = 1050: bust dynamics
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(c) t = 1100: bottom of the bust
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(d) t = 1150: start of the recovery
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(e) t = 1200: boom dynamics

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

Debt Target

S
iz
e

(f) t = 1250: top of the boom

Figure 3: Firms’ size distribution, debt behaviour and income-debt relations in six phasis
of a business cycle. Scatterplots report, ∀j, `Tj (debt target, x-axis) versus kj (size as
the number of machines, y-axis). Colors denote income-debt relations, according to the
classification and terminology of Minsky (1986): blue for hedge, yellow for speculative,
red for Ponzi financing firms.

3), the quicker the expansion of the firms (the further up on these same graphs). As a

consequence, in the boom dynamics (Figures 3e-3f), we observe a dispersion towards the

top-right corner of the plots (heavy debt and big size). This evolution is progressive, as a

result of the small random but perpetual innovations in the adaptation process that de-

termines the investment behavior of the firms. The “skittish” behaviors, that correspond

to low debt strategies, run the risk of being eliminated if they are not enough to even

renew the aging and obsolete machines, which would then drive the productive capacities

to zero (i.e. towards the origin on the scatterplots). In this case, the firms go bankrupt

and imitate another surviving firm. However, the top right corners of these plots are not

densely populated because this area is competitive, and these behaviors are risky: only

a few firms will end up cornering the market, but they all run the risk of unsold pro-

duction, which would lead to a drop in profits and a risk of insolvency. The riskiness of
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this behavior is also clear from the proportion of speculative, and even Ponzi firms in the

top right corner of the figures. This risk is illustrated by the evolution of firms’ positions

on the scatterplots throughout the cycles (see Figures 3a-3c). Once the downturn starts,

we observe a clear contraction of the firms towards the bottom of the scatterplot. This

tightening phenomenon is the result of a twofold motion: the bankruptcies of the most

indebted firms that massively and brutally drive out non-cautious high debt strategies

(movements towards the left of the plot); and the decrease in capital due to the non-

renewal of depreciating productive capacities (movement towards the bottom). As it is

clear by comparing Figures 3f and 3c, economic crises endogenously produce an homo-

genization of firms’ behavior because they first affect the few, but biggest firms which

grew by heavily indebtedness (see how the population of speculative firms starts growing

among the biggest firms first in Figure 3a). In the wake of the bust, the speculative, and

even Ponzi-types of financing seem to affect every firm, not only the biggest ones (Figure

3b). Once the recovery starts (Figure 3d), indebtedness starts increasing again, and few

firms start growing and cornering the market again (Figure 3e). This process repeats

itself along each cycle (to see this, notice the striking similarity between Figures 3a and

3e).

Importantly, the market selection through bankruptcies along the bust dynamics is

brutal (movements towards the bottom left of the scatterplots), and much quicker than

the pace of the small-step innovations that progressively drive the system towards an

increasing financial fragility along the boom dynamics (i.e. movements towards the top

right). This difference explains why recoveries are slow and crises are severe. Deep crises

as a brutal disciplining device have been part of the evolutionary economics ideas for a

long time:

Severe depression eliminates large numbers of firms from the economy, but

behavior patterns that would be viable under more normal conditions may be

disproportionately represented in the casualty list. At the same time, behavior

patterns that were in the process of disappearing under more normal conditions

may suddenly prove viable. . . (Winter 1964, p. 266)
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Our ABM provides a detailed micro-founded macro model of this mechanism.

From these observations, we draw the following conclusions. The adaptive model

provided by the BSP collectively solves the growth-safety trade-off faced by the firms by

eliminating the investment behaviors that are incompatible with current market condi-

tions. The BSP is not an optimization process, but a process that ever creates hetero-

geneity in behaviors, with a strong emphasis on exploration. This heterogeneity is not

random but is characterized by a salient emerging and recurring structure. This structure

is endogenous, relatively stable from one cycle to the next, but quite importantly, dy-

namic: market conditions evolve along the cycle, and behaviors that were judged virtuous

in a given phase of the cycle (audacious behavior in the boom) turn out to be vicious in

another (during a bust). This heterogeneity provides to the system as a whole its ability

to react and adapt. This simple simulation exercise shows that there is no such thing as

an efficient or optimal behavior in this complex adaptive system, but the characterization

of successful behaviors itself constantly evolves as a result of the market conditions that

these behaviors contribute to shape.19

Last but not least, the BSP results in a pro-cyclical leverage, as clear from Figure

2g. We stress that this is an endogenous product of the adaptation process, not an

ingredient of the model. We now show how this pro-cyclical leverage contributes to shape

the emerging business cycles.

4.2.2 Macroeconomic dynamics

Figure 4 zooms on the cycle between period 750 and 1250 of the baseline simulation.

Figure 4d indicates that the building up and the collapse of assets of non-financial

businesses (firms) seem to be the main force driving the adaptation of the system as a

whole. On Figure 4d, the blue curve that depicts the average debt ratio weighted by assets

moves faster than the red one, that reports the simple arithmetic average over firms. This
19Brock & Hommes (1998) make a similar point by showing that “non-rational”, trend-chasing traders

are not driven out by fundamental ones in a financial market model; but their relative share co-evolve in
a non-linear way with the dynamics of the market that can display, as a result, very complicated, and
even chaotic dynamics. See also Hommes (2006) for a related discussion.
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Figure 4: Zoom on one cycle of the baseline simulation: periods 750–1250

reflects the fact that during a boom, the aggregate amount of debt grows mostly as a

result of few, big firms with high leverage strategies. We now explain how this financial

instability interacts with the goods demand, and provokes the boom and bust cycles.

Along the boom phase of the cycle, the balance sheet of the firms becomes more fragile

(Figure 4d). Investment feeds the demand for goods, which calls in turn for more expan-

sion in market capacities (Figure 4a). This optimistic outlook of firms is self-reinforcing

because it is followed by the bank, which is fully accommodative in our model. However,

the lending interest rates rise in the boom phase20 (Figure 4c). This rise generates a neg-

ative feedback between firms’ financial fragility, investment and goods demand that puts

an end to this boom dynamics. Larger shares of firms’ cash-flow are absorbed by debt
20In our model, this raise stems from the Taylor rule that increases nominal rates along the boom.

Another explanation is the increase in the bank’s risk premium in an attempt to control for the increasing
borrowers’ financial fragility (Stockhammer & Michell 2014). For simplicity, we abstract here from
modeling endogenous risk premiums.
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services, especially for the biggest, and therefore more indebted, firms. This mechanism

leads to a drop in profits and investment (see the evolution of potential output on Figure

4b), and a rise in unemployment result (Figure 4a). The BSP brutally adjusts firms’

strategies towards more cautious debt behavior, as explained in Section 4.2.1. However,

a phenomenon akin to a Fischerian debt-deflation sets in: we observe a sharp increase in

indebtedness precisely when firms choose to deleverage (Figure 4d).21

This chain of events explains why financial fragility (as measured by the ratio between

the total of debts and the total of assets) and potential output (as measured by the total

amount of goods that can be produced by all the machines in the economy) interact along

a strongly circular dynamics (Figure 2h). Along a business cycle, the simulations show

that the economy follows an anti-clockwise motion in the output/fragility diagram, which

indicates that output peaks before financial fragility; see Stockhammer & Michell (2014)

for a detailed discussion.

We can also look at the building up and collapse of assets and the interaction with the

goods demand through the balance sheets of the agents. Tables 2 and 3 report the balance

sheet matrix just before (in period t = 1000) and right after (t = 1050) the downturn (see

Appendix C how these matrices are constructed). Within these 50 periods, the overall

value of the net worth (i.e. the sum of deposits and equities) has lost 30% of its real value.

This loss stems from the collapse in investment which implies that depreciated capital is

not replaced: the firms’ capital represent almost half of the overall net worth before the

downturn, and but only account for a quarter 50 periods later. By contrast, on the asset

side of the firms, inventories represent 25% of the overall net worth in t = 1000, and more

than 40% in t = 1050, which reflects the drop in goods demand and firms’ sales. On the

liabilities side of the firms, the drop in investment shows up in the drop of long-run loans

(i.e. the loans that are only intended to finance investment), from 28 to 14% of the overall

net worth. On the contrary, the share of the short-run loans increases from 54 to more

than 70%, which translates the firms’ liquidity problems as a result of the drop in their
21As explained in Seppecher & Salle (2015), the relative wage rigidity that we assume, see Section 3.4,

is the driving force that brings back the system on an increasing trend.
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Households Firms Banks Σ
Work In Process 828809.29 828809.29

Inventories 766196.57 766196.57
Fixed Capital 1526549.43 1526549.43

Deposits 1413349.64 855523.67 -2268873.31 0
Short Term Loans -1672184.92 1672184.92 0
Long Term Loans -875731.31 875731.31 0

Equities 1708205.65 -1429162.72 -279042.92 0
Σ 3121555.28 0 0 3121555.28

Table 2: Balance sheet matrix, period 1000 (in real terms)

Households Firms Banks Σ
Work In Process 700091, 60 700091, 60

Inventories 878428, 60 878428, 60
Fixed Capital 586028, 52 586028, 52

Deposits 1039460, 42 603749, 48 -1643209, 89 0
Short Term Loans -1529421, 24 1529421, 24 0
Long Term Loans -312271, 74 312271, 74 0

Equities 1125088, 31 -926605, 22 -198483, 09 0
Σ 2164548, 73 0 0 2164548, 73

Table 3: Balance sheet matrix, period 1050 (in real terms)

sales.

Figure 4e allows us to give a similar reading. Along the bust phase, firms’ fixed capital

drops, which reflects the drop in productive capacities stemming from the non-renewal

of depreciated capital. However, firms’ circulating capital (which consists of the sum of

finished and unfinished goods, and therefore measures firms’ inventories) only drops with

a lag and less dramatically than fixed capital, which indicates excess inventories. Figure

4e also illustrates the liabilities side of firms’ balance sheets along the bust dynamics: the

dramatic increase in inventories translates into firms’ financial difficulties, and a strong

rise in overdraft facilities/short-run loans (even above the amount of circulating capital).

Figure 4f synthesizes the categorization of firms into the three Minskian financing types

(hedge, speculative and Ponzi, see the blue curve that represents the ratio of revenues over

debt services), and indicates the degradation of firms’ solvency at the macroeconomic level.

This simple exercise stresses the usefulness of stock-flow consistency for macroeco-

nomic modeling. SFC modeling provides both a disciplinary device in the design of the
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financial behaviors and accounting relations between sectors, and an analysis tool to dis-

sect dynamics emerging from the simulations. Finally, in our ABM, we note that the

process of collective adaptation thought the market selection pressure yields cyclical mac-

roeconomic dynamics that look more in line with the “financial instability" hypothesis

(Minsky 1986) than with the “as-if” hypothesis (Friedman 1953), which predicts a stabil-

ization of the system around a socially desirable steady state by driving out inefficient

behaviors.

4.3 Discussion

Our model touches upon two, somehow distinct, research areas – learning and agent-

based modeling. This section makes the point that these areas should be more closely

linked together in order to improve macroeconomic modeling and our understanding of

macroeconomic dynamics.

Our exercise shows the interest of modeling learning, not as a process intended to

converge towards a particular steady state, but as an ever-changing, ever-adapting pro-

cess, as advocated in Section 2. In an adaptive complex environment, like the simple

macroeconomy modeled in Section 3, and like the real world probably is, there is no such

thing as an “optimal” or efficient behavior. To put our results in parallel with a quote

from March (1991, p. 73), in our model, there is not a single efficient way for the firms of

addressing the growth-safety trade-off:

• “What is good in the long run is not always good in the short run”: a cautious

financial strategy (limiting the indebtedness of the firm) is desirable in a long-run

perspective because these firms are more resilient to severe downturns, but impeding

in the short-run, because it restrains their expansion and make them loose market

shares in favor of more audacious firms.

• “What is good at a particular historical moment is not always good at another

time”: high leverage strategies allow a virtuous expansion circle to set in in periods

of output growth, while they turn into a vicious circle in downturns, when firms

35



unsuccessfully try to deleverage.22

• “What is good for one part of an organization is not always good for another part”:

while the fast growth of capital is desirable from the production division viewpoint,

it puts the financial department at risk by deteriorating the capital ratio of the firm.

• “What is good for an organization is not always good for a larger social system

of which it is a part.”: in the wake of a downturn, firms individually pursue de-

leveraging strategies and downsizing of their investment to improve their financial

situation and avoid insolvency, but this behavior has in turn dramatic effects on the

macroeconomic system as a whole because it amplifies and deepens the recession.

We note the proximity of this point with Keynes’s “no bridge” concept.

Our model shows that the occurrence of an economic downturn or crisis endogenously

stems from the adaptation and the failure of adaptation of the agents in the system.23 A

crisis arises as a sudden, brutal event, when the pace of change of the economic context

becomes faster than the adaptation capacity of the agents. The occurrence of a crisis

results from the combination of the bounded rationality hypothesis and an ever-changing

complex environment. Bounded rationality implies that adaptation of behaviors is gradual

and inertial (Winter 1964). If the environment evolves only slowly, or has even a con-

stant structure, agents are likely to be able to adapt, and crises are not likely to be an

inherent, endogenous feature of the system. On the other extreme, if agents are fully

rational and fully informed, so that they are able to be infinitely far-sighted, they can

adapt instantaneously to any new condition, and crises could only result from exogenous

shocks. As shown by our model, the crisis corresponds to the sudden moment when be-

haviors that were judged by the market successful and compatible with the environment

suddenly appear unsuited and unsustainable from the firms’ financial perspective, and for

the financial system as a whole. As explained by Gaffeo et al. (2008, p. 445):
22On the deleveraging crisis and debt-deflation phenomenon, see notably Eggertsson & Krugman (2012).

See Seppecher & Salle (2015) for an analysis within a simpler version of the Jamel model.
23On the phenomenon of economic crises as coordination failures, see also Clower (1965), Cooper &

John (1988), Howitt (2001), Delli Gatti et al. (2008, 2010).
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Adaptive and imitative behaviors give rise to stable and predictable aggreg-

ate configurations, as stability implies predictability and vice versa. Since it

is sometimes safer to be wrong in the crowd than to be right alone, imbal-

ances can now and then accumulate to the point that a bundle of chained

bankruptcies becomes inevitable.

The interpretation of crises as brutal disconnections between individual behaviors and ag-

gregate outcomes and reversal between what used to appear virtuous and what used to be

considered as vicious have recently found some revival interests, in the wake of the Great

Recession (Eggertsson & Krugman 2012, Blanchard 2014, Battiston et al. 2016). Model-

ing such a transition is a challenge though, and our paper shows how ABM can provide a

micro-founded, fully decentralized, stock-flow consistent and endogenous approach to this

question. The general interdependence of agents’ balance-sheets and the interconnection

between the financial and the real sectors provided by the stock-flow consistency consti-

tute an essential channel through which imbalances can propagate and crises can emerge

as contagion phenomena.

5 Conclusion

Learning models in market economies have been traditional envisioned as processes con-

verging on a particular fixed point of the system. This approach is not suited in complex

systems because learning goes hand-to-hand with adaptation in an ever-changing envir-

onment. In fact, in a complex adaptive system, there is generally no such thing as an

efficient or optimal behavior, but the characterization of successful behaviors itself con-

stantly evolves as a result of the market conditions that these behaviors contribute to

shape. In this paper, we propose to model market mechanisms as a collective learn-

ing process in a complex adaptive system, and ask the question whether the process of

“natural” market selection constitutes a suitable adaptation model in this type of systems.

We develop an adaptation model based on the “blanketing shotgun process” (BSP)

introduced by Alchian (1950, p. 219). This contribution provides us with simple and
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useful principles for modeling learning behaviors in macro ABM that are fully in line with,

and even precursors of, both the bounded rationality and the evolutionary economics

approaches. We use a simple ABM of a complex, monetary and stock-flow consistent

macroeconomy as a playground – the Jamel model augmented with investment. Firms

use the BSP adaptation model to choose a debt strategy, and deal with the “growth-safety”

trade-off.

Because the BSP puts a strong emphasis on exploration vis-à-vis exploitation of the

space of strategies, the resulting heterogeneity in firms’ behaviors provides to the system

as a whole its ability to react and adapt. We show that this heterogeneity evolves as a

response to the changes in the macroeconomic environment that it contributes to provoke,

which makes the BSP an appealing learning model within complex adaptive systems.

Our simulations further show that decentralized market selection provides the system

as a whole enough flexibility and resilience to sustain itself. However, this relative stability

comes at the cost of wild fluctuations and recurring deep downturns. The “natural” market

selection process does not result in collective optimization or convergence on an optimal

equilibrium, despite the fact that it is usually advocated to justify full rationality and

equilibrium modeling assumptions.

The dynamics that we observed from the simulations leads us to suggest an evolu-

tionary characterization of an economic crisis as the moment when individual behaviors

suddenly turn out to be incompatible with the macroeconomic environment, while the

two had been reinforcing each other previously. Stated differently, a crisis corresponds

to the point where the evolution of the macro system becomes faster than the adapta-

tion capabilities of the agents that populate it. It is a strength of the macroeconomic

SFC/ABM approach to be able to account for genuine behavioral heterogeneity which,

together with full decentralization, produce the resulting co-evolution between micro be-

haviors and macro outcomes, and the endogenous emergence of this type of crises.
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A Parameter values

Parameter Description Baseline value
Households

h number 6,000
dr wage resistance 12 (months)
g size of the market selection (same for firms) 10

window memory (same for firms) 12 (months)
ηH wage adjustment parameter 0.05
κS targeted savings rate 0.2 (share)
µH rate of consumption of excess savings 0.5

Firms
f number 400
dk lifetime of the machines N (120, 15) (months)
dl short-run credit length 12 (months)
dL long-run credit length (= average machine lifetime) 120 (months)
dm market capacity,

also targeted proportion of inventories
2 (months of production)

dp length of the production process 4 (months)
dw length of employment contracts U [6, 36] (months)
g′ number of wage observations 3
prk productivity of the machines 100 (units)
vk value of a new machine in real terms

(number of goods to produce a machine)
500 (units)

β greediness in investment 1.2
δP price flexibility parameter 0.04
δW wage flexibility parameter 0.02
ρT targeted level of vacancies 0.03
µF proportion of goods to be sold 0.5
κd maximum share of equity to be distribute as

dividends
0.2

νF production flexibility parameter 0.1
σBSP size of individual innovations 0.05

probaBSP probability of individual innovations 0.05

Bank
κTb capital adequacy ratio target 0.1
rp risk premium on doubtful debt 0.04 (monthly)
κs recapitalization rate (for insolvent firms) 0.2
φπ reaction to inflation (Taylor rule) 2
πT inflation target 0.02/12 (monthly)

Model
dS length of the simulations 3,000 (months)

Table 4: Baseline scenario. Random draws are performed at each period and for each
agent.
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B Pseudo-code of Jamel
Initialization :

Variable Description Initial value
(t = 0)

Household i
Ci,t actual level of consumption expenditures 0
CTi,t desired level of consumption expenditures (consumption budget) 0
dui,t unemployment duration 0
FD i,t dividends received 0
Mi,t cash on hand (bank deposit held) 0
Wi,t wage received 0
W r
i,t reservation wage 0

Yi,t monetary income (=Wi,t+FD i,t) 0
Firm j

Aj,t total assets (inventories, fixed capital and money) 0
Ej,t shareholder’s equity (= Aj,t − Lj,t) 0
ETj,t target equity (= (1− `Tj,t)Aj,t) 0
Fj,t net profits (= Ej,t − Ej,t−1 + FDj,t) 0
FDj,t dividends paid to the owners 0
ij,t new fixed capital goods (investment) in number of machines 0
Ij,t new fixed capital goods (investment) in nominal terms 0
inj,t inventories (finished goods) in real terms 0
inTj,t inventories target in real terms

= dm · prk · kj,t
0

kj,t number of machines, maximum number of jobs 15
Lj,t total liabilities (bank loans) 0
`Tj,t target debt ratio ↪→ U(0, 0.9)

Mj,t cash on hand (money deposit held) 0
nj,t actual workforce, actual number of employees 0
nTj,t demand for labour, workforce target 12
Pj,t unit price of goods supplied 0
sj,t actual sales in real terms 0
sej,t sales expansion objective in real terms 0
sTj,t goods supply (targeted sales) in real terms

= max(µF · inj,t, dm · prk · kj,t)
0

Wj,t the wage offered in nominal terms 50
Bank

Ab,t total assets (= total outstanding loans to the firms) 0
Eb,t shareholder’s equity (= Ab,t − Lb,t) 0
ETb,t capital requirement

= κTb Ab,t

0

FDb,t dividends paid to the owners of the bank 0
Lb,t total liabilities (= sum of deposits held by households and firms) 0
it rate of interest on bank loans (nominal)

= max
(
φπ(πt − πT ), 0

) 0

rt discount rate (real rate of interest on bank loans)
= it − πt

0

Equities (Ej,0) of each firm and of the bank are divided
in ten equal shares, and given to randomly drawn households.

Macroeconomic public data
πt price inflation rate 0
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Execution In each period t, t = 1, ..., dS:

1. (Interest rate adjustment:)

it = max
(
φπ(πt − πT ), 0

)
(3)

where πt is the price inflation computed over past window periods, φπ and πT are
parameters.

2. (Fixed capital stock depreciation:) Each machine m of each firm j is depre-
ciated by Ij,m

dk
where Ij,m, is the initial value of the machine paid by j and dk the

expected life time of the machine (in months, straight-line depreciation method).

3. (Payment of dividends:)

Each firm j i) computes F̃j,t, its average past net profits Fj over window periods,
ii) computes the share of net profits to be distributed as Ej,t

ET
j,t
, and iii) distributes to

its owners the amount FD j,t = min
(
Ej,t

ET
j,t
F̃j,t, κdEj,t

)
, in proportion to their relative

share holding.

The bank distributes FDB,t = max(EB,t − ET
B,t, 0)

Updating of the firms’ and the bank’s balance sheets.

4. (Price:)

if (sj,t−1 = sTj,t−1 and inj,t < inTj,t)


P j,t = P j,t−1(1 + δP )
P j,t = Pj,t−1
Pj,t ↪→ U(P j,t, P j,t)

else if (sj,t−1 < sTj,t−1 and inj,t > inTj,t)


P j,t = Pj,t−1
P j,t = P j,t−1(1− δP )

Pj,t ↪→ U(P j,t, P j,t)

else

 P j,t = P j,t−1(1 + δP )
P j,t = P j,t−1(1− δP )
Pt,j = Pj,t−1

(4)

with :

• P j,t, the ceiling price,

• P j,t, the floor price.

5. (Wage offer:) Each firm j observes a random sample of g′ other firms. If the
observed sample contains a firm k such that kk,t > kj,t, then:

Wj,t = Wk,t

W j,t = Wj,t(1 + δW )
W j,t = Wj,t(1− δW )

(5)
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else:
if (ρj,t−1 > ρT )

{
W j,t = W j,t−1(1 + δW )
W j,t = Wj,t−1

else
{
W j,t = Wj,t−1
W j,t = W j,t−1(1− δW )

and then Wj,t ↪→ U(W j,t,W j,t)

(6)

with:

• ρj,t−1 =
nT
j,t−1−ni,t−1

nT
j,t−1

, the vacancy rate previously observed by the firm,

• W j,t, the ceiling wage,
• W j,t, the floor wage.

6. (Labor demand:) nTj,t (within the lower bound 0 and the upper bound kj,t):

nTj,t = (1 + δhj,t)n
T
j,t−1 (7)

where nTj,t−1 is the labor demand of the firm in period t − 1, and δj,t is the size of
the adjustment, computed as:

δhj,t =


αj,tνF if 0 ≤ αj,tβj,t <

inT
j,t−inj,t

inT
j,t

,

−αj,tνF if 0 ≤ αj,tβj,t <
inj,t−inT

j,t

inT
j,t

,

0 else.

(8)

with αj,t, βj,t ↪→ U(0, 1) and νF > 0.{
if nj,t > nTj,t fires nj,t − nTj,t (on a last-hired-first-fired basis)
else posts nTj,t − nj,t job offers. (9)

7. (Financing of current assets): according to the existing job contracts, the work-
force target nTj,t, and the new wage rate offered on the labor market Wj,t:

• computes the anticipated wage bill WBT
j,t;

• borrows max(WBT
j,t −Mj,t, 0) (non-amortized short-term loan).

• Updating of the firms’ and the bank’s balance sheets.

8. (Reservation wages:)
Each household i updates his reservation wage W r

i,t.

• If i is unemployed:
W r
i,t = W r

i,t−1(1− δwi,t) (10)

where δwi,t ≥ 0 is the size of the downward adjustment, and is computed as:

δwi,t =

{
βi,t · ηH if αi,t <

dui,t
dr

0 else.
(11)
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where αi,t, βi,t are U(0, 1), and ηH > 0 and dw ≥ 1 are parameters.

• Else:
W r
i,t = Wi,t−1 (12)

where Wi,t−1 is the wage earned by household i at the previous period t− 1.

9. (Labor market :)

Each unemployed household i) consults a random sample of g job offers; ii) selects
the job offer with the highest offered wage, denoted by Wj,t; iii) if Wj,t >= W r

i,t,
accepts the job for a duration of dw months; else, remains unemployed for the period
t.

10. (Production): Each firm distributes uniformly the hired workers on its machines
(one per machine). Once a production process of a machine is completed (after
dpiterations by a worker), it adds prkgoods to the firm’s inventories inj,t, whose
value is then incremented by the production costs of prkgoods.

This process updates i) firms’ wage bills and vacancy rates, ii) production levels,
and iii) households’ cash-on-hand Mi,t = Wi,t + FD i,t + Mi,t−1 (where Wi,t + FD i,t

represents its income flow, made of FD i,t, the dividends that household imay receive
if it owns shares in the bank or a firm, see Step 1., and Wi,t its labor income, and
Mi,t−1 is its cash-on-hand transferred from t− 1).

11. (Goods supply:) Each firm j puts sTj,t goods in the goods market:

sTj,t = max(µF · inj,t, dm · prk · kj,t) (13)

12. (Individual experimentation :) With a probability probaBSP , for each firm j,
`j,t+1 ↪→ N (0, σBSP), else `j,t,+1 = `j,t.

13. (Investment decision):

(a) selects a random sample of g suppliers (other firms);

(b) if (kj,t = 0) buys m = 1 new machine, for a value Ij,t;

(c) else if (ET
j,t > Ej,t):

i. computes the vector of the prices of each investment project Πm (m the
number of new machines to be bought), with m = 0, 1, 2, ...;

ii. computes s̃j,t, average of the sales sj over the past window periods;
iii. computes sej,t = βs̃j,t, its sales expansion objective;
iv. given its sales expansion objective sej,t, the current price Pj,t, the current

wage Wj,t, the real interest rate r, and the vector of prices of each invest-
ment project, computes the net present value NPVm of each investment
project m until NPVm+1 < NPVm;

v. chooses the project m, for a value Ij,t.

14. (Financing of fixed assets):

(a) borrows (amortized long-run loan) the amount: `Tj,tIj,t;
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(b) borrows (amortized short-run loan) the amount: max((1− `Tj,t)Ij,t −Mj,t, 0);

15. (Saving/consumption plan:) Each household computes

(a) his average monthly income flow over the last window periods, denoted by Ỹi,t;

(b) his cash-on-hand target MT
i,t = κS · Ỹi,t;

(c) is targeted consumption expenditures as:

CT
i,t =

{
(1− κS)Ỹi,t if Mi,t ≤MT

i,t

Ỹi,t + µH(Mi,t −MT
i,t) else.

(14)

where µH ≥ 0 is a parameter. The budget constraint always gives Ci,t ≤
min(CT

i,t,Mi,t).

16. (Goods market :):

(a) matches first the firms’ demand, then the households’ demand with the firms’
supply;

(b) goods bought by firms are transformed in new machines, while goods bought
by households are consumed;

(c) updates the firms’ inventories inj,t, number of machines kj,t, assets Aj,t and
equities Ej,t, and the households’ remaining cash-on-hand si,t.

17. (Loans :) The firms pay back part of their loans and the interests to the bank.
Interest is due at each period. For an amortized loan, principal is repaid by equal
fractions at each period, while for a non-amortized loan, the total principal is due a
the term. If the cash-on-handMj,t of a firm j cannot fully cover the debt repayments,
it benefits of an overdraft facility, ie a new short term loan at an higher rate including
the risk premium of the bank (it + rp).

18. (Foreclosure :) If a firm has become insolvent (Aj,t < Lj,t), the bank starts the
foreclosure procedure, a new `Tj,t is copied from a surviving firm (+N (0, σBSP)), the
firm is recapitalized up to Ej,t = κsAj,t, and new households become owners as
follows: all households that have at least 20% of Ej,t as cash-on-hand are solicited
for at most 50% of their wealth, and the firm’s shares are distributed in proportion
to their contribution. If the collected cash-on-hand is lower than Ej,t, the selection
threshold is decreased to 10% of Ej,t. If the cash-on-hand on the solicited households
is still not enough, the threshold is decreased to 4%, and then 2%. If this is still not
enough to buy all the shares of the firm, the price of the shares is decreased by 10%
until enough cash-on-hand can be collected. In case of more than 10 decreases, the
simulation would stop.

19. This process starts all over again for a given length of dSperiods.

48



C Stock-flow consistency

C.1 Stock consistency

M Money deposits supplied by banks
Mf Money deposits held by firms
Mh Money deposits held by households
E Value of equities held by households
Eb Value of equities issued by banks
Ef Value of equities issued by firms
NW Net worth of households
IN Inventories of finished goods, at production cost
WIP Work in process, at production cost
K Value of fixed capital stock
L Loans supplied by banks
Lf Loans to firms

Table 5: Stocks

Households: Mh + E = NW

Firms: 24 WIP + IN +K +Mf = Lf + Ef

Banks: L = M + Eb

Deposits: M = Mh +Mf

Loans: L = Lf

Equities: E = Ef + Eb

Closure: NW = WIP + IN +K

24 As the model does not encompass any financial market, firms are priced by households according to
their shareholders’ equity.

Households Firms Banks Σ

Work In Process WIP WIP
Inventories IN IN

Fixed Capital K K
Deposits Mh Mf -M 0
Loans -Lf L 0
Equities E -Ef -Eb 0

Σ NW 0 0 WIP + IN +K

Table 6: Balance sheet matrix
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C.2 Flow consistency

C Consumption goods sold by firms to households
K dep Fixed capital depreciation
FDb Dividends of banks
FDf Dividends of firms
S Value of sales, at historic costs
I New fixed capital goods
INT Interest payments paid by firms
Lnew New loans
Lback Repaid loans
Lnp Non performing loans
PROD New finished goods valued at cost
CAP Recapitalizations
WB Wages paid to households

Table 7: Flows

Households Deposits: ∆Mh = WB + FDf + FD b − C − CAP

Households Equities: ∆E = C + I − S − FDf − FD b −K dep + CAP

Households net worth: ∆NW = WB + I −K dep − S

Firms’ work in progress: ∆WIP = WB − PROD

Firms’ inventories: ∆IN = PROD − S

Firms’ fixed capital: ∆K = I −K dep

Firms’ Deposits: ∆Mf = Lnew − Lback + C −WB − INT

Firms’ Debts: ∆L = Lnew − Lback − Lnp

Firms equities: ∆Ef = C + I − S − FDf −K dep − INT + Lnp

Bank deposits: ∆M = Lnew − Lback − INT − CAP

Bank loans: ∆L = Lnew − Lback − Lnp

Bank equities: ∆Eb = INT − FD b − Lnp + CAP
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Households Firms Banks Σ
Work In Process WB − PROD WB − PROD

Inventories PROD − S PROD − S
Fixed Capital I −K dep I −K dep

Deposits WB − C − CAP + FDf + FD b Lnew − Lback + C −WB − INT − FDf −Lnew + Lback + INT + CAP − FD b 0
Loans −Lnew + Lback + Lnp Lnew − Lback − Lnp 0
Equities C + I − S − FDf − FD b −K dep + CAP −C − I + S + FDf + K dep + INT − Lnp −INT + FD b + Lnp − CAP 0

Σ WB + I − S −K dep 0 0 WB + I − S −K dep

Table 8: Flow of funds matrix
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