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Abstract

This work investigates the dynamic behaviour of reticulated beams obtained
by repeating a unit cell made up of interconnected beams or plates forming
an unbraced frame. As beams are much stiffer in tension-compression than
in bending, the longitudinal modes of such structures (governed by tension-
compression at the macroscopic scale) can appear in the same frequency
range as the bending modes of the elements. The condition of scale separa-
tion being respected for compression, the homogenization method of periodic
discrete media is used to rigorously derive the macroscopic behaviour at the
leading order. In the absence of bending resonance, the longitudinal vibra-
tions of the structure are described at the macroscopic scale by the usual
equation for beams in tension-compression. When there is resonance, the
form of the equation is unchanged but the real mass of the structure is re-
placed by an effective mass which depends on the frequency. This induces
an abnormal response in the neighbourhood of the natural frequencies of the
resonating elements. This paper focuses on the consequences on the modal
properties and the transfer function of the reticulated structure. The same
macroscopic mode shape can be associated with several natural frequencies
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of the structure (but the deformation of the elements at the local scale is
different). Moreover the vibrations are not transmitted when the effective
mass is negative. These phenomena are first evidenced theoretically and then
illustrated with numerical simulations.

Key words: Local resonance, effective mass, reticulated material,
metamaterial, homogenization

1. Introduction

Locally resonant materials or metamaterials are a class of composite ma-
terials with a high stiffness contrast between the constituents. The propaga-
tion of waves in the stiff component with a wavelength much greater than the
heterogeneity size can then induce the resonance of the soft component. This
phenomenon which differs from diffraction leads to unusual effective prop-
erties investigated in the pioneering work of Auriault and Bonnet in 1985
[1] (see also [2]) and observed experimentally in [3] and [4]. In particular,
the effective density is different from the real density and depends on the
frequency. The description of such composites at the macroscopic scale is a
generalization of the Newtonian mechanics. This question is frequently ad-
dressed with mass-spring models (such as the Maxwell-Rayleigh model cited
in [5]) which are difficult to realize in practice. The stratified composite
studied by Auriault and Bonnet and the reticulated structure considered in
this paper are more realistic systems.

Indeed, in [6, 7], it was shown that reticulated materials with only one
constituent can also behave as locally resonant materials. In that case, the
stiffness contrast comes from the geometry of the microstructure. Reticu-
lated materials are made up of interconnected beams or plates. Examples
include materials of millimetric size such as foams, plants, bones, of metric
size such as the sandwich panels, stiffened plates and truss beams used in
aerospace and marine structures, of decametric size such as buildings. Since
beams and plates are much stiffer in tension-compression than in bending,
the propagation of compressional waves with a long wavelength and the local
bending modes of the elements can occur in the same frequency range. The
local resonance in bending of a reticulated material is used in [8] to attenuate
vibrations over desired frequency ranges.

In this paper, we investigate the consequences of the local resonance in
bending on the dynamic behaviour of periodic frame structures. Instead of
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considering wave propagation as in [6, 7], emphasis is put on the modification
of the features of the longitudinal modes. For the first modes of a structure
with a sufficiently large number of periods (or cells), deformations occur on
a length scale much greater than the size of a period. Therefore the homoge-
nization method of periodic discrete media (HPDM method) can be used to
obtain a macroscopic description. This method, elaborated by Caillerie [9]
has been extended by a systematic use of scaling based on dimensional anal-
ysis [10, 11] and applied to situations with local resonance [6, 7]. Its main
advantages are that the macroscopic behaviour is derived rigorously from
the properties of the basic frame and that it provides an analytic formula-
tion which enables to understand the role of each parameter. This method
has already given interesting results on the transverse dynamics of frame
structures [11].

The framework of the study is described in Section 2 and the details of the
HPDM method are given in Appendix B. Section 3 presents the two possible
macroscopic behaviours: without and with local resonance. In Section 4,
the consequences of the local resonance on the free and forced vibrations are
analysed. These results are confirmed by finite element simulations. Finally,
Section 5 discusses the potential applications of this work. The differences
between the idealized reticulated structures and real buildings are examined
and the important points for the design of new structures with prescribed
properties are highlighted. Note that the demonstrations of some results
about the harmonic vibration of Euler-Bernoulli beams used in this article
are gathered in Appendix A.

2. Framework of the study

2.1. Studied structures and kinematic descriptors

The studied structures are constituted by a pile of a large number N of
identical unbraced frames called cells and made of a floor supported by two
walls (see Figure 1). The walls and the floors are beams or plates which
behave as Euler-Bernoulli beams in out-of-plane motion. They are linked by
perfectly stiff and massless nodes. The characteristics of the floors (j = f)
and the walls (j = w) are: ℓj length, aj thickness, ℎ depth in the direction
e3, Aj = ajℎ cross-section area, Ij = a3jℎ/12 second moment of area in the
direction e3, �j density, Ej elastic modulus.

This paper deals with the harmonic vibrations of the structure at the
unknown circular frequency ! of the longitudinal modes. Therefore, every
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(a) (b)

Figure 1: (a) Examples of studied structures; (b) notation.

variable can be written in the following way: X(t) = ℜ(X ei!t) where t is the
time. Since the study is conducted within the framework of the small strain
theory and the linear elasticity, the time dependence can be simplified and
will be systematically omitted.

As explained in Appendix B, the HPDM method begins with the dis-
cretization of the dynamic balance. The study of the momentum balance
of the whole structure is exactly replaced by the study of the momentum
balance of the nodes. Since the process is performed without loss of informa-
tion, it is possible to use the motions of the nodes as kinematic descriptors
of the motions of the structure. Figure 1 shows that each level n contains
two nodes: n1 on the left and n2 on the right. Their motion in the plane
(e1, e2) is described by three kinematic variables: vnj

for the displacement in
the direction e1, unj

for the displacement in the direction e2 and �nj
for the

rotation with j = 1 or 2.
Because of the longitudinal symmetry of the structures, it is possible to

uncouple the transverse and longitudinal kinematics thanks to a change of
variables. The six variables describing the motions of the two nodes of the
level n can be replaced by (see Figure 2):
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(a) (b)

Figure 2: Variables of the (a) transverse and (b) longitudinal kinematics

∙ three variables associated to the rigid body motion of the level n:

Un =
un1

+ un2

2
mean transverse displacement (1a)

Vn =
vn1

+ vn2

2
mean longitudinal displacement (1b)

�n =
vn1

− vn2

ℓf
global rotation (1c)

∙ three variables corresponding to its deformation:

�n =
�n1

+ �n2

2
mean rotation of the nodes (2a)

Φn = �n2
− �n1

differential rotation of the nodes (2b)

Δn = un2
− un1

transverse dilatation (2c)

The transverse kinematics is governed by (U, �, �) and the longitudinal kine-
matics by (V,Φ,Δ). This paper focuses on the longitudinal vibrations. The
study of the transverse vibrations can be found in [10, 11].

Then, the discrete description is transformed into a continuous beam
description thanks to the principles of homogenization (Appendix B). The
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key assumption is that the cell size in the direction of periodicity ℓw is small
compared to the characteristic size L of the vibrations of the structure. This
condition of scale separation implies that the method is limited to the first
modes of vibration which have wavelengths that are much longer than the
cell size. The existence of a macroscopic scale is expressed by means of the
macroscopic space variable x in the direction of periodicity e1. The kinematic
descriptors are considered as the discrete values of continuous functions of
the space variable x, e.g. Vn = V�(xn = n ℓw). These functions are assumed
to converge when the scale ratio � = ℓw/L approaches zero and they are
expanded in powers of �:

V�(x) = V 0(x) + � V 1(x) + �2V 2(x) + . . . (3)

where V j(x) is a continuous function of order j. Afterwards, the physi-
cally observable motion of a given order in � will be written with a tilde:
Ṽ j(x) = �j V j(x). The exact motion of the level is Vn whereas the function
V 0(x) is the approximation at the leading order which appears in the macro-
scopic description. In the sequel, we will only study the leading order of
the descriptors unless it is explicitly specified. Similarly, all other unknowns,
including the natural frequency of the structure, are expanded in powers of
the scale ratio �.

2.2. Local resonance and normalization

The aim of this paper is to investigate the consequences of the local reso-
nance in bending of the floors on the longitudinal vibrations of the structure.
Therefore, we have to design a structure such as the two phenomena occur
simultaneously. The frequencies of the longitudinal modes depend essentially
on the properties of the walls whereas the frequency range of the local reso-
nance depends on the properties of the floors. This physics is introduced in
the HPDM method thanks to the normalization which consists in scaling all
the parameters according to the powers of � (Appendix B).

The natural frequencies of the structure are close to the ones of the walls
considered as clamped-free beams [Eq. (27) of Appendix A]. Since the walls
vibrate at the macroscopic scale characterized by the length L, the order of
magnitude of the frequency range of interest is:

! = O

(

1

L

√

Ew

�w

)

(4)
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The floors are in resonance if their bending wavelength �bf at the studied
frequency has the same order of magnitude as ℓf . According to Eq. (28) of
Appendix A, this means that:

�fℓf = 2�
ℓf
�bf

= ℓf
4

√

�fAf !2

EfIf
= O(1) (5)

If we assume that the walls and the floors are made of the same material and
that ℓf = O(ℓw), the introduction of Eq. (4) leads to the following condition:

O

(

ℓ 4w
a2fL

2

)

= O(1) ⇒ af
ℓw

= O(�) (6)

In Section 3, we will compare two situations. In the first case, the floors
are thick and they have a quasi-static behaviour at the frequencies of the
longitudinal modes of the structure (�fℓf << 1). The chosen normalization
is:

aw
ℓw

= O(
√
�) ;

af
ℓw

= O(
√
�) ;

ℓf
ℓw

= O(1) ; !̃0 = O

(

1

L

√

Ew

�w

)

(7)
where !̃0 is the leading order of the circular frequency of the longitudinal
vibrations [Eq. (46) of Appendix B]. The order of magnitude of the thickness
to length ratios is

√
� because it must remain small enough for the elements

to be modelled by Euler-Bernoulli beams.
In the second case, �fℓf = O(1) and the floors are in resonance. The

corresponding normalization is:

aw
ℓw

= O(
√
�) ;

af
ℓw

= O(�) ;
ℓf
ℓw

= O(1) ; !̃0 = O

(

1

L

√

Ew

�w

)

(8)

The thickness to length ratio of the walls is unchanged in order to avoid the
resonance of the whole cell, which leads to a more complex behaviour [12].
As a result, the order of magnitude of af/aw is not a whole power of � and
the unknowns must now be expanded in powers of

√
�. For example, the

mean longitudinal displacement becomes:

V�(x) = V 0(x) + �1/2V 1/2(x) + � V 1(x) + �3/2V 3/2(x) + �2V 2(x) + . . . (9)

7



3. Macroscopic descriptions

As explained in Appendix B, the study of the longitudinal vibrations of
a structure as in Figure 1 with the HPDM method provides three balance
equations [Eq. (44)]:

∙ (SN) is the balance of the vertical forces,

∙ (DT) is the balance of the differential horizontal forces,

∙ (DM) is the balance of the differential moments.

At the leading order, (SN) depends only on the mean vertical displacement V
and it corresponds to the differential equation of the equivalent beam. The
two other equations describe the inner equilibrium of the frame. They serve
to determine the “hidden” variables Δ, Φ and to study the deformation of
the elements at the local scale.

3.1. Quasi-static state at the local scale

We first present the macroscopic beam equivalent to a structure with
thick enough elements to have a quasi-static state at the local scale at the
frequencies of the longitudinal modes of the structure. The corresponding
normalization is given in Eq. (7) but a systematic study in which the prop-
erties of the elements vary [10] shows that the longitudinal vibrations with a
quasi-static state at the local scale are always described by the same equa-
tion. In that case, we obtain at the leading order the classical description
of a beam in tension-compression with the compression modulus of the two
walls 2EwAw and the linear density Λ.

(SN0) ⇒ Λ !̃2
0 Ṽ

0(x) + 2EwAwṼ
0 ′′(x) = 0

with Λ = Λw + Λf ; Λw = 2�wAw ; Λf = �fAf
ℓf
ℓw

(10)

Once the mean vertical displacement V is known, the transverse dilatation
Δ and the differential rotation of the nodes Φ are deduced from the two
remaining balance equations:

(DT) ⇒ 12EfAf

ℓwℓf
Δ̃3(x) + 3KwΦ̃

0 ′(x) = 0

(DM) ⇒ (Kf + 3Kw)Φ̃
0(x)− Λfℓf !̃

2
0 Ṽ

0(x) = 0

with Kw =
24EwIw

ℓ2w
and Kf =

12EfIf
ℓwℓf

(11)
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Note that Φ̃0(x) and Δ̃3(x) depend on the stiffness of the elements in bending
Kw and Kf .

3.2. Local resonance

We now investigate the effects of the bending resonance by considering
a structure with thinner floors and corresponding to the normalization of
Eq. (8). Because of the thickness contrast between the walls and the floors,
Λf/Λw = O(

√
�) and Λf is negligible compared to Λw. The inertial term is

probably degenerate at the leading order and it will be necessary to consider
higher order equations to see the effects of the bending resonance of the floors.
The analysis of the balance equations provided by the HPDM method is still
realized in two steps: first the macroscopic description and then the inner
equilibrium of the cell.

The first two significant orders of the balance of the vertical forces (SN0)
and (SN 1

2
) are given below. The main difference with Section 3.1 is the

multiplication of Λf by a function f depending on the frequency.

Λw !̃2
0 Ṽ

0(x) + 2EwAwṼ
0 ′′(x) = 0 (12a)

Λw !̃2
0 Ṽ

1/2(x) + 2EwAwṼ
1/2 ′′(x) + 2Λw!̃0!̃1/2Ṽ

0(x) + Λff(!̃0)!̃
2
0Ṽ

0(x) = 0
(12b)

The leading order equation [Eq. (12a)] only describes the tension-compression
behaviour of the walls as expected. The mass of the floors appears in the next
equation [Eq. (12b)]. The other inertial terms of Eq. (12b) with Λw come
from the expansions of V and !2. At most of the frequencies, f(!̃0) = O(1)
and Eq. (12a) is sufficient for the description of the macroscopic behaviour.
However, we will see that f(!̃0) can become infinite. In that case, the in-
ertial term related to the floors is no longer negligible. Since we wish a
macroscopic description which is valid for the whole frequency range of the
longitudinal vibrations and takes into account the resonance of the floors, we
sum Eqs. (12a) and (12b).

Λ(!̂) !̂2V̂ (x) + 2EwAwV̂
′′(x) = o(

√
�) (13a)
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with

V̂ (x) = Ṽ 0(x) + Ṽ 1/2(x) ; !̂ = !̃0 + !̃1/2 ; Λ(!̂) = Λw + Λff(!̂)

f(!̂) =
8

3�
√

!̂
!f1

[

coth
(

3�
4

√

!̂
!f1

)

+ cot
(

3�
4

√

!̂
!f1

)] (13b)

Eq. (13a) looks like Eq. (12a) but differs fundamentally by the effective
mass Λ(!̂) which depends on the frequency. The HPDM method provides
the analytical expression of the function f . Its variations according to the
frequency are plotted in Figure 3. It shows that f(!̂) → 1 when !̂ → 0 as
expected and that ∣f(!̂)∣ → +∞ when !̂ → !f(2k−1) where !f(2k−1) are the
circular frequencies of the odd normal modes in bending of the floors with
two clamped ends. At most of the circular frequencies higher than !f1, we
have f(!̂) < 1, which means that the structure seems lighter because of the
local resonance. Note also that f(!̂) is negative just after the frequencies of
the odd normal modes in bending of the floors.

Figure 3: Variations of the function f according to the dimensionless frequency !̂/!f1.
According to Eq. (37) of Appendix A, the modes of the floors correspond to the following
abscissas: !f1/!f1 = 32/32 = 1, !f2/!f1 = 52/32 ≈ 2.78, !f3/!f1 = 72/32 ≈ 5.44, etc.

As explained in [7], the effective mass differs from the real mass because
the resonating floors are in relative motion compared with the walls which are
in a quasi-static state. By definition, the kinematic descriptors correspond
to the motion of the nodes. At low frequencies, the cell experiences a trans-
lation at the leading order and the internal relative motions are negligible.
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Consequently, the mean displacement of the nodes V is also the leading order
displacement of every point of the cell. The sum of the inertia forces acting
on the whole frame equals at the leading order the real mass of the frame
multiplied by the acceleration of the nodes. When bending resonance occurs,
the displacement of the nodes remains the leading order displacement of the
quasi-static walls but the motion of the floors can strongly differ from the
one of the nodes and some points can be in antiphase. In these conditions,
the inertia forces on the walls are unchanged but the inertia forces acting on
the floors vary with their deformation and then the frequency. The sum of
the inertia forces acting on a floor is calculated in Appendix A [Eq. (42)]. It
consists of two terms. One term depends on the node displacement V and
the other depends on the node rotation Φ. If the term proportional to V is
divided by ℓw to have a force per unit length, we obtain Λff(!)!

2V , that is
to say the inertial term related to the floors in the macroscopic description
[Eq. (13a)]. The term with Φ in the inertial forces on the floors probably
appears in the higher order equations. Moreover, the study of the inner equi-
librium of the cell [Eq. (14) afterwards] shows that Φ̃0(x) = 0 and that the
leading order is Φ̃1/2(x).

The variations of the function f plotted in Figure 3 show that the sym-
metry of the longitudinal kinematics excites the odd bending modes of the
floors but not their even bending modes. At the frequencies of the odd bend-
ing modes, a small displacement of the nodes produces a large deformation
of the floors and the inertia forces become huge. The motion of the floors is
mainly in phase with the motion of the nodes at the frequencies lower than
the ones of the odd modes and mainly in antiphase at the frequencies higher
than the ones of the odd modes. Even if there is no resonance at the fre-
quencies of the even bending modes, the motion of the floors is not uniform
and the effective mass is smaller than the real mass.

The introduction of damping does not modify fundamentally the previous
results. Figure 4 shows the variations of the real part and the imaginary part
of the function f when the elastic modulus is a complex number: Ê = E ei�

with � = 2.10−2 for the calculations. As in the undamped case, f(!̂) → 1
at low frequencies. The real part has peaks and changes its sign at the
frequencies of the odd bending modes of the floors but not at the frequencies
of the even bending modes. The imaginary part is very small except in the
neighbourhood of the odd bending modes of the floors. At these frequencies
the damping in the structure becomes very important.

After the study of the macroscopic description, we now consider the inner
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Figure 4: Variations of the real part and the imaginary part of the function f according
to the dimensionless frequency !̂/!f1 in the damped case (Ê = E ei� with � = 2.10−2).
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equilibrium of the cell. In the quasi-static case, Eq. (11) depends on the
stiffness of the elements in bendingKw andKf . Therefore these equations are
probably modified by the local resonance. Moreover in [7], it was shown that
these equations can impose additional kinematic conditions in the presence
of the local resonance. The leading order of the equations (DT) and (DM)
is given below:

(DT) ⇒ 12EfAf

ℓwℓf
Δ̃3(x) + 3KwΦ̃

1/2 ′(x) = 0

(DM) ⇒ 3KwΦ̃
1/2(x)− Λfℓfg(!̃0) !̃

2
0 Ṽ

0(x) = 0

(14)

with g(!) =
48

(3�)2 !
!f1

[

coth
(

3�
4

√

!
!f1

)

− cot
(

3�
4

√

!
!f1

)

]

[

coth
(

3�
4

√

!
!f1

)

+ cot
(

3�
4

√

!
!f1

)

]

=
6f(!)

3�
√

!
!f1

[

coth

(

3�

4

√

!

!f1

)

− cot

(

3�

4

√

!

!f1

)]

The equation (DT) involves the axial force in the floors and the shear
force in the walls. This equation is not affected by the local resonance because
these forces are expanded normally. (This is also true if we consider the higher
orders.) The only difference with Eq. (11) of Section 3.1 is the modification
of the orders of magnitude due to the introduction of a thickness contrast
between the elements.

On the contrary, the equation (DM) in the quasi-static case contains an
inertial term from the floors and the stiffness in bending of the elements. In
the presence of the local resonance of the floors, the inertial term depends
on the frequency as indicated in Eq. (14). This term is different from the
effective mass in the macroscopic description [Eq. (13)] but it is proportional
to the function f and we also have g(!) → 1 at low frequencies. As a result,
the inertial term of Eq. (14) becomes infinite at the frequencies of the odd
bending modes of the floors and it changes its sign. The comparison of
the expression of the function g with Eq. (36) of Appendix A shows that
this function vanishes at the frequencies of the even bending modes. The
stiffness in bending of the floors Kf does not appear in Eq. (14) because it is
now negligible compared to Kw. The study of the higher orders shows that
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this term also depends on the frequency. It becomes infinite at the same
frequencies as the functions g and f , that is to say the frequencies of the odd
bending modes of the floors. For this structure, the inner equilibrium of the
cell does not introduce new singularities.

4. Some consequences of the local resonance

This section illustrates the consequences of the local resonance and the
variations of the effective mass by considering two problems: the free and
forced vibrations of a structure governed by the following equations:

Λ(!)!2V (x) + 2EwAwV
′′(x) = 0 with Λ(!) = Λw + Λff(!)

and f(!) =
8

3�
√

!
!f1

[

coth

(

3�
4

√

!
!f1

)

+ cot

(

3�
4

√

!
!f1

)]

(15)

For the forced vibration, damping is introduced. The structure is clamped
at the bottom and free at the top. Its total height is H = Nℓw. Then, the
atypical behaviours are confirmed by finite element simulations.

4.1. Free vibration

We first study the normal modes of the structure. In this case, the solution
of Eq. (15) is:

V̂ (x) = B sin(�x) with �2 =
Λ(!̂) !̂2

2EwAw

and cos(�H) = 0 (16)

Thus the natural frequencies are given by Eq. (17).

�kH =
(2k − 1)�

2
⇒ Λ(!̂) !̂2

2EwAw

(

2H

�

)2

= (2k − 1)2 (17)

In the absence of the local resonance, the effective mass Λ(!) is constant and
there is only one solution !k for each value of k.

From the expression of the effective mass given in Eq. (15) and the vari-
ations of the function f plotted in Figure 3, we deduce that the local res-
onance has three effects on the modal properties of a reticulated structure.
The greater the proportion of the mass in the floors is, the more important
the effects of the resonance are.
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1. Modification of the resonance frequencies: Using the effective mass in-
stead of the real mass gives different values for the natural frequencies
of the structure.

2. No uniqueness of the modal frequencies: Since the function f does not
monotonically increase with the frequency, there are several solutions
!k for each value of k. This means that the structure has the same
macroscopic mode shape at several frequencies. However, at the local
scale, the deformation of the floors is different. They move in-phase
with the walls below ff1, the frequency of the first bending mode of the
floors, and in antiphase with the walls above ff1. At higher frequencies,
the floors have a more complex deformation.

3. High density of modes: Because of the great variations of the function
f in the neighbourhood of the frequencies of the odd bending modes
of the floors, Eq. (17) has a solution close to these frequencies for each
value of k. Consequently there is a large number of modes in a narrow
frequency range. At the frequencies slightly higher than the frequencies
of the odd modes of the floors, the effective mass is negative and there
is a frequency bandgap without any longitudinal mode.

Usually the condition of scale separation limits homogenization to low fre-
quencies. Since several modes of the structure can have the same wavelength,
some high frequency modes are correctly described by homogenization and
some low frequency modes does not respect the condition of scale separation.
These modes have a frequency close to the frequencies of the odd bending
modes of the floors. Because of the dispersion introduced by the local reso-
nance, the scale ratio � does not monotonically increase with the frequency.
There is an alternation of frequencies at which homogenization applies and
frequencies at which there is no scale separation.

4.2. Forced vibration

A harmonic vertical motion of amplitude V0 is now imposed at the bottom
of the structure. We are interested in the evolution with the frequency of the
amplitude of V (H) the displacement at the top. The solution of Eq. (15)
depends on the sign of the effective mass as indicated in Eq. (18).

Λ(!) ≥ 0 ⇒ V (x) = V0

[

cos(�x) + tan(�H) sin(�x)
]

⇒ H(!) =
V (H)

V0

=
1

cos(�H)
(18a)
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Λ(!) < 0 ⇒ V (x) = V0

[

cosh(�x)− tanh(�H) sinh(�x)
]

⇒ H(!) =
V (H)

V0

=
1

cosh(�H)
(18b)

with �2 =
∣Λ(!)∣!2

2EwAw

When the effective mass is positive, the transfer function ∣H(!)∣ is always
greater than 1 and the imposed motion is amplified by the structure. More-
over, ∣H(!)∣ → +∞ as ! approaches the natural frequencies of the structure
determined in Section 4.1. When the effective mass is negative, the transfer
function ∣H(!)∣ is always less than 1 and the imposed motion is attenuated
by the structure. This corresponds to a bandgap. The attenuation is more
important if ∣Λ(!)∣ is great, that is to say at the beginning of the bandgaps
for the frequencies slightly higher than the frequencies of the odd modes of
the floors. When the effective mass vanishes, the transfer function is equal
to 1 and the displacement at the top is identical to the displacement at the
bottom.

4.3. Example

The results presented in Sections 4.1 and 4.2 are illustrated by the study
of a particular structure. It is an academic example which corresponds to
the normalization of Eq. (8). The application of the results to more realistic
structures is discussed in Section 5 which also contains some guidelines for the
design of new structures with prescribed properties. The chosen example is
a frame structure as in Figure 1 with N = 15 levels. The walls and the floors
have the same length ℓw = ℓf = 3 m and the total height of the structure is
H = Nℓw = 45 m. The thickness to length ratios correspond to the orders
of magnitude of Eq. (8). In [10, 11], it was shown that the scale ratio can
be estimated by � ≈ �/(2N) for the first macroscopic mode of a structure.
The walls are made of concrete but the density of the floors is increased in
order to have Λf ≈ Λw and to increase the influence of their resonance. The
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characteristics of the structure are summarized in Eq. (19).

N = 15 H = 45 m

ℓw = ℓf = 3 m ℎw = ℎf = 1 m

aw = 0.971 m af = 0.314 m

Ew = Ef = 30000 MPa �w = �f = 0.2

�w = 2300 kg.m−3 �f = 14225 kg.m−3

(19)

The frequencies of the bending modes of the floors with two clamped ends
are determined thanks to Eq. (35) of Appendix A. The frequencies of the
first two odd modes are ff1 = 52.08 Hz and ff3 = 281.44 Hz. The frequency
of the first even mode is ff2 = 143.56 Hz. The real mass of the structure is
Λ = 8933.25 kg m−1. The variations of the effective mass in the neighbour-
hood of the first resonance of the floors are plotted in Figure 5. Note that the
difference between the real mass and the effective mass becomes significant
at approximatively 25 Hz which is much less than ff1. The bandgap corre-
sponds to the frequencies with a negative effective mass. For this structure,
it is between ff1 = 52.08 Hz and 64.29 Hz.

Figure 5: Variations of the effective mass according to the frequency in the neighbourhood
of the first resonance of the floors. The grey horizontal line indicates the value of the real
mass.

We first calculate the natural frequencies of the structure. Eq. (17) is
solved graphically in Figure 6. If the effects of the local resonance are ignored
by using the real mass instead of the effective mass, we obtain the frequencies
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Figure 6: The thin line is obtained by replacing the effective mass by the real mass. The
thick line takes into account the resonance of the floors. The horizontal dashed lines
indicate the first values of (2k − 1)2. The natural frequencies of the structure are the
abscissas of the intersections of the continuous curves with the dashed lines.

given in the second column of Table 1. As these frequencies are in the same
range as the frequencies of the bending modes of the floors, the variations
of the effective mass cannot be neglected. Including the effects of the local
resonance leads to the frequencies given in the third column of Table 1. As
expected, there are now several frequencies for each value of k and they are
different from the frequencies of the second column of Table 1.

These results are confirmed by simulations made with the finite element
code CESAR-LCPC. The longitudinal modes are determined for two struc-
tures. For the first one, the elements behave as Euler-Bernoulli beams as
in the HPDM method. For the second one, the elements behave as Timo-
shenko beams which is more realistic for the chosen thickness. The natural
frequencies of both structures are also given in Table 1. There is an ex-
cellent agreement with the homogenized model. The use of Timoshenko
beams slightly modifies the frequencies but the mode shapes are identical.
The mode shapes are presented in Figure 7 and they are compared with the
homogenized model [Eq. (16)] in Figure 8.

The effects of the local resonance are also visible on the transfer func-
tion. Using the real mass instead of the effective mass leads to an erroneous
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Resonance of the Resonance of the floors CESAR-LCPC with CESAR-LCPC with
k floors neglected taken into account Euler-Bernoulli Timoshenko

[Eq. (10)] [Eq. (15)] beams beams
1 14.19 14.00 - 65.14 - 297.0 13.76 - 64.83 13.73 - 61.35
2 42.56 36.73 - 74.35 - 297.5 35.99 - 74.22 35.12 - 71.71
3 70.94 46.42 - 97.68 - 298.5 45.46 - 97.37 43.32 - 96.04
4 99.31 49.36 - 127.8 - 300.4 48.28 - 127.0 45.66 - 125.5
5 127.69 50.49 - 158.9 - 303.4 49.76 - 157.5 46.93 - 154.2

Table 1: Comparison of the natural frequencies (Hz) of the structure estimated thanks to
the homogenized models and with the finite element code CESAR-LCPC.

k = 1 k = 2 k = 3 k = 4 k = 5
13.76 64.83 35.99 74.22 45.46 97.37 48.28 127.0 49.76 157.5

Figure 7: Mode shapes and natural frequencies (Hz) calculated with the finite element
code CESAR-LCPC. For each value of k, the walls and the floors move in-phase at the
lower frequency and in antiphase at the higher frequency.
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Figure 8: Comparison of the mean vertical displacement of the nodes estimated with the
homogenized model [Eq. (16)] and the finite element code CESAR-LCPC.
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Figure 9: Comparison of the transfer function calculated with the real mass (thin line)
and the transfer function calculated with the effective mass (thick line)

description above 25 Hz (Figure 9). As expected, the two transfer functions
have peaks at different frequencies and the local resonance causes a bandgap
between ff1 = 52.08 Hz and 64 Hz.

The transfer function computed with the finite element method is almost
identical to the transfer function given by the homogenized model with local
resonance (Figure 10). The main difference is the number of peaks just before
the resonance of the floors. In this frequency range the peaks are concentrated
because of the great variations of the effective mass. However, a lot of the
peaks of the homogenized transfer function do not correspond to real modes
of the structure. Indeed, the homogenization process replaces the structure
by an equivalent beam which has an infinite number of degrees of freedom
and therefore an infinite number of longitudinal modes. On the contrary,
the studied structure has only 15 possible macroscopic mode shapes. As a
result, the real transfer function has less peaks and the bandgap begins at
slightly lower frequencies. An example of the deformation of the structure
inside the bandgap is also presented in Figure 10. The first floors experience
large deformations because of the resonance but the energy is not transferred
to the upper levels. From the fourth floor, there is no more vibration.

The introduction of damping does not modify fundamentally the results.
As in Section 3.2 a complex elastic modulus Ef = Ew = E ei� is used in the
homogenized model [Eq. (18)]. The modulus of the transfer function is plot-
ted in Figure 11 for � = 2.10−2. The main differences with Figure 10 are that
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(a) (b)

Figure 10: (a) Transfer function of the studied structure. The continuous curve corre-
sponds to the homogenized model [Eq. (18)] and the points to the finite element simula-
tions; (b) Deformation of the structure at 52 Hz.

the frequency bandgap is larger and the peaks of the transfer function before
the resonance no longer exist. Finite element simulations are still in good
agreement with the transfer function of the homogenized model (Figure 11).

Even if the homogenized model is limited to the leading order, the com-
parison with the finite element method shows that it gives very good results
in the whole considered frequency range for a much smaller cost. There is
only a small discrepancy at the resonance frequency of the floors. A possible
explanation is that this frequency range corresponds to the higher modes of
the structure and that the scale ratio � is less small. Moreover, the higher
order equations probably contain correctors which depend on the frequency
and become more important in this frequency range.

5. Potential applications

5.1. Building dynamics

As building dynamics was the initial motivation of this work, it is the first
application we consider. The vertical modes of buildings and the bending
modes of their floors can be excited by ground vibration due to construc-
tion work or road and railway traffic [13, 14] and can cause annoyance to
the occupants. Moreover, during an earthquake, the vertical motion can be
higher than the horizontal motion in the vicinity of the fault rupture. This
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Figure 11: Modulus of the transfer function of the studied structure with damping
(Ef = Ew = E ei� with � = 2.10−2). The continuous curves correspond to the homog-
enized model [Eq. (18)] and the points to the finite element simulations.
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can lead to the failure of the vertical bearing elements or of the floors [15].
The example of Section 4.3 is a good illustration of the phenomenon studied
in the paper but it differs from real buildings in the following points which
will be examined in this section:

∙ The thickness of the elements and the density of the floors are not
realistic.

∙ Buildings have a more complex geometry and each level contains several
walls and floors.

∙ Buildings are not perfectly clamped at the bottom but are supported
by a viscoelastic soil.

To show that the bending resonance of the floors can also have an effect
on the vertical modes of some buildings, we present a second example with
more realistic dimensions. We keep the simple geometry of Figure 1 and the
same boundary conditions. The structure is clamped at the bottom and free
at the top. All the elements are made of concrete. The new characteristics
are summarized in Eq. (20).

N = 20 H = N ℓw = 50 m

ℓw = 2.50 m ℓf = 6 m

aw = 0.30 m af = 0.20 m

ℎw = ℎf = 1 m �w = �f = 2300 kg.m−3

Ew = Ef = 30000 MPa �w = �f = 0.2

⇒ Λw = 1380 kg.m−1 Λf = 1104 kg.m−1

(20)

In this case, the frequencies of the bending modes of the floors with two
clamped ends [Eq. (35)] are ff1 = 20.62 Hz, ff2 = 56.85 Hz and ff3 = 111.45 Hz.
The natural frequencies of the structure calculated by using the real mass in-
stead of the effective mass are given in the second column of Table 2. As these
frequencies are in the same range as the frequencies of the bending modes
of the floors, the effect of their resonance cannot be ignored. This leads to
the frequencies given in the third column of Table 2 which are confirmed
by finite element simulations. The transfer function is also affected by the
bending resonance of the floors. However the mass of the floors is now 20 %
smaller than the mass of the walls [Eq. (20)] and the bandgaps will probably
be narrower. The comparison of the transfer functions computed with the
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Resonance of the Resonance of the floors
k floors neglected taken into account CESAR-LCPC

[Eq. (10)] [Eq. (15)]
1 13.46 12.42 - 26.81 - 116.6 12.16 - 26.20 - 112.1
2 40.38 19.70 - 50.21 - 117.7 - 50.03 - 113.0
3 67.30 20.31 - 78.68 - 121.2 - 77.88 - 116.3
4 94.22 20.47 - 99.06 - 133.4 - 96.28 - 132.0
5 121.1 20.53 - 106.4 - 158.4 - 101.6 - 157.9

Table 2: Comparison of the natural frequencies (Hz) of the structure estimated thanks to
the homogenized models and with the finite element code CESAR-LCPC.

Figure 12: Transfer function of the studied structure. The continuous curve corresponds
to the homogenized model [Eq. (18)] and the points to the finite element simulations.
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(a) (b)

(c) (d)

Figure 13: (a) and (c) Transfer function of the studied structure close to the natural
frequencies of the floors. The continuous curve corresponds to the homogenized model
[Eq. (18)] and the points to the finite element simulations; (b) and (d) Mode shapes at
18.56 Hz and 99.61 Hz respectively.
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homogenized model and the finite element method is presented in Figures 12
and 13.

All these results show that the global behaviour of the structure is well
reproduced by the homogenized model even if the dimensions of the ele-
ments do not correspond exactly to the normalization. The model is slightly
less accurate close to the frequency of the third bending mode of the floors
because the higher order terms are neglected. However the difference in fre-
quency between the two methods is always less than 5 %. Another difference
visible in Figure 13 is the existence of very localized peaks on the transfer
function which are not predicted by the homogenized model. These peaks
are associated to modulated modes as the two examples of Figure 13. Each
family of modulated modes appears in a narrow frequency range close to a
natural frequency of the basic frame. The frames are deformed according
to the associated mode shape and the amplitude of their deformation varies
along the structure. As the kinematics of such modes is not taken into ac-
count by the HPDM method, the homogenized model cannot predict their
existence. However other homogenization methods have been developed to
describe the modulated modes [16, 17, 18, 19, 20, 21]. During the calculation
of the modes with the finite element method, the large number of modulated
modes between 19 and 20 Hz made the identification of the higher vertical
modes difficult. This is the reason why the last column of Table 2 is not
complete.

Figure 14: Modulus of the transfer function of the studied structure with damping
(Ef = Ew = E ei� with � = 2.10−2). The continuous curve corresponds to the homog-
enized model [Eq. (18)] and the points to the finite element simulations.
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Figure 15: Modulus of the transfer function of the studied structure with damping close to
the natural frequencies of the floors. The continuous curves correspond to the homogenized
model [Eq. (18)] and the grey points to the finite element simulations.
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The modulus of the transfer function of a damped structure is plotted
in Figure 14 and 15. As in Section 4.3, a complex elastic modulus is used:
Ef = Ew = E ei� with � = 2.10−2. In this case, the modulated modes no
longer create peaks on the transfer function and there is an excellent agree-
ment between the homogenized model and the finite element simulations.

In this example, the walls and the floors have different lengths for two
reasons. The first one is that the mass of the floors must be sufficiently
important to see the effect of their resonance. If the contribution of the
resonating elements to the total mass of the structure is negligible, the peaks
of the effective mass are very narrow and the bending resonance has almost
no influence. In particular, the natural frequencies of the structure are hardly
modified. The second reason is that the model proposed in this paper is valid
only if the bending stiffness of the walls is much greater than the bending
stiffness of the floors. If this condition is not respected, we must consider
the resonance of the whole frame and the behaviour is more complex [12].
This limitation comes from the simple geometry of the studied structures.
As only one floor is connected to each node, the walls must be very stiff
to balance the moment in the floor which becomes very important at its
resonance. For a structure with several identical floors as in Figure 16(a),
two floors are connected to the inner nodes and the moments are balanced.
In this case, the proposed model probably remains valid even if the stiffness
in bending of the walls is smaller. However, if the floors connected to a
node have different properties, their natural frequencies are different and the
balance of the moments depends on the bending stiffness of the walls.

Finally, the underlying soil plays an important role in the response of
a real building by modifying the boundary conditions. Nevertheless, the
soil-structure interaction does not change the properties of the structure de-
scribed in this paper. Removing the clamped condition at the bottom can
decrease the natural frequencies of the structure but not the ones of the floors.
To evaluate the influence of the bending resonance on the modal properties
of a real building, it is therefore necessary to compare the frequencies of
the vertical modes of the soil-structure system with the frequencies of the
bending modes of the floors. Examples of simulations which include the soil-
structure interaction and the resonance of the floors can be found in [14]. As
for the transfer function of the structure, it does not depend on the boundary
condition at the bottom.
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5.2. Design of new structures

The results presented in this paper are not limited to building dynam-
ics. They apply to various reticulated systems whatever their material and
dimension. The great advantage of the HPDM method is that it is com-
pletely analytic. Then, even if the method is implemented on only two class
of structures (defined in Eqs. (7) and (8) by the associated normalization),
we know the expression of the effective mass and we can compare the modal
frequencies of the whole structure and the ones of the “floors”. Therefore
the role of each parameter can be easily identified. The design of a structure
with local resonance is based on the two following points:

∙ The bending wavelength in the frequency range of interest must have
the same order as the length of the elements. With the notation of
Appendix A, this condition is:

�b = O(ℓ) or �ℓ = O(1) (21)

Moreover the frequencies of the odd bending modes of the “floors” are
the lower limits of the bandgaps.

∙ The width of the frequency ranges with visible effects of the local reso-
nance (including the bandgaps) depends on the proportion of the mass
in the resonating elements. The greater the resonating mass is, the
wider the frequency range is.

To achieve this for the example of Section 4.3, we chose to use the thick-
ness to length ratio of the elements. We imposed that their orders of mag-
nitude compared with the scale ratio �, which only depends on the number
of cells, were the same as in the study with the HPDM method. In this
case, the material and the size of the structure have no importance and they
are inherited from the considered application. Indeed, the behaviour of the
structure is the same as long as the orders of magnitude of the thickness to
length ratios are the same, which implies that the dimensionless parameter
�b/ℓ is unchanged. For example, we can replace concrete by a soft material
and divide every length by 100 in Eq. (19). Then the characteristics of the
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structure become:

N = 15 H = N ℓw = 45 cm

ℓw = ℓf = 3 cm ℎw = ℎf = 1 cm

aw = 0.971 cm af = 0.314 cm

Ew = Ef = 1 MPa �w = �f = 0.5

�w = 1000 kg.m−3 �f = 6185 kg.m−3

(22)

The density of the “floors” is still chosen in such a way that Λf ≈ Λw. For
this new structure, the frequency of the first bending mode of the floors is
45.6 Hz. If the effects of the local resonance are ignored in the calculation
of the frequencies of the longitudinal modes of the structure, Eq. (17) gives
f1 = 12.4 Hz, f2 = 37.3 Hz, f3 = 62.1 Hz, f4 = 87.0 Hz. Since the resonance
of the floors occurs in the same frequency range as the longitudinal modes,
the behaviour of this structure is similar to the one of Section 4.3.

Moreover, it is possible to modify other parameters than the thickness to
length ratio. The desired properties for a structure with an unconventional
behaviour can be obtained by using different materials for the “walls” and the
“floors” and by choosing different geometrical characteristics. An example
is the choice of floors longer than the walls in Section 5.1. It is also possible
to add point masses. If we impose �f = �w = 2300 kg.m−3, ℓf = ℓw = 3 m,
af = 0.314 m and aw = 0.971 m as in Section 4.3, we should put a mass
m = 11233.2 kg in the middle of the floors to have Λf +m/ℓw = Λw. This
structure has the same tension-compression stiffness and the same total mass
as the example of Section 4.3 but the frequency of the resonance of the floors
is lower ff = 34 Hz. However, it is still in the range of the frequencies of
the longitudinal modes of the structure and the effects of the local resonance
have to be taken into account. The expression of the effective mass has
to be modified to include the inertia of the point masses. Moreover, the
floors behave like spring-mass systems with one degree of freedom and one
resonance. The attenuation of the vibrations of the structure at different
frequencies can be achieved by using several types of resonating elements.

The results can also be extended to other geometries. For frame struc-
tures with a higher number of walls [Figure 16(a)], the generalization of
Eq. (15) is straightforward: 2EwAw and Λw must be replaced by the sum of
the tension-compression stiffness and the mass of all the walls; the contribu-
tion of the floors to the inertia forces is obtained by summing the effective
mass calculated for each floor. If the structure has a more complex geom-
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etry, its macroscopic behaviour can be described by another equation but
the physics remains the same. For example, the floors can be inclined as in
Figure 16(b) to increase the bending stiffness of the structure. In this case,
the tension-compression stiffness must include the stiffness of the inclined
floors and the effective mass in the description of the longitudinal modes is
determined by projecting the inertia forces onto the vertical direction. For
such a structure, the local resonance in bending can also affect the transverse
modes.

(a) (b)

Figure 16: Other structures which can be affected by the local resonance in bending

6. Conclusion

Because of the stiffness contrast between tension-compression and bend-
ing in beams and plates, the longitudinal modes of a reticulated structure
can appear in the same frequency range as the bending modes of the ele-
ments. The extension of the HPDM method to these situations with local
resonance shows that the real mass should be replaced by an effective mass
which depends on the frequency. When the frequency approaches the fre-
quencies of the odd bending modes of the resonating elements, the effective
mass becomes infinite and it changes its sign. Two consequences of this phe-
nomenon have been highlighted. First, several normal modes of the structure
associated with different natural frequencies can have the same macroscopic
mode shape. Second, when the effective mass is negative, the vibrations are
attenuated by the structure and we have frequency bandgaps.

These theoretical results are confirmed by finite element simulations made
for two structures. The first one is an academic example specially designed
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to illustrate the effects of the local resonance. In particular, mass has been
added to the floors. If the proportion of the mass affected by the resonance is
smaller, the variations of the effective mass far from the resonance frequen-
cies can be negligible. However, at the resonance, the effective mass is still
considerable and the vibrations are attenuated. For the second structure, the
dimensions of the elements were closer to the ones of the walls and the floors
of real buildings. The effects of the local resonance are still visible but there
are also modulated modes in the same frequency range. The design of these
structures was made easier because the HPDM method is completely ana-
lytic. This provides a clear understanding of the mechanisms governing the
behaviour of the structure and of the role of each mechanical or geometrical
parameter.

This work focuses on the resonance of the floors because it is the most
interesting situation [12]. Since the macroscopic description is given by the
balance of the vertical forces, it cannot be affected by the bending resonance
of the walls. In this case, only the inner equilibrium of the cell contains terms
which depend on the frequency. The inertial terms become infinite at the
frequencies of the odd bending modes of the walls but the bending stiffness
becomes infinite at the frequencies of the even bending modes. When the
bending resonance of the walls and the floors occurs in the same frequency
range, the modes of the whole cell can also be excited. In the neighbourhood
of all these frequencies, the structure is likely to behave atypically.

A. Harmonic vibration of Euler-Bernoulli beams

Figure 17: Studied beam

This appendix introduces some results about the harmonic vibrations of
Euler-Bernoulli beams. We consider a beam of length ℓ linking the node B
to the node F (see Figure 17). The same notation as in Section 2 is used
for the characteristics of the beam. Moreover, in the local beam frame, s
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stands for the coordinate along the beam axis, u(s), v(s) for the transverse
and axial displacements respectively, and �(s) = u′(s) for the rotation. The
primes denote the differentiation with respect to s. The axial force N(s), the
shear force T (s), and the bending moment M(s) act by convention from the
left part to the right part. No external force is applied on the beam.

A.1. Tension-compression

The longitudinal vibrations are described by the momentum balance
along the beam axis and by the tension-compression constitutive law:

{

N ′(s) = �A!2v(s)

N(s) = −EAv′(s)
⇒

v′′(s) = −�2 v(s)

where � =

√

�!2

E
=

2�

�c

(23)

�c is the tension-compression wavelength in the beam at the studied circular
frequency !. Therefore, the axial displacement can be written in the following
way:

v(s) = X cos(�s) + Y sin(�s) (24)

The two constants of integration X and Y are determined thanks to the
boundary conditions.

A.1.1. Expression of the nodal forces

As explained in Appendix B, for the first step of the HPDM method,
we need to express the forces at the extremities of the elements as functions
of the nodal kinematic variables. The axial forces NB and NF in the local
beam frame are obtained by using the unknown displacements vB and vF as
boundary conditions:

NB = N(vB, vF ) and NF = −N(vF , vB)

with N(v1, v2) =
EA�

sin(�ℓ)

(

v1 cos(�ℓ)− v2
) (25)

At low frequencies, the beam has a quasi-static behaviour and the wavelength
�c is much longer than the length ℓ of the beam. Consequently, �ℓ is very
small and the function N(v1, v2) can be expanded:

N(v1, v2) =
EA

ℓ

(

(v1 − v2)−
(�ℓ)2

6
(2 v1 + v2)

−(�ℓ)4

360
(8 v1 + 7 v2)

)

+O
(

(�ℓ)6
)

(26)

34



A.1.2. Natural frequencies of the walls

We are also interested in the natural frequencies of the walls considered as
clamped-free beams. In that case, the boundary conditions are v(0) = 0 and
N(ℓ) = 0. The circular frequency of the kth mode is given by the following
equation:

cos(�ℓ) = 0 ⇒ !k = (2k − 1)
�

2ℓ

√

E

�
(27)

A.2. Bending

The transverse vibrations are described by the momentum balance along
the transverse axis, the moment of momentum balance, and the bending
constitutive law:

⎧



⎨



⎩

T ′(s) = �A!2u(s)

M ′(s) = −T (s)

M(s) = −EI u′′(s)

⇒
u′′′′(s) = �4 u(s)

where � =
4

√

�A!2

EI
=

2�

�b

(28)

�b is the bending wavelength in the beam at the studied circular frequency
!. Since the Euler-Bernoulli beam description requires that the bending
wavelength is much greater than the thickness of the beam, the bending
wavelength is always smaller than the tension-compression wavelength:

�2
b = �c 2�

√

I

A
= �c

2�a√
12

⇒ �b

�c

= O

(

a

�b

)

<< 1 (29)

Eq. (28) shows that the transverse displacement can be written in the fol-
lowing way:

u(s) = X cos(�s) + Y sin(�s) + Z cosh(�s) +W sinh(�s) (30)

The four constants of integration X, Y , Z and W are determined thanks to
the boundary conditions.

A.2.1. Expression of the nodal forces and moments

We first use the unknown displacements uB, uF and rotations �B, �F as
boundary conditions to obtain the expressions of the shear forces TB, T F

and the bending moments MB, MF at the extremities of the beam in the
local frame.

TB = T (uB, uF , �B, �F ) ; T F = T (−uF ,−uB, �F , �B)

MB = M(uB, uF , �B, �F ) ; MF = M(uF , uB,−�F ,−�B)
(31)
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with

T (u1, u2, �1, �2) =
EI�3

1− cos(�ℓ) cosh(�ℓ)

(

u1

[

cosh(�ℓ) sin(�ℓ) + sinh(�ℓ) cos(�ℓ)
]

− u2

[

sin(�ℓ) + sinh(�ℓ)
]

+
�1
�
sin(�ℓ) sinh(�ℓ)− �2

�

[

cos(�ℓ)− cosh(�ℓ)
]

)

M(u1, u2, �1, �2) =
EI�2

1− cos(�ℓ) cosh(�ℓ)

(

u1 sin(�ℓ) sinh(�ℓ)

+ u2

[

cos(�ℓ)− cosh(�ℓ)
]

+
�1
�

[

cosh(�ℓ) sin(�ℓ)− sinh(�ℓ) cos(�ℓ)
]

− �2
�

[

sin(�ℓ)− sinh(�ℓ)
]

)

(32)
At low frequencies, when the wavelength �b is much longer than the length
ℓ of the beam, �ℓ is very small. The shear forces and the bending moments
can be expanded according to the powers of �ℓ.

T (u1, u2, �1, �2) = −12EI

ℓ 3

(

(u1 − u2) +
ℓ

2
(�1 + �2)

−(�ℓ)4

840
(26u1 + 9u2)−

(�ℓ)4ℓ

5040
(22 �1 − 13 �2)

)

+O
(

(�ℓ)8
)

M(u1, u2, �1, �2) =
6EI

ℓ 2

(

(u1 − u2) +
ℓ

3
(2 �1 + �2)

−(�ℓ)4

2520
(22u1 + 13u2)−

(�ℓ)4ℓ

2520
(4 �1 − 3 �2)

)

+O
(

(�ℓ)8
)

(33)

A.2.2. Natural frequencies of a clamped beam

We now introduce some properties of the natural frequencies of a clamped-
clamped beam which are useful for the interpretation of the results about the
local resonance. The boundary conditions are:

u(0) = X + Z = 0 (34a)

�(0) = �(Y +W ) = 0 (34b)

u(ℓ) = X cos(�ℓ) + Y sin(�ℓ) + Z cosh(�ℓ) +W sinh(�ℓ) = 0 (34c)

�(ℓ) = �
(

−X sin(�ℓ) + Y cos(�ℓ) + Z sinh(�ℓ) +W cosh(�ℓ)
)

= 0 (34d)

Eqs. (34a) and (34b) are used to eliminate Z and W in Eqs. (34c) and
(34d). The existence of a non-zero solution implies that the determinant
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of Eqs. (34c) and (34d) is zero. This leads to the following equation the
solutions of which are the natural frequencies of the clamped-clamped beam:

1− cos(�ℓ) cosh(�ℓ) = 0 (35)

This equation can also be written in the following way:

2fo(�ℓ)fe(�ℓ) = 0 (36)

with fo(�ℓ) = sin

(

�ℓ

2

)

cosh

(

�ℓ

2

)

+ sinh

(

�ℓ

2

)

cos

(

�ℓ

2

)

fe(�ℓ) = sin

(

�ℓ

2

)

cosh

(

�ℓ

2

)

− sinh

(

�ℓ

2

)

cos

(

�ℓ

2

)

The function fo(�ℓ) vanishes at the frequencies of the odd modes and the
function fe(�ℓ) vanishes at the frequencies of the even modes.

The first solution of Eq. (35) is �ℓ ≈ 4.73 which is close to 3�/2 ≈ 4.71.
As cosh(�ℓ) becomes very important for the higher values of �ℓ, the solu-
tions of cos(�ℓ) = 0 approximate very well the other solutions of Eq. (35).
Therefore, the solutions of Eq. (35) are close to (2k + 1)�/2 and the natu-
ral frequencies of a clamped-clamped beam are almost proportional to the
sequence of the squares of the odd integers.

(�ℓ)k ≈ (2k + 1)
�

2
⇒ !k ≈ (2k + 1)2

( �

2ℓ

)2

√

EI

�A
(37)

Note that the parameter � can be written as a function of the dimensionless
frequency !/!1:

� ≈ 3�

2ℓ

√

!

!1

(38)

A.2.3. Deformation of the floors

Finally, we examine the deformation of the floors when the structure
experiences longitudinal vibrations. In that case, the beam is excited by
an identical transverse motion and an opposite rotation of the nodes. The
boundary conditions are:

u(0) = u(ℓ) = V ; �(0) = −�(ℓ) =
Φ

2
(39)
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This leads to the following expression of the transverse displacement:

u(s) =
sinh

(

�ℓ
2

)

sin
(

�ℓ
2

)

fo(�ℓ)

([

sin(�x)− sinh(�x)

+ coth

(

�ℓ

2

)

cosh(�x) + cot

(

�ℓ

2

)

cos(�x)

]

V

+

[

coth

(

�ℓ

2

)

sin(�x) + cot

(

�ℓ

2

)

sinh(�x)

+ coth

(

�ℓ

2

)

cot

(

�ℓ

2

)

[

cos(�x)− cosh(�x)
]

]

Φ

2�

)

(40)

The sum of the inertia forces acting on the beam is then:

∫ ℓ

0

�!2 u(s) ds =
�!2

�fo(�ℓ)

[

4 sin

(

�ℓ

2

)

sinh

(

�ℓ

2

)

V + fe(�ℓ)
Φ

�

]

(41)

If � is replaced by the expression (38), it becomes:

∫ ℓ

0

�!2 u(s) ds =
2 ℓ� !2

3�
√

!
!1

fo

(

3�
2

√

!
!1

)

⎡

⎣4 sin

(

3�

4

√

!

!1

)

sinh

(

3�

4

√

!

!1

)

V + fe

(

3�

2

√

!

!1

)

2 ℓΦ

3�
√

!
!1

⎤

⎦

(42)

B. Homogenization method of periodic discrete media

This appendix describes the implementation of the HPDM method in
the case of the frame structures of Figure 1. A more general presentation
of the method can be found in [22] and other examples of application are
given in [23, 24, 25, 26, 27]. The adaptation of the method to situations
with local resonance is discussed in [7]. The method includes two main
steps: the discretization of the dynamic balance of the structure followed by
the homogenization process. The notation is the same as in Section 2 and
Appendix A.

The aim of the first step is to concentrate on the nodes the study of
the momentum balance without loss of information. The frame structure is
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considered as a periodic lattice of interconnected beams. The balances of the
elements in tension-compression and in bending are written as explained in
Appendix A. This provides the expressions of the forces and moments at the
extremities of the elements in their local frame [Eqs. (25), (31) and (32)].

The dynamic balance of each element being satisfied, it remains to in-
troduce the geometry of the structure by writing the balance of the nodes.
Because their mass is negligible and there is no external force, it consists in
adding the forces or moments applied by the two walls and the floor con-
nected to the same node. Moreover, the connection is perfectly stiff and
the motions of the three elements are identical. Therefore, the nodal balance
equations are a set of finite difference equations expressed in the global frame
(e1, e2, e3) of Figure 1 and depending only on the nodal kinematic variables
defined in Section 2.1. For each level n, there are three balance equations for
the node n1 and three balance equations for the node n2.

Balance of the forces in the horizontal direction (e2):

Node n1

T F
w (u(n−1)1 , un1

, �(n−1)1 , �n1
)− TB

w (un1
, u(n+1)1 , �n1

, �(n+1)1)

−NB
f (un1

, un2
) = 0

(43a)

Node n2

T F
w (u(n−1)2 , un2

, �(n−1)2 , �n2
)− TB

w (un2
, u(n+1)2 , �n2

, �(n+1)2)

+NF
f (un1

, un2
) = 0

(43b)

Balance of the forces in the vertical direction (e1):

Node n1

NF
w (v(n−1)1 , vn1

)−NB
w (vn1

, v(n+1)1)− TB
f (vn1

, vn2
,−�n1

,−�n2
) = 0 (43c)

Node n2

NF
w (v(n−1)2 , vn2

)−NB
w (vn2

, v(n+1)2) + T F
f (vn1

, vn2
,−�n1

,−�n2
) = 0 (43d)
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Balance of the moments:

Node n1

MF
w (u(n−1)1 , un1

, �(n−1)1 , �n1
)−MB

w (un1
, u(n+1)1 , �n1

, �(n+1)1)

+MB
f (vn1

, vn2
,−�n1

,−�n2
) = 0

(43e)

Node n2

MF
w (u(n−1)2 , un2

, �(n−1)2 , �n2
)−MB

w (un2
, u(n+1)2 , �n2

, �(n+1)2)

−MF
f (vn1

, vn2
,−�n1

,−�n2
) = 0

(43f)

The use of the change of variables proposed in Section 2.1 [Eqs. (1) and
(2)] and the combination of the balance equations in the following way pro-
vides two uncoupled sets of three equations. The first one [Eqs. (ST), (DN)
and (SM)] describes the transverse kinematics and the second one [Eqs. (DT),
(SN) and (DM)] describes the longitudinal kinematics.

(ST) =
(43a) + (43b)

2
T F
w (Un−1, Un, �n−1, �n)− TB

w (Un, Un+1, �n, �n+1)−NB
f (Un, Un) = 0 (44a)

(DN) =
(43d)− (43c)

2

−ℓf
2
NF

w (�n−1, �n) +
ℓf
2
NB

w (�n, �n+1)− TB
f

(

−ℓf
2
�n,

ℓf
2
�n, �n, �n

)

= 0

(44b)

(SM) =
(43e) + (43f)

2
MF

w (Un−1, Un, �n−1, �n)−MB
w (Un, Un+1, �n, �n+1)

−MB
f

(

−ℓf
2
�n,

ℓf
2
�n, �n, �n

)

= 0
(44c)

(DT) =
(43b)− (43a)

2
1

2
T F
w (Δn−1,Δn,Φn−1,Φn)−

1

2
TB
w (Δn,Δn+1,Φn,Φn+1)−

1

2
NB

f (Δn,−Δn) = 0

(44d)
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(SN) =
(43c) + (43d)

2

NF
w (Vn−1, Vn)−NB

w (Vn, Vn+1)− TB
f

(

Vn, Vn,
Φn

2
,−Φn

2

)

= 0 (44e)

(DM) =
(43f)− (43e)

2
1

2
MF

w (Δn−1,Δn,Φn−1,Φn)−
1

2
MB

w (Δn,Δn+1,Φn,Φn+1)

−MB
f

(

Vn, Vn,
Φn

2
,−Φn

2

)

= 0
(44f)

Once these equations are solved and the nodal kinematic variables are deter-
mined, the motions u, v, �, the forces N , T and the moment M inside each
element can always be calculated thanks to the equations of Appendix A.
The discrete description constituted by Eqs. (44), (1) and (2) is a complete
description of the structure which contains all the necessary information. It
is thus possible to use these variables as descriptors of the motion of the
structure.

Then the principles of homogenization are used to turn the discrete de-
scription into a continuous description valid at the macroscopic scale. The
aim is to obtain the differential equation describing the behaviour of the
equivalent beam. The key assumption is scale separation. This means that
the cell size in the direction of periodicity ℓw is small compared to the un-
known characteristic size L of the vibrations of the structure. Consequently,
the scale ratio � = ℓw/L is a small parameter (� << 1) used for the expansion
of the unknowns and the forces.

The classical homogenization considers frequencies much smaller than
the natural frequencies of the frame elements. In that case, the condition of
scale separation is always respected. The tension-compression wavelength �c

and the bending wavelength �b in the elements are much longer than their
length ℓ. It is therefore possible to expand the nodal forces and moment
according to the small parameters �ℓ and �ℓ as in Eqs. (26) and (33) of
Appendix A. However, having a quasi-static state at the local scale is only a
sufficient condition and homogenization can be extended to situations with
local resonance [7]. As �b is always smaller than �c in beams, there is a
frequency range with �b = O(ℓ) and �c >> ℓ. The corresponding elements
are in resonance in bending and the expansion of the shear force and the
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bending moment is no longer possible. But we can expand the axial force and
apply homogenization. This method is also valid at higher frequencies [with
�b < O(ℓ)] provided that �c remains sufficiently long to define a macroscopic
scale and that the behaviour of the elements is correctly described by the
beam model.

Another consequence of scale separation is that the nodal motions slowly
vary from one level to the next. The kinematic descriptors can therefore be
considered as the discrete values of continuous functions of the macroscopic
space variable x. These functions are assumed to converge as � approaches
zero and are replaced by asymptotic expansions in powers of � [Eq. (3) or (9)].
Equations (44) describing the balance of a level also depend on the motions
of the two neighbouring levels. The distance between the levels is constant
because of the periodicity of the structure and is equal to ℓw = � L. This value
is small with respect to x, which enables the variations of the motions to be
expressed with Taylor’s series. This introduces the macroscopic derivatives.

Xn±1 = X0(n ℓw) + �

(

X1(n ℓw)± L
∂X0

∂x
(n ℓw)

)

+ . . . (45)

where X stands for one of the kinematic descriptors.
To correctly take into account the local physics, the physical parameters

have to be scaled according to the powers of �. This normalization ensures
that each mechanical effect appears at the same order whatever the value
of �. Thus, the same physics is kept when � approaches zero, i.e. in the
homogenized model. The choice of the properties of the elements determines
the stiffness contrast between the various mechanisms and then the nature
of the equivalent beam. The order of magnitude of the frequency is imposed
by the balance of the elastic and inertia forces at the macroscopic scale. For
the study of the longitudinal modes, the inertia forces must have the same
order of magnitude as the tension-compression forces in the walls. Note that
the natural frequencies of the structure are unknown and must therefore be
written in the form of asymptotic expansions:

! = �m(!0 + � !1 + �2!2 + . . .) = !̃0 + !̃1 + !̃2 + . . . (46)

where �m is the order of magnitude of the (circular) frequency.
Finally, all the expansions in powers of � and the normalization are in-

troduced in the balance equations. These relations are valid for any small
enough � and the orders can be separated. This leads for each � order to a
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set of differential equations, which can be solved in increasing order. The
homogenized model is given by the leading order, that is to say the limit
when � approaches 0. The higher orders are correctors which improve the
macroscopic description when the scale separation is poor.
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