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Adaptive Basis Scan by Wavelet Prediction for
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Florian Rousset, Student Member, IEEE, Nicolas Ducros, Member, IEEE, Andrea Farina, Gianluca Valentini,
Cosimo D’Andrea and Françoise Peyrin, Member, IEEE

Abstract—Single pixel camera imaging is an emerging
paradigm that allows high-quality images to be provided by
a device only equipped with a single point detector. A single
pixel camera is an experimental setup able to measure the inner
product of the scene under view –the image– with any user-
defined pattern. Post-processing a sequence of point measure-
ments obtained with different patterns permits to recover spatial
information, as it has been demonstrated by state-of-the art
approaches belonging to the compressed sensing framework.

In this paper, a new framework for the choice of the patterns
is proposed together with a simple and efficient image recovery
scheme. Our goal is to overcome the computationally demanding
`1-minimization of compressed sensing. We propose to choose
patterns among a wavelet basis in an adaptive fashion, which
essentially relies onto the prediction of the significant wavelet
coefficients’ location.

More precisely, we adopt a multiresolution strategy that
exploits the set of measurements acquired at coarse scales to
predict the set of measurements to be performed at a finer scale.
Prediction is based on a fast cubic interpolation in the image
domain. A general formalism is given so that any kind of wavelets
can be used, which enables one to adjust the wavelet to the type
of images related to the desired application.

Both simulated and experimental results demonstrate the
ability of our technique to reconstruct biomedical images with
improved quality compared to CS-based recovery. Application to
real-time fluorescence imaging of biological tissues could benefit
from the proposed method.

Index Terms—Single-pixel camera, wavelets, compressive sens-
ing, optical imaging, fluorescence imaging.

I. INTRODUCTION

THE SINGLE-PIXEL CAMERA (SPC) architecture [1], [2]
enables to build small, low-cost, and high-quality imaging
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devices. When compared to CCD or CMOS cameras, several
advantages stand out. First, single detectors can have a high
efficiency and are therefore able to detect weak light intensity
changes [3]. This can be very useful for medical applications
where tissue absorption can be quite high [4]. Second, small
storage memory is needed given that compression is performed
at the hardware level. This is an important advantage for
applications needing remote imaging (e.g. aerospace remote
sensing) where the data rate for transmission would be low [5],
[6]. Finally, an imaging device based on a single point sensor is
usually cheaper than one based on a sensor array. This makes
the SPC a perfect candidate for infrared imaging [7] where it
would be costly to use a conventional imaging system oper-
ating at these wavelengths [8]. All the mentioned advantages
can benefit to several imaging fields such as 3D imaging [9],
[10], ghost imaging [11], multispectral or hyperspectral imag-
ing [12]–[15], terahertz imaging [16], [17] or video acquisition
[18], [19]. The SPC can also be seen as an excellent candidate
for medical imaging applications. Coupling the unique detector
with a time-correlated single photon counting board allows one
to create a low-cost time-resolved imaging system [15] (e.g.
fluorescence lifetime imaging [20]). It can also be used for
microscopy [21], [22], imaging through scattering media [23],
[24] or for diffuse optics (e.g. intraoperative or skin lesions
detection [25]). Exploitation of several SPC images can lead to
tomographic applications such as diffuse optical tomography
[26] or fluorescence molecular tomography [27], [28] for
oximetry and molecular imaging.

The compressive sensing (CS) paradigm [29] has been
widely applied to optical systems [30], [31]. In particular,
since the pioneering work of Duarte and coauthors [1], [2],
SPC has been mainly associated to the CS that provides
an excellent theoretical framework for recovering an image
from SPC measurements. Recently, CS-based SPC found
various applications [5], [6], [9], [10], [12]–[19], [22]–[24],
[32]. The computationally expensive image recovery based on
`1-minimization is an important drawback that restricts the
applicability of the SPC, e.g., to real-time applications and/or
application requiring high-resolution images.

A second kind of approach permits a straightforward re-
covery of the image that avoids the `1-minimization. The
acquisition consists in a basis scan (BS), i.e., the SPC progres-
sively acquires the scene under view in a known basis [33]–
[36] (e.g. Hadamard, Fourier or wavelet). The image recovery
simply consists in inverse transforming the measured data.
While BS-SPC offers fast image restoration, it suffers from
long acquisition times and/or is restricted to the acquisition of
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low-resolution images since the number of measurements is
given by the number of pixels of the desired image.

In recent years, adaptive schemes for BS-SCP have
emerged. Adaptive basis scan (ABS) lies on the predictions
of the most significant basis functions for the particular scene
under view. Prediction is generally performed progressively
during the experiment, exploiting the previously acquired data.
Wavelet basis are of particular interest since i) most images
are known to have a sparse representation in such basis and
ii) fast inverse wavelet transform algorithms are available to
restore the image quickly [37], [38].
The ABS framework mainly relies on the prediction step. In
[39], the authors consider Haar’s wavelet and use a thresh-
olding technique together with the Lipschitz exponent method
[38] to decide the coefficients to acquire. A similar approach
with the same wavelet is used in [40] where a more refined
prediction strategy is proven to outperform Deutsch’s method
[39]. Both techniques also rely on the father-son relationship
between wavelet coefficients over resolution scales [38]. The
main disadvantage of the thresholding strategies is the fact
that thresholds are image-dependent and need adjustments.
In [41], the Haar wavelet is also used and the prediction step is
based on the statistical modeling of images and thresholding.
Hybrid methods have also been investigated. In [42], the
authors combine CS and Deutsch’s ABS technique [39] for
ghost imaging and the same approach is proposed in [43] for
hyperspectral imaging. In [44], the authors divide the image
into patches and perform a BS acquisition with Hadamard
functions [45] at different resolutions. The acquisition for a
given patch is decided based on the presence of information
in this region.

In this paper, we propose a complete framework for SPC
image acquisition and restoration using a new ABS technique,
which benefits of two main features. First, we present a
threshold-free prediction strategy inspired by the non-linear
wavelet approximation. This is based on our work presented
in [46] where a different prediction strategy was employed.
The second feature is the ability to handle any kind of wavelet
for acquisition. While Haar’s wavelet, which is well adapted to
the SPC technology, has been widely used, we show that more
sophisticated wavelets can provide an improved image quality.
In Section II, we present the CS-based conventional approach
for SPC. In Section III, we present our method that we refer
to as Adaptive Basis Scan by Wavelet Prediction (ABS-WP).
We recall the important facts about the wavelet decomposition
before detailing our acquisition strategy. A method to use any
kind of wavelet is also presented. Section IV reports results
on both simulated and experimental image and a comparison
between ABS-WP and CS is given, extending the results in
[47]. We discuss the results in Section V where it is given
some insights about the system’s possibilities. Finally, our
conclusions are reported in Section VI.

II. CONVENTIONAL CS-BASED APPROACH

A SPC consists of a spatial light modulator coupled with a
single pixel detector. A common choice is the use of a digital
micromirror device (DMD) as a spatial light modulator as

Fig. 1. Optical setup of the single-pixel camera using a DMD. The image is
noted f, pi is a DMD pattern and mi is the corresponding measure.

illustrated in Fig. 1. A lens is added to focus light onto the
single detector. A DMD has thousands of mirrors that can be
independently tilted in two states. The ON state reflects the
light toward the detector whereas the OFF state reflects the
light in the opposite direction. Hence, a DMD can act as a
tunable spatial filter, not only with black-and-white patterns
but also with gray-level patterns. For this, the mirrors flip
between the ON and OFF states in a predefined amount of time
at a very high frequency. This enables contemporary DMD to
produce up to 10-bits grayscales patterns.

A. Single-pixel camera acquisition

A SPC acquisition consists in experimentally measuring
the inner product of an image and some DMD patterns,
sequentially. Let F ∈ RN×N be a N×N image and f ∈ RP×1

denote its vectorized form with P=N2. The signal m measured
by the single detector may be modeled as

m = p>f, (1)

where p ∈ RP×1 is the pattern loaded onto the DMD.
Let P = (p1, . . . ,pI)

> ∈ RI×P be the matrix containing the
sequence of I DMD patterns {pi ∈ RP×1, i = 1 . . . I}. The
measurement vector m = (m1, . . . ,mI)

> ∈RI×1 containing the
sequence of measurements is given by the matrix equation

m = Pf. (2)

The previous equation suggests that implementing a SPC
acquisition requires to solve the following two problems:

(P1) How to choose the set of DMD patterns P?
(P2) How to restore the image f from the measurements m

knowing the patterns P?

B. Compressive sensing acquisition and restoration

The problem of the acquisition and recovery of a SPC image
by means of CS was originally formulated in [1], [2]. The CS
framework provides an elegant solution to problems P1 and P2
assuming that the image has a sparse representation in some
basis ΛΛΛ. Mathematically,

f = ΛΛΛs (3)
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Fig. 2. Scheme of an adaptive acquisition framework for single-pixel camera.

where s ∈RP×1 is K-sparse, i.e., only K entries of s are non-
zero. Typical choice for ΛΛΛ includes wavelet basis, Fourier
basis, and discrete cosine basis.

Solution to P1: The CS framework allows to consider
only I << P measurements when the DMD patterns (the
sensing matrix in the CS vocabulary) P is chosen as a random
matrix satisfying the so-called restricted isometry property
(RIP) [29], [48]. Henceforth, the entries of P are commonly
chosen from the independent and identically distributed real-
izations [2], [49] such as

(P)i, j ∼B(µ = 1/2) (4)

where B(µ) denotes the Bernoulli distribution with mean µ .
The resulting ±1 patterns are well suited to the ON/OFF states
of the DMD.

Solution to P2: Under certain conditions such that I ≥
O(K log(P/K)), the image can be exactly or closely recovered
with a high probability [29] in the transform domain solving
the following `1-minimization problem:

s∗ = argmin‖s‖1 such that PΛΛΛs = m. (5)

This is a convex optimization problem that can be solved
efficiently by iterative algorithms [50]–[52]. The image is
finally recovered in the original (image) domain according to
(3), i.e.,

f∗ = ΛΛΛs∗ (6)

Note that a popular alternative to (5) and (6) is to recover
f directly in the image domain considering Total Variation
minimization [53].

f∗ = argmin‖f‖TV such that Pf = m. (7)

III. ADAPTIVE BASIS SCAN BY WAVELET PREDICTION

A. General framework

The method we propose falls into the category of adaptive
approaches. In such an iterative scheme, some of the patterns
sent to the DMD are determined during the acquisition with
a prediction step, as illustrated in Fig. 2. The acquisition
starts with a predetermined set of patterns. The resulting
measurements are exploited to predict a new set of patterns.
When a given criterion is reached, the restoration of the image
is performed. This framework is also fitted to the nonadaptive
compressive imaging of Section II except that no prediction
is needed and the restoration is performed with `1 or TV-
minimization.

In an adaptive approach, the image is acquired in a known
basis. For instance, one can acquire an image with Fourier
patterns, DCT patterns, wavelet patterns, etc ... The main

advantage is that the image restoration is straightforward
using the inverse transform of the chosen basis. This enables
one to avoid the computational overhead of `1-minimization.
The computational cost is shifted from the recovery to the
prediction.

In this paper, we consider to obtain the measurements {mi}
of (2) from wavelet patterns {pi} using a non-linear acquisition
strategy and interpolation techniques. The wavelet transform
has been chosen since it gives sparse signals thus allowing one
to only acquire a small number of measurements I <<P=N2.

B. Wavelet decomposition

The wavelet transform is a very powerful and popular
tool [37], [38]. The discrete wavelet decomposition of an
image f∈RP×1 with the standard dyadic wavelets separates the
signal into approximation and detail coefficients (horizontal,
vertical or diagonal). The approximation coefficients result
from a low-pass filtering, detail coefficients from a high-pass
filtering [38].

Let j = 1..J be the scale [54] at which the image f is
observed, J being the (coarsest) decomposition level of the
wavelet transform, with 1 ≤ J ≤ log2(N) = R. A location is
specified by the vector k so that

k = (k1,k2) ∈ {1, . . . ,2`}2 with `= R− j (8)

We note f̃ the wavelet transform of f:

f̃ = Wf (9)

with W ∈ RP×P an orthonormal operator [55]. f̃ ∈ RP×1

represents the image f in the wavelet domain and each of its
element represents a wavelet coefficient. Each element may be
fully identified and located by its unique triplet t j such that

t j = {o, j,k} (10)

where o = 0, 1, 2 or 3 represents the approximation, vertical,
horizontal and diagonal coefficients, respectively. Each row
of W corresponds to a unique triplet t j. The image f can be
perfectly recovered using the inverse wavelet transform:

f = W−1̃f (11)

The forward or inverse wavelet transform are widely used with
fast algorithms implemented as filter banks [38].

This kind of decomposition was shown to give sparse sig-
nals, allowing one to discard many coefficients at the recovery
step. An efficient approximation of the wavelet transform is
the one where a number I << P of the largest coefficients
are retained among all scales. The other coefficients are
thresholded to 0 and the image restoration using (11) shows
excellent image quality [38]. We will refer to this technique
as the non-linear approximation.

C. Prediction strategy

Our method ABS-WP is based on the non-linear approx-
imation of the wavelet transform. Our goal is to acquire
the significant wavelet coefficients and we therefore want to
predict the triplets t j for each of these elements. The endgame
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is to fill the matrix P in (2) with the rows of W corresponding
to the predicted triplet t j that we will note t̄ j. In the case
of the SPC, the whole wavelet transform of the object to be
imaged is unknown. Therefore, we perform several non-linear
approximations throughout the different scales of the wavelet
decomposition. More precisely, our strategy decomposes into
five steps. Step 1 works as an initialization whereas steps 2 to
4 are prediction steps and step 5 consists of the acquisition of
the predicted significant wavelet coefficients:

1) The approximation image A j at the lowest scale j = J is
fully acquired. This is a 2`×2` image with `= R− j.

2) A j is oversampled by a factor of two via an interpolation
operator S to give H j = S(A j). Among many existing
interpolation techniques, we used the bicubic interpola-
tion [56] for its easy implementation and fast computation
time. At this stage, the size of H j is 2`+1×2`+1.

3) The high resolution image H j is one-level wavelet trans-
formed to give H̃ j ∈R2`+1×2`+1

. This gives the predicted
wavelet detail coefficients at scale j.

4) To predict the triplets t̄ j of the largest elements, we
perform a non-linear approximation by retaining a per-
centage p j of the largest detail coefficients. This gives the
predicted significant coefficients and their corresponding
triplets t̄ j.

5) The coefficients are then experimentally acquired sending
the rows of W corresponding to t̄ j to the DMD.

For the other scales of the wavelet transform, steps 2 to
5 are unchanged. For the step 1 however, instead of the full
acquisition of the approximation image at scale j = J, the
approximation image A j is obtained by the inverse wavelet
transform of the coefficients acquired so far. For each level, a
different value of p j is used giving the set of percentages

P= {pJ , pJ−1, ..., p1}. (12)

Our strategy thus alternates between acquisition of the
wavelet coefficients on the real image and prediction using
an interpolation technique. Figure 3 presents a sketch of the
algorithm of ABS-WP, the number for each step corresponds
to the above steps.

D. Compression rate
The full acquisition of the approximation image A j at

scale j = J leads to the acquisition of n0 = 22L = 4L wavelet
coefficients with L = R− J. Then, we acquire p j percent of
the highest predicted detail coefficients. Therefore the number
of measurement at each scale j is given by

n j = 3×22l × p j = 3×4l× p j (13)

coefficients with ` = R− j. We thus can control the total
number of coefficients n acquired for each decomposition level
by modulating the set of percentages P in (12). Using (13), it
can be shown that

n = 4L

[
1+3

J

∑
j=1

4J− j p j

]
(14)

We define the compression rate (CR) as

CR = 1− n
P

(15)

Fig. 3. Summary of the acquisition and prediction strategies of ABS-WP.
White boxes corresponds to initialization or general processes, gray boxes to
the prediction, the blue box is the acquisition step and the red one is the
image restoration.

which is a normalized quantity ranging from 0 to 1. One can
finally recover an image from the n samples using the inverse
wavelet transform.

E. Pattern generation

To perform the acquisition, the patterns p that will be sent
to the DMD have to be generated. One pattern can be obtained
as:

p = W−1v (16)

where v is a unit vector chosen from the natural basis {eo
j,k}.

In practice, one can create a null image with only the pixel
located at t j set to 1, by taking the inverse wavelet transform
of this image, one obtains the corresponding pattern for the
triplet t j.

Two practical problems now arise to send such images
to the DMD: the obtained patterns have floating values and
both negative and positive elements that cannot be physically
implemented together on a DMD. To tackle the positivity
problem, we divide p in its positive and absolute negative
parts so that p = p+−p−. Given the linearity of (2), the final
measurement m is obtained as m = m+−m− = f>p+− f>p−.
This positive/negative separation also enables to cancel any
unwanted DC component added to the measurements.

Regarding the floating values of the patterns, Haar wavelet
is often considered [39]–[42] since, up to a scale factor, the
patterns have only 0 or 1 values and are therefore well suited
for the DMD’s ON/OFF technology. Thus, the rounding in the
quantization has no impact and we can exactly get the real
pattern back using the quantization factor. In order to use any
kind of wavelet that offers better compression skills compared
to Haar’s wavelet, we perform uniform quantization to convert
the patterns to b-bits patterns, 2b being the maximum available
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Fig. 4. Example of a wavelet pattern before and after quantization for b = 8
bits using Le Gall wavelet. (a) Real wavelet pattern p, (b) positive quantized
part p̂+, (c) negative quantized part p̂− and (d) quantification error pattern ê.

dynamic range of the DMD. To realize this quantization, we
apply the following transform to each pattern:

p̂ =

⌊
1
q f

p
⌋

q f =
max(|p|)

2b−1
(17)

where b.c denotes a rounding operation. The associated quan-
tization error pattern ê ∈ RP×1 is defined as:

ê = q f p̂−p (18)

We give an example of pattern in Fig. 4 using Le Gall (CDF
5/3) biorthogonal wavelet [57], [58]. The quantization leads to
an irreversible loss of information as can be seen by Fig. 4-
(d). If the errors introduced are small, we can consider that the
measurement m in (2) can be performed using the quantized
pattern:

m≈ q f f>p̂ = q f

(
f>p̂+− f>p̂−

)
(19)

The quantization also has an impact on the collection time
∆t at the detector. In (17), we choose the quantization factor
q f by finding the maximum absolute value in the pattern p.
For a given scale and orientation ( j,o), the patterns come
from the same wavelet function and thus have the same
dynamical range. They only are translated versions of one
another. However, when a different scale and/or orientation
is considered, the two sets of patterns will have different
quantization factors. In order to have consistent measurements,
one must keep q f ∆t constant. Several possibilities allows one
to deal with this problem:

(i) Both ∆t and q f are fixed. The latter is a global quan-
tization factor whose choice is based on the complete
possible patterns i.e. the maximum in (17) is found among
the full set of patterns.

(ii) Both q f and ∆t vary. The first is chosen as in (17) and ∆t
changes for each value q f so that q f ∆t = cst. The mea-
surement is directly obtained without post-processing.

(iii) ∆t is fixed and q f is chosen according to (17). A post-
processing on the measurements is done using (19) to
scale the measurements values with regard to q f .

Clearly, the possibility (i) is not ideal since the full dy-
namical range of the DMD will not be used for each pattern
thus creating significant quantization errors. The second choice
(ii) is the best one as it strictly mimics the application of
the wavelet transform. It also gives the best SNR (signal to
noise ratio) by increasing or decreasing the collection time
according to the pattern. Finally, the case (iii) works also very
well provided that the fixed collection time ∆t is high enough
to offer good SNR.

IV. RESULTS

A. Simulations

Different images have been used to perform several sim-
ulations. The well known image of Lena and the peppers
image have been employed since they are commonly used in
image processing. An optical microscopy image of vertebral
bone tissue of a fetus shown in Fig. 5 serves as an indicator
for textured images. Finally, fluorescence imaging being a
target application, we consider the bioluminescence image of
a mouse [59] shown in Fig. 6 superimposed to its ambient
light image.

We compare our technique ABS-WP method to compressive
imaging (CI) presented in Section II which is the reference
nonadaptive approach. For CI simulations, instead of the `1-
minimization in (5), we directly reconstructed the image f from
the measurements y using Total Variation (TV) minimization
via TVAL3 [53] as done in [1], [2]. This is close to performing
`1-minimization in the wavelet domain [49] and it allows for
much faster image restoration. Anisotropic TV with positivity
was employed as it gave the best results in most cases.

We also compare our results to the adaptive method pro-
posed by Dai [40]. In this adaptive method, a threshold has
to be chosen to decide the relevant coefficients to sample.
For each image and compression rate, the threshold was
tackled experimentally to obtain the best possible PSNR for
the restored image.

Table I presents simulation results showing the quantization
effect on two images with our method when using Le Gall’s
wavelet. An example of pattern using this wavelet can be seen
in Fig. 4. The proposed strategy was simulated exactly as
it would be computed by the SPC: the wavelet coefficients
were obtained with the dot product between the corresponding
quantized patterns and the image.

Figure 5 gives visual results of our method compared to
CI and Dai’s method for one test image. In the case of our
method, Le Gall’s wavelet was used since it proved to be the
most efficient wavelet in several cases.

In table II, we present the obtained PSNRs for the different
SPC acquisition techniques at two compression rates and
table III gives the associated average computation times.

Fluorescence imaging giving smooth image, we tested our
acquisition strategy for high compression rates on the image
of the mouse. Results can be seen in Fig. 6.
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Image PSNR (dB)
b = 8 bits b = 10 bits b→ ∞

Bones 30.87 31.18 31.18(256×256)
Mouse 47.82 49.18 49.23(128×128)

TABLE I
QUANTIZATION EFFECT IN OUR ABS-WP METHOD FOR LE GALL’S

WAVELET FOR DIFFERENT NUMBER OF BITS b FOR A CR OF 80%. THE
LAST COLUMN IS EQUIVALENT TO SIMULATE THE STRATEGY WITHOUT

QUANTIZATION.

Fig. 5. Simulation of different SPC acquisition techniques on a 256× 256
image of bones with a CR of 80%. (a) Ground truth image, images restored
with (b) CI, (c) Dai’s method and (d) our ABS-WP technique. The PSNRs
and parameters associated with these results are given in table II.

B. Experimental data

To demonstrate the ability of our technique to work for
real acquisitions, we performed several experiments. The ex-
perimental setup was composed of a laser source operating
at 650 nm wavelength for uniform illumination of the object.
A 1024× 768 DMD was exploited to spatially modulate the
image with a possibility of loading b = 8-bits patterns. The
light reflected from the DMD is focused by means of a lens
on a single pixel photomultiplier detector.

As an object, we chose the Jaszczak targets commonly
used as a phantom in CT to judge the system’s capacity. The
different targets were printed on white paper and the obtained
diameter was 22 mm. The experimental CCD image of these
targets can be seen in Fig. 7-(a) and Fig. 8-(a).

For each case, 128×128 pixels patterns were employed thus
giving 128× 128 pixels restored SPC images. The patterns
were resized as 640× 640 pixels patterns to use most of the
DMD’s height. This resizing operation was performed using
a box-shaped kernel which means that no other pixel values
other than those in the patterns were added. In other words,

Image CR PSNR (dB) Dai’s
CI Dai ABS-WP thresholds

Lena (256×256) 80 29.55 29.90 30.33 11.52
85 27.89 28.49 29.59 16.63

Peppers (256×256) 80 34.70 35.06 35.35 7.71
85 32.96 33.42 34.83 11.77

Bones (256×256) 80 29.39 30.24 31.18 12.89
85 28.14 28.62 30.29 17.61

Mouse (128×128) 80 44.54 47.41 49.23 1.81
85 41.41 45.44 49.13 3.77

TABLE II
OBTAINED PSNRS FOR DIFFERENT SPC ACQUISITION TECHNIQUES AT

TWO COMPRESSION RATES ON SEVERAL TEST IMAGES. THE THRESHOLDS
USED FOR DAI’S METHOD ARE GIVEN IN THE LAST COLUMN. FOR

ABS-WP, LE GALL PATTERNS WERE EMPLOYED WITH
P= {0.90,0.80,0.71,0.02} AND P= {0.90,0.80,0.45,0.019} TO GIVE CRS

OF 80% AND 85%.

Image size CR Time (s)
CI Dai ABS-WP

256×256 80 267.37 0.12 0.43
85 213.62 0.09 0.42

128×128 80 15.50 0.02 0.19
85 13.18 0.02 0.18

TABLE III
AVERAGE COMPUTATION TIME FOR THE DIFFERENT SPC ACQUISITION

TECHNIQUES. THE TIME INCLUDES THE IMAGE RESTORATION FOR CI AND
PREDICTION + RESTORATION FOR DAI’S METHOD AND OUR TECHNIQUE.

an area of 5× 5 (640/128 = 5) DMD mirrors was used to
represent one pixel of the 128×128 pattern.

Figure 7 presents real SPC acquisitions of a target with our
acquisition strategy (ABS-WP) and compressive imaging as a
comparison. In the case of ABS-WP, we used both Haar and
Le Gall wavelets to show the ability of the DMD to use 8-bits
patterns.

Figure 8 allows to judge the ability of our optical setup to
discern small dots at different compression rates. The printed
dots diameters are about 1 mm for the smallest dots and about
3 mm for the biggest ones. A pixel pitch of 210 µm was
measured.

V. DISCUSSION

Our ABS-WP strategy presented in Section III was designed
to overcome the `1-minimization of CS by acquiring an image
in a wavelet basis. In addition, non-linear approximations are
employed to avoid image-dependent thresholds. In order to use
any possible wavelet, uniform quantization of the patterns is
employed.

As can be seen in table I, this quantization impacts the
quality of the restored image. With a CR of 80% and for
b = 8 bits the restored images have a smaller PSNR than the
one recovered with real patterns (last column). This difference
clearly comes from the rounding operation in (17) and is
irreversible. With 10-bits, this extends the grayscale by 4
and we can see that the quantization error can be considered
negligible.

As mentioned previously, the bicubic interpolation was
used for our acquisition strategy. This choice was based on
several experiments with different existing interpolation and
super-resolution techniques [60]. This is surprising since the
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Fig. 6. Simulation of our acquisition strategy on a 128×128 bioluminescence
image of a mouse. The bioluminescence images have been overlaid on the
ambient light image of the mouse. (a) Ground truth image, images restored
using Le Gall’s wavelet for a CR of (b) 90%, (c) 95% and (d) 98%.
Respectively, PSNRs compared to the ground truth image are 48.49 dB, 41.73
dB and 35.62 dB.

bicubic interpolation tends to smooth edges in general. We
could assume that the location of the significant coefficients
should be better predicted with more sophisticated techniques
as in general, the highest wavelet coefficients are in the
vicinity of the edges [38]. In spite of the smoothness of the
bicubic interpolation, the technique gives very good results to
predict the significant coefficient locations. These results are
confirmed by table II where we compare our method with CI or
Dai’s method. We obtain numerically close or better results.
As can be seen in Fig. 5, the TV-minimization leads to the
creation of spot patterns when the image has lots of details
and/or textures. Dai’s method, because of the use of Haar’s
wavelet, shows pixelation that is not present in our technique
with Le Gall’s wavelet. The computation time in table III
also shows the improvement when an adaptive approach is
considered. This improvement is again greater when bigger
images are considered. Dai’s method is extremely fast since
the prediction is simply based on thresholding.

The thresholds for Dai’s presented in table II reveals that
they are image-dependent and should be adjusted for each
image. In comparison, for our technique and a fixed CR, the
same set of percentages was used for each image. Despite the
clear difference of the four involved images of table II, our
strategy restores good quality images. This shows that ABS-
WP adapts to the image. In our case, the different sets of
percentages have been set once and for all after learning from
several test images. In practice, one can use in simulation the
non-linear approximation for a given CR on several images
and find the number of retained coefficients in each level j.
The average of the obtained values between the images gives a
good candidate for the set of percentage P. In the case of CI

Fig. 7. Experimental acquisitions with the SPC on the Jaszczak target. (a)
Experimental CCD image of the printed target on a paper, recovered 128×128
pixels images with a CR of 85% (b) for ABS-WP with Haar, (c) for ABS-WP
with Le Gall and (d) using CI. Respectively, the obtained PSNRs compared to
the CCD image after registration are 21.99 dB, 21.65 dB and 21.20 dB. The
dynamic of the SPC images has been rescaled to the dynamic of the CCD
image for visual comparison.

with TV-minimization, many parameters have to be tackled
and are critical to the quality of the restored image. It was
found that anisotropic TV with positivity gave the best results
for the images presented here.

Figure 6 demonstrates that even with a CR as high as
98% one can recover an excellent image in the case of
smooth images. For smooth images such as this one, only
a few wavelet coefficients are needed to restore the principal
features. The value of J can thus be set closed to the limit
log2(N) and the percentages p j for small values of j can be
set to 0. Such images indeed have very few details, only the
coarser coefficients are sufficient enough to restore an image.
On the contrary, for images with high frequency components,
one should chose high values for the percentage p1 to acquire
the finest details. The choice of the set of percentages P and
the decomposition level J is therefore linked to the type of
object to image and the aimed application.

If we move on to the experimental results, Figure 7 proves
that, as Haar’s wavelet, a more sophisticated wavelet such as
Le Gall’s can be used for acquisition. Visually, Le Gall gives
a better result with a smoother image. The CI creates visible
spots on the restored image. For Haar, the pixelation arises
since p1 was set to a very small value. The numerical results
are very close although the biorthogonal wavelet (Le Gall)
should prove more efficient without taking the quantization
or the noise into account. The choice of the wavelet is also
an important feature of our strategy. One can choose any
wavelet best adapted to the desired application and object to
be acquired.
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Fig. 8. Ability of the system to distinguish dots whose diameters range from
1 mm to 3 mm. (a) Experimental CCD image of the printed target on a paper,
recovered 128×128 pixels images with ABS-WP with Le Gall for a CR of
(b) 75%, (c) 85% and (d) 90%. Respectively, the obtained PSNRs compared
to the CCD image after registration are 22.35 dB, 21.51 dB and 20.85 dB.
The dynamic of the SPC images has been rescaled to the dynamic of the CCD
image for visual comparison. A pixel pitch of 210 µm was measured.

Finally, Figure 8 provides some insights about the system’s
possibilities. It can be seen that in our actual configuration, the
measurements can discern objects of at least 1 mm provided
that the compression rate is well chosen. For instance, for a
CR of 80% or 85% one can discern the small dots. However,
for 90%, not enough elements have been sampled to restore
the dots. In the case of our method, one can easily keep the
acquisition going by lowering the compression rate after a first
acquisition if the quality of the image is not judged sufficient.
We can indeed keep on filling the wavelet transform of our
image by adding new wavelet coefficients and quickly obtain
a new restored image by inverse wavelet transform.

In our setup, we measured a pixel pitch of 210 µm. It can be
improved by changing optics and/or change the patterns’ size.
Today’s DMD can have a resolution of 1920× 1080 pixels,
1024× 1024 patterns could be considered in order to reduce
the pixel pitch. As regards acquisition time, the only limit
is the DMD’s frequency. For our DMD, when used in 8-bits
mode, the maximum frequency is 290 Hz. For example, with
a CR of 95% and 128× 128 pixels patterns, the minimum
acquisition time would be 5/100× 1282 × 2/290 = 5.65 s
with the positive/negative pattern separation. This excludes the
processing time of table III and any other delays that could
occur.

Based on these experiments, ABS-WP needs few parameters
making it a fast, easy to adjust and threshold-free adaptive
acquisition technique. Unlike the CS approach, the perfect
recovery of the signal is not guaranteed in theory unless each
wavelet coefficient is acquired. It is however easy to refine

the recovered image for ABS-WP by making a second pass
of the algorithm. In the case of CS, doing such a process is
time consuming because of the TV-minimization that would
have to be started from scratch again. With ABS-WP, this
simply allows one to complete the previously obtained wavelet
transform of the image by sampling new coefficients.

VI. CONCLUSION

We presented a new framework for single-pixel camera
imaging. The philosophy of our approach is inspired by the
non-linear approximation of the wavelet transform. It uses
an interpolation technique to predict the significant wavelet
coefficients that have to be experimentally acquired, while
the other coefficients can be discarded. The main advantage
of the proposed adaptive wavelet approach is to dispose of
the computational overhead of `1-minimization required by
the compressed sensing theory. To our knowledge, this is
the first time that a wavelet other than Haar’s is used for
experimental data in an adaptive strategy for SPC. Employing
more sophisticated wavelets is made possible by uniform
quantization of the wavelet patterns and allows one to choose
the best suited wavelet for the desired application. Simulations
and experimental acquisitions with the proposed methodology
show both good visual and quantitative results and the method
was proven to adapt to different kind of images.

The SPC opens many perspectives in the biomedical field.
In future work, we plan to use this optical setup to perform
time-resolved fluorescence imaging of biological structures.
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