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SMASH PRODUCTS OF CALABI-YAU ALGEBRAS BY HOPF
ALGEBRAS

PATRICK LE MEUR

Abstract. Let H be a Hopf algebra and A be an H-module algebra. This
article investigates when the smash productA]H is (skew) Calabi-Yau, has Van
den Bergh duality or is Artin-Schelter regular or Gorenstein. In particular, if A
and H are skew Calabi-Yau, then so is A]H and its Nakayama automorphism
is expressed using the ones of A and H. This is based on a description of
the inverse dualising complex of A]H when A is a homologically smooth dg
algebra and H is homologically smooth and with invertible antipode. This
description is also used to explain the compatibility of standard constructions
of Calabi-Yau dg algebras with taking smash products.

Introduction

The Calabi-Yau algebras were defined in [13] and are now widely investigated.
They appear in deformations of unimodular Poisson structures (see [4], [11] and
[33]). In noncommutative geometry, many relevant Artin-Schelter regular algebras
are Calabi-Yau, like the Sklyannin algebras. The Calabi-Yau algebras also appear
as noncommutative resolutions of singularities, for instance, as Jacobian algebras
arising from brane tilings ([28]) or as skew group algebras of polynomial algebras
(see [2] and [9]). Finally, there are general constructions of candidates for being
Calabi-Yau dg algebras, such as the Ginzburg dg algebras of [13] or, more generally,
the (deformed) Calabi-Yau completions of [21], which are used in the construction
of cluster categories and their generalisations (see [1] and [22]).

In these frameworks, many algebras of interest take the shape of a smash product.
While the works of Yekutieli ([38]) and of Brown and Zhang ([6]) have shown that
many interesting Hopf algebras have a duality which is (weaker than and) close to
being Calabi-Yau, Reyes, Rogalski and Zhang initiated the study of the algebras
having this weaker duality (and called skew Calabi-Yau algebras) by proving that,
in the connected graded setting, being skew Calabi-Yau is, on one hand, equivalent
to being Artin-Schelter regular and, on the other hand, relatively stable under
taking smash products with finite-dimensional Hopf algebras.

This motivates the work done in this article, which is, for a Hopf algebra H and
an H-module differential graded algebra A, to determine if A]H is Calabi-Yau (or,
in case A is an algebra, if A]H has Van den Bergh duality or is skew Calabi-Yau).

Let k be a field. A differential graded (dg) (k-)algebra A is called n-Calabi-Yau
if it is homologically smooth (that is, A ∈ per(Ae)) and RHomAe(A,A

e)[n] ' A in
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2 PATRICK LE MEUR

the derived category D(Ae) of Ae = A ⊗
k

Aop. Often, a cofibrant replacement of

RHomAe(A,A
e) is referred to as an inverse dualising complex of A.

When A is a k-algebra, being Calabi-Yau means that A admits a finite res-
olution by finitely generated projective left Ae-modules (or, A-bimodules), and
ExtiAe(A,A

e) is isomorphic to A as an A-bimodule if i = n and is zero otherwise.
Recall the following weaker forms of duality.

• A has Van den Bergh duality in dimension n if it is homologically smooth
and the A-bimodule ExtiAe(A,A

e) is invertible if i = n and is zero otherwise.
• A is skew Calabi-Yau in dimension n when it has Van den Bergh duality

in dimension n and, moreover, ExtnAe(A,A
e) is isomorphic to AµA = 1AµA

as an A-bimodule, for some automorphism µA ∈ Autk−alg(A).
The naming in the former case refers to the sufficient conditions for the duality
theorem of Van den Bergh on the Hochschild (co)homology of A to hold true (see
[34, Theorem 1]). In the latter case, µA is called a Nakayama automorphism. It is
uniquely determined up to the composition with an inner automorphism. As usual,
given k-algebra homomorphisms τ, σ : A→ A, the piece of notation τAσ stands for
the k-vector space A with A-bimodule structure given by a · x · b = τ(a)xσ(b).

This article hence describes an inverse dualising complex of A]H when A is a
homologically smooth dg algebra acted on by a homologically smooth Hopf algebra
H with invertible antipode. On one hand, when H is involutive, this description is
applied to express the deformed Calabi-Yau completions of A]H in terms of smash
products with H of the deformed Calabi-Yau completions of A. On the other hand,
when A is an algebra, this description is applied to give necessary and/or sufficient
conditions for A]H to have Van den Bergh duality or to be skew Calabi-Yau (with
an explicit Nakayama automorphism). As a consequence, the Nakayama automor-
phisms of Artin-Schelter regular algebras have trivial homological determinants as
conjectured in [30, Conjecture 6.4]. Also, explicit Nakayama automorphisms are
computed for the smash products arising from actions of finite-dimensional Lie
algebras on polynomial algebras and from actions of Uq(sl2) on the quantum plane.

In this article, H denotes a Hopf algebra with antipode S and A denotes an
H-module dg algebra. “A is an algebra” means that A is concentrated in degree 0
as a dg algebra. The smash product A]H is denoted by Λ. When A is augmented
(or connected (N-)graded), it is also assumed that the augmentation ideal is an H-
submodule of A (or that the action of H on A preserves the grading, respectively).

1. Main results and structure of the article

Assuming that S is invertible is convenient and many Hopf algebras which are
relevant to the dualities considered here have this property (see [6]). This is the
case of noetherian and Calabi-Yau Hopf algebras (see [15, Theorem 2.3] whose proof
can be adapted to noetherian Hopf algebras with Van den Bergh duality). This is
actually the case for a broader class of Hopf algebras.

Proposition 1 (3.4.2). Any Hopf algebra with Van den Bergh duality has an in-
vertible antipode.

When S is invertible and H is noetherian, it is proved in [6] that, if H has Van
den Bergh duality or is Artin-Schelter regular, then it is skew Calabi-Yau with
S−2 ◦Ξr∫

`
as a Nakayama automorphism. Here,

∫
r
is the right homological integral

of H and Ξr∫
r
is the corresponding right winding automorphism of H. Combining

this result and Proposition 1 yields the following characterisation.

Theorem 1 (3.5.1, 3.5.2, 3.5.3). Let H be a Hopf algebra with antipode S. The
following conditions are equivalent
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(i) H has Van den Bergh duality,
(ii) kH ∈ per(Hop), S is invertible and the graded k-vector space Ext∗Hop(kH , H)

is finite-dimensional and concentrated in one degree,
(iii) H is skew Calabi-Yau.
Under any of these conditions, S−2 ◦ Ξr∫

r
◦S is a Nakayama automorphism of H.

In particular, H is Calabi-Yau if and only if kH ∈ per(Hop), S2 is an inner au-
tomorphism of H and H has the right Artin-Schelter property with trivial right
homological integral.

Note that it is proved in [15, Theorem 2.3] that, when H is noetherian, H is
Calabi-Yau if and only if S2 is an inner automorphism and H is Artin-Schelter
regular with trivial left homological integral.

This article is based on the description of RHomΛe(Λ,Λ
e). When S is invertible,

there exists a dg A-bimodule DA which is HS2-equivariant in the sense of [30] (see
Section 4) and such that DA ' RHomAe(A,A

e) in D(Ae). A suitable extension
of DA is then isomorphic to RHomΛe(Λ,Λ

e) in the following sense. See 5.5.1 for
a general statement. See also [12, 14, 15, 16, 26, 30, 36, 37] for previous results
describing RHomΛe(Λ,Λ

e) when A is a connected graded algebra and H is finite-
dimensional, semisimple or cocommutative.

Proposition 2 (5.5.2). Let H be a Hopf algebra with Van den Bergh duality in
dimension d. Let A be an H-module dg algebra. Assume that A is homologically
smooth. Then, Λ is homologically smooth and RHomΛe(Λ,Λ

e) ' DA]
σH[−d] where

σ = (S−2 ◦ Ξr∫
`
)−1 = S2 ◦ Ξr∫

`
◦S.

Here, DA]
σH is the dg Λ-bimodule associated to the HS2 -equivariant dg A-

bimodule DA and defined in [30] (see 4.2 for a reminder).
The description of RHomΛe(Λ,Λ

e) can be used to describe the deformed Calabi-
Yau completions of Λ. Recall that HHn−2(A) ' H0HomAe(DA[n − 1], A[1]) when
DA is cofibrant over Ae, which is possible to assume. The following result was
proved in [25] when H is the (semisimple) group algebra of a finite group.

Theorem 2 (6.1, 6.3). Let H be an involutive Hopf algebra which is moreover
Calabi-Yau in dimension d. Let A be a homologically smooth H-module dg algebra.
Let n ∈ Z.

(1) The n-Calabi-Yau completion Πn(A) is an H-module dg algebra and the dg
algebras Πn(A)]H and Πn+d(A]H) are isomorphic.

(2) Given a deformed Calabi-Yau completion Πn(A,α) such that α ∈ HHn−2(A)
arises from an H-linear cocycle DA[n− 1]→ A[1], then Πn(A,α) is an H-
module dg algebra and there is an associated α ∈ HHn+d−2(Λ) such that
Πn(A,α)]H ' Πn+d(A]H,α).

The reader is referred to 6.1 and 6.2.3 for generalisations to the case where H is
merely a Hopf algebra with Van den Bergh duality.

When A is an algebra, Proposition 2 can also be used to characterise when Λ
has Van den Bergh duality.

Theorem 3 (7.1). Let A be an H-module algebra where H is a Hopf algebra.
Assume that the antipode S is invertible and that both A and H are homologically
smooth. Then, the following assertions are equivalent
(i) A and H have Van den Bergh duality,
(ii) Λ has Van den Bergh duality.
When these conditions are satisfied and n, d are the corresponding homological
dimensions of A and H, respectively, then Λ has dimension n+ d and

Extn+d
Λe (Λ,Λe) ' ExtnAe(A,A

e)]
(S−2◦Ξr∫

`
)−1

H .
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This characterisation specialises to skew Calabi-Yau algebras. A Nakayama au-
tomorphism of A]H was proved to exist and was described in [30, Theorem 0.2]
when A is noetherian, connected graded, and skew Calabi-Yau and H is finite-
dimensional. This uses the homological determinant (hdet : H → k) of the action
of H on A (in the sense of [18, 23]). In general, hdet is not defined and [30, Question
7.2] asked for an extension of its definition. As a partial answer, the concept of weak
homological determinant whdet : H → A is introduced in 7.2 when A is skew Calabi-
Yau. It is determined by the choice of a free generator of ExtnAe(A,A

e) in mod(A)
and it defines an algebra homomorphism θwhdet : H → Λ by h 7→ whdet(S2(h1))h2

(this replaces Ξ`hdet when hdet is not defined). The following result extends [30,
Theorem 0.2] which was mentioned previously and answers [30, Question 4.3]. See
(7.2.2.4) and Table 4 for examples where whdet takes values outside k.

Theorem 4 (7.3.1 and 7.3.2). Let H be a Hopf algebra with invertible antipode.
Let A be an H-module algebra. Assume that A and H are homologically smooth.

(1) If A and H are skew Calabi-Yau, then so is Λ.
(2) If Λ is skew Calabi-Yau, then so is H and the action of H on A has a weak

homological determinant. If, moreover, a homological determinant exists,
then A is skew Calabi-Yau.

In the setting of (1), then Λ admits as a Nakayama automorphism

µΛ = µA](θwhdet ◦ µH)

where µA is a Nakayama automorphism of A, whdet : H → A is an associated weak
homological determinant, and µH = S−2 ◦ Ξr∫

`
.

Here, for given mappings α : A → Λ and β : H → Λ, the piece of notation α]β
denotes the mapping Λ→ Λ, ah 7→ α(a)β(h).

Should whdet take its values in k then µΛ = µA](Ξ
`
whdet ◦ µH). In particular,

when A is connected graded and skew Calabi-Yau, then a generator of ExtnAe(A,A
e)

may be chosen such that whdet = hdet. This yields characterisations of when A]H
is Calabi-Yau assuming that H is so. See [15, Theorem 3.4] for a characterisation of
when U(g)]kG is Calabi-Yau, for finite-dimensional Lie algebras g and finite groups
G (in zero characteristic), note that U(g) need not be graded and that kG is then
semisimple and Calabi-Yau in dimension 0.

Theorem 5 (7.4.2). Let H be a Calabi-Yau Hopf algebra. Let A be a connected
graded H-module algebra. Let h0 ∈ H× be such that S−2 is the inner automorphism
of h0 (see Theorem 1). Then, Λ = A]H is Calabi-Yau if and only if the following
conditions hold
(a) A is skew Calabi-Yau,
(b) hdet = ε,
(c) (∃kA ∈ Z(H×))(∀a ∈ A) µA(a) = (h0kA) ⇀ a =

in Λ
(h0kA)a(h0kA)−1.

When A is, moreover, Calabi-Yau, Theorem 5 simplifies as follows.

Corollary 1 (7.4.3). Let H be a Calabi-Yau Hopf algebra. Let A be a connected
graded H-module algebra which is moreover Calabi-Yau. The following assertions
are equivalent
(i) A]H is Calabi-Yau,
(ii) hdet = ε.

This characterisation was proved previously in the following situations
• in [37] assuming that A is p-Koszul Calabi-Yau and that H = kG for any

finite subgroup G of Autk−alg(A) such that car(k) does not divide Card(G),
• in [26] assuming that A is p-Koszul and Calabi-Yau and that S2 = IdH ,
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• in [16, Corollary 3.4] assuming that A is p-Koszul and Calabi-Yau and
H = (kG)∗ for any finite group G.

It was conjectured in [30, Conjecture 6.4] that the Nakayama automorphisms of
all connected graded Artin-Schelter Gorenstein algebras have trivial homological de-
terminant and this was proved for noetherian and connected graded Artin-Schelter
regular algebras in [31, Corollary 5.4]. Combining Theorem 5 and the main result
of [14], it is possible to prove that the noetherian hypothesis is unnecessary.

Corollary 2 ( 7.4.4). Let A be a connected graded Artin-Schelter regular algebra
(equivalently, a connected graded skew Calabi-Yau algebra, see [30, Lemma 1.2]).
Let µA be its (graded) Nakayama automorphism. Let H = kZ and consider the
action of H on A induced by µA. Then, hdet(µA) = 1.

The above mentioned conjecture was proved previously in the following cases,
• in [30, Theorem 0.4], for noetherian connected graded Koszul Artin-Schelter

regular algebras;
• in [31, Corollary 5.4], for noetherian and connected graded Artin-Schelter

Gorenstein algebras of one of the following shapes
– graded twists of algebras which are finite over their affine centres
– quotients of noetherian Artin-Schelter regular algebras;

• in [27, Theorem 1.6], for m-Koszul Artin-Schelter regular algebras;
• in [8, Theorem 3.11], for certain 4 dimensional connected graded Artin-

Schelter regular algebras which are normal extensions of 3 dimensional ones.
The last main result of this text gives sufficient conditions for Λ to be Artin-

Schelter Gorenstein/regular when A is an augmented H-module algebra. Note that
the hypotheses below entail that the antipode of H is invertible.

Theorem 6 (9.3.3, 9.3.5). Let H be a Hopf algebra. Let A be an augmented H-
module algebra which is moreover noetherian. Assume that A is Artin-Schelter
Gorenstein in dimension n.

(1) If gl.dim. A < ∞ and H has Van den Bergh duality in dimension d, then
Λ is Artin-Schelter regular in dimension n+ d.

(2) If dimkH <∞, then Λ is Artin-Schelter Gorenstein in dimension n.
(3) If H has Van den Bergh duality in dimension d, then A]H is Artin-Schelter

Gorenstein in dimension n+ d.

Part (2) was proved in [30, Theorem 4.1] when A is connected graded Artin-
Schelter Gorenstein. Besides [16, Proposition 3.8] proved that, when H is finite-
dimensional and semi-simple and A is an H-module dg algebra concentrated in
nonnegative degrees and with zero component equal to k, then A is Artin-Schelter
Gorenstein if and only if so is A]H.

This article is organised as follows. Section 2 recalls useful definitions, it sets
conventions and it proves useful folklore results. Section 3 proves Proposition 1 and
derives Theorem 1. Section 4 is proves needed properties of HS2i-equivariant dg
A-bimodules (i ∈ Z). Section 5 is devoted to the description of RHomΛe(Λ,Λ

e) and
the proof of Proposition 2. Section 6 applies this description to the compatibility of
deformed Calabi-Yau completions with taking smash products, it proves Theorem 2.
Section 7 uses this description to prove Theorem 3 and Theorem 4. As a corollary
it proves Theorem 5 and Corollary 1. The results of this section are applied in
Section 8 to the computation of a Nakayama automorphism of A]H when A =
Cq[x, y] and H = Uq(sl2) (q ∈ C× not being a root of unity). Finally, Section 9
concentrates on the case where A is an augmented k-algebra. It proves Theorem 6.

For the ease of reading, an index of notation is provided at the end of the article.
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2. Basic definitions and conventions

2.1. Conventions on notation. For simplicity, ⊗k is denoted by ⊗.
The counit of H is denoted by ε. The Sweedler notation h1 ⊗ h2 is used for the

comultiplication of h ∈ H, omitting the summation symbol. The action of h ∈ H
on an element x of a left (or right) H-module is written as h ⇀ x (or, x ↼ h,
respectively).

The category of left dg A-modules is denoted by C(A). And C(Aop) is identified
with the category of right dg A-modules. The derived category of A is denoted by
D(A) and defined as the localisation of C(A) at the class of all quasi-isomorphisms.
The perfect derived category of A is denoted by per(A) and defined as the small-
est triangulated subcategory of D(A) containing A and stable under taking direct
summands. When A is an algebra, the category of left A-modules is denoted by
mod(A). And mod(Aop) is identified with the category of right A-modules.

For all X ∈ C(A), the suspension of X is denoted by X[1]. For all X,Y ∈ C(A),
then HomA(X,Y ) denotes the following complex of vector spaces

• for n ∈ Z, its component of degree n is the vector space of (homogeneous
of degree zero) morphisms of graded vector spaces f : X → Y [n] such that
f(ax) = (−1)n·deg(a)af(x) for all homogeneous x ∈ X and a ∈ A,

• the differential is given by f 7→ dY ◦ f − (−1)deg(f)f ◦ dX .

Hence, the morphism space C(A)(X,Y ) equals Z0HomA(X,Y ).
No difference is made between dg A-bimodules and left dg Ae-modules. For

such a dg A-bimodule M , the identity a1ma2 = (−1)deg(m)deg(a2)(a1⊗a2) ·m holds
when m ∈ M and a2 ∈ A are homogeneous. In particular, given M,N ∈ C(Ae),
n ∈ Z and f ∈ Homk(M,N)n, then f ∈ HomAe(M,N) if and only if f(axb) =
(−1)n·deg(a)af(x)b, for every a ∈ A homogeneous, x ∈ X and b ∈ B.

Here is a reminder of the features of C(A) (see [20] for details). A dg module
P ∈ C(A) is cofibrant if, for every surjective quasi-isomorphism X → Y in C(A),
then any morphism P → Y in C(A) lifts to X. There exists a model structure on
C(A) whose class of weak equivalences consists of all the quasi-isomorphisms, and
whose class of cofibrant objects consists of all the cofibrant left dg A-modules. In
particular,

• for every X ∈ C(A) there exists a quasi-isomorphism P → X in C(A) where
P is cofibrant (such a P is called a cofibrant replacement of X),

• for every P,X ∈ C(A) such that P is cofibrant, the canonical mapping
H0HomA(P,X)→ D(A)(P,X) is bijective,

• every cofibrant P ∈ C(A) is homotopically projective, that is, for every
quasi-isomorphism X → Y in C(A), then HomA(P,X)→ HomA(P, Y ) is a
quasi-isomorphism.

Fibrant dg modules are defined dually and feature dual properties. In particular,
they are homotopically injective.

The two following basic facts are used without further reference in this article.

Lemma. Let A,B be dg algebras.

(1) Let A → B be a morphism of dg algebras. If B ' A ⊗ V in C(A) for
some complex of vector spaces V , then the restriction-of-scalars functor
C(B)→ C(A) preserves cofibrant objects.

(2) Let A → B be a morphism of dg algebras. Then, the extension-of-scalars
functor C(A)→ C(B) preserves cofibrant objects.

(3) The restriction-of-scalars functor C(A ⊗ Bop) → C(A) preserves fibrant
objects.
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For the sake of simplicity, the verifications of module structures omit the obvious
quantifiers and use implicitly lower case letters for elements in a space named with
the corresponding upper case letter (x ∈ X, y ∈ Y , etc.). Also h, k, ` always denote
elements of H, whereas a, b always denote homogeneous elements of A. As for the
equalities presented as “identities”, and which may involve parameters (a, h, d, etc.),
it is implicit that they hold true for all possible values of the parameters (∀a ∈ A,
∀h ∈ H, ∀d ∈ D, etc.).

2.2. The smash product Λ = A]H.

2.2.1. Recall that a structure of H-module dg algebra on A is a morphism of
complexes of vector spaces H ⊗A→ A, h⊗ a 7→ h ⇀ a (with H in degree 0) such
that the following identities hold true in A

1 ⇀ a = a, h ⇀ (ab) = (h1 ⇀ a)(h2 ⇀ b),
h ⇀ 1 = ε(h), (hk) ⇀ a = h ⇀ (k ⇀ a) .

The dg algebra A]H has A⊗H as underlying complex of vector spaces. A tensor
a⊗ h is denoted by ah. The (associative) product of A]H is given by

(ah)× (bk) = (a⊗ h)× (b⊗ k) = a(h1 ⇀ b)⊗ h2k = a(h1 ⇀ b)h2k .

2.2.2. Assume that S is invertible. The following identities hold in Λe

(2.2.2.1) (h⊗ k)× (a⊗ b) = ((h1 ⇀ a)⊗ (S−1(k1) ⇀ b))× (h2 ⊗ k2)
(a⊗ b)× (h⊗ k) = (h2 ⊗ k2)× ((S−1(h1) ⇀ a)⊗ (k1 ⇀ b)) .

The algebra Hop is a Hopf algebra with coproduct given by h 7→ h1 ⊗ h2 and
antipode S−1. Also He is a Hopf algebra with coproduct given by (h⊗ k)1 ⊗ (h⊗
k)2 = (h1 ⊗ k1)⊗ (h2 ⊗ k2) and antipode S ⊗ S−1.

There is a structure of dg He-module algebra on Ae such that

(2.2.2.2) (h⊗ k) ⇀ (a⊗ b) = (h ⇀ a)⊗ (S−1(k) ⇀ b) .

The resulting smash product dg algebra Ae]He is isomorphic to Λe via the mapping
Ae ⊗He → Λe defined by a ⊗ b ⊗ h ⊗ k 7→ (a ⊗ b) × (h ⊗ k). In other words, the
following identity holds true in Λe

(2.2.2.3) (h⊗ k)× (a⊗ b) = (h⊗ k)1 ⇀ (a⊗ b)× (h⊗ k)2 .

The natural structure of left dg Ae-module of Ae extends to a structure of left
dg Λe-module such that (ah ⊗ bk) ⇀ (x ⊗ y) = (−1)deg(b)(deg(x)+deg(y))(a(h ⇀
x))⊗ (S−1(k) ⇀ (yb)).

This structure and the structure of right dg Ae-module of Ae do not form a
structure of Λe−Ae-bimodule. Instead, those two structures are compatible in the
following sense (where m ∈ Ae)

(2.2.2.4) (h⊗ k) ⇀ (m↼ (a⊗ b)) = ((h⊗ k)1 ⇀m) ↼ ((h⊗ k)2 ⇀ (a⊗ b))
(a′ ⊗ b′) ⇀ (m↼ (a⊗ b)) = ((a′ ⊗ b′) ⇀m) ↼ (a⊗ b) .

(which is part of the identities defining the He-module dg algebra structure on Ae).

2.3. Duality conditions on dg algebras. Let n be a natural integer.

2.3.1. The definitions of the dualities considered in this article are recalled in the
introduction. Note that, given a dg Ae-bimodule X, then HomAe(A,X) is a dg
A-bimodule. Whence the functor HomAe(A,−) : C(Ae ⊗ (Ae)op) → C(Ae). This is
how RHomAe(A,A

e) is considered as an object of D(Ae). When A is a k-algebra,
ExtiAe(A,A

e) inherits of a structure of A-bimodule for every i. Recall that, if A
is a k-algebra, then A is Calabi-Yau if and only if it is skew Calabi-Yau and any
Nakayama automorphism for A is inner (equivalently, the identity map of A is a
Nakayama automorphism).
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2.3.2. When A is a skew Calabi-Yau algebra in dimension n, every free generator
e of ExtnAe(A,A

e) in mod(A) determines a unique Nakayama automorphism µ ∈
Autk−alg(A) such that the identity ea = µ(a)e holds in ExtnAe(A,A

e).

Lemma. Let A be a k-algebra. Let D ∈ mod(Ae) be such that there exists ν ∈
Autk−alg(A) verifying D ' Aν in mod(Ae). Let d ∈ D be a free generator of D in
mod(A) and denote by µ : A→ A the algebra homomorphism such that the identity
da = µ(a)d holds in D. Then, µ ∈ Autk−alg(A) and D ' Aµ in mod(Ae).

Proof. The mapping Aµ → D , a 7→ ad is an isomorphism in mod(Ae). It therefore
suffices to prove that µ is bijective. There exists a free generator d′ ∈ D in mod(A)
such that the identity d′a = ν(a)d′ holds in D. Let α ∈ A× be such that d′ = αd.
Then, µ(a)d = da = α−1d′a = α−1ν(a)d′ = α−1ν(a)αd. Therefore, µ ◦ ν−1 ∈
Autk−alg(A), and hence µ ∈ Autk−alg(A). �

2.3.3. When A is moreover connected (N-)graded, it is required that there exists
` ∈ Z and a homogeneous µA ∈ Autk−alg(A) such that ExtnAe(A,A

e) ' AµA(`)
as graded A-bimodules for A to be considered as skew Calabi-Yau in the graded
sense. Here, −(`) denotes the degree shift of graded modules. The following lemma
is used later on. Its proof is elementary and omitted.

Lemma. Let A be a connected graded k-algebra. Assume that A is skew Calabi-Yau
in the ungraded sense, then so is it in the graded sense.

2.3.4. Assume that A is an augmented algebra. Then, A is said to satisfy the left
Artin-Schelter condition in dimension n if

(2.3.4.1) dimkExtiA(Ak, A) =

{
1 for i = n
0 otherwise.

The right Artin-Schelter condition is defined analogously using right A-modules
instead of left A-modules. When A satisfies both the left and right Artin-Schelter
conditions, then A is said to satisfy the Artin-Schelter condition.

The algebra A is called Artin-Schelter Gorenstein when it satisfies the Artin-
Schelter condition and the injective dimensions of AA and AA are finite and equal.
It is called Artin-Schelter regular when, moreover, gl.dim.(A) <∞.

3. Homological dualities for Hopf algebras

The objective of this section is to prove Proposition 1: the antipode of H is
invertible when H has Van den Bergh duality. This is done in Section 3.4. For this
purpose, a brief reminder on winding automorphisms is given in Section 3.1, next,
a general description of an inverse dualising complex of H is given in Section 3.2,
and a useful characterisation of homologically smooth Hopf algebras is proved in
Section 3.3. Some consequences regarding Calabi-Yau duality and Nakayama auto-
morphisms are discussed in Section 3.5. In particular, Theorem 1 is proved there.

3.1. Winding automorphisms (see [6, Section 4.5]). If H satisfies the right
Artin-Schelter condition in dimension d, then ExtdHop(kH , H) is called the right
homological integral of H and denoted by

∫
r
. The algebra homomorphism π : H →

k such that the left H-module structure of ExtdHop(kH , H) is given by h ⇀ α =
π(h)α is also denoted by

∫
r
. It is called trivial if

∫
r

= ε as maps H → k. The left
homological integral

∫
`
is defined analogously using ExtdH(Hk, H).

Let π : H → k be any algebra homomorphism. The following mappings

Ξ`π : H → H
h 7→ π(h1)h2

Ξrπ : H → H
h 7→ h1π(h2)
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are algebra automorphism with respective inverses Ξ`π◦S and Ξrπ◦S . Since π◦S2 = π
(see [30, (E1.2.2)]), then both Ξ`π and Ξrπ commute with S2. The automorphisms
Ξ`π and Ξrπ are the left and right winding automorphisms of π.

Example. Let g be a d-dimensional Lie algebra (d ∈ N). Assume that H is the
universal enveloping algebra U(g). Following [38, Corollary 2.2], there is an isomor-
phism of right H-modules ExtdH(Hk, H) ' Λdg∗. In particular

(3.1.0.1) (∀X ∈ g)

∫
`

(X) = Tr(adX) .

3.2. The inverse dualising complex of a Hopf algebra. The result below
describes RHomHe(H,H

e) in terms of RHomHop(kH , H). Given any left H-module
N , denote by N↑He the H-bimodule with underlying vector space H ⊗N and with
action by He given by h(`⊗ n)k = S2(h1)`k ⊗ (h2 ⇀ n). Note that H↑He' He in
mod(He); More precisely, the mapping H↑He→ He defined by `⊗n 7→ n2⊗S(n1)`
is an isomorphism of H-bimodules with inverse given by h⊗k 7→ S2(h1)k⊗h2. The
assignment N 7→ N↑He defines an exact functor mod(H) → mod(He) preserving
projectives. It is isomorphic to the extension-of-scalars functor along the algebra
homomorphism H → He given by h 7→ h2 ⊗ S(h1). The resulting total derived
functor D(H)→ D(He) is also denoted by N 7→ N↑He .

Proposition. Let H be a Hopf algebra. Assume that kH has a resolution in
mod(Hop) by finitely generated projectives. Then,

RHomHe(H,H
e) ' RHomHop(kH , H)↑He in D((He)op).

Proof. Let P → kH be a resolution in mod(Hop) by finitely generated projectives.
Hence, RHomHop(kH , H) ' HomHop(P,H) in D(H). The stated isomorphism
is proved in three steps. First, by proving that a projective resolution P of H
in mod(He) can be deduced from P . Next, by proving that RHomHe(H,H

e) '
HomHop(P,H ⊗ H) (with an adequate structure of right H-module on H ⊗ H).
Finally, by proving that HomHop(P,H ⊗H) ' HomHop(P,H)↑He .

Step 1 - Given X ∈ mod(Hop), denote by X the H-bimodule equal to H ⊗X
as a vector space and with actions of H given by h(`⊗x)k = h`k1⊗x ↼ k2. Then,

• HH ' He in mod(He); More precisely, the mapping HH → He defined by
`⊗ x 7→ `S(x1)⊗ x2 is an isomorphism of H-bimodules with inverse given
by h⊗ k 7→ hk1 ⊗ k2,

• kH ' H in mod(He).
Thus, P → kH ' H is a projective resolution in mod(He). Hence, RHomHe(H,H

e)
is isomorphic to HomHe(P ,H

e) in D(He). Here, HomHe(P ,H
e) is a complex of

H-bimodules in the following sense: (hfk)(−) = f(−) × (k ⊗ h) ∈ He if f ∈
HomHe(P ,H

e), h, k ∈ H.
Step 2 - The following mapping

HomHe(P ,H
e) → HomHop(P,H ⊗H)
f 7→ f(1⊗−)

is well-defined provided that H ⊗ H is considered as a right H-module for the
action such that (h⊗ k) ↼ ` = S(`1)h⊗ k`2. Indeed, this follows from the identity
(1 ⊗ p ↼ h) = S(h1)(1 ⊗ p)h2 in P . This mapping is moreover bijective with
inverse the mapping HomHop(P,H ⊗H)→ HomHe(P ,H

e) which assigns to any g
the morphism of H-bimodules P → He defined by `⊗ p 7→ `g(p). Finally, it is an
isomorphism ofH-bimodules if HomHop(P,H⊗H) is endowed with the action ofHe

such that (hfk)(−) = f(−)×(k⊗h) ∈ He (hence H⊗H is a right H⊗He-module).
Thus, RHomHe(H,H

e) ' HomHop(P,H ⊗H) in D(He).
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Step 3 - In order to get the announced description of RHomHe(H,H
e), it is

necessary to transform HomHop(P,H ⊗H). Note that HomHop(P,H) is a complex
of left H-modules in a natural way. This defines HomHop(P,H)↑He . The following
mapping is well-defined

HomHop(P,H)↑He → HomHop(P,H ⊗H)
`⊗ θ 7→ (p 7→ S(θ(p)1)`⊗ θ(p)2)

It is moreover a morphism of complexes of H-bimodules. When P is replaced by H,
then it identifies with the mapping H⊗H → H⊗H defined by `⊗θ 7→ S(θ1)`⊗θ2;
This is an isomorphism with inverse given by h ⊗ k 7→ S2(k1)h ⊗ k2. Since P
consists of finitely generated projective H-modules, it follows that the complexes
of H-bimodules HomHop(P,H)↑He and HomHop(P,H ⊗H) are isomorphic. Thus,
RHomHe(H,H

e) ' HomHop(P,H)↑He . �

Keep the setting of the previous result. Taking cohomology shows that, for every
n ∈ N, there is an isomorphism of H-bimodules

ExtnHe(H,H
e) ' H ⊗ ExtnHop(kH , H)

where the right hand-side term is endowed with the structure of H-bimodule such
that h(` ⊗ e)k = S2(h1)`k ⊗ h2 ⇀ e. See [15, Corollary 2.2] (and [6, Section 4.5])
for a previous similar description when H is Artin-Schelter Gorenstein (and with
invertible antipode, respectively).

3.3. Homological smoothness of Hopf algebras. The following result seems
to be well-known at least when H is noetherian. See [29, Lemma 2.4] for a proof
using that S is invertible. In the present situation, where S need not be invertible,
it follows from the properties of the functor ?: mod(Hop)→ mod(He) considered in
the proof in 3.2 and from the corresponding ones of k⊗H− : mod(He)→ mod(Hop).

Lemma. The Hopf algebra H is homologically smooth if and only if kH ∈ per(Hop).
If it is so, then pdHe(H) = pdHop(kH).

3.4. Invertibility of the antipode.

3.4.1. A sufficient condition for the right Artin-Schelter property. The following
lemma is a key-step in the proof of Proposition 2, it is very similar to the lemma in
[6, Section 1.2] except that the condition that S is invertible is dropped here. The
proof here is adapted from the proof there.

Lemma. Let H be a Hopf algebra. Assume the following:
(a) id(HH) <∞,
(b) kH has a resolution in mod(Hop) by finitely generated projective modules,
(c) there exists d ∈ N such that ExtiHop(kH , H) is finite dimensional if i = d and

zero otherwise.
Then, dimkExtdH(Hk, H) = dimkExtdHop(kH , H) = 1.

Proof. According to [6, Section 3.2], conditions (a) and (b) grant the existence of
Ischebeck’s spectral sequence ([17, 1.8])

Ep,q2 := ExtpH(Ext−qHop(kH , H), H)⇒ TorH−p−q(kH , H) =

{
k if p+ q = 0
0 otherwise.

Because of condition (c), the spectral sequence degenerates at E2. In particular,

(3.4.1.1) dimkExtdH(ExtdHop(kH , H), H) = 1 .

Following the ideas in the proof of [5, Lemma 1.11], denote by V the finite dimen-
sional left H-module ExtdHop(kH , H). Endow Homk(V,H) with its usual structure
of left H-module. The canonical bijection Homk(V,H)

∼−→ Homk(k,Homk(V,H))
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restricts to an isomorphism HomH(V,H)
∼−→ HomH(Hk,Homk(V,H)). Deriving

this isomorphism yields that ExtdH(V,H) ' ExtdH(Hk,Homk(V,H)) (see [5, Propo-
sition 1.3]). Besides, consider H⊗V ∗ as a left H-module in the usual way also. The
canonical mapping H ⊗ V ∗ → Homk(V,H) is H-linear. And it is bijective since
dimkV <∞. Therefore, ExtdH(Hk,Homk(V,H)) ' ExtdH(Hk, H ⊗ V ∗). Now, the
left H-module H ⊗ V ∗ (with action given by h ⇀ (` ⊗ ϕ) = h1 ⇀ ` ⊗ h2 ⇀ ϕ) is
isomorphic to the free of rank dimk V left H-module H ⊗ V with action given by
h ⇀ (` ⊗ ϕ) = h` ⊗ ϕ. Indeed, the mapping from the former to the latter defined
by ` ⊗ ϕ 7→ `1 ⊗ S(`2) ⇀ ϕ is an isomorphism in mod(H) with inverse given by
`⊗ ϕ 7→ `1 ⊗ `2 ⇀ ϕ. Thus,

(3.4.1.2) ExtdH(V,H) ' ExtdH(Hk, H)dimV .

Combining (3.4.1.1) and (3.4.1.2) yields the announced equalities. �

3.4.2. The following result entails Proposition 2. Part (2) is proved in [6, Section
4.4] when H is Artin-Schelter Gorenstein and noetherian and S is invertible.

Proposition. If a Hopf algebra H has Van den Bergh duality in dimension d, then
(1) H is right Artin-Schelter regular in dimension d, and
(2) ExtdHe(H,H

e) is isomorphic to S2◦Ξr∫
rH as an H-bimodule.

As a consequence, the antipode S is invertible.

Proof. Note that H has finite global dimension equal to d because H ∈ per(He)
and that d = pdHe(H). There exists a projective resolution P → kH in mod(Hop)
having length d and consisting of finitely generated projective right H-modules (see
3.3). Consider the resulting complex of H-bimodules P as introduced in the proof
in 3.2. In particular, P is a projective resolution with length d of H in mod(He).
Note that HomHop(P,H) is a complex of projective left H-modules concentrated
in degrees 0, . . . , d. Similarly, HomHop(P,H)↑He is a complex of projective right
He-modules whose cohomology is Ext∗He(H,H

e) (see 3.2).
(1) Denote by U the right He-bimodule ExtdHe(H,H

e). Because of the assump-
tion on the length of P , and since H has Van den Bergh duality, there is a quasi-
isomorphism in C(He)

HomHop(P,H)↑H
e

→ U [−d] .

This is a homotopy equivalence in mod(Hop) because both sides are bounded com-
plexes of projective right H-modules. Applying − ⊗

H
Hk therefore yields a quasi-

isomorphism in C(H)(
HomHop(P,H)↑H

e
)
⊗
H

Hk→ U [−d]⊗
H

Hk .

A direct computation shows that
(
HomHop(P,H)↑He

)
⊗
H

Hk ' HomHop(P,H) in

C(H). Consequently,

ExtiHop(kH , H) '

{
U ⊗
H

Hk if i = d

0 otherwise.

Now, as any invertible H-bimodule, U is finitely generated in mod(Hop). Applying
−⊗
H

Hk to a free of finite rank cover of U in mod(Hop) yields that U ⊗
H

Hk is finite

dimensional. Therefore, 3.4.1 applies here. Thus, H is right Artin Schelter regular
in dimension d.

(2) As explained earlier, U ' Hd(HomHop(P,H)↑He). The functor mod(H) →
mod(He) defined by N 7→ N ↑He is exact. Therefore, Hd(HomHop(P,H)↑He) '
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ExtdHop(kH , H)↑He in mod(He). Moreover, the construction in 3.2 and the defi-
nition of

∫
r
: H → k yield that ExtdHop(kH , H)↑He' S2◦Ξr∫

rH in mod(He). Thus,

U ' S2◦Ξr∫
rH. This proves (2).

Since U is invertible as an H-bimodule and U ' S2◦Ξr∫
rH in mod(He), then

S2 ◦ Ξr∫
r
is an automorphism of H. And hence so is S2. Thus, S is invertible. �

3.5. On Van den Bergh duality of Hopf algebras. For later purposes, here
are some consequences of 3.4.2 many of which were proved in [6], [15], and [30]
assuming that S is invertible and/or that H is noetherian.

3.5.1. Summary on Van den Bergh duality. The following characterisation is ob-
tained from 3.4 and from the main results in [6]. When S is assumed to be invertible
and H to be noetherian, the same result is already proved in [30, Lemma 1.3].

Theorem. Let H be a Hopf algebra. The following conditions are equivalent
(i) H has Van den Bergh duality,
(ii) kH ∈ per(Hop), S is invertible and the graded k-vector space Ext∗Hop(kH , H)

is finite-dimensional and concentrated in one degree,
(iii) H is skew Calabi-Yau.
Under any of these conditions, the homological dimensions involved in (i), (ii) and
(iii) coincide and S−2 ◦ Ξr∫

r
◦S is a Nakayama automorphism of H.

Proof. The implication (i)⇒ (ii) is proved in 3.4.2 and 3.3.
The implication (ii) ⇒ (iii) is proved in [6] when H is noetherian and may

be adapted to the present situation. Here is a proof for the convenience of the
reader. Assume (ii). Then, H is homologically smooth (see 3.3). Let d ∈ N
be such that dimk ExtiHop(kH , H) is finite if i = d and 0 otherwise. Therefore,
dimkExtdHop(kH , H) = 1 (see 3.4.1). It follows from 3.2 that ExtiHe(H,H

e) is
isomorphic to S2◦Ξr∫

rH ' H
S−2◦Ξr∫

r ◦S in mod(He) when i = d and is 0 otherwise.
This proves that (ii)⇒ (iii).

The implication (iii)⇒ (i) follows from the definition. �

3.5.2. Nakayama automorphisms. Using 3.5.1 yields the following relationship be-
tween the right homological integral and the Nakayama automorphisms of H. Part
(1) was proved in [6, Section 0.3] assuming that S is invertible and H is noetherian.

Proposition. If a Hopf algebra H has Van den Bergh duality in dimension d, then
the antipode is invertible and

(1)
(
S2 ◦ Ξr∫

r

)−1

= S−2 ◦ Ξr∫
r
◦S is a Nakayama automorphism of H.

(2) If µ ∈ Autk−alg(H) is any Nakayama automorphism of H then ε ◦ µ−1 is
the right homological integral of H,

Proof. (1) follows from 3.5.1. (2) follows from (1) and from the fact that Nakayama
automorphisms differ from one another by an inner automorphism. �

3.5.3. Calabi-Yau duality. Combining 3.5.1 and 3.5.2 yields the following.

Corollary. Let H be a Hopf algebra. Then H is Calabi-Yau in dimension d if and
only if the following conditions hold
(a) kH ∈ per(Hop),
(b) S2 is an inner automorphism of H,
(c) H is satisfies the right Artin-Schelter condition and its right homological integral

is trivial.
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4. Equivariant modules

This section develops properties and constructions based on dg A-bimodules
which are HS2i -equivariant (i ∈ Z) and which are needed to describe RHomΛ(Λ,Λe)
(Section 5), to describe the deformed Calabi-Yau completions of Λ (Section 6), and
to describe the Nakayama automorphisms of Λ (Section 7). Section 4.1 introduces
a dg algebra ∆i such that C(∆i) consists of those equivariant dg bimodules. Sec-
tion 4.2 gives details on certain extension-of-scalars functors D 7→ D]σH from
C(∆i) to C(Λe). Section 4.3 explains how H acts on morphism spaces between
HS2i-equivariant dg A-bimodules. Sections 4.4 and 4.5 detail the behaviour of
HS2i-equivariant dg A-bimodules under HomA(−, A) and under tensor products
over A, respectively. Finally, Section 4.6 proves that such a bimodule D is invert-
ible over A if and only if D]σH is invertible over Λ.

∆0 was introduced in [19, Definition 3.1] and applied to smash products whether
to investigate Calabi-Yau duality (see [26, 30]) or Hochschild cohomology (see [29]).

4.1. Dg algebras which dg modules are equivariant A-bimodules.

Definition. Let i ∈ Z and assume that S is invertible when i < 0. Define ∆i to
be the dg algebra whose underlying complex of vector spaces is Ae ⊗H and whose
(associative) product is given by the rule

(a⊗ b⊗ h)× (a′ ⊗ b′ ⊗ k) =

(−1)deg(b)·(deg(a′)+deg(b′)) × (a(h1 ⇀ a′))⊗ ((S2i(h3) ⇀ b′)b)⊗ h2k .

It is elementary although tedious to check that the product is indeed associative.
Note that the product in ∆i is determined by the three following properties

• the product is associative,
• Ae is a dg subalgebra of ∆i via the mapping Ae → Ae⊗H, a⊗b 7→ a⊗b⊗1,
• H is dg subalgebra of ∆i via the mapping H → Ae ⊗H, h 7→ 1⊗ 1⊗ h,
• the product satisfies the following identity in ∆i

(4.1.0.1) h× (a⊗ b) = (h1 ⇀ a⊗ S2i(h3) ⇀ b)× h2 .

When S is invertible, ∆i features the following useful identity

(4.1.0.2) (a⊗ b)× h = h2 × (S−1(h1) ⇀ a⊗ S2i+1(h3) ⇀ b) .

In general, the following mapping is a homomorphism of dg algebras that makes
of Λe a left (and right) dg ∆i-module

(4.1.0.3) ∆i → Λe

(a⊗ b)× h 7→ (a⊗ b)× (h1 ⊗ S2i+1(h2)) .

The image of this mapping is the dg subalgebra of Λe generated by Ae ∪ {h1 ⊗
S2i+1(h2) | h ∈ H} because of the following identity in Λe,

(h1 ⊗ S2i+1(h2))× (a⊗ b) = (h1 ⇀ a⊗ S2i(h4) ⇀ b)× (h2 ⊗ S2i+1(h3)) .

When S is invertible, this mapping is injective and has a retraction given by ah⊗
bk 7→ a⊗ S−1(k) ⇀ b⊗ h.

If H is cocommutative, then ∆i does not depend on i and is isomorphic to a
smash product of Ae]H (see [26, Remark 1.7]). This does not hold true in general.

The left dg ∆i-modules are the HS2i -equivariant left dg A-bimodules defined
in [30, Definition 2.2]. The latter are the left dg A-bimodules M endowed with a
structure of left H-module (which preserves the degree and is compatible with the
differential of the complex) in such a way that the following identity holds in M

(4.1.0.4) h ⇀ (amb) = (h1 ⇀ a)(h2 ⇀m)(S2i(h3) ⇀ b) .

In particular, A ∈ C(∆0).
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Example. Let A = k[x1, . . . , xn]. Let H = U(g) as in the example of 3.1. Let
g → Derk(A), X 7→ ∂X be a homomorphism of Lie algebras. Hence, A is an
H-module algebra. The structure of ∆0-module on Ae is given by

X ⇀ (a⊗ b) = ∂X(a)⊗ b+ a⊗ ∂X(b) .

The sequence (xi⊗1−1⊗xi)16i6n of the commutative ring Ae is regular and the
quotient of Ae by the ideal generated by this sequence is isomorphic to A. Recall
that the Koszul resolution (K•, dK) of AAA is as follows. Denote ⊕ni=1k · xi by
V . Let K• be the graded vector space Λ−•Ae (A ⊗ V ⊗ A) concentrated in degrees
−n,−n+ 1, . . . ,−1, 0. This is a graded-commutative algebra over the commutative
ring Ae in the usual way (the product is denoted by ∧). By a skew derivation of
degree ` of K• is meant a homogeneous k-linear mapping d : K• → K•+` such that,
for all homogeneous ω1, ω2 ∈ K•,

d(ω1 ∧ ω2) = d(ω1) ∧ ω2 + (−1)`deg(ω1)ω1 ∧ d(ω2) .

The skew derivations of degree 0 are usual k-linear algebra derivations. Denote
by dK the unique skew derivation of degree +1 of K• such that dK(1 ⊗ v ⊗ 1) =
v ⊗ 1 − 1 ⊗ v ∈ Ae for all v ∈ V . Hence, dK is Ae-linear and squares to zero. By
construction, (K•, dK) is the Koszul complex of the sequence (xi⊗1−1⊗xi)16i6n

of the commutative ring Ae. This is a projective resolution of A as an A-bimodule.
Here is how to endow (K•, dK) with an action of H for which K• lies in C(∆0).

Given any m ∈ A written as a linear combination of monomials

m = λ0 +
∑
r>1

∑
16j16···6jr6n

λj1,...,jr xj1xj2 · · ·xjr ,

where λ0, λj1,...,jr ∈ k, use the symbolic piece of notation∑
i

m′i ⊗ xi ⊗m′′i

to denote∑
r>1

∑
16j16···6jr6n

λj1,...,jr

r∑
t=1

xj1 · · ·xjt−1 ⊗ xjt ⊗ xjt+1 · · ·xjr ∈ A⊗ V ⊗A .

For every X ∈ g, there exists a unique skew derivation of degree 0 of K• denoted
by ∂X and such that
(a) ∂X(a⊗ b) = X ⇀ (a⊗ b) for all a⊗ b ∈ A⊗A,
(b) and ∂X(1⊗ v ⊗ 1) =

∑
i ∂X(v)′i ⊗ xi ⊗ ∂X(v)′′i for all v ∈ V .

Then, dK ◦ ∂X − ∂X ◦ dK is a skew derivation of degree +1 of K•. Therefore, it
vanishes on K0. In view of (b), it vanishes on 1⊗ V ⊗ 1. Thus, it is zero, that is,
∂X : K• → K• is a morphism of complexes of vector spaces. The family (∂X)X∈g
hence yields an action of H on K•. In view of (a), K• is a dg ∆0-module.

4.2. A]H-bimodules arising from equivariant A-bimodules. Let i ∈ Z and
assume that S is invertible whenever i < 0. Let D be an HS2i-equivariant dg A-
bimodule (equivalently, a left dg ∆i-module). Let σ ∈ Autk−alg(H) be such that
the following identity holds in H

(4.2.0.1) σ(h)1 ⊗ σ(h)2 = S2i(h1)⊗ σ(h2) .

(for instance, σ = S2i ◦ Ξrπ for some algebra homomorphism π : H → k). When S
is invertible, this condition is equivalent to the following identity in H

(4.2.0.2) σ−1(h)1 ⊗ σ−1(h)2 = S−2i(h1)⊗ σ−1(h2) .
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4.2.1. According to [30, Lemma 2.5], the following actions endow D ⊗ H with a
structure of dg Λ-bimodule (see (4.1.0.4))

(4.2.1.1)
{
a(d⊗ `)b = ad(`1 ⇀ b)⊗ `2
h(d⊗ `)k = h1 ⇀ d⊗ σ(h2)`k .

In the sequel, it is denoted by D] σH. When S is invertible, D] σH features the
following identity

(4.2.1.2) d⊗ ` = σ−1(`2)(S−1−2i(`1) ⇀ d⊗ 1) .

In [29, Definition 3.2], the construction D]H is extended to D]X, where X is
any complex of Hopf bimodules over H.

4.2.2. Assume that S is invertible. The following lemma is a functorial interpre-
tation of the previous construction. The mapping ϕ : Λ → Λ defined by ϕ(ah) =
a σ(S−2i(h)) is an automorphism of the dg algebra Λ. Hence, Λ⊗ ϕΛ is a Λe−∆i-
bimodule. As a left dg Λe-module it equals ΛΛ ⊗ ΛΛ. Its structure of right dg
∆i-module is given by (λ ⊗ λ′) · (a ⊗ b ⊗ h) = ±λah1 ⊗ ϕ(S2i+1(h2)b)λ′ (where
λ, λ′ ∈ Λ). In particular, (Λ⊗ ϕΛ) ⊗

∆i

D inherits of a structure of dg Λ-bimodule.

Lemma. Keep the setting introduced previously. Then, D] σH ' (Λ⊗ ϕΛ) ⊗
∆i

D

in C(Λe).

Proof. Denote (Λ⊗ ϕΛ) ⊗
∆i

D by D. Note the identity in D

(4.2.2.1) (h⊗ k) ⊗
∆i

d = (1⊗ σ(h2)k) ⊗
∆i

(h1 ⇀ d) .

Indeed, the right hand-side term equals
(
h1 ⊗ ϕ(S2i+1(h2))σ(h3)k

)
⊗
∆i

d; This is

equal to (h ⊗ k) ⊗
∆i

d. Therefore, the linear mapping from (Λ ⊗ Λ) ⊗D to D ⊗H

defined by (ha⊗ bk)⊗ d 7→ ±(h1 ⇀ (adb))⊗ σ(h2)k induces a linear mapping

Φ: D → D ⊗H
(ha⊗ bk) ⊗

∆i

d 7→ ±(h1 ⇀ (adb))⊗ σ(h2)k .

Here, ± is the sign (−1)deg(b)·deg(d). In view of (4.2.2.1), it is bijective and its
inverse is the mapping defined by d ⊗ ` 7→ (1 ⊗ `) ⊗

∆i

d. In order to prove the

assertion of the lemma, it therefore suffices to prove that the latter mapping is a
morphism of dg Λ-bimodules from D] σH to D. This is done in the computations
below made in D:

a((1⊗ `) ⊗
∆i

d)b = (−1)deg(b)deg(d)(a⊗ `b) ⊗
∆i

d

= (1⊗ `2) ⊗
∆i

ad(`1 ⇀ b) .

and
h((1⊗ `) ⊗

∆i

d)k = (h⊗ `k) ⊗
∆i

d

= (1⊗ σ(h2)`k) ⊗
∆i

(h1 ⇀ d) .

�
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4.2.3. Assume that S is invertible and define a dg Λ-bimodule Hσ−1

]D as follows.
Its underlying complex of vector spaces is H ⊗D and the actions of Λ are given by

(4.2.3.1)
{

a(`⊗ d)b = `2 ⊗ (S−1(`1) ⇀ a)db
h(`⊗ d)k = h`σ−1(k2)⊗ S−2i−1(k1) ⇀ d .

Lemma. Keep the setting introduced previously. The following mapping is an iso-
morphism in C(Λe)

D] σH → Hσ−1

]D
d⊗ ` 7→ σ−1(`2)⊗ S−2i−1(`1) ⇀ d .

Proof. Denote this mapping by ϕ. Consider the mappingHσ−1

]D → D] σH defined
by ` ⊗ d 7→ `1 ⇀ d ⊗ σ(`2). In view of (4.2.0.1), (4.2.0.2) and (4.2.1.2), it is an
inverse of ϕ. That ϕ is a morphism in C(Λe) follows from the computations below

ϕ(h(d⊗ `)k) = ϕ(h1 ⇀ d⊗ σ(h2)`k)
= h3σ

−1(`2)σ−1(k2)⊗ (S−2i−1(k1)S−2i−1(`1)S−1(h2)h1) ⇀ d
= hϕ(d⊗ `)k

and
ϕ(a(d⊗ `)b) = ϕ(ad(`1 ⇀ b)⊗ `2)

= σ−1(`3)⊗ S−2i−1(`2) ⇀ (ad(`1 ⇀ b))
= σ−1(`5)⊗

(S−2i−1(`4) ⇀ a)(S−2i−1(`3) ⇀ d)((S−1(`2)`1) ⇀ b)
= a(σ−1(`2)⊗ S−2i−1(`1) ⇀ d)b .

�

4.3. Morphisms defined on equivariant dg bimodules. The following result
is used in the description of RHomΛe(Λ,Λ

e) in Section 5 and in the description of
(deformed) Calabi-Yau completions of A]H in Section 6. Note that,

• when i = 1, part (1) is being considered in [26, (1.3)],
• when i = 0, the definition of h ⇀ f in part (2) coincides with the one of
S−2(h) ⇀ f in [26, (1.2)] and with the one of fS−1(h) in [29, Definition
4.1],

Lemma. Let i ∈ Z and assume that S is invertible. Let X ∈ C(∆i), U ∈ C(∆1−i),
and M ∈ C(Λe).

(1) There exists a structure of left dg H-module on U ⊗
Ae
M such that

h ⇀ (u⊗m) = (h2 ⇀ u)⊗ S2−2i(h3)mS(h1) .

(2) There is a structure of left dg H-module on HomAe(X,M) such that

(4.3.0.1) (h ⇀ f)(x) = S2−2i(h3)f(S1−2i(h2) ⇀ x)S(h1) .

(3) Given f ∈ HomAe(X,M), the following are equivalent
(i) f ∈ Hom∆i

(X,M),
(ii) (∀h ∈ H) h ⇀ f = ε(h)f ,
(iii) (∀h ∈ H) (∀x ∈ X) f(h ⇀ x) = h1f(x)S1+2i(h2).

(4) There is a functorial isomorphism

HomH(Hk,HomAe(X,M))
'−→ Hom∆i

(X,M)
λ 7→ λ(1) .

(5) Assume, here, that M has an additional structure of right dg Ae-module
which is compatible with the structure of left dg Λe-module in the sense of
(2.2.2.4) ( e.g. M = Ae). Consider HomAe(X,M) as dg A-bimodule using
this additional action of Ae on M . Then (2) makes of HomAe(X,M) an
HS2−2i-equivariant dg A-bimodule: HomAe(X,M) ∈ C(∆1−i).
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(6) The canonical mapping HomAe(X,A
e) ⊗
Ae
M → HomAe(X,M) is H-linear.

Proof. (1) Here, U is considered as a right dg Ae-module in a natural way: u ↼
(a⊗ b) = (−1)deg(b)(deg(au))bua. The identity given in the statement endows U ⊗M
with a structure of left dg H-module. Using that U is HS2−2i-equivariant, a simple
computation shows that this structure factors through U ⊗M → U ⊗

Ae
U .

(2) The given action makes of Homk(X,M) a left dg H-module. The follow-
ing computation where f ∈ HomAe(X,M) proves that HomAe(X,M) is a dg H-
submodule of Homk(X,M)

(h ⇀ f)(axb) = S2−2i(h3)f(S1−2i(h2) ⇀ (axb))S(h1)
= ±S2−2i(h5)S1−2i(h4) ⇀ af(S1−2i(h3) ⇀ x)S(h2) ⇀ bS(h1)
= ±a(h ⇀ f)(x)b ,

where ± is the sign (−1)deg(f)·deg(a).
(3) The equivalence “(i)⇔ (iii)” follows from the definition of ∆i (see (4.1.0.3)).

The implication “(iii) ⇒ (ii)” follows from the definition of the action of H on
HomAe(X,M). If (ii) holds true, then

f(h ⇀ x) = ε(h1)f(h2 ⇀ x)ε(h3)
= h1S(h2)f(h3 ⇀ x)S2i(h4)S1+2i(h5)
= h1(S2i−1(h2) ⇀ f)(x)S1+2i(h3)
= h1f(x)S1+2i(h2) .

This proves that (ii)⇒ (iii).
(4) In view of (3), the given mapping is well-defined and surjective. The mapping

is injective, and hence it is an isomorphism.
(5) This follows from the computation below where f ∈ HomAe(X,M). To avoid

any confusion, note that the computation does not involve the action of Ae on M
arising from the action of Λe, and that the third equality is due to (2.2.2.4).

(h ⇀ (f ↼ (a⊗ b)))(x) =
(S2−2i(h3)⊗ S(h1)) ⇀ ((f ↼ (a⊗ b))(S1−2i(h2) ⇀ x)) =
±(S2−2i(h3)⊗ S(h1)) ⇀ (f(S1−2i(h2) ⇀ x) ↼ (a⊗ b)) =
±((S2−2i(h4)⊗ S(h2)) ⇀ (f(S1−2i(h3) ⇀ x))) ↼

((S2−2i(h5)⊗ S(h1)) ⇀ (a⊗ b)) =
±((S2−2i(h4)⊗ S(h2)) ⇀ f(S1−2i(h3) ⇀ x))

↼ (S2−2i(h5) ⇀ a⊗ h1 ⇀ b) =
((h2 ⇀ f) ↼ (S2−2i(h3) ⇀ a⊗ h1 ⇀ b))(x) ,

where ± is the sign (−1)deg(x)·(deg(a)+deg(b)). In other words, using bimodule nota-
tion, then

h ⇀ (afb) = (h1 ⇀ a)(h2 ⇀ f)(S2−2i(h3) ⇀ b) .

(6) Following (5), HomAe(X,A
e) is a left dg ∆1−i-module for which the corre-

sponding structure of right dg Ae-module is given by (f ↼ (a⊗b))(x) = f(x)×(a⊗
b). Hence, (1) provides HomAe(X,A

e) ⊗
Ae
M with a structure of left dg H-module.

Let ϕ ∈ HomAe(X,A
e), m ∈ M and h ∈ H; Denote by f the image of ϕ ⊗m

in HomAe(X,M); It is defined by f(x) = (−1)deg(m)·deg(x)ϕ(x) ⇀ m (where ⇀
is used to denote the action of Λe on M); Denote by g the image of h ⇀ (ϕ ⊗
m) in HomAe(X,M); It is defined by g(x) = (−1)deg(m)·deg(x)(h2 ⇀ ϕ)(x) ⇀
(S2−2i(h3)mS(h1)). Then g = h ⇀ f according to the following computation
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whereM is considered alternatively as a left dg Λe-module and as a dg Λ-bimodule

(h ⇀ f)(x) = (S2−2i(h3)⊗ S(h1)) ⇀ f(S1−2i(h2) ⇀ x)
= ±(S2−2i(h3)⊗ S(h1)) ⇀ (ϕ(S1−2i(h2) ⇀ x) ⇀m)
=

(2.2.2.3)
±((S2−2i(h4)⊗ S(h2)) ⇀ ϕ(S1−2i(h3) ⇀ x))

⇀ ((S2−2i(h5)⊗ S(h1)) ⇀m)
= ±(h2 ⇀ ϕ)(x) ⇀ (S2−2i(h3)mS(h1))
= g(x) .

�

4.4. Equivariant actions on duals over A. In this section, S is assumed to
be invertible and A is assumed to be a k-algebra. Let i ∈ Z, let D be an HS2i-
equivariant A-bimodule. Let σ ∈ Autk−alg(H) be such that the identity σ(h)1 ⊗
σ(h)2 = S2i(h1)⊗ σ(h2) holds in H. When D is invertible as an A-bimodule, then
HomA(D,A) ' HomAop(D,A) is the inverse of D. Hence, this section considers
Λ-bimodules arising from HomA(D,A) and HomAop(D,A).

4.4.1. The following result shows that HomA(D,A) and HomAop(D,A) both have
a structure of HS−2i -equivariant A-bimodules.

Lemma. Keep the setting stated previously.
(1) There exists a structure of left H-module on HomA(D,A) such that (h ⇀

f)(d) = S−2i(h2) ⇀ f(S−1−2i(h1) ⇀ d) for every f ∈ HomA(D,A). For
this structure, HomA(D,A) is an HS−2i-equivariant A-bimodule.

(2) There exists a structure of left H-module on HomAop(D,A) such that (h ⇀
f)(d) = h1 ⇀ f(S1−2i(h2) ⇀ d) for every f ∈ HomAop(D,A). For this
structure, HomAop(D,A) is an HS−2i-equivariant A-bimodule.

Proof. (1) If f ∈ HomA(D,A), then the mapping h ⇀ f : D → A introduced in the
statement is A-linear, indeed

(h ⇀ f)(ad) = S−2i(h2) ⇀ f(S−1−2i(h1) ⇀ (ad))
= S−2i(h3) ⇀

(
(S−1−2i(h2) ⇀ a)f(S−1−2i(h1) ⇀ d)

)
= a(h ⇀ f)(d) .

Note that the A-bimodule structure of HomA(D,A) is such that (afb)(d) = f(da)b.
The following computation shows the second assertion of (1)

(h ⇀ (afb))(d) = S−2i(h2) ⇀ (f((S−1−2i(h1) ⇀ d)a)b)
=

(4.1.0.2)
S−2i(h3) ⇀

(
f(S−1−2i(h2) ⇀ (d(h1 ⇀ a)))b

)
= (h2 ⇀ f)(d(h1 ⇀ a))(S−2i(h3) ⇀ b)
=

(
(h1 ⇀ a)(h2 ⇀ f)(S−2i(h3) ⇀ b)

)
(d) .

(2) is proved similarly. �

4.4.2. The following technical result is used later to prove that D is invertible as
an A-bimodule if and only if D] σH is invertible as a Λ-bimodule.

Lemma. Keep the setting stated previously. Let M ∈ mod(Λ). Let N ∈ mod(Λop).
(1) The following endows HomA(D,M) with a structure of left Λ-module (here

g ∈ HomA(D,M))

ag : d 7→ g(da)
hg : d 7→ σ−1(h2)g(S−2i−1(h1) ⇀ d) .

For this structure, the following mapping is an isomorphism in mod(Λ)

HomΛ(D] σH,M) → HomA(D,M)
f 7→ f(−⊗ 1) .
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(2) Assume that M = Λ. Then, the canonical mapping from HomA(D,A)⊗H
to HomA(D,A⊗H) is a morphism in mod(Λe) from HomA(D,A)] σ

−1

H to
HomA(D,Λ). In particular, if D is finitely presented as a left A-module or
if dimkH <∞, then HomΛ(D] σH,Λ) ' HomA(D,A)] σ

−1

H in mod(Λe).
(3) The following actions endow HomAop(D,N) with a structure of right Λ-

module (here g ∈ HomAop(D,N))

ga : d 7→ g(ad)
gh : d 7→ g(h1 ⇀ d)σ(h2) .

For this structure, the following mapping is an isomorphism in mod(Λop)

HomΛop(D] σH,N) → HomAop(D,N)
f 7→ f(−⊗ 1) .

(4) Assume that N = Λ. Then, there is a morphism in mod(Λe)

HomAop(D,A)] σ
−1

H → HomAop(D,Λ)

such that the image of a tensor ϕ ⊗ ` is the morphism D → Λ given by
d 7→ ϕ(`1 ⇀ d)σ(`2). If D is finitely presented as a right A-module or if
dimkH <∞, then it is an isomorphism.

Proof. (1) Given f ∈ HomΛ(D] σH,M), consider g : D → M defined by g(d) =
f(d⊗ 1). Then,

• g ∈ HomA(D,M),
• f is given by f(d⊗ `) = σ−1(`2)g(S−1−2i(`1) ⇀ d) (see (4.2.1.2)).

Under the above construction, given a ∈ A and h ∈ H, the morphisms af, hf ∈
HomΛ(D] σH,M) are mapped onto ag and hg, respectively.

Conversely, let g ∈ HomA(D,M) and define f : D ⊗ H → M by f(d ⊗ `) =
σ−1(`2)g(S−1−2i(`1) ⇀ d). The following computations made in M show that
f ∈ HomΛ(D] σH,M)

f(a(d⊗ `)) = f(ad⊗ `)
= σ−1(`2)g(S−1−2i(`1) ⇀ (ad))
= σ−1(`3)(S−1−2i(`2) ⇀ a)g(S−1−2i(`1) ⇀ d)
= σ−1(`2)2(S−1(σ−1(`2)1) ⇀ a)g(S−1−2i(`1) ⇀ d)
= aσ−1(`2)g(S−1−2i(`1) ⇀ d)
= af(d⊗ `)

and
f(h(d⊗ `)) = f(h1 ⇀ d⊗ σ(h2)`)

= σ−1(σ(h3)`2)g(S−1−2i(S2i(h2)`1) ⇀ (h1 ⇀ d))
= hσ−1(`2)g(S−1−2i(`1) ⇀ d)
= hf(d⊗ `) .

The previous considerations prove that the mapping from HomΛ(D] σH,M) to
HomA(D,M) given in the statement of the lemma is well-defined and bijective.
They also prove that the actions of A andH on HomA(D,M) given in the statement
form a structure of Λ-module such that the mapping mentioned previously if Λ-
linear.

(2) It suffices to prove the first statement. The structure of left H-module on
HomA(D,M) is functorial in M , and hence, HomA(D,Λ) is a Λ-bimodule with
structure of right Λ-module inherited from the one of Λ. The given canonical
mapping is a morphism in mod(A) and mod(Hop). There remains to prove that it
is so in mod(Aop) and in mod(H). Let ϕ ⊗ ` ∈ HomA(D,A) ⊗H, and denote by
f : d 7→ ϕ(d)` its image in HomA(D,Λ).
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Let a ∈ A, and denote by f ′ the image of (ϕ ⊗ `)a = (ϕ(`1 ⇀ a) ⊗ `2) in
HomA(D,Λ). The computation below made in Λ proves that f ′ = fa

(fa)(d) = f(d)a
= ϕ(d)`a
= ϕ(d)(`1 ⇀ a)`2
= f ′(d) .

Let h ∈ H, and denote by f ′′ the image of h(ϕ ⊗ `) = h1 ⇀ ϕ ⊗ σ−1(h2)` in
HomΛ(D,Λ). The computation below made in Λ proves that f ′′ = hf

(hf)(d) =
see (1)

σ−1(h2)f(S−1−2i(h1) ⇀ d)

= σ−1(h2)ϕ(S−1−2i(h1) ⇀ d)`
= S−2i(h2) ⇀ ϕ(S−1−2i(h1) ⇀ d)σ−1(h3)`
= (h1 ⇀ ϕ)(d)σ−1(h2)`
= f ′′(d) .

This proves (2).
(3) Let f ∈ HomΛop(Λ, N) and define g ∈ Homk(D,N) by g(d) = f(d⊗1). Then,

g ∈ HomAop(D,N). This construction defines a mapping from HomΛop(D] σH,N)
to HomAop(D,N). Keep f and g as above. Given a ∈ A, then ga corresponds to
fa under the same construction. Also, given h ∈ H, then gh corresponds to fh
under this construction as proved by the following computation

(fh)(d⊗ 1) = f(h(d⊗ 1))
= f(h1 ⇀ d⊗ σ(h2))
= g(h1 ⇀ d)σ(h2) .

Now, let g ∈ HomAop(D,N) and define f : D] σH → N by f(d⊗ `) = g(d)`. Then,
f lies in HomHop(D] σH,N). And so does it in HomAop(D] σH,N) as proved by
the following computation

f((d⊗ `)a) = f(d(`1 ⇀ a)⊗ `2)
= g(d(`1 ⇀ a))`2
= g(d)(`1 ⇀ a)`2
= g(d)`a
= f(d⊗ `)a .

These considerations prove that there is a well-defined mapping from HomAop(D,N)
to HomΛop(D] σH,N) which is inverse to the mapping from HomΛop(D] σH,N) to
HomAop(D,N) introduced in the statement of (3). This proves (3).

(4) Like in (2), HomAop(D,Λ) is a Λ-bimodule with structure of left Λ-module
inherited from the one of Λ.

First, the given mapping from HomAop(D,A)] σ
−1

H to HomAop(D,Λ) is well-
defined. Indeed, let ϕ⊗ ` ∈ HomAop(D,A)] σ

−1

H. Define a mapping g : D → Λ by
g(d) = ϕ(`1 ⇀ d)σ(`2). In view of the following equalities in Λ, this mapping is a
morphism in mod(Aop)

g(da) = ϕ(`1 ⇀ (da))σ(`2)
= ϕ(`1 ⇀ d)(S2i(`2) ⇀ a)σ(`3)
= ϕ(`1 ⇀ d)σ(`2)a .

Denote by θ the resulting mapping from HomAop(D,A)] σ
−1

H to HomAop(D,Λ).
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Next, θ is a morphism in mod(Λe). Indeed, keep the notation (ϕ, `, g) introduced
previously, then

(ag)(d) = ag(d)
= (aϕ)(`1 ⇀ d)σ(`2)

(hg)(d) = hg(d)
= hϕ(`1 ⇀ d)σ(`2)
= h1 ⇀ ϕ(`1 ⇀ d)h2σ(`2)
= h1 ⇀ ϕ((S1−2i(h2)S−2i(h3)`1) ⇀ d)h4σ(`2)
= (h1 ⇀ ϕ)((σ−1(h2)`)1 ⇀ d)σ((σ−1(h2)`)2)

(ga)(d) = g(ad)
= ϕ(`1 ⇀ (ad))σ(`2)
= (ϕ · (`1 ⇀ a))(`2 ⇀ d)σ(`3)

(gh)(d) = g(h1 ⇀ d)σ(h2)
= ϕ((`1h1) ⇀ d)σ(`2h2) .

In order to prove (4), there only remains to prove that θ is bijective when D is
finitely presented as a right A-module or dimkH <∞. For this purpose, consider
the composite mapping

Hσ]HomAop(D,A)
∼−→

4.2.3
HomAop(D,A)] σ

−1

H
θ−→ HomAop(D,Λ) .

Recall from the proof in 4.2.3 that the left hand-side mapping is defined by `⊗ϕ 7→
`1 ⇀ ϕ⊗σ−1(`2). Hence, to any `⊗ϕ ∈ H⊗HomAop(D,A), the composite mapping
associates θ(`1 ⇀ ϕ⊗ σ−1(`2)). Denote this morphism by g. Then

g(d) = (`1 ⇀ ϕ)(σ−1(`2)1 ⇀ d)σ(σ−1(`2)2)
= (`1 ⇀ ϕ)(S−2i(`2) ⇀ d)`3
= `1 ⇀ ϕ((S1−2i(`2)S−2i(`3)) ⇀ d)`4
= `ϕ(d) .

Hence, the above composite mapping is the canonical one from H ⊗HomAop(D,A)
to HomAop(D,H⊗A). It is hence bijective whenD is finitely presented in mod(Aop)
or dimkH <∞. Accordingly, θ is bijective under the same assumption. �

4.5. Tensor product of equivariant bimodules. Here, A is a dg algebra.

4.5.1. The following result describes (D] σH) ⊗
Λ

(D′] τH) for equivariant dg A-

bimodules D and D′. Here is its setting
• i, j ∈ Z and S is invertible as soon as i < 0 or j < 0,
• D is an HS2i-equivariant dg A-bimodule,
• D′ is an HS2j -equivariant dg A-bimodule,
• σ, τ are automorphisms of H which satisfy the identities σ(h)1 ⊗ σ(h)2 =
S2i(h1)⊗ σ(h2) and τ(h)1 ⊗ τ(h)2 = S2j(h1)⊗ τ(h2) in H, and such that
σ and S2 commute, and such that τ and S2 commute (for instance, σ =
S+2i ◦ Ξrπ and µ = S+2j ◦ Ξrπ′ for algebra homomorphisms π, π′ : H → k).

Lemma. Keep the setting stated previously.
(1) There is a structure of HS2(i+j)-equivariant dg A-bimodule on D⊗

A
D′ such

that h ⇀ (d⊗ d′) = h1 ⇀ d⊗ S2i(h2) ⇀ d′,
(2) (D] σH)⊗

Λ
(D′] τH) ' (D ⊗

A
D′)] τ◦σH as dg Λ-bimodules.
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Proof. (1) The given action is indeed a structure of leftH-module onD⊗
A
D′ because

D is HS2i-equivariant. For this structure, D ⊗
A
D′ is HS2(i+j) -equivariant because

D is HS2i-equivariant and D′ is HS2j -equivariant.
(2) Note the following identity in H

(τ ◦ σ)(h)1 ⊗ (τ ◦ σ)(h)2 = S2j(σ(h)1)⊗ τ(σ(h)2)
= S2i+2j(h1)⊗ τ ◦ σ(h2) .

Hence, (D ⊗
A
D′)] τ◦σH is well-defined.

Note the following identity in (D] σH)⊗
Λ

(D′] τH):

(4.5.1.1) (d⊗ `)⊗
Λ

(d′ ⊗ `′) = (d⊗ 1)⊗
Λ

(`1 ⇀ d′ ⊗ τ(`2)`′) .

Therefore, there is a well-defined linear mapping

(D] σH)⊗
Λ

(D′] τH) → (D ⊗
A
D′)⊗H

(d⊗ `)⊗
Λ

(d′ ⊗ `′) 7→ (d⊗
A
`1 ⇀ d′)⊗ τ(`2)`′ .

There is also a well-defined linear mapping

(D ⊗
A
D′)⊗H → (D] σH)⊗

Λ
(D′] τH)

(d⊗
A
d′)⊗ `′ 7→ (d⊗ 1)⊗

Λ
(d′ ⊗ `′)

In view of (4.5.1.1), these two linear mappings are inverse to each other. In order to
prove the lemma, it therefore suffices to check that the latter mapping is a morphism
of dg Λ-bimodules from (D⊗

A
D′)] τ◦σH to (D] σH)⊗

Λ
(D′] τH). This follows from

the computations below made in (D] σH)⊗
Λ

(D′] τH):

a((d⊗ 1)⊗
Λ

(d′ ⊗ `′))b = (a(d⊗ 1))⊗
Λ

((d′ ⊗ `′)b)
= (ad⊗ 1)⊗

Λ
(d′(`′1 ⇀ b)⊗ `′2)

and

h((d⊗ 1)⊗
Λ

(d′ ⊗ `′))k = (h(d⊗ 1))⊗
Λ

((d′ ⊗ `′)k)

= (h1 ⇀ d⊗ σ(h2))⊗
Λ

(d′ ⊗ `′k)

=
(4.5.1.1)

(h1 ⇀ d⊗ 1)⊗
Λ

(σ(h2)1 ⇀ d′ ⊗ τ(σ(h2)2)`′k)

= (h1 ⇀ d⊗ 1)⊗
Λ

(S2i(h2) ⇀ d′ ⊗ τ(σ(h3))`′k) .

�

4.5.2. In this paragraph, S need not be invertible. Let D be an HS2 -equivariant dg
A-bimodule and let σ ∈ Autk−alg(H) satisfy the identity σ(h)1⊗σ(h)2 = S2(h1)⊗
σ(h2) in H and commute with S2. The preceding result provides a description of
TA]H(D] σH). This is used later when discussing on Calabi-Yau completions.

For every n > 1, consider D
⊗
A
n
as an HS2n -equivariant dg A-bimodule for the

following action of H (see 4.5.1)

(4.5.2.1) h ⇀ (d1⊗
A
· · · ⊗

A
dn) = h1 ⇀ d1⊗

A
S2(h2) ⇀ d2⊗

A
· · · ⊗

A
S2(n−1)(hn) ⇀ dn .

According to 4.5.1, there exists an isomorphism of algebras

TA(D)⊗H ∼−→ TA]H(D] σH)
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which extends the identity maps A → A and H → H as well as the mapping
D → D] σH, d 7→ d ⊗ 1, and where TA(D) ⊗H is endowed with the product such
that TA(D) and H are subalgebras in the natural way and

(4.5.2.2) h× (d1 ⊗
A
· · · ⊗

A
dn) = h1 ⇀ (d1 ⊗

A
· · · ⊗

A
dn)⊗ σn(h2) .

This dg algebra with underlying complex TA(D)⊗H is denoted by TA(D)] σ
∗
H.

If σ = IdH , then TA(D) is an H-module dg algebra and TA(D)] σ
∗
H = TA(D)]H.

4.6. On invertible Λ-bimodules. Assume that A is a k-algebra and that S is
invertible. The following results relate equivariant A-bimodules which are invertible
as A-bimodules to invertible Λ-bimodules. Recall that an A-bimodule D is called
invertible if there exists an A-bimodule D′ such that D ⊗

A
D′ ' D′ ⊗

A
D ' A in

mod(Ae). In view of the adjunctions

mod(A)

D⊗
A
−

��

mod(Aop)

−⊗
A
D

��
mod(A)

HomA(D,−)

UU

mod(Aop)

HomAop (D,−)

UU

the bimodule D is invertible if and only if the canonical morphisms HomA(D,A)⊗A
D → A and D ⊗A HomAop(D,A)→ A are bijective.

4.6.1. The following result gives a sufficient condition for D] σH to be invertible.

Proposition. Let H be a Hopf algebra with invertible antipode. Let A be an H-
module k-algebra. Let D be an HS2i-equivariant A-bimodule (for some i ∈ Z) which
is invertible as an A-bimodule. Let σ be an automorphism of H which commutes
with S2 and satisfies the identity σ(h)1 ⊗ σ(h)2 = S2i(h1) ⊗ σ(h2) in H. Then,
D] σH is an invertible Λ-bimodule.

Proof. The conclusion is a consequence of following the assertion proved below:
HomA(D,A)] σ

−1

H and HomAop(D,A)] σ
−1

H are right and left inverses of D] σH,
respectively. Note that HomA(D,A) and HomAop(D,A) are HS−2i-equivariant A-
bimodules (see 4.4.1) and σ−1 satisfies the identity σ−1(h)1⊗σ−1(h)2 = S−2i(h1)⊗
σ−1(h2).

Using part (2) of the lemma in 4.5.1 yields isomorphisms of Λ-bimodules

(D] σH)⊗
Λ

(HomA(D,A)] σ
−1

H) ' (D ⊗
A

HomA(D,A))]H

(HomAop(D,A)] σ
−1

H)⊗
Λ

(D] σH) ' (HomAop(D,A)⊗
A
D)]H .

Note that the D ⊗
A

HomA(D,A) and HomAop(D,A) ⊗
A
D are H-equivariant A-

bimodules (see 4.5.1). Moreover, the following mappings are isomorphisms in
mod(Ae)

D ⊗
A

HomA(D,A) → A HomAop(D,A)⊗
A
D → A

d⊗ f 7→ f(d) f ⊗ d 7→ f(d) .

These are actually H-linear as proved by the two following computations where f
lies in HomA(D,A) and HomAop(D,A), respectively

(S2i(h2) ⇀ f)(h1 ⇀ d) = h3 ⇀ f(S−1(h2) ⇀ (h1 ⇀ d))
= h ⇀ f(d)

and
(h1 ⇀ f)(S−2i(h2) ⇀ d) = h1 ⇀ f(S1−2i(h2) ⇀ (S−2i(h3) ⇀ d))

= h ⇀ f(d) .
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Therefore, D ⊗
A

HomA(D,A) ' A and HomAop(D,A) ⊗
A
D ' A as H-equivariant

A-bimodules. Thus, there are isomorphisms of Λ-bimodules

(D ⊗
A

HomA(D,A))]H ' Λ

(HomAop(D,A)⊗
A
D)]H ' Λ .

This proves that HomA(D,A)] σ
−1

H and HomAop(D,A)] σ
−1

H are right inverse
and left inverse to D] σH, respectively. �

4.6.2. The following result gives a necessary condition for D] σH to be invertible.

Proposition. Let H be a Hopf algebra with invertible antipode. Let A be an H-
module k-algebra. Let D be an HS2i-equivariant A-bimodule. Let σ ∈ Autk−alg(H)
be such that σ◦S2 = S2◦σ and such that the identity σ(h)1⊗σ(h)2 = S2i(h1)⊗σ(h2)
holds in H. Assume that D] σH is invertible as a Λ-bimodule. Then, D is invertible
as an A-bimodule.

Proof. Since (D] σH) ⊗
Λ
A ' D in mod(A), and since D] σH is invertible as a Λ-

bimodule, then D is finitely generated and projective in mod(A). Similarly, since
A⊗

Λ
(D] σH) '

4.2.3
A⊗

Λ
(Hσ−1

]D) ' D in mod(Aop), then D is also finitely generated

and projective in mod(Aop).
In order to prove that D is invertible as an A-bimodule, it suffices to prove that

the canonical mappings D ⊗
A

HomA(D,A) → A and HomAop(D,A) ⊗
A
D → A are

bijective. Consider the former one. The following mapping is an isomorphism in
mod(Λe) (see 4.4.1 and 4.5.1)

(4.6.2.1)
(D ⊗

A
HomA(D,A))]H −→ (D] σH)⊗

Λ
(HomA(D,A)] σ

−1

H)

(d⊗ ϕ)⊗ ` 7−→ (d⊗ 1)⊗
Λ

(ϕ⊗ `)

Combining the isomorphisms given in parts (1) and (2) of 4.4.2 yields the following
isomorphism in mod(Λe)

(4.6.2.2) HomA(D,A)] σ
−1

H −→ HomΛ(D] σH,Λ)
ϕ⊗ ` 7−→ (d⊗ h 7→ σ−1(h2)ϕ(S−1−2i(h1) ⇀ d)`) .

Now, since D] σH is invertible, the following canonical mapping is an isomorphism
in mod(Λe)

(4.6.2.3) (D] σH)⊗
Λ

HomΛ(D] σH,Λ)→ Λ .

Thus, combining (4.6.2.1), (4.6.2.2) and (4.6.2.3) yields an isomorphism in mod(Λe)

(4.6.2.4)
(D ⊗

A
HomA(D,A))]H → Λ

(d⊗ ϕ)⊗ ` 7→ ϕ(d)` .

Note that the canonical mapping D⊗
A

HomA(D,A)→ A is obtained upon applying

−⊗
Λ
A : mod(Ae)→ mod(A) to (4.6.2.4), hence it is bijective.

Using similar considerations proves that the canonical mapping HomAop(D,A)⊗
A

D → A is bijective. Thus, A is invertible as an A-bimodule. �

4.6.3. Combining the results in 4.6.1 and 4.6.2 yields the following corollary.

Corollary. Let H be a Hopf algebra with invertible antipode. Let A be an H-
module k-algebra. Let D be an HS2i-equivariant A-bimodule (for some i ∈ Z).
Let σ be an automorphism of H which commutes with S2 and satisfies the identity
σ(h)1⊗σ(h)2 = S2i(h1)⊗σ(h2) in H. Then, the following assertions are equivalent.
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(i) D is invertible as an A-bimodule.
(ii) D]σH is invertible as an A]H-bimodule.

5. The inverse dualising complex of A]H

This section assumes that S is invertible and describes RHomΛe(Λ,Λ
e). Starting

from the observations that A ∈ C(∆0) and Λe⊗∆0
A ' Λ in C(Λe), the description is

obtained by transforming RHomΛe(Λ
e⊗∆0

A,Λe) using a series of adjunctions and
the existence of some DA ∈ C(∆1) such that DA ' RHomAe(A,A

e) in D(Ae). For
this purpose, Section 5.1 collects some needed identities in ∆0 and ∆1, Section 5.2
proves technical details used in the series of adjunctions, Section 5.3 establishes a
sufficient condition for Λ to be homologically smooth, Section 5.4 introduces DA,
and Section 5.5 gives the description of RHomΛe(Λ,Λ

e).

5.1. Identities on the involved dg algebras.

5.1.1. The following identities hold true in ∆0

(5.1.1.1) h× (a⊗ b) = ((h1 ⇀ a)⊗ (h3 ⇀ b))× h2

= ((h1 ⊗ S(h3)) ⇀ (a⊗ b))× h2 .

(5.1.1.2) (a⊗ b)× h = h2 × ((S−1(h1) ⇀ a)⊗ (S(h3) ⇀ b))
= h2 × ((S−1(h1)⊗ S2(h3)) ⇀ (a⊗ b)) .

The following identities hold true in ∆1

(5.1.1.3) h× (a⊗ b) = (h1 ⇀ a⊗ S2(h3) ⇀ b)× h2 .

(5.1.1.4) (a⊗ b)× h = h2 × (S−1(h1) ⇀ a⊗ S3(h3) ⇀ b) .

5.1.2. Dg module structures over A and Ae. There is a natural structure of left dg
Λ-module on A defined by (ah) ⇀ x = a (h ⇀ x). Also there is a natural structure
of left dg ∆0-module on A defined by (a⊗ b⊗ h) · x = (−1)deg(b) deg(x)a(h ⇀ x)b.

Lemma. There is an isomorphism Λe ⊗
∆0

A→ Λ in C(Λe) which maps (u⊗ v)⊗ a

to (−1)deg(v) deg(a)uav (where u, v ∈ Λ and a ∈ A, v and a being homogeneous).

Proof. Let µ : Λe ⊗A→ Λ be defined by µ((u⊗ v)⊗ a) = uav. Then

µ(((u⊗ v)× (h1 ⊗ S(h2)))⊗ a) = ±uh1aS(h2)︸ ︷︷ ︸
h⇀a

v = µ((u⊗ v)⊗ (h ⇀ a))

and µ(((u⊗v)× (b⊗c))⊗a) = ±ubacv = ±µ((u⊗v)⊗ (bac). Whence the existence
of the morphism in C(Λe) given in the statement of the lemma. Denote it by ν.

Let λ : Λ→ Λe ⊗
∆0

A be defined by ah 7→ (a⊗ h) ⊗
∆0

1. Then λ is a right inverse

for µ and

λ ◦ µ((ah⊗ bk)⊗ c) = ±λ(ahcbk) = ±(a(h1 ⇀ c)(h2 ⇀ b)⊗ h3k) ⊗
∆0

1

= ±(a⊗ h3k) ⊗
∆0

(h1 ⇀ c)(h2 ⇀ b)

= (a⊗ (h2 ⇀ b)h3k) ⊗
∆0

(h1 ⇀ c)

= ((a⊗ (h3 ⇀ b)h4k)× (h1 ⊗ S(h2))) ⊗
∆0

c

= (ah⊗ bk) ⊗
∆0

c .

Thus, λ is an isomorphism in C(Λe). �
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5.2. Useful (bi)module structures on morphism spaces.

Lemma. Let U ∈ C(∆1) and Y ∈ C(Hop).
(1) U ⊗ He has a structure of dg H − Λe-bimodule where the action of H is

given by ` ⇀ (u⊗h⊗ k) = `2 ⇀ u⊗S2(`3)h⊗ kS(`1) and the action of Λe

is given (in bimodule notation) by

a(u⊗ h⊗ k)b = ((S−1(k1) ⇀ a)u(h1 ⇀ b))⊗ h2 ⊗ k2

h′(u⊗ h⊗ k)k′ = u⊗ hk′ ⊗ h′k ,

(2) the canonical mapping U ⊗He → U ⊗
Ae

Λe is both H-linear and Λe-linear,

(3) U ⊗ H ⊗ Y has a structure of dg right Λe-module such that (in bimodule
notation) a(u⊗ `⊗ y)b = au(`1 ⇀ b)⊗ `2 ⊗ y and h(u⊗ `⊗ y)k = (h1 ⇀
u)⊗ S2(h2)`k ⊗ y ↼ S−1(h3),

(4) the mapping U ⊗H ⊗ Y → Y ⊗
H

(U ⊗He) defined by

u⊗ `⊗ y 7→ (−1)deg(y) deg(u)y ⊗ (u⊗ `⊗ 1)

is a Λe-linear isomorphism.

Proof. (1) By construction the given actions define a structure of dg H − (He)-
bimodule. The given action of Ae on U ⊗ He may be rewritten as the following
composite map

(U ⊗He)⊗Ae Id⊗τ−−−→ U ⊗Ae ⊗He α⊗Id−−−→ U ⊗He .

Here, τ : He⊗Ae → Ae⊗He is defined by τ(h⊗k⊗a⊗ b) = (h1 ⇀ a⊗S−1(k1) ⇀
b) × (h2 ⊗ k2), and α : U ⊗ Ae → U is the action of Ae on U inherited from the
action of ∆1. These considerations together with (2.2.2.1) explain that the given
actions in the statement of the lemma define a structure of right dg Λe-module on
U ⊗He. Hence, there only remains to prove that the given actions of H on the left
and of Ae on the right commute in order to prove that U ⊗He ∈ C(H ⊗ (Λe)op).
To this end, adopt the A-bimodule notation to show that a(` ⇀ (u ⊗ h ⊗ k))b is
equal to

a(`2 ⇀ u⊗ S2(`3)h⊗ kS(`1))b
= (((`2S

−1(k1)) ⇀ a)(`3 ⇀ u)((S2(`4)h1) ⇀ b))⊗ S2(`5)h2 ⊗ k2S(`1)
= (`2 ⇀ ((S−1(k1) ⇀ a)u(h1 ⇀ b)))⊗ S2(`3)h2 ⊗ k2S(`1)
= ` ⇀ (a(u⊗ h⊗ k)b) .

(2) The action of H on U ⊗
Ae

Λe which is being considered here is the one given

in part (1) of the lemma in 4.3. The given mapping is H-linear. Note that the
structure of right dg Λe-module of U ⊗

Ae
Λe is inherited from the one of Λe itself.

Hence, the given mapping is Λe-linear.
(3) The given actions define structures of right dg He-module and right dg Ae-

module on U ⊗H ⊗Y . They form a structure of right dg Λe-module in view of the
following computations (with bimodule notation)

(h1 ⇀ a)(h2(u⊗ `⊗ y)) = (h1 ⇀ a)(h2 ⇀ u)⊗ S2(h3)`⊗ y ↼ S−1(h4)
= h(a(u⊗ h⊗ y)) ,

((u⊗ `⊗ y)(k1 ⇀ b))k2 = u(`1 ⇀ (k1 ⇀ b))⊗ `2k2 ⊗ y
= ((u⊗ `⊗ y)k)b

h((u⊗ `⊗ y)b) = h1 ⇀ (u(`1 ⇀ b))⊗ S2(h2)`2 ⊗ y ↼ S−1(h3)
= (h1 ⇀ u)((S2(h2)`1) ⇀ b)⊗ S2(h3)`2 ⊗ y ↼ S−1(h4)
= (h(u⊗ `⊗ y))b .
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(4) Since U ⊗He ∈ C(H ⊗ (Λe)op), then Y ⊗
H

(U ⊗He) ∈ C((Λe)op). Note the

following identity in U ⊗He

(5.2.0.1) (u⊗ h⊗ k) = S−1(k3) ⇀ (k1 ⇀ u⊗ S2(k2)h⊗ 1) ,

Indeed,

S−1(k3) ⇀ (k1 ⇀ u⊗ S2(k2)h⊗ 1) = S−1(k2) ⇀ (k1 ⇀ u)⊗ h⊗ k3

= (u⊗ h⊗ k) .

The following computations in Y ⊗
H

(U⊗He) show that the mapping from U⊗H⊗Y
to Y ⊗

H
(U ⊗He) given in the statement of the lemma is Λe-linear,

a(y ⊗
H

(u⊗ `⊗ 1))b = (−1)def(y) deg(a)y ⊗
H

(a(u⊗ `⊗ 1)b)

= (−1)def(y) deg(a)y ⊗
H

(au(`1 ⇀ b)⊗ `2 ⊗ 1)

and
h(y ⊗

H
(u⊗ `⊗ 1))k = y ⊗

H
h(u⊗ `⊗ 1)k

= y ⊗
H

(u⊗ `k ⊗ h)

=
(5.2.0.1)

y ⊗
H
S−1(h3) ⇀ (h1 ⇀ u⊗ S2(h2)`k ⊗ 1)

= y ↼ S−1(h3)⊗
H

(h1 ⇀ u⊗ S2(h2)`k ⊗ 1) .

The given mapping is bijective with inverse Y ⊗
H

(U ⊗ He) → U ⊗ H ⊗ Y well-

defined by y ⊗ (u ⊗ h ⊗ k) 7→ (−1)deg(y) deg(u)(k1 ⇀ u) ⊗ S2(k2)h ⊗ y ↼ S−1(k3)
(see (5.2.0.1)). �

5.3. Preliminaries on homological algebra. This section gives some needed
material to transform RHomΛe(Λ,Λ

e) using adjunctions. It also proves that Λ is
homologically smooth if A and H are so.

5.3.1. The following result gives sufficient conditions for HomAe(X,M) to be ho-
motopically injective in C(H) given M ∈ C(Λe) and X ∈ C(∆0). Note that the
structure of left dg H-module on HomAe(X,M) is taken from 4.3 (part (2)).

Lemma. Let X ∈ C(∆0) and M ∈ C(Λe). For every N ∈ C(H), there is a natural
structure of left dg ∆0-module on Homk(N,M) such that (functorially)

HomH(N,HomAe(X,M)) ' Hom∆0
(X,Homk(N,M)) .

As a consequence, HomAe(X,M) is homotopically injective in C(H) if and only if
X is homotopically projective in C(∆0).

Proof. On the one hand, the following action of H on Homk(N,M) is a structure
of left dg H-module

(5.3.1.1) (h ⇀ f)(n) = h1f(S−1(h2) ⇀ n)S(h3) .

On the other hand, the action of Ae on M defines a structure of left dg Ae-module
on Homk(N,M). Those two structures form a structure of left dg ∆0-module. This
claim follows from the following computation where f ∈ Homk(N,M),

(h ⇀ (afb))(n) = h1af(S−1(h2) ⇀ n)bS(h3)
= (h1 ⇀ a)h2f(S−1(h3) ⇀ n)S(h4)(h5 ⇀ b)
= ((h1 ⇀ a)(h2 ⇀ f)(h3 ⇀ b))(n) .

Here is a mapping F : HomH(N,HomAe(X,M)) → Hom∆0
(X,Homk(N,M))

which fits the conclusion of the lemma. Let λ ∈ HomH(N,HomAe(X,M)) and
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define µ ∈ Homk(X,Homk(N,M)) by µ(x)(n) = (−1)deg(n)·deg(x)λ(n)(x). Then, µ
is ∆0-linear. Indeed,

µ((a⊗ b)x)(n) = (−1)deg(n)·(deg(a⊗b)+deg(x))λ(n)((a⊗ b)x)
= (−1)deg(n)·(deg(a⊗b)+deg(x))+deg(a⊗b)·deg(λ(n))(a⊗ b)λ(n)(x)
= (−1)deg(a⊗b)·deg(λ)µ(x)(n)

and
(h ⇀ µ(x))(n) =

(5.3.1.1)
h1µ(x)(S−1(h2) ⇀ n)S(h3)

= ±h1λ(S−1(h2) ⇀ n)(x)S(h3)
= ±h1(S−1(h2) ⇀ λ(n))(x)S(h3)
=

(4.3.0.1)
±h1S(h2)λ(n)(h3 ⇀ x)h4S(h5)

= µ(h ⇀ x)(n) ,

where ± is the sign (−1)deg(x)·deg(n). Thus, defining F (λ) by F (λ) = µ yields an
injective mapping

F : HomH(N,HomAe(X,M))→ Hom∆0
(X,Homk(N,M)) .

Here is why F is surjective. Let µ ∈ Hom∆0
(X,Homk(N,M)). For every n,

define λ(n) ∈ Homk(X,M) by λ(n)(x) = (−1)deg(x)·deg(n)µ(x)(n). Then, λ(n)
is Ae-linear because µ is ∆0-linear. Moreover, the mapping N → HomAe(X,M)
defined by n 7→ λ(n) is H-linear:

(h ⇀ λ(n))(x) =
(4.3.0.1)

S2(h3)λ(n)(S(h2) ⇀ x)S(h1)

= ±S2(h3)µ(S(h2) ⇀ x)(n)S(h1)
= ±S2(h3)(S(h2) ⇀ µ(x))(n)S(h1)
=

(5.3.1.1)
±S2(h5)S(h4)µ(x)(h3 ⇀ n)S2(h2)S(h1)

= λ(h ⇀ n)(x) ,

where ± is the degree (−1)deg(x)·deg(n). Thus, λ ∈ HomH(N,HomAe(X,M)) and
F (λ) = µ. This proves that F is surjective, and hence bijective. And it is func-
torial. Whence the first assertion of the lemma. The remaining assertion follows
immediately. �

5.3.2. The following result asserts that Λ is homologically smooth if A and H are
so. For ordinary algebras this was already proved in [26, Proposition 2.11].

Proposition. Let H be a Hopf algebra with invertible antipode. Let A be an H-
module dg algebra. If Hk ∈ per(H) and A ∈ per(Ae), then Λ ∈ per(Λe).

Proof. Let P → A be a cofibrant replacement in C(∆0). This is also a cofibrant
replacement in C(Ae) because ∆0 ' Ae ⊗ H in C(Ae). Moreover, the induced
morphism Λe ⊗

∆0

P → Λe ⊗
∆0

A ' Λ is a cofibrant replacement in C(Λe). Let Q→ Hk

be a cofibrant replacement in C(H). In order to prove the statement of the lemma,
it suffices to prove that Λ is compact in D(Λe), that is, for any given family (Mi)i∈I
in C(Λe) with direct sum denoted by M , the canonical mapping ⊕i∈IHomΛe(Λ

e ⊗
∆0

P,Mi)→ HomΛe(Λ
e ⊗

∆0

P,M) is a quasi-isomorphism. By adjunction, this reduces

to proving that the canonical mapping ⊕i∈IHom∆0(P,Mi) → Hom∆0(P,M) is a
quasi-isomorphism.

Note that, if N is either M or one of the Mi, then HomAe(P,N) has a structure
of left dg H-module which is functorial in N (see 4.3, part (2)) and such that there
is a functorial isomorphism Hom∆0(P,N)

'−→ HomH(Hk,HomAe(P,N)).
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Since HomAe(P,M) is homotopically injective in C(H) (see 5.3.1), the func-
torial isomorphism Hom∆0

(P,M)
'−→ HomH(Hk,HomAe(P,M)) induces a quasi-

isomorphism

Hom∆0
(P,M)

λ−→ HomH(Q,HomAe(P,M)) .

Since P → A is a cofibrant replacement in C(Ae) and since A ∈ per(Ae), the
canonical mapping ⊕i∈IHomAe(P,Mi) → HomAe(P,M) is a quasi-isomorphism.
Therefore it induces a quasi-isomorphism

HomH(Q,⊕i∈IHomAe(P,Mi))
µ1−→ HomH(Q,HomAe(P,M)) .

Now, using thatQ→ Hk is a cofibrant replacement in C(H) and that Hk ∈ per(H),
it follows that the canonical mapping below is a quasi-isomorphism

⊕i∈IHomH(Q,HomAe(P,Mi))
µ2−→ HomH(Q,⊕i∈IHomAe(P,Mi)) .

The analogues of λ for the Mi (instead of for M) give rise to a quasi-isomorphism

⊕i∈IHom∆0
(P,Mi)

ν−→ ⊕i∈IHomH(Q,HomAe(P,Mi)) .

Therefore, the canonical mapping ⊕i∈IHom∆0
(P,Mi)→ Hom∆0

(P,M) is a quasi-
isomorphism because it fits into a commutative diagram

⊕i∈IHom∆0
(P,Mi) //

ν

��

Hom∆0
(P,M)

λ

��
⊕i∈IHomH(Q,HomAe(P,Mi)) µ1◦µ2

// HomH(Q,HomAe(P,M)) .

Thus, Λ is compact in D(Λe), and hence Λ ∈ per(Λe). �

5.4. Additional structure on the inverse dualising complex of A. The fol-
lowing is a direct consequence of 4.3. Recall that Ae is a dg He-module by means
of (2.2.2.3) and that, if X ∈ C(∆0), then HomAe(X,A

e) is a left dg ∆1-module
obtained by combining its natural structure of dg A-bimodule and the structure of
left dg H-module defined by (4.3.0.1).

Proposition. Let H be a Hopf algebra with invertible antipode. Let A be an H-
module dg algebra. There exists DA ∈ C(∆1) such that DA ' RHomAe(A,A

e) in
D((Ae)op). More precisely, if P → A is a quasi-isomorphism in C(∆0) such that P
is cofibrant in C(Ae), then DA may be taken equal to HomAe(P,A

e).

Whenever a cochain ϕ of HomAe(P,A
e) is given and denoted symbolically by

p 7→ ϕ′(p) ⊗ ϕ′′(p), the structure of dg ∆1-module of HomAe(P,A
e) is such that

h ⇀ ϕ is the cochain

(5.4.0.1) p 7→ S2(h3) ⇀ ϕ′(S(h2) ⇀ p)⊗ h1 ⇀ ϕ′′(S(h2) ⇀ p) .

Note that, when S2 = IdH , then (h ⇀ ϕ)(p) = h3 ⇀ ϕ′(S(h2) ⇀ p) ⊗ h1 ⇀
ϕ′′(S(h2) ⇀ p).

Example. Consider the setting of the running example in 4.1. Let P be the Koszul
resolution K•. Given X ∈ g and given a cochain ϕ ∈ HomAe(K

•, Ae), then X ⇀ ϕ
is the cochain denoted by ∂X(ϕ)

(5.4.0.2) ∂X(ϕ) : K• → Ae

ω 7→ ∂X(ϕ(ω))− ϕ(∂X(ω)) .

5.5. An expression of an inverse dualising complex of Λ.
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5.5.1. Here is a description of RHomΛe(Λ,Λ
e).

Proposition. Let A be an H-module dg algebra where H is a Hopf algebra with
invertible antipode. Assume that both A and H are homologically smooth. Then, Λ
is homologically smooth and DA ⊗H ⊗ EH ' RHomΛe(Λ,Λ

e) in D((Λe)op) where
• DA is any dg ∆1-module isomorphic to RHomAe(A,A

e) in D(Ae), see 5.4,
• EH ∈ C(Hop) is any cofibrant replacement of RHomH(Hk, H),
• the right dg Λe-module structure is given (with bimodule notation) by

(5.5.1.1) a(d⊗ `⊗ e)b = ad(`1 ⇀ b)⊗ `2 ⊗ e
h(d⊗ `⊗ e)k = h1 ⇀ d⊗ S2(h2)`k ⊗ e ↼ S−1(h3) .

Proof. Let P → A be a quasi-isomorphism in C(∆0) such that P is cofibrant in
C(Ae). Note that any cofibrant replacement of A in C(∆0) fits this requirement
because ∆0 ' Ae ⊗H in C(Ae). Let Q→ Hk be a cofibrant replacement in C(H).
Then, HomAe(P,A

e) may be used for DA (see 5.4) and HomH(Q,H) may be used
for EH . Let Λe → I be a fibrant replacement in C((Λe)e). Then, HomΛe(Λ, I) has
a structure of right dg Λe-module inherited by the one of I and

HomΛe(Λ, I) ' RHomΛe(Λ,Λ
e) in D((Λe)op).

Since Λ ' Λe ⊗
∆0

A in C(Λe) (see 5.1.2), there is an isomorphism in C((Λe)op)

HomΛe(Λ, I) ' Hom∆0(A, I) .

Since Λe ' ∆0 ⊗ H in C(∆0), then I is fibrant in C(∆0). Hence, the quasi-
isomorphism P → A induces a quasi-isomorphism in C((Λe)op)

Hom∆0(A, I)
qis−−→ Hom∆0(P, I) .

Using the functorial construction in 4.3 (part (2)), the structure of right dg Λe-
module on HomAe(P, I) may be extended to a structure of dg H − Λe-bimodule
such that there is an isomorphism in C((Λe)op)

Hom∆0(P, I) ' HomH(Hk,HomAe(P, I)) .

It follows from 5.3.1 that HomAe(P, I) is homotopically injective in C(H). There-
fore, Q→ Hk induces a quasi-isomorphism in C((Λe)op)

HomH(Hk,HomAe(P, I))
qis−−→ HomH(Q,HomAe(P, I)) .

Like for HomAe(P, I), the structure of right dg Λe-module of HomAe(P,Λ
e) extends

to a structure of dg H − Λe-bimodule. Since P and Q are cofibrant in C(Ae) and
C(H), respectively, the quasi-isomorphism Λe → I induces a quasi-isomorphism in
C((Λe)op)

HomH(Q,HomAe(P,Λ
e))

qis−−→ HomH(Q,HomAe(P, I)) .

Thanks to 4.3 (parts (1) and (6)), there is a structure of left dg H-module on
HomAe(P,A

e) ⊗
Ae

Λe such that the canonical mapping from HomAe(P,A
e) ⊗

Ae
Λe

to HomAe(P,Λ
e) is H-linear. This is a quasi-isomorphism because A ∈ per(Ae).

And it is Λe-linear (to the right) by functoriality of the involved constructions. It
therefore induces a quasi-isomorphism in C((Λe)op)

HomH(Q,HomAe(P,A
e) ⊗
Ae

Λe)
qis−−→ HomH(Q,HomAe(P,Λ

e)) .

Recall that HomAe(P,A
e) ∈ C(∆1) as detailed in 4.3 (part (5)). Accordingly (see

5.2, parts (1) and (2)), HomAe(P,A
e) ⊗ He ∈ C(H ⊗ (Λe)op) in such a way that

the canonical mapping HomAe(P,A
e)⊗He → HomAe(P,A

e)⊗
Ae

Λe is both H-linear
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and Λe-linear. It is an isomorphism because Λe ' Ae ⊗He in C(Ae). Therefore, it
induces an isomorphism in C((Λe)op)

HomH(Q,HomAe(P,A
e)⊗He)

∼−→ HomH(Q,HomAe(P,A
e) ⊗
Ae

Λe) .

Since Hk ∈ per(H), the following canonical mapping is a quasi-isomorphism in
C((Λe)op)

HomH(Q,H)⊗
H

(HomAe(P,A
e)⊗He)

qis−−→ HomH(Q,HomAe(P,A
e)⊗He) .

Finally, using the structure of left dg ∆1-module on HomAe(P,A
e), there is an

associated structure of right dg Λe-module on HomAe(P,A
e) ⊗H ⊗ HomH(Q,H)

introduced in 5.2 (part (3)). For this structure, there is an isomorphism in C((Λe)op)
(see 5.2, part (4))

HomAe(P,A
e)⊗H ⊗HomH(Q,H)

∼−→ HomH(Q,H)⊗
H

(HomAe(P,A
e)⊗He) .

Therefore RHomΛe(Λ,Λ
e) ' HomAe(P,A

e) ⊗ H ⊗ HomH(Q,H) in D((Λe)op) for
the structure given in 5.2, part (3). This structure is precisely the one given in
(5.5.1.1). This proves the proposition. �

5.5.2. The description of RHomΛe(Λ,Λ
e) made in 5.5.1 gets simpler when H sat-

isfies the left Artin-Schelter condition. Indeed, keep the setting of 5.5.1 and assume
that there exists a natural integer d such that dimk ExtiH(Hk, H) equals 1 if i = d

and 0 otherwise. The left homological integral is
∫
`

= ExtdH(Hk, H). Also, denote
by
∫
`
: H → k the algebra homomorphism such that the right H-module structure

of ExtdH(Hk, H) is given by α ↼ h =
∫
`
(h)α. Let DA ∈ C(∆1) be such that

DA ' RHomAe(A,A
e) in D((Ae)op). Given that Ξr∫

`
◦S−1 = (Ξr∫

`
)−1, the conclusion

of 5.5.1 entails that RHomΛe(Λ,Λ
e) ' DA⊗H[−d] in D((Λe)op), where DA⊗H[−d]

has structure of dg Λ-bimodule given by

(5.5.2.1)
a(d⊗ `)b = (ad(`1 ⇀ b))⊗ `2
h(d⊗ `)k = (h1 ⇀ d)⊗ (S−2 ◦ Ξr∫

`
)−1(h2)`k .

To sum up:

Corollary. Let H be a Hopf algebra with Van den Bergh duality in dimension
d (and hence with invertible antipode S, see 3.4.2). Let A be an H-module dg
algebra. Assume that A is homologically smooth and let DA ∈ C(∆1) be such that
DA ' RHomAe(A,A

e) in D((Ae)op) (see 5.4). Then, Λ is homologically smooth
and RHomΛe(Λ,Λ

e) ' DA]
(S−2◦Ξr∫

`
)−1

H[−d] in D((Λe)op).

6. Application to constructions of Calabi-Yau algebras

This section describes the deformed Calabi-Yau completions of Λ. The unde-
formed case is treated in Section 6.1 and the general case is treated in Section 6.2.
Section 6.3 makes a specialisation to the case where H is involutive and Calabi-Yau.

Given a homologically smooth dg algebra A and an integer n ∈ Z, the Calabi-
Yau completion Πn(A) is the dg algebra TA(DA[n − 1]), where DA is any cofi-
brant replacement of RHomAe(A,A

e) in C((Ae)op). Every α ∈ HHn−2(A) yields
a deformation Πn(A,α) called a deformed Calabi-Yau completion of A: Since
HHn−2(A) ' H0HomAe(DA[n− 1], A[1]), then α is represented by some 0-cocycle
c : DA[n− 1]→ A[1]; Then, Πn(A,α) is the unique dg algebra such that

• it has the same underlying graded algebra as Πn(A),
• its differential extends the one of A,
• if dA ∈ DA[n− 1], then its differential in Πn(A,α) is the sum of its differ-

ential in DA[n− 1] and of c(dA).
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Πn(A) is n-Calabi-Yau (see [21]), and so is Πn(A,α) if A is finitely cellular and c
lifts to the negative cyclic homology of A (see [39]).

In this section, H is a Hopf algebra with Van den Bergh duality in dimension
d and A is a homologically smooth H-module dg algebra. Denote A]H by Λ. Let
n ∈ Z. Let σ = S2 ◦ Ξr∫

`
◦S . Let DA be a cofibrant left dg ∆1-module such that

DA ' RHomAe(A,A
e) in D(Ae). In particular, DA is cofibrant in C(Ae) (see the

proof in 5.3.2). Until the end of the section, Πn(A) and TA(DA[n−1]) are identified.

Recall that, for every ` > 1, the dg A-bimodule D
⊗
A
`

A is HS2` -equivariant (see 4.5.2).
In particular, TA(DA[n− 1]) is a left dg H-module. Denote DA]

σH[−d] by DΛ.

Lemma. DΛ is a cofibrant replacement of RHomΛe(Λ,Λ
e) in C(Λe).

Proof. Following 5.5.2, it is sufficient to prove that DA]
σH is cofibrant in C(Λe).

Since DA is cofibrant in C(∆1), this follows from the isomorphism proved in 4.2.2.
�

Until the end of the section, Πn+d(Λ) and TΛ(DΛ[n+d−1]) are identified. Note
that DΛ[n+ d− 1] = DA]

σH[n− 1].

6.1. The Calabi-Yau completion of A]H. The dg algebra Πn(A)] σ
∗
H was de-

fined in 4.5.2. It has TA(DA[n − 1]) ⊗H as underlying complex, it contains A]H
as a dg subalgebra, and its product is given by (4.5.2.2).

Proposition. (1) There is an isomorphism of dg algebras Πn(A)] σ
∗
H

∼−→
Πn+d(A]H).

(2) If H is involutive and Calabi-Yau, then Πn(A) is an H-module dg algebra
and Πn(A)]H ' Πn+d(A]H).

Proof. (1) This follows from the considerations in 4.5.2.
(2) Following 3.5.3,

∫
`

= ε, and hence σ = IdH . Thus (2) follows from (1). �

Note that the isomorphism Πn(A)] σ
∗
H → Πn+d(A]H) in the previous result is

uniquely determined by the following properties
• it extends the identity mappings A→ A and H → H,
• it maps every dA ∈ DA[n− 1] to dA ⊗ 1 ∈ DΛ[n+ d− 1].

6.2. Deformed Calabi-Yau completions of A]H. This section gives some de-
scriptions of the deformed Calabi-Yau completions of A]H.

6.2.1. For this purpose, the following lemma relates the cohomology classes in
HHn+d−2(Λ) to Hochschild cohomology classes of A.

Lemma. The mapping c 7→ c|DA⊗1 yields an isomorphism from HomΛe(DA]
σH,Λ)

to the subcomplex of HomAe(DA,Λ) consisting of those c satisfying the identity

(6.2.1.1) c(h ⇀ d) = h1c(d)

∫
`

(h2)S3(h3) .

Proof. Note that every dg Λe-module is a dg ∆1-module by restriction-of-scalars
along (4.1.0.3). By adjunction, there is an isomorphism

HomΛe(DA]
σH,Λ) ' Hom∆1

(DA,HomΛe(Λ⊗ ϕΛ,Λ)) ,

where ϕ ∈ Autdg−alg(Λ) is defined by ϕ(ah) = aσ(S−2(h)) (see 4.2.2). Moreover,
the dg Λe-module HomΛe(Λ ⊗ ϕΛ,Λ) identifies with Λϕ. Finally, 4.3 yields that
Hom∆1(DA,Λ

ϕ) is the subcomplex of HomAe(DA,Λ) consisting of those c satisfying
the identity

c(h ⇀ d) = h1c(d)ϕ(S3(h2)) .

Note that ϕ(S3(h)) = σ(S(h)) = S3(h2)
∫
`
(S2(h1)) = S3(h2)

∫
`
(h1). Whence the

conclusion of the lemma. �
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Note that the inverse of the isomorphism established in the previous lemma
maps every c to the morphism DA]

σH → Λ , d ⊗ ` 7→ c(d)`. Moreover, this
lemma identifies HHn+d−2(Λ) with the 0-th cohomology space of the subcomplex
of HomAe(DA[n − 1],Λ[1]) consisting of those morphisms c satisfying the identity
(6.2.1.1).

6.2.2. In general, a deformed Calabi-Yau completion of A]H may not be expressed
in terms of one of A. Instead, it may be related to a deformation of Πn(A)]σ

∗
H.

This deformation is determined by the cocycle introduced by the following lemma.
Let α ∈ HHn+d−2(Λ) be represented by c ∈ Z0HomAe(DA[n−1],Λ[1]) (in the sense
of 6.2.1) satisfying the identity (6.2.1.1).

Lemma. There exists a unique degree 1 square-zero derivation ∂ on the graded
algebra Πn(A)] σ

∗
H such that

(a) ∂|Λ is the differential of Λ,
(b) ∂|DA[n−1] takes its values in Λ[1]⊕DA[n] and is equal to the sum of c : DA[n−

1]→ Λ[1] and the differential of DA[n− 1].

Proof. Since the graded algebra Πn(A)] σ
∗
H is generated by Λ and DA, the given

conditions force ∂ to be unique when it exists. Note the following identities in Λ

c(h1 ⇀ d)σ(h2) = h1c(d)
∫
`
(h2)S3(h3)σ(h4)

= h1c(d)
∫
`
(h2)S3(h3)S2(h4)

∫
`
(S(h5))

= hc(d) .

Given that c is Ae-linear and that σ satisfies the identity σ(h)1⊗σ(h)2 = S2(h1)⊗
σ(h2), these considerations entail that there exists a degree 1 derivation ∂ on the
graded algebra Πn(A)] σ

∗
H satisfying (a) and (b). Since c is a cocycle, then ∂2 =

0. �

6.2.3. The following proposition expresses the deformed Calabi-Yau completions
of A]H as deformations of Πn(A)] σ

∗
H.

Proposition. Let α ∈ HHn+d−2(Λ) be represented by the cocycle DΛ[n+ d− 1]→
Λ[1] , d ⊗ ` 7→ c(d) ⊗ ` where c ∈ Z0HomAe(DA[n − 1],Λ[1]) satisfies the identity
(6.2.1.1). Then, Πn+d(A]H,α) ' (Πn(A)] σ

∗
H, ∂) as dg algebras, where ∂ is as in

6.2.2.

Proof. Following 6.1, there exists an isomorphism of dg algebras ϕ : TA(DA[n −
1])] σ

∗
H → TΛ(DΛ[n+d−1]) extending the identity mappings A→ A and H → H

and mapping every dA ∈ DA[n−1] to dA⊗1 ∈ DΛ[n+d−1]. Comparing the differ-
entials of dA and dA⊗ 1 in (Πn(A)] σ

∗
H, ∂) and Πn+d(A]H,α), respectively, yields

that ϕ is also an isomorphism of dg algebras (Πn(A)] σ
∗
H, ∂)→ Πn+d(A]H,α). �

6.3. Smash products with involutory Hopf algebras. Assume that S2 = IdH
and H is Calabi-Yau. In this particular case, the following result shows that every
deformed Calabi-Yau completion of A is an H-module dg algebra, and that the
resulting smash product is a deformed Calabi-Yau completion of A]H.

Indeed,
∫
`

= ε (see 3.5.3) and σ = IdH . Then, any H-linear cocycle c : DA[n −
1] → A[1] may be considered as lying in Z0HomAe(DA[n − 1],Λ[1]) and, as such,
satisfies the identity (6.2.1.1); In such a situation, the corresponding cocycle (see
6.2.1) in HomΛe(DΛ[n+ d− 1],Λ[1]) is denoted by c.

Proposition. Let H be an involutive Hopf algebra which is moreover Calabi-Yau
in dimension d. Let A be a homologically smooth H-module dg algebra. Let n ∈ Z.
Let c ∈ Z0HomAe(DA[n − 1], A[1]) be H-linear. Denote by α ∈ HHn−2(A) and
α ∈ HHn+d−2(Λ) the cohomology classes of c and c, respectively. Then Πn(A,α) is
an H-module dg algebra and Πn(A,α)]H ' Πn+d(A]H,α).
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Proof. Denote by δ the differential of DA[n− 1]. Hence, δ ⊗ IdH is the differential
of DΛ[n+d−1]. Note that c is given by c(dA⊗`) = c(dA)⊗` for every dA⊗` ∈ DΛ.

The dg algebra Πn(A,α) is uniquely determined by the following properties
• it has the same underlying graded algebra as Πn(A),
• its differential extends the one of A,
• if dA ∈ DA[n− 1], then its differential is δ(dA) + c(dA).

Since Πn(A) is an H-module dg algebra (see 6.1, part (2)) and since c is H-linear,
then Πn(A,α) is an H-module dg algebra.

The dg algebra Πn+d(A]H,α) is uniquely determined by the following properties
• it has the same underlying graded algebra as Πn+d(A]H),
• its differential extends the one of A]H,
• if dA⊗` ∈ DΛ[n+d−1], then its differential is (δ⊗IdH)(dA⊗`)+c(dA⊗`) =
δ(dA)⊗ `+ c(dA)⊗ `.

Now, the isomorphism of dg algebras Πn(A)]H → Πn+d(A]H) of 6.1 (part (2))
extends the identity mappings A → A and H → H and it maps every dA ∈
DA[n−1] to dA⊗1 ∈ DΛ[n+d−1]. Hence, it also is an isomorphism of dg algebras
Πn(A,α)]H → Πn+d(A]H,α). �

7. Application to Van den Bergh and Calabi-Yau duality

Assume that A is a k-algebra. This section studies when Λ = A]H has Van den
Bergh duality (in Section 7.1) or is skew Calabi-Yau (in Section 7.3). In the latter
case a Nakayama automorphism is given for Λ. This is based on the notion of weak
homological determinant given in Section 7.2. This notion extends the definition
of homological determinant when the latter is not defined properly. Finally, a
characterisation of when Λ is Calabi-Yau is given in Section 7.4 when A is connected
(N-)graded and H is Calabi-Yau.

7.1. The inverse dualising bimodule. Following 5.4, when the antipode of H is
invertible, the cohomology space ExtiAe(A,A

e) is an HS2-equivariant A-bimodule
(equivalently a left ∆1-module). Recall (3.5.1) that a Hopf algebra with Van den
Bergh duality has an invertible antipode. Note that in the particular case where H
is Calabi-Yau, it is proved in [12, Theorem 17] that if A has Van den Bergh duality
then so does Λ.

Proposition. Let A be an H-module algebra where H is a Hopf algebra. Assume
that the antipode S is invertible and that both A and H are homologically smooth.
Then, the following assertions are equivalent
(i) A and H have Van den Bergh duality,
(ii) Λ has Van den Bergh duality.
When these conditions are satisfied and n, d are the corresponding homological
dimensions of A and H, respectively, then Λ has dimension n+ d and

Extn+d
Λe (Λ,Λe) ' ExtnAe(A,A

e)]
(S−2◦Ξr∫

`
)−1

H .

Proof. The implication (i)⇒ (ii) follows from 5.5.2 and 4.6.1.
Conversely, assume that Λ has Van den Bergh duality. There exist maximal

integers n and d such that ExtnAe(A,A
e) and ExtdH(Hk, H) are nonzero. Denote

ExtnAe(A,A
e), ExtdH(Hk, H) and Extn+d

Λe (Λ,Λe) by DA, E and DΛ, respectively.
The proof that A has Van den Bergh duality proceeds according the following steps
(a) Λ has Van den Bergh duality in dimension n + d, moreover ExtiAe(A,A

e) 6= 0

if and only if i = n, and ExtjH(Hk, H) 6= 0 if and only if j = d,
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(b) given any left Λ-module M , there exists an isomorphism of left Λ-modules
DΛ ⊗

Λ
M ' (DA ⊗

A
M) ⊗ E where the module structure of the right hand-

side term is given by a(d ⊗ m ⊗ e) = ad ⊗ m ⊗ e and h(d ⊗ m ⊗ e) = h1 ⇀
d⊗ S2(h2)m⊗ e ↼ S−1(h3),

(c) H has Van den Bergh duality,
(d) A has Van den Bergh duality.

Step (a) - Taking cohomology in the description of RHomΛe(Λ
e,Λ) (5.5.1)

shows that n+d is the largest natural integer such that Extn+d
Λe (Λ,Λe) 6= 0. There-

fore, Λ has Van den Bergh duality in dimension n+d. The same consideration then
shows that ExtiAe(A,A

e) = 0 if i 6= n and ExtjH(Hk, H) = 0 if j 6= d. Using 5.5.1,
the Λ-bimodule DΛ is identified with DA ⊗H ⊗E for the structure of Λ-bimodule
described in (5.5.1.1).

Step (b) - In view of the structure of right Λ-module ofDΛ = DA⊗H⊗E, there
are well-defined linear mappings Φ: (DA⊗

A
M)⊗E → DΛ⊗

Λ
M and Ψ: DΛ⊗

Λ
M →

(DA⊗
A
M)⊗E given by Φ(d⊗m⊗e) = (d⊗1⊗e)⊗m and Ψ(d⊗`⊗e)⊗m = d⊗`m⊗e.

Note the identity (d⊗ `⊗ e)⊗m = (d⊗1⊗ e)⊗ `m in DΛ⊗
Λ
M . Therefore Φ and Ψ

are inverse to each other. The claim of Step (b) is therefore proved by transporting
the left Λ-module structure of DΛ ⊗

Λ
M to (DA ⊗

A
M)⊗ E using Φ and Ψ.

Step (c) - Let M = D−1
Λ ⊗

Λ
A ∈ mod(Λ). From the previous step, it follows

that A ' (DA ⊗
A
M)(dimk E) in mod(A). Thus, dimkE <∞. Using 3.4.1, 3.5.1 and

step (a) yields that H has Van den Bergh duality in dimension d.
Step (d) - It suffices to prove that DA is invertible as an A-bimodule. Since

H has Van den Bergh duality, it follows from 5.5.2 that DΛ ' DA]
σH where

σ = (S−2 ◦ Ξr∫
`
)−1. Now, applying 4.6.2 yields the desired conclusion. �

More explicitly, Extn+d
Λe (Λ,Λe) is isomorphic to the vector space ExtnAe(A,A

e)⊗
H endowed with the following structure of Λ-bimodule:

(7.1.0.1)
a(d⊗ `)b = (ad(`1 ⇀ b))⊗ `2
h(d⊗ `)k = (h1 ⇀ d)⊗ (S−2 ◦ Ξr∫

`
)−1(h2)`k .

7.2. (Weak) homological determinants. Assume that the antipode of H is in-
vertible, that A has Van den Bergh duality in dimension n, and that ExtnAe(A,A

e)
is free of rank one in mod(A) (for instance, A is skew Calabi-Yau). Weak homo-
logical determinants are introduced here to express a Nakayama automorphism for
Λ. When the homological determinant is well-defined (like in [23, 18, 30]), the two
notions coincide.

Fix a free generator eA of the left A-module ExtnAe(A,A
e). It determines a

unique algebra homomorphism µA : A → A such that the following identity holds
in ExtnAe(A,A

e): eAa = µA(a)eA. When A happens to be skew Calabi-Yau in
dimension n, then µA is a Nakayama automorphism of A.

Denote by fA the morphism of left A-modules ExtnAe(A,A
e) → A defined by

fA(eA) = 1. Since ExtnAe(A,A
e) is an HS2 -equivariant A-bimodule (see 4.3, part

(5)), then HomA(ExtnAe(A,A
e), A) is an HS−2-equivariant A-bimodule in the sense

of 4.4.1 (part (1)).
This setting is assumed until the end of the section.

Example. Consider the situation of the example in 4.1. Keep the notation and
material introduced there and in 5.4. Then A = k[x1, . . . , xn] is n-Calabi-Yau and



36 PATRICK LE MEUR

eA may be taken equal to the cohomology class of the cochain

ϕA : A⊗ ΛnV ⊗A → Ae

a⊗ x1 ∧ · · · ∧ xn ⊗ b 7→ a⊗ b .
The Nakayama automorphism of A corresponding to eA is IdA. Indeed, for a given
i ∈ {1, . . . , n}, the coordinate cochain

ϕi : A⊗ Λn−1V ⊗A→ Ae

associated with the term 1 ⊗ x1 ∧ · · · x̂i · · · ∧ xn ⊗ 1 of the canonical basis of A ⊗
Λn−1V ⊗A has coboundary (−1)n−1ϕi ◦ dK , which is given by

A⊗ ΛnV ⊗A → A⊗A
1⊗ x1 ∧ · · · ∧ xn ⊗ 1 7→ (−1)n+i(xi ⊗ 1− 1⊗ xi) ;

This is (−1)n+i(ϕAxi − xiϕA); Therefore ϕAxi and xiϕA are cohomologous, and
hence eAxi = xieA.

Given X ∈ g, then X ⇀ eA is represented by ∂X(ϕA) which is such that (see
(5.4.0.2))

∂X(ϕA)(1⊗ x1 ∧ · · · ∧ xn ⊗ 1) = −ϕA(∂X(1⊗ x1 ∧ · · · ∧ xn ⊗ 1))
= −

∑
i ∂X(xi)

′
i ⊗ ∂X(xi)

′′
i .

Thus, X ⇀ eA = −
∑
i ∂X(v)′′i ∂X(v)′i eA and, writing div for the usual divergence,

(7.2.0.1) X ⇀ eA = −div(∂X) eA .

7.2.1. The definition of the weak homological determinant is made possible by the
following technical result.

Lemma. In the setting introduced previously,
(1) fA is a free generator of the right A-module HomA(ExtnAe(A,A

e), A),
(2) Let λ,w : H → A be the mappings such that the following identities hold in

ExtnAe(A,A
e) and HomA(ExtnAe(A,A

e), A), respectively{
h ⇀ eA = λ(h)eA
h ⇀ fA = fAw(h) .

Then, they are connected by the following relations{
w(h) = S−2(h2) ⇀ λ(S−3(h1))
λ(h) = h1 ⇀ (w(S3(h2))) .

(3) λ satisfies the identity λ(hk) = (h1 ⇀ λ(k))λ(h2) in A.
(4) w satisfies the identity w(hk) = w(h1)(S−2(h2) ⇀ w(k)) in A.

Proof. (1) follows from the definition of fA.
(2) Since ExtnAe(A,A

e) is free of rank one in mod(A), the mappings λ and µ
exist and are unique. The third equality is due to the following computation

(h ⇀ fA)(eA) = (fAw(h))(eA) = fA(eA)w(h) = w(h)
=

4.4.1 part (1)
S−2(h2) ⇀ fA(S−3(h1) ⇀ eA)

= S−2(h2) ⇀ fA(λ(S−3(h1))eA)
= S−2(h2) ⇀ λ(S−3(h1)) .

The fourth equality is due to the following computation

h1 ⇀ w(S3(h2)) = h1 ⇀ (S(h2) ⇀ λ(h3)) = λ(h) .

(3) The equality is due to the following computation,

(hk) ⇀ eA = h ⇀ (k ⇀ eA) = h ⇀ (λ(k)eA) = (h1 ⇀ λ(k))(h2 ⇀ eA)
= ((h1 ⇀ λ(k))λ(h2))eA .
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(4) The equality is due to the computation below

h ⇀ (k ⇀ fA) = (hk) ⇀ fA = fAw(hk)
= h ⇀ (fAw(k))
=

4.4.1 part (1)
(h1 ⇀ fA)(S−2(h2) ⇀ w(k))

= fAw(h1)(S−2(h2) ⇀ w(k)) .

�

7.2.2. Apply 7.2.1 and call the weak homological determinant associated with
eA the linear mapping whdet : H → A which satisfies the following identity in
HomA(ExtnAe(A,A

e), A)
h ⇀ fA = fAwhdet(h) .

Whence the following identity in ExtnAe(A,A
e)

(7.2.2.1) h ⇀ eA = (h1 ⇀ whdet(S3(h2)))eA .

The weak homological determinant is compatible with the multiplicative structure
of H and A in the following sense

(7.2.2.2) whdet(hk) = whdet(h1)(S−2(h2) ⇀ whdet(k)) .

In view of expressing a Nakayama automorphism of Λ, denote by θwhdet the mapping
H → Λ defined by

(7.2.2.3) θwhdet(h) = whdet(S2(h1))h2 .

According to (7.2.2.2), this is an algebra homomorphism from H to Λ.

Example. Consider the situation of the example in 4.1 and keep the notation and
material introduced there, in 5.4 and in 7.2. Then, the mapping λ : H → A of 7.2.1
(part (2)) is given by λ(1) = 1 and (see (7.2.0.1))

(∀X ∈ g) λ(X) = −div(∂X) .

Therefore, whdet : H → A is given by whdet(1) = 1 and (see 7.2.1, part (2))

(7.2.2.4) (∀X ∈ g) whdet(X) = div(X) .

And hence θwhdet : H → Λ is given by θwhdet(1) = 1 and

(7.2.2.5) θwhdet(X) = div(∂X) +X .

7.2.3. Distinct choices for eA ∈ ExtnAe(A,A
e) may yield distinct weak homological

determinants related to each other as follows (because HomA(ExtnAe(A,A
e), A) is

an HS−2 -equivariant A-bimodule, see 4.4.1).

Lemma. Let e′A be free generator of the left A-module ExtnAe(A,A
e) and let whdet′

be the associated weak homological determinant. Let a0 ∈ A× be such that e′A =

a0eA. Then, whdet′(h) = a0whdet(h1)(S−2(h2) ⇀ a−1
0 ) for all h ∈ H.

7.2.4. If A is connected graded and eA is chosen to be homogeneous, then whdet
is equal to the homological determinant already developed in [18, 23, 30]. Be-
sides, distinct choices for eA (with the homogeneity requirement) yield the same
homological determinants and the same Nakayama automorphisms of A. See [30,
Definition 3.7 and Remark 3.8] for details, keeping in mind that RdΓmA(A)∗ there
is HomA(ExtnAe(A,A

e), A) here.
In general, k · eA is an H-submodule of ExtnAe(A,A

e) if and only if λ and whdet
take values in k. In this case, and following the spirit of [30, Definition 3.7], the
action of H on A is said to have a homological determinant and whdet is denoted
by hdet. In particular, hdet : H → k is an algebra homomorphism (see (7.2.2.2)),
hdet ◦ S2 = hdet, the identity h ⇀ eA = hdet(S(h))eA holds in ExtnAe(A,A

e), and
θhdet = Ξ`hdet.
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7.3. Nakayama automorphisms of A]H. This section gives necessary and suf-
ficient conditions for Λ = A]H to be skew Calabi-Yau. In such a case, it gives a
Nakayama automorphism for Λ. Recall that the antipode is invertible as soon as
H has Van den Bergh duality (3.5.1).

7.3.1. The following result gives a sufficient condition for Λ to be skew Calabi-Yau.
Note that it was first established in [30, Theorem 4.1] assuming that A is connected
graded and H is finite dimensional. See also [40] for similar conclusions about Hopf
Galois objects of skew Calabi-Yau Hopf algebras.

Proposition. Let A be an H-module algebra where H is a Hopf algebra. Assume
that A and H are skew Calabi-Yau in dimension n and d, respectively. Then, Λ =
A]H is skew Calabi-Yau in dimension n+d and admits a Nakayama automorphism
µΛ given by

(7.3.1.1) µΛ = µA](θwhdet ◦ µH)

where µA is the Nakayama automorphism of A and whdet : H → A is the weak
homological determinant associated to any generator of ExtnAe(A,A

e) in mod(A),
and µH = S−2 ◦ Ξr∫

`
.

If, moreover, the action of H on A has a homological determinant (7.2.4), then

(7.3.1.2) µA]H = µA](Ξ
`
hdet ◦ µH) .

Proof. First, note (7.1) that Λ has Van den Bergh duality in dimension n+ d and
Extn+d

Λe (Λ,Λe) ' ExtnAe(A,A
e)] µ

−1
H H. Let eA ∈ ExtnAe(A,A

e) be a free gener-
ator in mod(A) satisfying the identity eAa = µA(a)eA. Since Extn+d

Λe (Λ,Λe) '
ExtnAe(A,A

e)] µ
−1
H H in mod(Λop), then eA ⊗ 1 is a free generator of Extn+d

Λe (Λ,Λe)

in mod(Λop). Since Extn+d
Λe (Λ,Λe) ' HµH ]ExtnAe(A,A

e) in mod(Λ) (see 4.2.3),
then eA ⊗ 1 is also a free generator of Extn+d

Λe (Λ,Λe) in mod(Λ). Hence, in order
to prove the result, it suffices to show that the mapping µΛ : Λ → Λ satisfies the
following identity in ExtnAe(A,A

e)] µ
−1
H H

(eA ⊗ 1)(ah) = µΛ(ah)(eA ⊗ 1) .

This is done in the following computation
(eA ⊗ 1)(ah) = (eAa⊗ h)

= µA(a)(eA ⊗ h)
=

(4.2.1.2)
µA(a)µH(h2)(S−3(h1) ⇀ eA ⊗ 1)

= µA(a)µH(h)2(S−1(µH(h)1) ⇀ eA ⊗ 1)
=

(7.2.2.1)
µΛ(ah)(eA ⊗ 1) .

The description of µA]H when the action of H on A has a homological determinant
follows from the discussion in 7.2.4. �

Example. Let A = k[x1, . . . , xn] and let g be a d-dimensional Lie algebra. Let
g → Derk(A) be a Lie algebra homomorphism inducing an action of H = U(g) on
A. Denote by ∂X : A→ A the derivation associated with X for every X ∈ g. Then,
(see [38, Corollary 2.2] or (3.1.0.1)) µH is given by

µH(X) = X + Tr(adX) .

And Λ = A]H has a Nakayama automorphism µΛ : Λ→ Λ such that, for all a ∈ A
and X ∈ g (see 7.2 and (7.2.2.5))

(7.3.1.3) µΛ(a) = a
µΛ(X) = X + div(∂X) + Tr(adX) .

Note that µΛ(X) need not lie in H.
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7.3.2. The following result is a partial converse to the implication proved in 7.3.1.

Proposition. Let H be a Hopf algebra with invertible antipode. Let A be an H-
module algebra. Assume that A and H are homologically smooth and that A]H is
skew Calabi-Yau. Then, H is skew Calabi-Yau. If, moreover, the action of H on
A has a homological determinant, then A is skew Calabi-Yau as well.

Proof. Note that A and H have Van den Bergh duality, say in dimension n and d,
respectively, and hence the dimension of Λ (as a skew Calabi-Yau algebra) is n+ d
(see 7.1). In particular, H is skew Calabi-Yau (see 3.5.1). Let µH = S−2 ◦ Ξr∫

`
.

Then, Extn+d
Λe (Λ,Λe) ' ExtnAe(A,A

e)] µ
−1
H H in mod(Λe) (see 7.1).

Applying − ⊗
Λ
A : mod(Λ) → mod(A) to the free of rank one left Λ-module

Extn+d
Λe (Λ,Λe) yields that ExtnAe(A,A

e) is free of rank one in mod(A) (see 7.1).
Therefore, a weak homological determinant is defined (in the sense of 7.2.1).

Assume that a homological determinant hdet : H → k exists (in the sense of
7.2.4), say associated to a free generator eA ∈ ExtnAe(A,A

e) in mod(A). In partic-
ular, θhdet = Ξ`hdet. Let µA : A → A be the algebra homomorphism such that the
identity eAa = µA(a)eA holds in ExtnAe(A,A

e). In order to prove that A is skew
Calabi-Yau, it is convenient to prove that µA is an automorphism of A. For this
purpose, the following arguments first prove that µA](Ξ`hdet ◦ µH) is an automor-
phism of Λ. Part of the considerations made in the proof of 7.3.1 are valid in the
present situation. In particular, eA⊗ 1 is a free generator of ExtnAe(A,A

e)] µHH in
mod(Λ), and the following identity holds true (for λ ∈ Λ)

(eA ⊗ 1)λ = (µA](Ξ
`
hdet ◦ µH))(λ)(eA ⊗ 1) .

Since Λ is skew Calabi-Yau, the lemma in 2.3.2 applies to D = Extn+d
Λe (Λ,Λe) '

ExtnAe(A,A
e)] µ

−1
H H. It yields that µA](Ξ`hdet ◦ µH) : Λ → Λ is an automorphism.

In particular
• µA is an injective mapping,
• composing with 1⊗ ε : Λ→ A yields that µA is a surjective mapping.

Thus, µA ∈ Autk−alg(A). Since the mapping

AµA → ExtnAe(A,A
e)

a 7→ aeA

is an isomorphism in mod(Ae), then A is skew Calabi-Yau. �

7.4. When is A]H Calabi-Yau? The algebra A is Calabi-Yau if and only if it
is skew Calabi-Yau and any Nakayama automorphism is inner (equivalently, the
identity map of A is a Nakayama automorphism). Using 7.3, this section gives
necessary and sufficient conditions for Λ to be Calabi-Yau. Unfortunately, the
techniques used here require restrictive hypotheses on A, that is, A is augmented
or connected graded.

7.4.1. Recall that the augmented ideal of an augmented H-module algebra is al-
ways assumed to be an H-submodule.

Lemma. Assume that A is an augmented H-module algebra. Denote by p : A→ k

the augmentation. Keep the hypotheses made in the proposition in 7.3.1 as well as
the notation introduced there. Assume, moreover, that Λ is Calabi-Yau. Then,

(1) p(whdet(h1))
∫
`
(h2) = ε(h) for all h ∈ H;

(2) if the action of H admits a homological determinant, then hdet(h1)
∫
`
(h2) =

ε(h) for all h ∈ H;
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(3) if A is connected graded, then

(7.4.1.1) (∃hA ∈ H×) (∀a ∈ A) µA(a) = hA ⇀ a =
in Λ

hAah
−1
A .

Proof. (1) The Nakayama automorphism (µΛ) of Λ given in 7.3.1 is inner because
Λ is Calabi-Yau. Hence, there exists λ ∈ Λ× such that the following identities hold
in Λ

(7.4.1.2)
{
µΛ(h) = θwhdet ◦ µH(h) = λhλ−1

µΛ(a) = µA(a) = λaλ−1 .

Denote by M the kernel of p. Since M ⊗ H is a two-sided ideal of Λ, there exist
k, k′ ∈ H such that λ ∈ k+M⊗H and λ−1 ∈ k′+M⊗H. Since λ is invertible, then
k is invertible in H and k′ is its inverse. Let h ∈ H; Then, λhλ−1 ∈ khk−1 +M⊗H;
Consequently (p⊗ ε)(λhλ−1) = ε(h); Now, (7.4.1.2) entails that (p⊗ ε)(λhλ−1) =
(p⊗ ε) ◦ θwhdet ◦ µH(h); Note that (p⊗ ε) ◦ θwhdet = p ◦ whdet ◦ S2 (see (7.2.2.3));
Since µH = S−2 ◦ Ξr∫

`
, then ε(h) = p(whdet(h1))

∫
`
(h2).

(2) The additional hypothesis means that whdet takes its values in k, and (by
definition) hdet = whdet. The conclusion therefore follows from (1).

(3) Assume that A is connected graded. Then, there exists ` ∈ Z such that
ExtnAe(A,A

e) ' AµA(`) as graded A-bimodules. In particular, µA : A → A is
homogeneous. Let a ∈ A be homogeneous. Since A is connected graded, then
Λ× = H×, and hence µA(a) = kak−1 = (k1 ⇀ a)k2k

−1 in Λ; Applying IdA⊗ε : Λ→
A yields the equality µA(a) = ε(k−1)k ⇀ a. Thus (7.4.1.1) holds true taking
hA = ε(k−1)k. �

Keep the setting of part (3) in the previous result. Since µA is homogeneous,
then µΛ(An ⊗H) = An ⊗H for every n ∈ N. Therefore, in the previous proof, one
may assume that λ = hA when A is connected graded.

7.4.2. The following result determines when A]H is Calabi-Yau assuming that H
is Calabi-Yau and A is connected graded.

Theorem. Let H be a Calabi-Yau Hopf algebra. Let A be a connected graded H-
module algebra. Let h0 ∈ H× be such that S−2 is the inner automorphism of h0

(see 3.5.3). Then, Λ = A]H is Calabi-Yau if and only if the following conditions
hold
(a) A is skew Calabi-Yau,
(b) hdet = ε,
(c) (∃kA ∈ Z(H×))(∀a ∈ A) µA(a) = (h0kA) ⇀ a =

in Λ
(h0kA)a(h0kA)−1.

Proof. In order to prove the equivalence it may be assumed that A is skew Calabi-
Yau in the graded sense (see 7.2.4, 7.3.1, 7.3.2 and 2.3.3). Note that

∫
`

= ε due to
3.5.3 applied to Hop.

Assume that Λ is Calabi-Yau. Following 7.4.1 and the the final remark made
there, hdet = ε and there exists hA ∈ H× such that the following identities hold

Ξ`hdet ◦ µH(h) = hAhh
−1
A in H

µA(a) = hA ⇀ a in A
= hAah

−1
A in Λ .

Since hdet = ε and µH is given by • 7→ h0 • h−1
0 , the first identity implies that

h−1
0 hA ∈ Z(H×). Set kA = h−1

0 hA. Then, kA ∈ Z(H×) and kA satisfies the
identities µA(a) = (h0kA) ⇀ a in A and µA(a) = (h0kA)a(h0kA)−1 in Λ.

Conversely, assume that hdet = ε and that there exists kA ∈ Z(H×) such that
the identities µA(a) = (h0kA) ⇀ a and µA(a) = (h0kA)a(h0kA)−1 hold in A and Λ,
respectively. Then, the Nakayama automorphism of Λ given in 7.3.1 is inner (and
associated with h0kA ∈ Λ×). Therefore, Λ is Calabi-Yau. �
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7.4.3. The previous result simplifies as follows when A is assumed to be Calabi-Yau
(see [16, 26, 37]).

Corollary. Let H be a Calabi-Yau Hopf algebra. Let A be a connected graded H-
module algebra which is moreover Calabi-Yau. The following assertions are equiv-
alent
(i) A]H is Calabi-Yau,
(ii) hdet = ε.

Proof. Since A is connected graded and Calabi-Yau, then µA = IdA. The conclusion
therefore follows from 7.4.2. �

7.4.4. Combining the theorem in 7.4.2 and [14, Theorem 1.1] yields a proof of [30,
Conjecture 6.4] for connected graded Artin-Schelter regular algebras.

Corollary. Let A be an augmented skew Calabi-Yau algebra with Nakayama auto-
morphism µA. Then,

(1) p ◦ whdet(µA) = 1;
(2) if A is connected graded and µA is also graded, then hdet(µA) = 1.

Proof. Let H = kZ. It is Calabi-Yau and µA determines a structure of H-module
augmented algebra on A. According to [14, Theorem 1.1], A]H is Calabi-Yau.
Therefore, (1) follows from 7.4.1 (note that

∫
`

= ε according to 3.5.3), whereas (2)
follows from 7.4.2. �

8. Example: actions of Uq(sl2) on the quantum plane

Let q ∈ C×. Assume that q is not a root of unity. Let A be the quantum
plane Cq[x, y]. Let H be the quantum enveloping algebra Uq(sl2). Assume that
Cq[x, y] is endowed with a structure of Uq(sl2)-module algebra. This section applies
Section 7.3 to the computation of a Nakayama automorphism of Cq[x, y]]Uq(sl2).
For this purpose, Section 8.1 recalls known material on A andH, Section 8.2 endows
the Koszul resolution of A as a bimodule over itself with an action ofH so that it lies
in C(∆0), Section 8.3 computes the resulting action of H on Ext2

Ae(A,A
e) in terms

of the mapping λ introduced in 7.2.1, Section 8.4 computes the weak homological
determinant of the action of H on A, and Section 8.5 computes the Nakayama
automorphism. The computations are made according to the classification of the
actions of H on A made in [10].

8.1. Reminder on Uq(sl2) and on Cq[x, y]. As a C-algebra, Uq(sl2) is given by
generators E,F,K,K−1 and relations

KK−1 = 1 = K−1K, KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
.

The comultiplication, the counit and the antipode of Uq(sl2) are given by

∆(K) = K ⊗K, ∆(E) = E ⊗K + 1⊗ E, ∆(F ) = F ⊗ 1 +K−1 ⊗ F,
ε(K) = 1, ε(E) = 0, ε(F ) = 0,

S(K) = K−1, S(E) = −EK−1, S(F ) = −KF .
H is 2-Calabi-Yau (see [7, Theorem 3.3.2]), and hence (see 3.5.3 and its dual version)

(8.1.0.1)
∫
`

=

∫
r

= ε .

The quantum plane is the Koszul C-algebra A = Cq[x, y] = C〈x, y | yx = qxy〉.
Let V = C · x ⊕ C · y. Then, Cq[x, y] admits the following Koszul resolution as a
bimodule over itself ([35, Proposition 4.1])

(8.1.0.2) P : 0→ A⊗ Λ2V ⊗A d−→ A⊗ V ⊗A d−→ A⊗A→ 0
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where, using “|” instead of “⊗” for the ease of readability,

d(1|x|1) = x|1− 1|x
d(1|y|1) = y|1− 1|y

d(1|x ∧ y|1) = x|y|1− q−1|y|x− q−1y|x|1 + 1|x|y .

The algebra Cq[x, y] is (connected N-graded) Artin-Schelter regular (see [3, p. 172]),
and hence skew Calabi-Yau (see [30, Lemma 1.2]) with a Nakayama automorphism
as follows (see [29, p. 76]). Let ϕA ∈ HomAe(A ⊗ Λ2V ⊗ A,Ae) be the following
2-cocycle whose cohomology class in Ext2

Ae(A,A
e) is denoted by eA

(8.1.0.3) ϕA : A⊗ Λ2V ⊗A → A⊗A
1|x ∧ y|1 7→ 1⊗ 1 .

Then, eA is a free generator of the left A-module Ext2
Ae(A,A

e). By considering the
coboundaries of the two 1-cocycles A⊗ V ⊗A→ A⊗A defined by{

1|x|1 → 1⊗ 1
1|y|1 → 0

and
{

1|x|1 → 0
1|y|1 → 1⊗ 1,

respectively, it appears that eAx = q−1xeA and eAy = qyeA. Therefore, the
Nakayama automorphism µA of A corresponding to eA is given by

(8.1.0.4) µA(x) = q−1x and µA(y) = qy .

The actions of Uq(sl2) on Cq[x, y] are classified into six families with parameters
(see [10, Table 1] and Table 1 below). The figures in the first column of Table 1
serve as an internal reference for the corresponding action. Except for the first and
last case, the action does not preserve the augmentation ideal of Cq[x, y]. Therefore
Cq[x, y]]Uq(sl2) may be non augmented and non connected graded.

case actions of E, F,K on x, y parameters

0
K ⇀ x = ±x
E ⇀ x = 0
F ⇀ x = 0

K ⇀ y = ±y
E ⇀ y = 0
F ⇀ y = 0

∅

1
K ⇀ x = qx
E ⇀ x = 0

F ⇀ x = b−1
0 xy

K ⇀ y = q−2y
E ⇀ y = b0
F ⇀ y = −qb−1

0 y2
b0 ∈ C×

2
K ⇀ x = q2x

E ⇀ x = −qc−1
0 x2

F ⇀ x = c0

K ⇀ y = q−1y

E ⇀ y = c−1
0 xy

F ⇀ y = 0

c0 ∈ C×

3
K ⇀ x = q−2x
E ⇀ x = a0

F ⇀ x = −qa−1
0 x2 + ty4

K ⇀ y = q−1y
E ⇀ y = 0

F ⇀ y = −qa−1
0 xy + sy3

a0 ∈ C×
s, t ∈ C

4
K ⇀ x = qx

E ⇀ x = −qd−1
0 xy + sx3

F ⇀ x = 0

K ⇀ y = q2y

E ⇀ y = −qd−1
0 y2 + tx4

F ⇀ y = d0

d0 ∈ C×
s, t ∈ C

5
K ⇀ x = qx
E ⇀ x = 0

F ⇀ x = τ−1y

K ⇀ y = q−1y
E ⇀ y = τx
F ⇀ y = 0

τ ∈ C×

Table 1. Classification of the actions of Uq(sl2) on Cq[x, y]

8.2. Action of Uq(sl2) on the Koszul resolution Cq[x, y].

Lemma. There exists an action of Uq(sl2) on the Koszul resolution P of Cq[x, y]
such that

• P is complex of Uq(sl2)-equivariant Cq[x, y]-bimodules (or, P ∈ C(∆0)),
• the action on Cq[x, y] ⊗ Cq[x, y] is the natural one (h ⇀ (a ⊗ b) = h1 ⇀
a⊗ h2 ⇀ b),
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• if t1, t2 ∈ C× denote the scalars such that K ⇀ x = t1x and K ⇀ y = t2y
(see Table 1), then

K ⇀ 1|x|1 = t1|x|1 K−1 ⇀ 1|x|1 = t−1
1 |x|1

K ⇀ 1|y|1 = t2|y|1 K−1 ⇀ 1|y|1 = t−1
2 |y|1

K ⇀ 1|x ∧ y|1 = t1t2|x ∧ y|1 K−1 ⇀ 1|x ∧ y|1 = (t1t2)−1|x ∧ y|1

• the actions of E and F on 1|x|1, 1|y|1 and 1|x∧y|1 are such as in Table 2.

Action of
Table 1

Actions of E, F on the generators 1|x|1, 1|y|1 and 1|x∧y|1, (1| ∗ |1 is any such generator).

Case 0 E ⇀ 1| ∗ |1 = 0 F ⇀ 1| ∗ |1 = 0

Case 1

E ⇀ 1| ∗ |1 = 0

F ⇀ 1|x|1 = b−1
0 (x|y|1 + 1|x|y)

F ⇀ 1|y|1 = −qb−1
0 (y|y|1 + 1|y|y)

F ⇀ 1|x ∧ y|1 = −b−1
0 qy|x ∧ y|1

Case 2

E ⇀ 1|x|1 = −qc−1
0 (x|x|1 + 1|x|x)

E ⇀ 1|y|1 = c−1
0 (x|y|1 + 1|x|y)

E ⇀ 1|x ∧ y|1 = −c−1
0 q|x ∧ y|x

F ⇀ 1| ∗ |1 = 0

Case 3

E ⇀ 1| ∗ |1 = 0

F ⇀ 1|x|1 = −qa−1
0 (x|x|1 + 1|x|x) + t(y3|y|1 + y2|y|y + y|y|y2 + 1|y|y3)

F ⇀ 1|y|1 = −qa−1
0 (x|y|1 + 1|x|y) + s(y2|y|1 + y|y|y + 1|y|y2)

F ⇀ 1|x ∧ y|1 = −a−1
0 ((q + q3)x|x ∧ y|1 + q2|x ∧ y|x)

+s(q2|x ∧ y|y2 + y2|x ∧ y|1 + qy|x ∧ y|y)

Case 4

E ⇀ 1|x|1 = −qd−1
0 (x|y|1 + 1|x|y) + s(x2|x|1 + x|x|x + 1|x|x2)

E ⇀ 1|y|1 = −qd−1
0 (y|y|1 + 1|y|y) + t(x3|x|1 + x2|x|x + x|x|x2 + 1|x|x3)

E ⇀ 1|x ∧ y|1 = −d−1
0 (q2y|x ∧ y|1 + q3|x ∧ y|y + q|x ∧ y|y)

+s(q2x2|x ∧ y|1 + qx|x ∧ y|x + 1|x ∧ y|x2)
F ⇀ 1| ∗ |1 = 0

Case 5
E ⇀ 1|x|1 = 0 F ⇀ 1|x|1 = τ−1|y|1
E ⇀ 1|y|1 = τ |x|1 F ⇀ 1|y|1 = 0

E ⇀ 1|x ∧ y|1 = 0 F ⇀ 1|x ∧ y|1 = 0

Table 2. Actions of Uq(sl2) on the Koszul resolution of Cq[x, y]

Proof. For each h ∈ {E,F,K,K−1}, the action of h on Cq[x, y] ⊗ Cq[x, y], 1|x|1,
1|y|1 and 1|x ∧ y|1 given in the statement of the lemma may be extended to a
C-linear mapping

P → P
u 7→ h ⇀ u

in such a way that, for all g ∈ {x, y, x ∧ y}, and a, b.

h ⇀ (a|g|b) = (h1 ⇀ a)(h2 ⇀ (1|g|1))(h3 ⇀ b) .

Elementary (though tedious) computations show that this is a morphism of com-
plexes of vector spaces. In order to prove the lemma, it is therefore sufficient to
prove that, for all u ∈ {1|x|1, 1|y|1, 1|x ∧ y|1},
(a) K−1 ⇀ (K ⇀ u) = u = K ⇀ (K−1 ⇀ u),
(b) K ⇀ (E ⇀ u) = q2E ⇀ (K ⇀ u),
(c) K ⇀ (F ⇀ u) = q−2F ⇀ (K ⇀ u),
(d) E ⇀ (F ⇀ u)− F ⇀ (E ⇀ u) = 1

q−q−1 (K ⇀ u−K−1 ⇀ u).
The rest of the proof of the lemma explains why these equalities hold true.

Proof of (a). This follows from the definition of the actions of K and K−1.
Proof of (b) and (c). In case 0, the equalities may be checked directly. In the

other cases, denote by γ the relative integer such that K ⇀ u = qγu. Then, it can
be checked from Table 2 that E ⇀ u (or F ⇀ u) is either 0 or an eigenvector of
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the action of K with eigenvalue qγ+2 (or qγ−2), which proves the equality (b) (or,
(c), respectively).

Proof of (d). In case 0, the equality may be checked directly from Table 2.
Assume that the considered action is the one of case 1. Then, using that E ⇀

x = E ⇀ 1| ∗ |1 = 0,

E ⇀ (F ⇀ (1|x|1)) = b−1
0 E ⇀ (x|y|1 + 1|x|y)

= b−1
0 (1|x|1)(E ⇀ y)

= 1|x|1
F ⇀ (E ⇀ (1|x|1)) = 0

K ⇀ (1|x|1) = q|x|1
K−1 ⇀ (1|x|1) = q−1|x|1,

from which the considered equality may be checked directly when u = 1|x|1. Next,

E ⇀ (F ⇀ (1|y|1)) = −qb−1
0 E ⇀ (y|y|1 + 1|y|y)

= −qb−1
0 ((E ⇀ y)(K ⇀ (1|y|1)) + (1|y|1)(E ⇀ y))

= −(q−1 + q)|y|1
F ⇀ (E ⇀ (1|y|1)) = 0

K ⇀ (1|y|1) = q−2|y|1
K−1 ⇀ (1|y|1) = q2|y|1,

from which the considered equality may be proved directly when u = 1|y|1. Finally,

E ⇀ (F ⇀ (1|x ∧ y|1)) = −b−1
0 qE ⇀ (y|x ∧ y|1)

= −b−1
0 q(E ⇀ y)(K ⇀ (1|x ∧ y|1)

= −1|x ∧ y|1
F ⇀ (E ⇀ (1|x ∧ y|1)) = 0

K ⇀ (1|x ∧ y|1) = q−1|x ∧ y|1
K−1 ⇀ (1|x ∧ y|1) = q|x ∧ y|1,

from which the considered equality may be proved directly when u = 1|x ∧ y|1.
Now, assume that the considered action is the one of case 2. Note that, there

is an isomorphism of Hopf algebras between Uq(sl2) and Uq(sl2)op which exchanges
K and K−1 and exchanges E and F . Under this isomorphism, the action of case 2
corresponds to the one of case 1 provided that the following changes are made,

• exchange x and y, and next,
• transform each tensor a| ∗ |b into b| ∗ |a.

The previous considerations for case 1 therefore apply to case 2, and hence prove
the equality in the latter case.

Now assume that the considered action is the one of case 3. Then, using that
E ⇀ y = E ⇀ (1| ∗ |1) = 0,

E ⇀ (F ⇀ (1|x|1)) = −qa−1
0 E ⇀ (x|x|1 + 1|x|x)

+tE ⇀ (y3|y|1 + · · · )
= −qa−1

0 ((E ⇀ x)(K ⇀ (1|x|1)) + (1|x|1)(E ⇀ x))
= −(q + q−1)|x|1

F ⇀ (E ⇀ (1|x|1)) = 0
K ⇀ (1|x|1) = q−2|x|1

K−1 ⇀ (1|x|1) = q2|x|1,
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from which the considered equality may be checked directly when u = 1|x|1. Next,
E ⇀ (F ⇀ (1|y|1)) = −qa−1

0 E ⇀ (x|y|1 + 1|x|y)
+sE ⇀ (y2|y|1 + · · · )

= −qa−1
0 (E ⇀ x)(K ⇀ (1|y|1))

= −1|y|1
F ⇀ (E ⇀ (1|y|1)) = 0

K ⇀ (1|y|1) = q−1|y|1
K−1 ⇀ (1|y|1) = q|y|1,

from which the considered equality may be proved directly when u = 1|y|1. Finally,
E ⇀ (F ⇀ (1|x ∧ y|1)) = −a−1

0 E ⇀ ((q + q3)x|x ∧ y|1 + q2|x ∧ y|x)
+sE ⇀ (q2|x ∧ y|y2 + · · · )

= −a−1
0 ((q + q3)(E ⇀ x)(K ⇀ (1|x ∧ y|1))

+(q2|x ∧ y|1)(E ⇀ x))
= −(q−2 + 1 + q2)|x ∧ y|1

F ⇀ (E ⇀ (1|x ∧ y|1)) = 0
K ⇀ (1|x ∧ y|1) = q−3|x ∧ y|1

K−1 ⇀ (1|x ∧ y|1) = q3|x ∧ y|1,
from which the considered equality may be proved directly when u = 1|x ∧ y|1.

The equality in case 4 may be deduced from the one in case 3 the same way the
one in case 2 was deduced from the one in case 1.

To end with, when the considered action is the one of case 5, then the equality
may be checked directly from Table 2. �

8.3. The action of Uq(sl2) on Ext2
Cq [x,y]e(Cq[x, y],Cq[x, y]e).

Lemma. Let eA be the free generator of Ext2
Cq [x,y]e(Cq[x, y],Cq[x, y]e) introduced

in (8.1.0.3). Denote by λ the mapping Uq(sl2) → Cq[x, y] such that the identity
h ⇀ eA = λ(h)eA holds. Then, Table 3 describes the mapping λ.

Action of Table 1 Description of λ

Case 0
K 7→ 1
E 7→ 0
F 7→ 0

Case 1
K 7→ q
E 7→ 0

F 7→ b−1
0 q−1y

Case 2
K 7→ q−1

E 7→ c−1
0 x

F 7→ 0

Case 3
K 7→ q3

E 7→ 0

F 7→ a−1
0 (q−5 + q−3 + q−1)x− s(q−1 + q−3 + q−2)y2

Case 4
K 7→ q−3

E 7→ d−1
0 (q + 1 + q−2)y − s(q + q−1 + q−3)x2

F 7→ 0

Case 5
K 7→ 1
E 7→ 0
F 7→ 0

Table 3. The action of Uq(sl2) on Ext2
Cq [x,y]e(Cq[x, y],Cq[x, y]e)

Proof. Let ϕA be as in (8.1.0.3). For all h, then h ⇀ eA is the cohomology class
of h ⇀ ϕA, which is given by (5.4.0.1); In view of the considerations of 8.1, if∑
i ai⊗ bi is an element of Cq[x, y]e such that h ⇀ ϕA(1|x∧ y|1) =

∑
i ai⊗ bi, then
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h ⇀ ϕA equals
∑
i biϕAai, which is cohomologous to (

∑
i biµA(ai))ϕA, and hence

λ(h) =
∑
i biµA(ai). In order to determine λ(K), λ(E) and λ(F ), it is therefore

enough to determine (h ⇀ ϕA)(1|x ∧ y|1) for h ∈ {K,E, F}. For this purpose, the
following piece of notation is used for all h, k, a, b,

(h⊗ k) ⇀ (a⊗ b) = (h ⇀ a)⊗ (k ⇀ b) .

First consider λ(K). Using (5.4.0.1), and using the fact thatK−1 ⇀ (1|x∧y|1) ∈
C · (1|x ∧ y|1), then

(K ⇀ ϕA)(1|x ∧ y|1) = (K ⊗K) ⇀ ϕA(K−1 ⇀ (1|x ∧ y|1))
= ϕA(K−1 ⇀ (1|x ∧ y|1)) .

Therefore, if t1, t2 ∈ C× denote the scalars such that K ⇀ x = t1x and K ⇀
y = t2y, respectively, then (K−1 ⇀ ϕA)(1|x ∧ y|1) = (t1t2)−1|x ∧ y|1, and hence
λ(K) = (t1t2)−1. Whence the values of λ(K) given in Table 3.

Next, consider λ(E). Using (5.4.0.1) and the equality E ⇀ 1 = 0, and using
that K−1 ⇀ (1|x ∧ y|1) ∈ C · (1|x ∧ y|1), then

(E ⇀ ϕA)(1|x ∧ y|1) = (q2E ⊗ 1) ⇀ ϕA(1|x ∧ y|1)
−(K ⊗ 1) ⇀ ϕA((EK−1) ⇀ (1|x ∧ y|1))
+(K ⊗ E) ⇀ ϕA(K−1 ⇀ (1|x ∧ y|1))

= −(K ⊗ 1) ⇀ ϕA((EK−1) ⇀ (1|x ∧ y|1)) .

Now, use Table 2 in order to determine (E ⇀ ϕA)(1|x ∧ y|1). This is zero in cases
0, 1, 3 and 5; Therefore, λ(E) = 0 in these cases. In case 2, then (EK−1) ⇀
(1|x∧ y|1) = −c−1

0 |x∧ y|x, and hence (E ⇀ ϕA)(1|x∧ y|1) = c−1
0 ⊗ x; Accordingly,

λ(E) = c−1
0 x. And in case 4, then (EK−1) ⇀ (1|x ∧ y|1) equals

q−3(−d−1
0 (q2y|x∧y|1+q3|x∧y|y+q|x∧y|y)+s(q2x2|x∧y|1+qx|x∧y|x+1|x∧y|x2)),

and hence (E ⇀ ϕA)(1|x ∧ y|1) equals

q−3(d−1
0 (q4y ⊗ 1 + q3 ⊗ y + q ⊗ y)− s(q4x2 ⊗ 1 + q2x⊗ x+ 1⊗ x2));

Consequently

λ(E) = d−1
0 (q + 1 + q−2)y − s(q + q−1 + q−3)x2 .

Finally, consider λ(F ). Then,

(F ⇀ ϕA)(1|x ∧ y|1) = (1⊗ F ) ⇀ ϕA(1|x ∧ y|1)
−(1⊗K−1) ⇀ ϕA((KF ) ⇀ (1|x ∧ y|1))
+(q−2F ⊗K−1) ⇀ ϕA(K ⇀ (1|x ∧ y|1))

= −(1⊗K−1) ⇀ ϕA((KF ) ⇀ (1|x ∧ y|1)),

from which the value of λ(F ) is determined using considerations analogous to those
used in order to determine λ(E). �

8.4. Computation of the weak homological determinant.

Lemma. Let eA be the free generator of Ext2
Cq [x,y]e(Cq[x, y],Cq[x, y]e) introduced

in (8.1.0.3). Denote by whdet the weak homological determinant corresponding to
eA. Then, Table 4 gives the values of whdet on K, E and F . And Table 5 gives
the values of θwhdet on K, E and F .

Proof. Let λ be such as in 8.3. Recall from 7.2.1 and 7.2.2 that
• λ is characterised by the identity h ⇀ eA = λ(h)eA and it satisfies the

identity λ(hk) = h1 ⇀ λ(k)λ(h2),
• whdet is defined by whdet(h) = S−2(h2) ⇀ λ(S−3(h1)),
• θwhdet is defined by θwhdet(h) = whdet(S2(h1))h2.

Before proving the lemma, it is convenient to prove the following equalities first,
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Action of Table 1 Description of whdet

Case 0
K 7→ 1
E 7→ 0
F 7→ 0

Case 1
K 7→ q−1

E 7→ 0

F 7→ −q2b−1
0 y

Case 2
K 7→ q

E 7→ −q−1c−1
0 x

F 7→ 0

Case 3
K 7→ q−3

E 7→ 0

F 7→ s(1 + q2 + q4)y2 − a−1
0 (q + q3 + q4)x

Case 4
K 7→ q3

E 7→ s(q2 + 1 + q−2)x2 − d−1
0 (q2 + q + q−1)y

F 7→ 0

Case 5
K 7→ 1
E 7→ 0
F 7→ 0

Table 4. The values of whdet on K, E and F

Action of Table 1 Description of θwhdet

Case 0
K 7→ K
E 7→ E
F 7→ F

Case 1
K 7→ q−1K
E 7→ E

F 7→ qF − b−1
0 yK

Case 2
K 7→ qK

E 7→ E − qc−1
0 xK

F 7→ q−1F

Case 3
K 7→ q−3K
E 7→ E

F 7→ q3F + s(q−2 + 1 + q2)y2 − a−1
0 (q−1 + q + q2)x

Case 4
K 7→ q3K

E 7→ E + s(q4 + q2 + 1)x2K − d−1
0 (q4 + q3 + q)yK

F 7→ q−3F

Case 5
K 7→ K
E 7→ E
F 7→ F

Table 5. The values of θwhdet on K, E and F

(1) whdet(K) = λ(K−1) and θwhdet(K) = λ(K−1)K,
(2) whdet(K−1) = λ(K) and θwhdet(K

−1) = λ(K)K−1,
(3) whdet(E) = −q−2λ(E)λ(K−1) and θwhdet(E) = E − λ(E)λ(K−1)K,
(4) whdet(F ) = −q2λ(K)λ(F ) and θwhdet(F ) = λ(K)F − λ(K)λ(F ).

(1) Since λ(1) = 1 and λ(K) ∈ C, then λ(K−1) = λ(K)−1 and λ(K−1) ∈
C. Therefore, whdet(K) = K ⇀ λ(K−1) = λ(K−1), and hence θwhdet(K) =
whdet(K)K = λ(K−1)K.

(2) is proved using the same considerations.
(3) whdet(E) = S−2(E) ⇀ λ(1) +K ⇀ λ(S−3(E)). Note that S−2(E) = q−2E;

Moreover, since S(E) = −EK−1 and S(K) = K−1, then S−1(E) = −K−1E and
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S−3(E) = −q−2K−1E. Therefore,

whdet(E) = q−2E ⇀ 1− q−2K ⇀ λ(K−1E)
= −q−2K ⇀ (K−1 ⇀ λ(E)λ(K−1))
= −q−2λ(E)λ(K−1) (since λ(K−1) ∈ C).

Now,
θwhdet(E) = whdet(S2(E))K + whdet(1)E

= −λ(E)λ(K−1)K + E .

(4)

whdet(F ) = S−2(1) ⇀ λ(S−3(F )) + S−2(F ) ⇀ λ(S−3(K−1))
= q2λ(S−1(F )) + q2F ⇀ λ(K)
= q2λ(S−1(F )) (since λ(K) ∈ C).

Since S(F ) = −KF and S(K) = K−1, then S−1(F ) = −FK. Therefore,

whdet(F ) = −q2λ(FK)
= −q2(F ⇀ λ(K)λ(1) +K−1 ⇀ λ(K)λ(F ))
= −q2λ(K)λ(F ) (since λ(K), λ(1) ∈ C).

Now,
θwhdet(F ) = whdet(S2(F )) + whdet(S2(K−1))F

= q−2whdet(F ) + λ(K)F
= −λ(K)λ(F ) + λ(K)F .

Now, using equalities (1), (2), (3), and (4), it is possible to recover Table 4 and
Table 5 using Table 3, which proves the lemma. �

8.5. Description of the Nakayama automorphism.

Proposition. Let q ∈ C× be a non root of unity. Assume that Cq[x, y] is endowed
with a structure of Uq(sl2)-module algebra. Then, Cq[x, y]]Uq(sl2) is a skew Calabi-
Yau algebra with a Nakayama automorphism given by

x 7→ q−1x and y 7→ qy

and which values on K, E and F are given in Table 6.

Action of Table 1 Values of the Nakayama automorphism on K, E and F

Case 0
K 7→ K

E 7→ q−2E

F 7→ q2F

Case 1
K 7→ q−1K

E 7→ q−2E

F 7→ q3F − b−1
0 q2yK

Case 2
K 7→ qK

E 7→ q−2E − c−1
0 q−1xK

F 7→ qF

Case 3
K 7→ q−3K

E 7→ q−2E

F 7→ q5F + s(1 + q2 + q4)y2 − a−1
0 (q + q3 + q4)x

Case 4
K 7→ q3K

E 7→ q−2E + s(q2 + 1 + q−2)x2K − d−1
0 (q2 + q + q−1)yK

F 7→ q−1F

Case 5
K 7→ K

E 7→ q−2E

F 7→ q2F

Table 6. Nakayama automorphism of Cq[x, y]]Uq(sl2)
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Proof. It follows from 7.3.1 that Cq[x, y]]Uq(sl2) is skew Calabi-Yau and admits
µA](θwhdet ◦ µH) as a Nakayama automorphism, where

• µA is as in (8.1.0.4),
• whdet and θwhdet are as in 8.4,
• µH = S−2 ◦ Ξr∫

`
.

Note that Ξr∫
`

= IdH because
∫
`

= ε (see (8.1.0.1)), and S−2 is given by K 7→ K,
E 7→ q−2E and F 7→ q2F . The description given in Table 6 therefore follows from
the one given in Table 5. �

Remark. (1) In case 5, the given Nakayama automorphism is the inner auto-
morphism of Cq[x, y]]Uq(sl2) associated with K−1. Accordingly, the smash-
product is Calabi-Yau.

(2) This fact can be recovered from the theorem of 7.4.2. Indeed, in case 5,
any action of Uq(sl2) preserves the grading of Cq[x, y]. Moreover the weak
homological determinant is a homological determinant, which is moreover
trivial (see Table 4). Therefore, taking h0 = K−1 and kA = 1 in 7.4.2 yields
the desired conclusion.

9. Applications to Artin-Schelter algebras

Assume that A is an augmented H-module algebra and that the antipode of H
is invertible. This section investigates when Λ is Artin-Schelter Gorenstein/regular.
Sufficient conditions for this to be the case are presented in Section 9.3 using an
analogue of Stefan’s spectral sequence presented in Section 9.2. For this purpose,
some useful module structures are introduced in Section 9.1.

9.1. Useful module structures. In the rest of the text, whenever M,N are left
H-modules, the following structure of left H-module is considered on Homk(M,N)

(9.1.0.1) (h ⇀ f)(m) = h2 ⇀ f(S−1(h1) ⇀m) .

Also M ⊗N is considered as a left H-module for the following action

(9.1.0.2) h ⇀ (m⊗ n) = h1 ⇀m⊗ h2 ⇀ n .

Assume that M,N are left Λ-modules.
It is proved in [16, (1)] that HomA(M,N) is an H-submodule of Homk(M,N).

Moreover, according to [16, Lemma 2.2], the following canonical mapping is well-
defined and bijective.

(9.1.0.3) HomH(Hk,HomA(M,N))
∼=−→ HomΛ(M,N)

φ 7→ φ(1) .

In order to analyse the spectral sequence mentioned earlier, it is necessary to
compare objects such as HomA(M,A)⊗H and HomA(M,Λ).

Firstly, consider HomA(M,Λ). The natural structure of right Λ-module on
HomA(M,Λ) commutes with the action of H. Hence, HomA(M,Λ) is an H − Λ-
bimodule.

Secondly, consider HomA(M,A) ⊗H. In view of (9.1.0.1) and (9.1.0.2), it is a
left H-module. It is also a right Λ-module for the action defined by (f ⊗ `)ah =
f ·(`1 ⇀ a)⊗`2h (here HomA(M,A) is naturally a right A-module). Given that the
structures of left H-module and right A-module of HomA(M,A) are compatible in
the following sense

(9.1.0.4) h ⇀ (fa) = (h1 ⇀ f)(h2 ⇀ a) ,

it follows that HomA(M,A)⊗H is also an H − Λ-bimodule.
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For these structures of H − Λ-bimodule, the following canonical mapping is
H ⊗ Λop-linear

(9.1.0.5) HomA(M,A)⊗H → HomA(M,Λ)
f ⊗ ` 7→ (m 7→ f(m)`) .

Note that it is a functorial isomorphism if M is finitely presented in mod(A) of if
dimkH <∞.

Using projective resolutions to construct Ext-spaces, the previous considerations
entail the following result.

Lemma. Let M,N be left Λ-modules and let p be a natural integer.
(1) There is a functorial structure of left H-module on ExtpA(M,N) which co-

incides with the one introduced previously when p = 0.
(2) Taking into account the natural structure of right Λ-module, ExtpA(M,Λ) is

then an H − Λ-bimodule.
(3) Taking into account the natural structure of right Λ-module such that

(e⊗ `)ah = e(`1 ⇀ a)⊗ `2h ,
ExtpA(M,A)⊗H is then an H − Λ-bimodule.

(4) There is a functorial morphism of H − Λ-bimodules ExtpA(M,A) ⊗ H →
ExtpA(M,Λ). If M has a resolution in mod(A) by finitely generated projec-
tives, then this is an isomorphism.

9.2. A spectral sequence for the cohomology of augmented algebras.

9.2.1. The following is an analogue of the spectral sequence constructed by Stefan
([32, Theorem 3.3]) for the Hochschild cohomology on Hopf-Galois extension. The
proof is also analogous and omitted.

Proposition. Let M,N be left Λ-modules. There is a Grothendieck spectral se-
quence functorial in M and N

ExtpH(Hk,ExtqA(M,N))⇒ Extp+qΛ (M,N) .

9.2.2. In view of determining when Λ has the Artin-Schelter property, it is useful
to simplify the E2 term of the spectral sequence.

Lemma. Assume that Hk has a resolution in mod(H) by finitely generated pro-
jectives. Let M ∈ mod(Λ) admit a resolution in mod(A) by finitely generated
projectives. Then, for every p, q ∈ N, there is an isomorphism of right Λ-modules

ExtpH(Hk,ExtqA(M,Λ)) ' ExtqA(M,A)⊗ ExtpH(Hk, H)

where the module structure of the right-hand side term is defined by

(eM ⊗ eH)ah = (S−1(h1) ⇀ (eMa))⊗ eHh2 .

Proof. Let P → Hk be a resolution by finitely generated projective left H-modules.
Deriving (9.1.0.4) yields an analogous identity in ExtqA(M,A). Consider the follow-
ing action of Λ on ExtqA(M,A)⊗HomH(P,H)

(eM ⊗ ϕ)ah := (S−1(h1) ⇀ (eMa))⊗ ϕh2 .

It is a structure of complex of right Λ-modules. Therefore, the action of Λ on
ExtqA(M,A)⊗ ExtpH(Hk, H) given in the statement of the lemma is a structure of
right Λ-module.

The H − Λ-bimodules ExtqA(M,Λ) and ExtqA(M,A) ⊗ H are isomorphic (see
(9.1.0.5)). Consider the morphism of complexes

θ : ExtqA(M,A)⊗HomH(P,H) → HomH(P,ExtqA(M,A)⊗H)
eM ⊗ ϕ 7→ (p 7→ (ϕ(p)1 ⇀ eM )⊗ ϕ(p)2) .
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Note that θ(eM ⊗ ϕ) is indeed H-linear because ϕ is H-linear and because of the
definition of the action of H on ExtqA(M,A) ⊗H on the left (see (9.1.0.2)). Since
ExtqA(M,A) ⊗ H ∈ mod(H ⊗ Λop) (see 9.1), then HomH(P,ExtqA(M,A) ⊗ H) ∈
mod(Λop).

The mapping θ is Λ-linear. Indeed, let eM ⊗ ϕ ∈ ExtqA(M,A) ⊗ HomH(P,H),
a ∈ A, h ∈ H and p ∈ P . Then,

(θ(eM ⊗ ϕ)ah)(p) = θ(eM ⊗ ϕ)(p)ah
= (ϕ(p)1 ⇀ eM ⊗ ϕ(p)2)ah
= (ϕ(p)1 ⇀ eM )(ϕ(p)2 ⇀ a)⊗ ϕ(p)3h
=

(9.1.0.4)
ϕ(p)1 ⇀ (eMa)⊗ ϕ(p)2h

θ((eM ⊗ ϕ)ah)(p) = θ(S−1(h1) ⇀ (eMa)⊗ ϕh2)(p)
= (ϕh2)(p)1 ⇀ (S−1(h1) ⇀ (eMa))⊗ (ϕh2)(p)2

= (ϕ(p)1h2) ⇀ (S−1(h1) ⇀ (eMa))⊗ ϕ(p)2h3

= ϕ(p)1 ⇀ (eMa)⊗ ϕ(p)2h ,

which explains why θ is Λ-linear.
In order to prove the lemma, it is therefore sufficient to prove that θ is bijective.

When P is replaced by H in the description of θ, the resulting mapping reduces to

ExtqA(M,A)⊗H → ExtqA(M,A)⊗H
eM ⊗ ϕ 7→ ϕ1 ⇀ eM ⊗ ϕ2 .

This is indeed bijective with inverse mapping given by eM ⊗ ϕ 7→ S−1(ϕ1) ⇀
eM ⊗ϕ2. Now, since P consists of finitely generated projective left H-modules, the
previous considerations show that θ is bijective. �

9.3. The Artin-Schelter property of A]H.

9.3.1. Here is how the left Artin-Schelter property behaves under taking smash
products. The dual statement for the right Artin-Schelter property holds true.

Proposition. Let H be a Hopf algebra with invertible antipode. Assume that Hk
has a resolution in mod(H) by finitely generated projectives. Let A be an augmented
H-module algebra. Assume that Ak has a resolution in mod(A) by finitely generated
projectives. If A and H have the left Artin-Schelter property in dimension n and
d, respectively, then A]H has the left Artin-Schelter property in dimension n+ d.

Proof. By assumption, ExtqA(k, A) is one dimensional if q = n and 0 otherwise.
And ExtpH(Hk, H) is one dimensional if p = d and 0 otherwise. Let M = Λk and
N = Λ. The proposition therefore follows from 9.2.1 and 9.2.2. �

9.3.2. Whenever B is an augmented k-algebra with left Artin-Schelter property
in dimension t, there exists a unique algebra homomorphism λB : B → k such that
the right B-module structure of ExttB(k, B) is given by eBb = λB(b)eB for every
eB ∈ ExttB(k, B).

In the setting of 9.3.1, the algebra homomorphism λA]H may be described in
terms of λA and λH . Since ExtnA(k, A) is one dimensional, there exists an algebra
homomorphism δ : H → k such that the left H-module structure of ExtnA(k, A) is
given by h ⇀ eA = δ(h)eA for every eA ∈ ExtnA(k, A). Note that, when H is finite
dimensional and A is connected graded and Artin-Schelter Gorenstein, then δ ◦ S
(= δ◦S−1) is the homological determinant defined in [23, Definition 3.3]. According
to 9.2.2, the algebra homomorphism λA]H is given by

λA]H(ah) = λA(a)δ(S−1(h1))λH(h2) .
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9.3.3. Here are sufficient conditions for Λ to be Artin-Schelter regular.

Proposition. Let H be a Hopf algebra with invertible antipode. Assume that Hk
has a resolution in mod(H) by finitely generated projectives. Let A be an augmented
H-module noetherian algebra. Assume that H and A are Artin-Schelter regular in
dimension n and d, respectively. Then, A]H is Artin-Schelter regular in dimension
n+ d.

Proof. Since the antipode is invertible, then kH has a resolution in mod(Hop) by
finitely generated projectives. According to 9.3.1 and its dual version, it suffices to
prove that gl.dim.Λ 6 n + d. This follows from 9.2.1, from its dual version and
from the hypotheses on the global dimensions of A and H. �

9.3.4. In order to present an analog of the previous result for Artin-Schelter Goren-
stein algebras it is necessary to deal with the finiteness of injective dimensions. This
is taken care of by the following result.

Lemma. Let H be a Hopf algebra with invertible antipode. Let A be an H-module
algebra. Let Λ = A]H. Assume that A is left noetherian. Then, id( ΛΛ) <∞ under
any of the two following conditions
(a) H is finite-dimensional and id(AA) <∞,
(b) pdH(Hk) <∞ and idA(A) <∞.

Proof. First, assume (a). Note that id(HH) = 0, since all finite dimensional Hopf
algebras are Frobenius, and that Hk has a resolution in mod(H) by finitely gener-
ated projectives. Any finitely generated left Λ-module is finitely generated as an
A-module. Therefore, 9.2.1 and 9.2.2 apply to any M ∈ mod(Λ) which is finitely
generated. For any such M , it follows that ExtmΛ (M,Λ) = 0 for m > id(AA).
Taking direct limits entails that idΛ(Λ) <∞.

Next, assume (b). The following properties imply that idA(Λ) <∞:
• since A is left noetherian any direct sum of injective left A-modules is an

injective A-module (see [24, Proposition 3.46, p. 80]),
• id(AA) <∞,
• Λ ' A⊗H as left A-modules.

The conclusion of the lemma then follows from 9.2.1 applied to N = Λ. �

9.3.5. Here are sufficient conditions for Λ to be Artin-Schelter Gorenstein.

Proposition. Let H be a Hopf algebra. Let A be an augmented H-module noe-
therian algebra which is moreover Artin-Schelter Gorenstein in dimension n.

(1) If H is finite dimensional, then Λ is Artin-Schelter Gorenstein in dimension
n.

(2) If H has Van den Bergh duality in dimension d, then Λ is Artin-Schelter
Gorenstein in dimension n+ d.

Proof. Any finite dimensional Hopf algebra has an invertible antipode and is selfin-
jective. In particular, it is Artin-Schelter Gorenstein. Also, recall that, ifH has Van
den Bergh duality, then its antipode is invertible, Hk ∈ per(H) and kH ∈ per(Hop),
and H has the Artin-Schelter property (see 3.5.1 and its dual version). Therefore
(1) and (2) follow from 9.3.1, from 9.3.4 and their dual versions. �
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Index of notation
Symbol Meaning Location

k base field Introduction

A dg H-module k-algebra Introduction

Ae A⊗k Aop Introduction

µA a Nakayama automorphism of A Introduction

H Hopf k-algebra Introduction

S antipode of H Introduction

Λ smash product A]H Introduction

τMσ twisting of a bimodule by algebra automorphisms τ, σ Introduction

⊗ ⊗k 2.1

C(A) category of left dg A-modules 2.1

D(A) derived category of left dg A-modules 2.1∫
`,

∫
r left and right homological integrals 3.1

Ξ`•,Ξ
r
• winding automorphisms 3.1

• ↑H
e

functor from left H-modules to H-bimodules 3.2

∆i dg algebra whose left dg modules are H
S2i -equivariant dg A-bimodules 4.1

D] σH Λ-bimodule extension of an H
S2i -equivariant dg A-bimodule 4.2

Hσ]D 4.2.3

Πn(A) Calabi-Yau completion of A Section 6

Πn(A,α) a deformed Calabi-Yau completion of A Section 6

eA a free generator of the left A-module ExtnAe (A,Ae) 7.2

ϕA a cocycle representing eA 7.2

whdet weak homological determinant H → A 7.2.2

θwhdet algebra homomorphism H → Λ corresponding to whdet 7.2.2

hdet homological determinant 7.2.4

µΛ, µH Nakayama automorphisms of Λ and H 7.3

Cq [x, y] the quantum plane 8.1

Uq(sl2) the quantum enveloping algebra 8.1
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