
HAL Id: hal-01314070
https://hal.science/hal-01314070v1

Submitted on 10 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Beyond CPU: Considering Memory Power Consumption
of Software

Hayri Acar, Gülfem Isiklar Alptekin, Jean-Patrick Gelas, Parisa Ghodous

To cite this version:
Hayri Acar, Gülfem Isiklar Alptekin, Jean-Patrick Gelas, Parisa Ghodous. Beyond CPU: Considering
Memory Power Consumption of Software. Smartgreens 2016, Apr 2016, Rome, Italy. pp.417-424.
�hal-01314070�

https://hal.science/hal-01314070v1
https://hal.archives-ouvertes.fr

Beyond CPU: Considering Memory Power Consumption of Software

Hayri Acar1, Gülfem I. Alptekin2, Jean-Patrick Gelas3, and Parisa Ghodous1
1LIRIS, University of Lyon, Lyon, France
2Galatasaray University, Istanbul, Turkey

3ENS Lyon, LIP, UMR 5668, Lyon, France

hayri.acar@etu.univ-lyon1.fr, gisiklar@gsu.edu.tr, {jean-patrick.gelas, parisa.ghodous}@univ-lyon1.fr

Keywords: Power consumption, Sustainable Software, Energy Efficiency, Green IT.

Abstract: ICTs (Information and Communication Technologies) are responsible around 2% of worldwide greenhouse

gas emissions (Gartner, 2007). And according to the Intergovernmental Panel on Climate Change (IPPC)

recent reports, CO2 emissions due to ICTs are increasing widely. For this reason, many works tried to propose

various tools to estimate the energy consumption due to software in order to reduce carbon footprint.

However, these studies, in the majority of cases, takes into account only the CPU and neglects all others

components. Whereas, the trend towards high-density packaging and raised memory involve a great increased

of power consumption caused by memory and maybe memory can become the largest power consumer in

servers. In this paper, we model and then estimate the power consumed by CPU and memory due to the

execution of a software. Thus, we perform several experiments in order to observe the behavior of each

component.

1 INTRODUCTION

ICTs (Information and Communication

Technologies) are responsible around 2% of

worldwide greenhouse gas emissions (Gartner,

2007). And according to the Intergovernmental Panel

on Climate Change (IPPC) recent reports, CO2

emissions due to ICTs are increasing widely. For this

reason, many works tried to propose various tools to

estimate the energy consumption due to software in

order to reduce carbon footprint.

Since a few years, we have been able to find

several research, on the web tools, (Power Supply

Calculator, 2014), (eXtreme Power Supply

Calculator, 2006), (Computer Power Consumption

Calculator) that allow estimating the energy

consumed by each component of a computer. Doing

so, the user chooses the feature of the component and

an estimation is given about related power

consumption. However, this approach provides quite

vague results so that a developer cannot use them as

a guide when developing the software.

That is the reason of the appearance of other

measurement means: Measurement of power

consumption via hardware devices such as power

meter or printed circuits (Kern et al., 2013), (Joseph

et al., 2001), (Kamil et al., 2008). Using them, it is

more possible to obtain accurate and efficient results

for energy consumption. However, using these types

of devices is complicated because it is necessary to

have these devices and connect them to different

components. What is more with this method, it is

impossible to measure the energy consumed by

virtual machines and applications on process.

In later years, a new methology has appeared

which consists of estimating the energy consumed by

a software based on mathematical formula

established according to the characteristics of each

components susceptible to consume power. But, these

tools (Kansal et al., 2010), (Wang et al., 2011),

(Noureddine et al., 2012), in the majority of cases,

takes into account only the CPU and neglects all

others components. Moreover, the trend towards

high-density packaging and raised memory involve a

great increase of power consumption caused by

memory and maybe memory can become the largest

power consumer in servers (Minas and Ellison, 2012).

In this paper, we will present a methodology to

estimate the energy consumed by CPU and memory.

Through different experiments we show the

performance of the proposed methodology.

mailto:hayri.acar@etu.univ-lyon1.fr
mailto:gisiklar@gsu.edu.tr
mailto:jean-patrick.gelas@ens-lyon.fr
mailto:parisa.ghodous%7D@univ-lyon1.fr

2 CPU MODELIZATION

For a long time the CPU was considered the largest

energy consumer component (Kim et al., 2014) in a

computer. That is why, in each research work, the

modelization of his structure has been taken into

account to estimate the energy consumed by an

computer program only.

Several factors contribute to the CPU power

consumption and globally it is possible to give the

following formula (1) in order to describe the power

consumed by the CPU:

PCPU = PCPU,dynamic + PCPU,sc + PCPU,leak (1)

where 𝑃𝐶𝑃𝑈,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 represents dynamic power

consumption, 𝑃𝐶𝑃𝑈,𝑠𝑐 corresponds to short-circuit

power consumption and 𝑃𝐶𝑃𝑈,𝑙𝑒𝑎𝑘 , power loss due to

transistor leakage currents and varies with the

temperature (Zapater et al., 2015). The last two power

are due to at the hardware manufacturing. Hence,

only the manufacturer can reduce the energy

consumption due to hardware. So, it is possible to

group this two power in order to obtain a static power

on the equation (2):

PCPU,static = PCPU,sc + PCPU,leak (2)

Thus, it is possible to reformulate the equation (1)

as follows (3):

PCPU = PCPU,dynamic + PCPU,static (3)

In our case, we want to reduce the energy

consumed by software. For this, we take account only

𝑃𝐶𝑃𝑈,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 to have more accurate and efficient

results.

The CPU, like many integrated circuit, is a set of

switches. So the main power consumption in CPU is

due to charge and discharge of capacitors during

computations that we can represent with the

following figure 1:

Figure 1: One switch in CPU.

The energy can be expressed (4) as follows:

EVdd = ∫ iVdd(t) . Vdd . dt
∞

0

(4)

We also know that the current is given with the

following expression (5):

iVdd(t) = CL .
dvout

dt

(5)

Thus, the expression (4) becomes (6):

EVdd = Vdd . CL ∫
dvout

dt
 dt

∞

0

EVdd = Vdd
2 . CL (6)

We assume that in a switching cycle, there are

low-to-high and high-to-low transition. So, we can

obtain the power formulate (7) of this gate:

P = f . Vdd
2 . CL (7)

where f is the frequency.

For N gates, we must multiply the power by N. In

a complex circuit the situation is more complicated,

as not all the gates commute at the same frequency.

Hence, we can define a parameter α < 1 as the average

fraction of gates that commute at every cycle.

Thus, the next expression of the power (8):

P = f . Vdd
2 . CL . N . α (8)

By combining the constants as follows (9):

β = CL . N . α (9)

we obtain (10):

PCPU,dynamic = β . f . Vdd
2 (10)

Moreover, we want to obtain the power consumed

by the program. Thus, the percentage of the process

Id (𝑁𝑖𝑑) is multiplied with the previous expression

(10) as follows (11):

PCPU,dynamic, id = PCPU,dynamic . Nid (10)

Thanks to these formulas, we can say that there

are several ways to reduce the power consumption

due to CPU:

Table 1: Possibilities to reduce power consumption of the

CPU.

Solutions Technics

Voltage reduction Dual voltage CPUs

Dynamic voltage scaling

Overvolting/Undervolting

Frequency reduction Underclocking

Dynamic frequency

scaling

Capacitance reduction Integrated circuits

Dual voltage CPUs consist of uses a split-rail

design to allow lower voltages to be used in the

processor core while the external Input/Output (I/O)

voltages remain unchanged.

Dynamic voltage scaling: the voltage used is

increased (Overvolting) or decreased (Undervolting)

depending upon circumstances.

Underclocking: modify timing settings to run at a

lower clock rate than is specified.

Dynamic frequency scaling: the frequency of a

microprocessor can be automatically adjusted for

saving energy.

Integrated circuits: replace PCB (Printed Circuit

Board) traces between two chips.

So, we defined a mathematical formula in order to

estimate the power consumed by the CPU. And, we

noted the different ways to save energy.

Thus, should be limited to the energy

consumption of the CPU or does it take into account

other components whose energy consumption could

be represent an importance compare to the CPU ?

That is why, we will try to model the energy

consumption due to Memory.

3 POWER CONSUMPTION OF

DRAM

According to (Minas and Ellison, 2012), the power

used on servers is increasing and the two largest

consumers of power are the processor and the

memory. Otherwise, several research works try to

optimize systems to reduce DRAM power

consumption:

 (Kang et al., 2010);

 (Hur and Lin, 2008);

 (Emma et al., 2008);

 (Zheng et al., 2008);

 (Vogelsang, 2010).

There are also some memory system simulator:

 DRAMSim2 (Rosenfeld et al., 2011);

 Cacti 5.1 (Thoziyoor et al., 2008);

 Micron System Power Calculator (Micron,

2007).

That is why, we choose to study the DRAM in

order to model his power consumption. We need to

use datasheet values from DRAM manufacturer to

establish an expression to estimate the power.

As the CPU, we are interested only by the

dynamic power consumed because we can only save

energy in this part. Thus, based on (Micron, 2007) we

assume that the dynamic power is composed of:

 Activate power;

 Precharge power;

 Read power;

 Write power.

To modelize these powers, we need to understand

the functionality of a DDR3 SDRAM. The master

operation is controlled by clock enable (CKE) that

must be high to allow the DRAM to receive activate,

precharge, read, and write commands. And in this

situation, commands begin to propagate across the

DRAM command decoders, and the activity rises the

power consumption.

We regroup all the parameters that we will use to

calculate the following powers in the table 2.

3.1 Activate power

The first command sent to the DRAM, during normal

working, is an activate command that chooses a bank

and row address in order to allow a DDR3 SDRAM

to read or write data. The data, that is stored in the

cells of the chosen row, is then transferred from the

array into the sense amplifiers. Then, the DRAM past

in the active state. The precharge command restores

the data from the sense amplifiers into the memory

array and resets the bank for the next activate

command. This leaves the bank in its precharge

condition.

Thus, the following expression (11) can be used

to estimate activate power:

PActivate = Psys(ACT_PDN)
+ Psys(ACT_STBY)
+ Psys(ACT)

(11)

where:

Psys(ACT_PDN) = IDD3P ∗ Vcc
∗ BNK_PRE
∗ CKE_LO_ACT
∗ (Vdd / Vcc)²
∗ syst_ck_freq / 1000
∗ Tck_used

(12)

Psys(ACT_STBY)
= IDD3N ∗ Vcc ∗ (1
− BNK_PRE) ∗ (1
− CKE_LO_ACT)
∗ (Vdd / Vcc)²
∗ syst_ck_freq / 1000
∗ Tck_used

(13)

Psys(ACT) = (IDD0 − (IDD3N
∗ tRAS / tRC
+ IDD2N ∗ (tRC
− tRAS) / tRC))
∗ Vcc
∗ tRC / tRRDsch
∗ (Vdd / Vcc)²

(14)

So, activate power depends of many factors. Each

term of these equations are summarized on the Table

2.

3.2 Precharge power

Every activate command, that opens a row, have a

precharge command, that closes the row, associated

with it.

Precharge power can be formulated with the

equation (15):

PPrecharge = Psys(PRE_PDN) +

Psys(PRE_STBY)

(15)

where:

Psys(PRE_PDN) = Idd2P ∗ Vcc
∗ BNK_PRE
∗ CKE_LO_PRE
∗ (Vdd / Vcc)² ∗ 1

(16)

Psys(PRE_STBY)
= IDD2N ∗ Vcc
∗ BNK_PRE ∗ (1
− CKE_LO_PRE%)
∗ (Vdd / Vcc)²
∗ syst_ck_freq / 1000
∗ Tck_used

(17)

Precharge power depends also of several factors

that are defined on the Table 2.

3.3 Read power

During active state, data can be read from or written

to the DDR3 SDRAM. A read command decodes a

specific column address associated with the data that

is stored in the sense amplifiers. The data from this

column is driven across the I/O, gating to the internal

read latch. From there, it is multiplexed onto the

output drivers.

Read power can be expressed as follows (18):

PRead = (IDD4R − IDD3N) ∗ Vcc
∗ 8 / Blength
∗ RDsch
∗ (Vdd / Vcc)²
∗ syst_ck_freq / 1000
∗ Tck_used

(18)

Each term of this equation is also described on the

Table 2.

3.4 Write power

The power needed for a write data is similar to the

read data except the data propagates in the opposite

direction. Data from the DQ pins is latched into the

data receivers/registers and is transferred to the

internal data drivers that transmit the data to the sense

amplifiers across the I/O gating and into the decoded

column address location.

Write power is defined with (19):

PWrite = (IDD4W − IDD3N) ∗ Vcc
∗ 8 / Blength
∗ WRsch
∗ (Vdd / Vcc)²
∗ syst_ck_freq / 1000
∗ Tck_used

(19)

Each parameter of this formula is also expressed

on the Table 2.

3.5 DRAM total power

DRAM total power (20) is obtained by summing all

the equations (11), (15), (18) and (19) of powers

defined in the preceding paragraphs.

PDRAM = PActivate + PPrecharge + PRead

+ PWrite

(20)

Moreover, we want to calculate the power

consumed by the application. That is why, the usage

percent of the process Id (𝑀𝑖𝑑) is multiplied with the

previous expression (20) as follows (21):

PDRAM, id = PDRAM . Mid (21)

Table 2: Data sheet specifications

Parameter Description

Idd2P Precharge power-down

current

Vcc Voltage

BNK_PRE The percentage of time

that all banks on the

DRAM are

in a precharged state

CKE_LO_PRE Percentage of the all bank

precharge time for which

CKE

is held LOW

Vdd System VDD

IDD2N Precharge standby current

syst_ck_freq System CK frequency

Tck_used Used for current

measurements

IDD3P Active power-down

current

CKE_LO_ACT Percentage of the at least

one bank active time for

which

CKE is held LOW

IDD3N Active standby current

IDD0 Operating current: One

bank active-precharge

tRAS Used for IDD0

calculation

tRC Activate-to-activate

timing

tRRDsch The average time between

ACT commands to this

DRAM

IDD4W Operating burst write

current

Blength Burst length

WRsch The percentage of clock

cycles which are inputting

write

data to the DRAM

IDD4R Operating burst read

current

RDsch The percentage of clock

cycles which are

outputting read

data from the DRAM

Thus, we established also the relation allowing us

to estimate the power consumed by DRAM. Hence,

we implemented a tool and realize some experiments

in order to see the behavior of DRAM compare to

CPU.

4 EXPERIMENTS

4.1 Devices used

We used the laptop ASUS model N751J composed of

a CPU Intel Core i7-4710HQ (2.5GHz) and a RAM

16 Go (2 * 8 Go) DDR3 1600 MHz.

To run tests, we developed a tool TEEC (Tool to

Estimate Energy Consumption), whose model is

shown in Figure 2, in Java programing language

because depending on (Noureddine, 2012) Java

represent the language with the least power

consumption during compilation and execution steps

in default parameter settings of the compiler. In this

tool TEEC, we use Sigar library (Morgan and

MacEachern, 2010) in order to get information about

the CPU and the RAM. Moreover, we use also the

parameter provides by manufacturers. And, Java

Agents allows us to the instrumentation capabilities

to an application.

Figure 2: Model of our tool TEEC.

Thus, using TEEC, we realized several different

tests in order to observe the variation of the power

consumption due to the CPU and the memory and

compare them.

4.2 Source code adjustment

Based on (Kambadur and Kim, 2014), we realize the

following tests in order to see the impacts of source

code on CPU and memory power consumption.

4.2.1 Strength reduction

Strength reduction consists of replacing an operation

by a similar operation. The most common example of

strength reduction is using the shift operator to

multiply and divide. For instance, a >> 2 can be

used in place of a / 4, and a << 1 replaces a *

2.

In our case in order to see the behavior of this

replacement, we execute the same operation several

time (here: 50000 repetitions). So, we can observe the

results on the Figures 3.a and 3.b.

Figure 3.a: Strength reduction unoptimized.

Figure 3.b: Strength reduction optimized.

For this test, we observe that the DRAM power

consumption remains constant in the two cases and

the time elapsed is similar. The CPU power

consumption is less important after the strength

reduction. This show, the impact of the code source

on the CPU power consumption. Moreover, in the

two cases, we observe that the CPU power varies and

sometimes these values are close to DRAM values.

Thus, we can say that the DRAM power consumption

is not always neglected in front of CPU power

consumption.

4.2.2 Eliminate common subexpressions

To remove redundant calculation, we eliminate

common subexpressions. This part of code:

double a = c * (d / e) * f;

double b = c * (d / e) * g;

can be rewritten as:

double h = c * (d / e);

double a = h * f;

double b = h * g;

We run test in a loop of 50000 repetitions to

observe the variation of power. The results are in

Figure 4.a and 4.b.

Figure 4.a: Subexpression unoptimized.

Figure 4.b: Subexpression optimized.

In this test, the results show that the CPU and the

DRAM power consumption and the elapsed time in

the two cases are quite similar. However, we note

that the CPU power consumption vary and several

times is more close to DRAM power consumption.

4.2.3 Code motion

Code motion moves code that calculates an

expression whose result doesn't change. This is most

common with loops, but it can also involve code

repeated on each invocation of a method. For

example:

for (int i = 0; i < a.length; ++i)

 a[i] *= Math.PI * Math.cos(b);

becomes:

double pico = Math.PI* Math.cos(b);

for (int i = 0; i < a.length; i++)

 a[i] *= pico;

The results of this test is represented on the

Figures 5.a and 5.b.

Figure 5.a: Code motion unoptimized.

Figure 5.b: Code motion optimized.

This test show that in the unoptimized code

motion, the time elapsed is slightly greater than

optimized code. CPU and DRAM power

consumption are quite similar in the two cases. And,

sometimes CPU power consumption curve

approaches DRAM power consumption curve.

4.2.4 Unrolling loops

Unrolling loops reduces the number of loop control

code by performing more than one operation each

time in the loop, and consequently running fewer

iterations. With the previous example, if the length

of the table a is always a multiple of two, the loop can

be rewrite like:

double pico = Math.PI* Math.cos(b);

for (int i = 0; i < a.length; i += 2) {

 a[i] *= pico;

 a[i+1] *= pico;

}

Figure 6 shows the power consumption of CPU

and DRAM depending on the time.

Figure 6: Unrolling loops.

Compare to the Figure 5.b, in this case, we observe

that at the beginning of the curve, the CPU consumes

more power during some time than code motion and

then becomes similar. But, in unrolling loops case, the

total execution elapsed time is the half of the code

motion case. And at the end of the curve in Figure 6,

the CPU power is less important than the curve in

code motion (Figure 5.b). Moreover, in this test, the

difference between CPU and DRAM power

consumption is less important than code motion case.

Thus, the results reveal that the unrolling loops

method is quicker and consumes less CPU power than

the code motion method.

5 CONCLUSIONS

A modelization of the CPU and the DRAM has been

made in order to understand the behavior and the

functionality of each component. Thanks to this

model, several mathematical formulas have been

established to estimate the power consumption due to

each part of each component. Thus, based on this

methodology, a tool that allow to measure the power

consumed by CPU and DRAM has been implemented

and named TEEC (Tool to Estimate Energy

Consumption). This tool gives accurate and efficient

information about CPU and DRAM power

consumption, has been used to perform some

experiments. The goal of these tests was to observe

the impact of the code source of an application in the

power consumption. These experiments have

provided several results.

When the code source is optimized, it is possible

to reduce the power consumption due to CPU. But,

the DRAM power consumption remains quite

constant.

 Sometimes, it is possible to save energy with an

optimization of the code by reducing execution time

of an application.

In several cases, after some time of execution,

CPU power consumption remains the main energy

consumer. However, the DRAM power consumption

can’t be neglected.

Moreover, some code optimizations don’t make

any real impact on the CPU and DRAM power

consumption.

The contribution to power measurement

literature will continue by bringing improvement

to the estimation of the consumption of other

components; such as, disk and network in order to

observe their impact. It will allow us to have a higher

accuracy in estimating the energy consumption of a

program.

The proposed tool TEEC is expected to be

improved, and it is planned to dynamically

identifying locations where code consume the

largest power. This will allow developers to

optimize their own codes to obtain green and

sustainable software.

REFERENCES

Gartner, Green IT: The New Industry Shock Wave,

Gartner, Presentation at Symposium/ITXPO

Conference, 2007.

Power Supply Calculator, February 2014. URL:

http://powersupplycalculator.net/.

eXtreme Power Supply Calculator, January 2006. URL:

http://outervision.com/power-supply-calculator.

Computer Power Consumption Calculator. URL:

http://www.matthewb.id.au/power/computer_power_c

onsumption_calculator.html.

Kern, E., Dick, M., Naumann, S., Guldner, A., Johann, T.,

2013. Green software and green software

engineering–definitions, measurements, and quality

aspects. ICT4S 2013: Proceedings of the First

International Conference on Information and

Communication Technologies for Sustainability.

Joseph, R., Brooks, D., Martonosi, M., 2001. Live,

runtime power measurements as a foundation for

evaluating power/performance tradeoffs. Workshop on

Complexity Effective Design WCED, held in

conjunction with ISCA-28.

Kamil, S., Shalf, J., Strohmaier, E., 2008. Power

efficiency in high performance computing. IEEE

International Symposium on Parallel and Distributed

Processing, IPDPS 2008.

Kansal, A., Zhao, F., Liu, J., Kothari, N., Bhattacharya,

A., 2010. Virtual Machine Power Metering and

Provisioning. ACM Symposium on Cloud Computing

(SOCC).

Wang, S., Chen, H., Shi, W., 2011. SPAN: A software

power analyzer for multicore computer systems.

Sustainable Computing: Informatics and

Systems,Volume 1, Issue 1.

Noureddine, A., Bourdon, A., Rouvoy, R., Seinturier, L.,

2012. A Preliminary Study of the Impact of Software

Engineering on GreenIT. First International Workshop

on Green and Sustainable Software.

Kim, M., Ju, Y., Chae, J., Park, M., 2014. A Simple Model

for Estimating Power Consumption of a Multicore

Server System. International Journal of Multimedia and

Ubiquitos Engineering.

Zapater, M. et al., 2015. Leakage-Aware Cooling

Management for Improving Server Energy Efficiency.

IEEE Trans. Parallel Distrib. Syst. 26(10): 2764-2777.

Minas, L., Ellison, B., 2012. The Problem of Power

Consumption in Servers. Intel Press.

Kang, U. et al., 2010. 8 Gb 3-D DDR3 DRAM Using

Through-Silicon-Via Technology. Journal of Solid-

State Circuits.

Hur, I. and Lin, C., 2008. A comprehensive approach to

DRAM power management. International Symposium

on High Performance Computer Architecture.

Emma, P., Reohr, W. and Meterelliyoz, M., 2008.

Rethinking Refresh: Increasing Availability and

Reducing Power in DRAM for Cache Applications.

IEEE Micro.

Zheng, H. et al., 2008. Mini-Rank: Adaptive DRAM

Architecture for Improving Memory Power Efficiency.

Proceedings of Micro.

Vogelsang, T., 2010. Understanding the energy

consumption of dynamic random access memories.

Proceedings of the 2010 43rd Annual IEEE/ACM

International Symposium on Microarchitecture.

Rosenfeld, P., Cooper-Balis, E., Jacob, B., 2011.

DRAMSim2: A Cycle Accurate Memory System

Simulator. CAL.

Thoziyoor, S., Muralimanohar, N., Ahn, J., Jouppi, N.,

2008. CACTI 5.1. HP Laboratories Palo Alto.

Micron Technologies Inc. System Power Calculator. URL:

http://www.micron.com/support/power-calc.

Micron, 2007. Calculating Memory System Power for

DDR3.

Morgan, R. and MacEachern, D. 2010. URL:

https://support.hyperic.com/display/SIGAR/Home

Kambadur, M., Kim, M.A., 2014. An experimental survey

of energy management across the stack. ACM

International Conference on Object Oriented

Programming Systems Languages & Applications.

http://powersupplycalculator.net/
http://outervision.com/power-supply-calculator
http://www.matthewb.id.au/power/computer_power_consumption_calculator.html
http://www.matthewb.id.au/power/computer_power_consumption_calculator.html
http://www.micron.com/support/power-calc
https://support.hyperic.com/display/SIGAR/Home

