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Abstract: ICTs (Information and Communication Technologies) are responsible around 2% of worldwide greenhouse 

gas emissions (Gartner, 2007). And according to the Intergovernmental Panel on Climate Change (IPPC) 

recent reports, CO2 emissions due to ICTs are increasing widely. For this reason, many works tried to propose 

various tools to estimate the energy consumption due to software in order to reduce carbon footprint. 

However, these studies, in the majority of cases, takes into account only the CPU and neglects all others 

components. Whereas, the trend towards high-density packaging and raised memory involve a great increased 

of power consumption caused by memory and maybe memory can become the largest power consumer in 

servers. In this paper, we model and then estimate the power consumed by CPU and memory due to the 

execution of a software. Thus, we perform several experiments in order to observe the behavior of each 

component. 

1 INTRODUCTION 

ICTs (Information and Communication 

Technologies) are responsible around 2% of 

worldwide greenhouse gas emissions (Gartner, 

2007). And according to the Intergovernmental Panel 

on Climate Change (IPPC) recent reports, CO2 

emissions due to ICTs are increasing widely. For this 

reason, many works tried to propose various tools to 

estimate the energy consumption due to software in 

order to reduce carbon footprint.  

Since a few years, we have been able to find 

several research, on the web tools, (Power Supply 

Calculator, 2014), (eXtreme Power Supply 

Calculator, 2006), (Computer Power Consumption 

Calculator) that allow estimating the energy 

consumed by each component of a computer. Doing 

so, the user chooses the feature of the component and 

an estimation is given about related power 

consumption. However, this approach provides quite 

vague results so that a developer cannot use them as 

a guide when developing the software. 

That is the reason of the appearance of other 

measurement means: Measurement of power 

consumption via hardware devices such as power 

meter or printed circuits (Kern et al., 2013), (Joseph 

et al., 2001), (Kamil et al., 2008). Using them, it is 

more possible to obtain accurate and efficient results 

for energy consumption. However, using these types 

of devices is complicated because it is necessary to 

have these devices and connect them to different 

components. What is more with this method, it is 

impossible to measure the energy consumed by 

virtual machines and applications on process. 

In later years, a new methology has appeared 

which consists of estimating the energy consumed by 

a software based on mathematical formula 

established according to the characteristics of each 

components susceptible to consume power. But, these 

tools (Kansal et al., 2010), (Wang et al., 2011), 

(Noureddine et al., 2012), in the majority of cases, 

takes into account only the CPU and neglects all 

others components. Moreover, the trend towards 

high-density packaging and raised memory involve a 

great increase of power consumption caused by 

memory and maybe memory can become the largest 

power consumer in servers (Minas and Ellison, 2012). 

In this paper, we will present a methodology to 

estimate the energy consumed by CPU and memory. 

Through different experiments we show the 

performance of the proposed methodology. 
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2 CPU MODELIZATION 

For a long time the CPU was considered the largest 

energy consumer component (Kim et al., 2014) in a 

computer. That is why, in each research work, the 

modelization of his structure has been taken into 

account to estimate the energy consumed by an 

computer program only. 

Several factors contribute to the CPU power 

consumption and globally it is possible to give the 

following formula (1) in order to describe the power 

consumed by the CPU:  

 

PCPU =  PCPU,dynamic +  PCPU,sc +  PCPU,leak (1) 

where 𝑃𝐶𝑃𝑈,𝑑𝑦𝑛𝑎𝑚𝑖𝑐  represents dynamic power 

consumption, 𝑃𝐶𝑃𝑈,𝑠𝑐 corresponds to short-circuit 

power consumption and 𝑃𝐶𝑃𝑈,𝑙𝑒𝑎𝑘 , power loss due to 

transistor leakage currents and varies with the 

temperature (Zapater et al., 2015). The last two power 

are due to at the hardware manufacturing. Hence, 

only the manufacturer can reduce the energy 

consumption due to hardware. So, it is possible to 

group this two power in order to obtain a static power 

on the equation (2): 

  

PCPU,static =  PCPU,sc +  PCPU,leak (2) 

Thus, it is possible to reformulate the equation (1) 

as follows (3): 

 

PCPU =  PCPU,dynamic +  PCPU,static (3) 

In our case, we want to reduce the energy 

consumed by software. For this, we take account only 

𝑃𝐶𝑃𝑈,𝑑𝑦𝑛𝑎𝑚𝑖𝑐  to have more accurate and efficient 

results. 

The CPU, like many integrated circuit, is a set of 

switches. So the main power consumption in CPU is 

due to charge and discharge of capacitors during 

computations that we can represent with the 

following figure 1: 

 

 

Figure 1: One switch in CPU. 

The energy can be expressed (4) as follows: 

 

EVdd =  ∫ iVdd(t) . Vdd .  dt
∞

0

 
(4) 

 

We also know that the current is given with the 

following expression (5): 

 

iVdd(t) =  CL .
dvout

dt
 

(5) 

 

Thus, the expression (4) becomes (6): 

 

EVdd =  Vdd .  CL ∫  
dvout

dt
 dt

∞

0
   

  

EVdd =  Vdd
2  .  CL  (6) 

  

We assume that in a switching cycle, there are 

low-to-high and high-to-low transition. So, we can 

obtain the power formulate (7) of this gate: 

 

P =  f . Vdd
2  .  CL (7) 

 

where f is the frequency. 

For N gates, we must multiply the power by N. In 

a complex circuit the situation is more complicated, 

as not all the gates commute at the same frequency. 

Hence, we can define a parameter α < 1 as the average 

fraction of gates that commute at every cycle. 

Thus, the next expression of the power (8): 

 

P =  f . Vdd
2  .  CL . N . α (8) 

 

By combining the constants as follows (9): 

 

β = CL . N . α (9) 

 

we obtain (10): 

 

PCPU,dynamic =  β .  f . Vdd
2  (10) 

 

Moreover, we want to obtain the power consumed 

by the program. Thus, the percentage of the process 

Id (𝑁𝑖𝑑) is multiplied with the previous expression 

(10) as follows (11): 

 

PCPU,dynamic,   id =  PCPU,dynamic . Nid (10) 

 

Thanks to these formulas, we can say that there 

are several ways to reduce the power consumption 

due to CPU: 



 

Table 1: Possibilities to reduce power consumption of the 

CPU. 

Solutions Technics 

Voltage reduction Dual voltage CPUs 

Dynamic voltage scaling 

Overvolting/Undervolting 

Frequency reduction Underclocking 

Dynamic frequency 

scaling 

Capacitance reduction Integrated circuits 

 

Dual voltage CPUs consist of uses a split-rail 

design to allow lower voltages to be used in the 

processor core while the external Input/Output (I/O) 

voltages remain unchanged. 

Dynamic voltage scaling: the voltage used is 

increased (Overvolting) or decreased (Undervolting) 

depending upon circumstances. 

Underclocking: modify timing settings to run at a 

lower clock rate than is specified. 

Dynamic frequency scaling: the frequency of a 

microprocessor can be automatically adjusted for 

saving energy. 

Integrated circuits: replace PCB (Printed Circuit 

Board) traces between two chips. 

So, we defined a mathematical formula in order to 

estimate the power consumed by the CPU. And, we 

noted the different ways to save energy.  

Thus, should be limited to the energy 

consumption of the CPU or does it take into account 

other components whose energy consumption could 

be represent an importance compare to the CPU ? 

That is why, we will try to model the energy 

consumption due to Memory. 

 

3 POWER CONSUMPTION OF 

DRAM 

 

According to (Minas and Ellison, 2012), the power 

used on servers is increasing and the two largest 

consumers of power are the processor and the 

memory. Otherwise, several research works try to 

optimize systems to reduce DRAM power 

consumption: 

 (Kang et al., 2010); 

 (Hur and Lin, 2008); 

 (Emma et al., 2008); 

 (Zheng et al., 2008); 

 (Vogelsang, 2010). 

There are also some memory system simulator: 

 DRAMSim2 (Rosenfeld et al., 2011); 

 Cacti 5.1 (Thoziyoor et al., 2008); 

 Micron System Power Calculator (Micron, 

2007). 

That is why, we choose to study the DRAM in 

order to model his power consumption. We need to 

use datasheet values from DRAM manufacturer to 

establish an expression to estimate the power. 

As the CPU, we are interested only by the 

dynamic power consumed because we can only save 

energy in this part. Thus, based on (Micron, 2007) we 

assume that the dynamic power is composed of: 

 Activate power; 

 Precharge power; 

 Read power; 

 Write power. 

To modelize these powers, we need to understand 

the functionality of a DDR3 SDRAM. The master 

operation is controlled by clock enable (CKE) that 

must be high to allow the DRAM to receive activate, 

precharge, read, and write commands. And in this 

situation, commands begin to propagate across the 

DRAM command decoders, and the activity rises the 

power consumption. 

We regroup all the parameters that we will use to 

calculate the following powers in the table 2. 

3.1 Activate power 

The first command sent to the DRAM, during normal 

working, is an activate command that chooses a bank 

and row address in order to allow a DDR3 SDRAM 

to read or write data. The data, that is stored in the 

cells of the chosen row, is then transferred from the 

array into the sense amplifiers. Then, the DRAM past 

in the active state. The precharge command restores 

the data from the sense amplifiers into the memory 

array and resets the bank for the next activate 

command. This leaves the bank in its precharge 

condition. 

Thus, the following expression (11) can be used 

to estimate activate power: 

 

PActivate =  Psys(ACT_PDN)
+  Psys(ACT_STBY)
+  Psys(ACT) 

(11) 

 

where: 

Psys(ACT_PDN)  =  IDD3P ∗  Vcc 
∗  BNK_PRE 
∗  CKE_LO_ACT 
∗  (Vdd / Vcc)² 
∗  syst_ck_freq / 1000 
∗  Tck_used 

(12) 

 



 

Psys(ACT_STBY)  
=  IDD3N ∗  Vcc ∗  (1 
−  BNK_PRE)  ∗  (1 
−  CKE_LO_ACT) 
∗  (Vdd / Vcc)² 
∗  syst_ck_freq / 1000 
∗  Tck_used 

(13) 

 

Psys(ACT)  =  (IDD0 − (IDD3N 
∗  tRAS / tRC 
+  IDD2N ∗  (tRC 
−  tRAS) / tRC))  
∗  Vcc 
∗  tRC / tRRDsch 
∗  (Vdd / Vcc)² 

(14) 

 

So, activate power depends of many factors. Each 

term of these equations are summarized on the Table 

2. 

3.2 Precharge power 

Every activate command, that opens a row, have a 

precharge command, that closes the row, associated 

with it. 

Precharge power can be formulated with the 

equation (15): 

 

PPrecharge =  Psys(PRE_PDN) + 

Psys(PRE_STBY) 

(15) 

 

where: 

 

Psys(PRE_PDN)  =  Idd2P ∗  Vcc 
∗  BNK_PRE 
∗  CKE_LO_PRE 
∗  (Vdd / Vcc)² ∗  1 

(16) 

 

Psys(PRE_STBY)  
=  IDD2N ∗  Vcc 
∗  BNK_PRE ∗  (1 
−  CKE_LO_PRE%)  
∗  (Vdd / Vcc)² 
∗  syst_ck_freq / 1000 
∗  Tck_used 

(17) 

 

Precharge power depends also of several factors 

that are defined on the Table 2. 

3.3 Read power 

During active state, data can be read from or written 

to the DDR3 SDRAM. A read command decodes a 

specific column address associated with the data that 

is stored in the sense amplifiers. The data from this 

column is driven across the I/O, gating to the internal 

read latch. From there, it is multiplexed onto the 

output drivers. 

Read power can be expressed as follows (18): 

 

PRead =  (IDD4R −  IDD3N)  ∗  Vcc 
∗  8 / Blength 
∗  RDsch 
∗  (Vdd / Vcc)² 
∗  syst_ck_freq / 1000 
∗  Tck_used 

(18) 

 

Each term of this equation is also described on the 

Table 2. 

3.4 Write power 

The power needed for a write data is similar to the 

read data except the data propagates in the opposite 

direction. Data from the DQ pins is latched into the 

data receivers/registers and is transferred to the 

internal data drivers that transmit the data to the sense 

amplifiers across the I/O gating and into the decoded 

column address location. 

Write power is defined with (19): 

 

PWrite =  (IDD4W −  IDD3N)  ∗  Vcc 
∗  8 / Blength 
∗  WRsch 
∗  (Vdd / Vcc)² 
∗  syst_ck_freq / 1000 
∗  Tck_used 

(19) 

 

Each parameter of this formula is also expressed 

on the Table 2. 

3.5 DRAM total power 

DRAM total power (20) is obtained by summing all 

the equations (11), (15), (18) and (19) of powers 

defined in the preceding paragraphs. 

 

PDRAM =  PActivate + PPrecharge + PRead

+  PWrite 

(20) 

 

Moreover, we want to calculate the power 

consumed by the application. That is why, the usage 

percent of the process Id (𝑀𝑖𝑑) is multiplied with the 

previous expression (20) as follows (21): 

 

PDRAM,   id =  PDRAM . Mid (21) 

 



 

 

Table 2: Data sheet specifications 

Parameter Description 

Idd2P Precharge power-down 

current 

Vcc Voltage 

BNK_PRE The percentage of time 

that all banks on the 

DRAM are  

in a precharged state 

CKE_LO_PRE Percentage of the all bank 

precharge time for which 

CKE  

is held LOW 

Vdd System VDD 

IDD2N Precharge standby current 

syst_ck_freq System CK frequency 

Tck_used Used for current 

measurements 

IDD3P Active power-down 

current 

CKE_LO_ACT Percentage of the at least 

one bank active time for 

which  

CKE is held LOW 

IDD3N Active standby current 

IDD0 Operating current: One 

bank active-precharge 

tRAS Used for IDD0 

calculation 

tRC Activate-to-activate 

timing 

tRRDsch The average time between 

ACT commands to this 

DRAM 

IDD4W Operating burst write 

current 

Blength Burst length 

WRsch The percentage of clock 

cycles which are inputting 

write  

data to the DRAM 

IDD4R Operating burst read 

current 

RDsch The percentage of clock 

cycles which are 

outputting read  

data from the DRAM 

 

Thus, we established also the relation allowing us 

to estimate the power consumed by DRAM. Hence, 

we implemented a tool and realize some experiments 

in order to see the behavior of DRAM compare to 

CPU. 

4 EXPERIMENTS 

4.1 Devices used 

We used the laptop ASUS model N751J composed of 

a CPU Intel Core i7-4710HQ (2.5GHz) and a RAM 

16 Go (2 * 8 Go) DDR3 1600 MHz.  

To run tests, we developed a tool TEEC (Tool to 

Estimate Energy Consumption), whose model is 

shown in Figure 2, in Java programing language 

because depending on (Noureddine, 2012) Java 

represent the language with the least power 

consumption during compilation and execution steps 

in default parameter settings of the compiler. In this 

tool TEEC, we use Sigar library (Morgan and 

MacEachern, 2010) in order to get information about 

the CPU and the RAM. Moreover, we use also the 

parameter provides by manufacturers. And, Java 

Agents allows us to the instrumentation capabilities 

to an application. 

 

 

Figure 2: Model of our tool TEEC. 

Thus, using TEEC, we realized several different 

tests in order to observe the variation of the power 

consumption due to the CPU and the memory and 

compare them. 

4.2 Source code adjustment 

Based on (Kambadur and Kim, 2014), we realize the 

following tests in order to see the impacts of source 

code on CPU and memory power consumption. 

4.2.1 Strength reduction 

Strength reduction consists of replacing an operation 

by a similar operation. The most common example of 

strength reduction is using the shift operator to 

multiply and divide. For instance, a >> 2 can be 

used in place of a / 4, and a << 1 replaces a * 

2. 

In our case in order to see the behavior of this 

replacement, we execute the same operation several 



 

time (here: 50000 repetitions). So, we can observe the 

results on the Figures 3.a and 3.b. 

 

Figure 3.a: Strength reduction unoptimized. 

 

Figure 3.b: Strength reduction optimized. 

For this test, we observe that the DRAM power 

consumption remains constant in the two cases and 

the time elapsed is similar. The CPU power 

consumption is less important after the strength 

reduction. This show, the impact of the code source 

on the CPU power consumption. Moreover, in the 

two cases, we observe that the CPU power varies and 

sometimes these values are close to DRAM values.   

Thus, we can say that the DRAM power consumption 

is not always neglected in front of CPU power 

consumption. 

4.2.2 Eliminate common subexpressions 

To remove redundant calculation, we eliminate 

common subexpressions. This part of code: 
 

double a = c * (d / e) * f; 

double b = c * (d / e) * g; 

 

can be rewritten as: 
 

double h = c * (d / e); 

double a = h * f; 

double b = h * g; 

 

We run test in a loop of 50000 repetitions to 

observe the variation of power. The results are in 

Figure 4.a and 4.b. 

 

Figure 4.a: Subexpression unoptimized. 

 

Figure 4.b: Subexpression optimized. 

In this test, the results show that the CPU and the 

DRAM power consumption and the elapsed time in 

the two cases are quite similar. However, we note 

that the CPU power consumption vary and several 

times is more close to DRAM power consumption. 
 

4.2.3 Code motion 

Code motion moves code that calculates an 

expression whose result doesn't change. This is most 

common with loops, but it can also involve code 

repeated on each invocation of a method. For 

example: 
 

for (int i = 0; i < a.length; ++i) 

    a[i] *= Math.PI * Math.cos(b); 

 

becomes: 
 

double pico = Math.PI* Math.cos(b); 

for (int i = 0; i < a.length; i++) 

    a[i] *= pico; 

 



 

The results of this test is represented on the 

Figures 5.a and 5.b. 

 

 

Figure 5.a: Code motion unoptimized. 

 

 

Figure 5.b: Code motion optimized. 

This test show that in the unoptimized code 

motion, the time elapsed is slightly greater than 

optimized code. CPU and DRAM power 

consumption are quite similar in the two cases. And, 

sometimes CPU power consumption curve 

approaches DRAM power consumption curve. 

4.2.4 Unrolling loops 

Unrolling loops reduces the number of loop control 

code by performing more than one operation each 

time in the loop, and consequently running fewer 

iterations. With the previous example, if  the length 

of the table a is always a multiple of two, the loop can 

be rewrite like: 
 

double pico = Math.PI* Math.cos(b); 

for (int i = 0; i < a.length; i += 2) { 

    a[i] *= pico; 

    a[i+1] *= pico; 

} 

 

Figure 6 shows the power consumption of CPU 

and DRAM depending on the time. 

 

 

Figure 6: Unrolling loops. 

Compare to the Figure 5.b, in this case, we observe 

that at the beginning of the curve, the CPU consumes 

more power during some time than code motion and 

then becomes similar. But, in unrolling loops case, the 

total execution elapsed time is the half of the code 

motion case. And at the end of the curve in Figure 6, 

the CPU power is less important than the curve in 

code motion (Figure 5.b). Moreover, in this test, the 

difference between CPU and DRAM power 

consumption is less important than code motion case. 

Thus, the results reveal that the unrolling loops 

method is quicker and consumes less CPU power than 

the code motion method. 

5 CONCLUSIONS 

A modelization of the CPU and the DRAM has been 

made in order to understand the behavior and the 

functionality of each component. Thanks to this 

model, several mathematical formulas have been 

established to estimate the power consumption due to 

each part of each component. Thus, based on this 

methodology, a tool that allow to measure the power 

consumed by CPU and DRAM has been implemented 

and named TEEC (Tool to Estimate Energy 

Consumption). This tool gives accurate and efficient 

information about CPU and DRAM power 

consumption, has been used to perform some 

experiments. The goal of these tests was to observe 

the impact of the code source of an application in the 

power consumption. These experiments have 

provided several results. 

When the code source is optimized, it is possible 

to reduce the power consumption due to CPU. But, 

the DRAM power consumption remains quite 

constant. 



 

 Sometimes, it is possible to save energy with an 

optimization of the code by reducing execution time 

of an application. 

In several cases, after some time of execution, 

CPU power consumption remains the main energy 

consumer. However, the DRAM power consumption 

can’t be neglected. 

Moreover, some code optimizations don’t make 

any real impact on the CPU and DRAM power 

consumption. 

The  contribution  to  power  measurement  

literature  will  continue  by  bringing improvement  

to  the  estimation  of  the  consumption  of  other  

components;  such  as, disk and network in order to 

observe their impact.  It will allow us to have a higher 

accuracy in estimating the energy consumption of a 

program. 

The  proposed  tool TEEC is  expected  to  be  

improved,  and  it  is  planned  to  dynamically 

identifying  locations  where code consume  the  

largest  power.  This will allow developers to 

optimize their own codes to obtain green and 

sustainable software. 
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