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Dans ce papier, on a prouvé une estimation de stabilité de type Höldérienne pour un problème inverse de détermination du terme source de l'équation de la chaleur à l'aide d'une inégalité de Carleman pour un système d'équations hyperbolique-parabolique couplé.

ABSTRACT.

In this paper we consider a coupled system of mixed hyperbolic-parabolic type which describes the Biot consolidation model in poro-elasticity. Using a local Carleman estimate for a coupled hyperbolic-parabolic system, we prove the uniqueness and a Hölder stability in determining the heat source by a single measurement of solution over ω × (0, T ), where T > 0 is a sufficiently large time and a suitable subbdomain ω ⊂ Ω such that ∂ω ⊃ ∂Ω.

Introduction

Let Ω ⊂ R 3 an open and bounded domain with C ∞ boundary Γ = ∂Ω, and let t and x = (x 1 , x 2 , x 3 ) ∈ Ω denote the time variable and the spatial variable respectively. Given T > 0, we consider a coupled hyperbolic-parabolic system

   u tt -∆ µ,λ u -∇(λ * (x)divu t ) + 1 (x)∇θ = 0 in Q ≡ Ω × (0, T ), θ t -∆θ + 2 (x)divu t = g in Q, u(x, t) = 0, θ(x, t) = 0 on Σ ≡ Γ × (0, T ), (1) 
where the . t stands for the time derivative, ∇ = (∂ 1 , ∂ 2 , ∂ 3 ), and ∆ µ,λ is the elliptic second order linear differential operator given by

∆ µ,λ v(x) ≡ µ∆v(x) + (µ + λ)(∇(divv(x))) + divv(x)∇λ(x) + (∇v + (∇v) T )∇µ(x), x ∈ Ω, (2) 
for v = (v 1 , v 2 , v 3 ) T , where . T denotes the transpose of matrices. Throughout this paper, u = (u 1 , u 2 , u 3 ) T denotes the displacement at the location x and the time t, and θ ≡ θ(x, t), the temperature, is a scalar function, g ∈ H 1 (0, T ; L 2 (Ω)) is a heat source. We will assume that the Lamé parameters µ, λ ∈ C 2 (Ω), satisfy µ(x) ≥ µ 0 > 0, λ(x) + 2µ(x) > 0, ∀x ∈ Ω.

and λ * ∈ C 2 (Ω) is the consolidation coefficient which satisfy :

λ * (x) ≥ k 0 > 0, x ∈ Ω.
Furthermore, the coupling coefficients 1 , 2 satisfies :

( 1 , 2 ) ∈ (C 2 (Ω)) 2 ; 1 (x) > 0 > 0 in for all x ∈ Ω.

We assume that the heat source is given by g(x, t) = q(x)k(x, t),

where k ∈ W 2,∞ (Q) and q ∈ H 2 (Ω).

We can prove (e.g., [START_REF] Barucq | Theoretical aspects of wave propagation for Biot's consolidation problem[END_REF][START_REF] Lions | Non-homogenous boundary value problems and applications[END_REF]) that the system (1) possesses a unique solution

(u, θ) ≡ u (λ * , 1, 2) , θ (λ * , 1 , 2 ) ,
Let ω ⊂ Ω be a given arbitrarily subdomain such that ∂ω ⊃ Γ, i.e. ω = Ω ∩ V where V is a neighbourhood of Γ on R 3 and let k and t 0 ∈ (0, T ) be appropriately given.

Inverse Problem : Determine q(x), x ∈ Ω, by measurements u | ω×(0,T ) , u(x, t 0 ), and θ(x, t 0 )

x ∈ Ω.

The main subject of this paper is the inverse problem of determining of g, in the Biot consolidation model in poro-elasticity, uniquely from observed data of displacement vector u on a suitable subdomain ω ⊂ Ω and the observation data of u and θ at given a suitable time t 0 . Such kinds of observation data are similar to those considered in (e.g. [START_REF] Bellassoued | Carleman estimates and inverse heat source problem for thermoelasticity system[END_REF], [START_REF] Bellassoued | Carleman estimate for Biot consolidation system in poroelasticity and application to inverse problem[END_REF], [START_REF] Wu | Conditional stability and uniqueness for determining two coefficients in a hyperbolic-parabolic system[END_REF]).

The key ingredient in our argument is an L 2 -weighted inequality of Carleman type for coupled mixed hyperbolic-parabolic system. We prove a Hölder stability estimate in our inverse problem. We note that the uniqueness in the inverse problem follows directly from the Hölder stability.

Statement of main result

Let t 0 ∈ (0, T ) and

x 0 ∈ R 3 \ Ω such that 1 √ r 0 max x∈Ω |x -x 0 | < min{t 0 , T -t 0 }, (4) 
where r 0 ∈ (0, µ 0 ).

We denote (u, θ) the solution of (1) corresponding to ( 1 , , λ * ).

Theorem 1.1 Let x 0 ∈ R 3 \ Ω and t 0 ∈ (0, T ) satisfies (4). Let k ∈ W 2,∞ (Q) such that k W 2,∞ ≤ M and k(x, t 0 ) = 0, x ∈ Ω.
We assume that the solution (u, θ) satisfies the a priori boundedeness :

u H 2 (0,T ;H 2 (Ω)) + θ H 1 (0,T ;L 2 (Ω)) ≤ M 0 , (5) 
for some given positive constant M 0 . Then there exist constants C > 0 and δ ∈ (0, 1) such that the following stability estimate hold

q(x) L 2 (Ω) ≤ C( u t H 4 (ω×(0,T )) + θ(., t 0 ) H 2 (Ω) + u t (., t 0 ) H 3 (Ω) + u tt (., t 0 ) H 1 (Ω) ) δ .
By Theorem 1.1, we can readily derive the uniqueness in the inverse problem Corollary 1.2 Under the same assumptions as in Theorem 1.1, we have the uniqueness. Let (u, θ) satisfy the Biot system (1) such that u(x, t) = 0, (x, t) ∈ ω × (0, T ) and u(x, t 0 ) = 0, θ(x, t 0 ) = 0, x ∈ Ω.

Then q(x) = 0 for all x ∈ Ω.

The remainder of the paper is organized as follows. In section 2, we give a Carleman estimate for a coupled hyperbolic-parabolic system. In section 3, we prove Theorem 1.1.

Carleman estimate

Here we present a Carleman estimate, which was proved in [START_REF] Bellassoued | Carleman estimate for Biot consolidation system in poroelasticity and application to inverse problem[END_REF]. For formulating our Carleman estimate, we introduce some notations. Let ψ : Ω × R -→ R by setting

ψ(x, t) = ϑ(x) -β((t -t 0 ) 2 -M ) = |x -x 0 | 2 -β((t -t 0 ) 2 -M ), x ∈ Ω, (6) 
for M > 0 large, where x 0 ∈ R 3 \ Ω and t 0 ∈ (0, T ) such that

min{t 2 0 , (T -t 0 ) 2 } > r -1 0 max x∈Ω ϑ(x) . (7) 
We fix δ > 0 and β > 0 satisfying

β min{t 2 0 , (T -t 0 ) 2 } > max x∈Ω ϑ(x) + δ, 0 < β < r 0 . (8) 
Therefore, by ( 6) and (8) the function ψ(x, t) verifies the following properties

ψ(x, 0) ≤ βM -δ, ψ(x, T ) ≤ βM -δ, for all x ∈ Ω, (9) 
there exists ∈ (0, T /4) such that

max x∈Ω ψ(x, t) ≤ βM - δ 2 , for all t ∈ (0, 2 ) ∪ (T -2 , T ), (10) 
and

min x∈Ω ψ(x, t 0 ) ≥ βM. (11) 
We next introduce a function ϕ

: Ω × R -→ R by ϕ(x, t) = e γψ(x,t) := ρ(x)α(t), γ > 0, (12) 
where γ is a large parameter, ρ(x) and α(t) are defined by

ρ(x) = e γ(|x-x0| 2 +βM ) ≥ e γβM ≡ d 1 , ∀x ∈ Ω and α(t) = e -βγ(t-t0) 2 ≤ 1, ∀t ∈ (0, T ) (13) and let σ ≡ σ(x, t) = sγϕ(x, t). ( 14 
)
We use usual function spaces, H k (Q), and

H 2,1 (Q) = H 1 (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 2 (Ω)).
Let (v, y) a solution of the linear Biot consolidation system

v tt (x, t) -∆ µ,λ v(x, t) -∇(λ * divv t (x, t)) + 1 ∇y(x, t) = f (x, t) in Q, y t (x, t) -∆y(x, t) + 2 divv t (x, t) = h(x, t) in Q, ( 15 
) such that Supp(v(•, t)) ⊂ Ω, Supp(y(•, t)) ⊂ Ω, for all t ∈ (0, T ). ∂ j t v(x, 0) = ∂ j t v(x, T ) = 0, y(x, 0) = y(x, T ) = 0 for all x ∈ Ω, j = 0, 1. (16)
The following theorem is a weighted Carleman estimate with second large parameter for Biot's consolidation system (15) with assumption (16).

Theorem 2.1 (Carleman estimate) There exist two constants γ * > 0 and C > 0 such that for any γ > γ * , there exists s * = s * (γ) > 0 such that the following estimate holds

C Q σ |∇ x,t v| 2 + σ 3 |v| 2 + σ 4 |divv| 2 + σ 3 |divv t | 2 + σ 2 |∇divv| 2 + σ |∇divv t | 2 + |∆y| 2 + σ 2 |∇y| 2 + σ 4 |y| 2 e 2sϕ dx dt ≤ Q (|f | 2 + |∇f | 2 + γ -1 σ |h| 2 )e 2sϕ dx dt + Q γ -1 |∆divv(x, t 0 )| 2 + γ -1 |divv t (x, t 0 )| 2 +σ 4 |divv(x, t 0 )| 2 + σ 2 |∇divv(x, t 0 )| 2 e 2sϕ dxdt, (17) 
for any solution

(v, y) ∈ H 2 (Q) × H 2,1 (Q) to problem (15) which satisfy (16) and any s ≥ s * .
The proof is given by Bellassoued and Riahi [START_REF] Bellassoued | Carleman estimate for Biot consolidation system in poroelasticity and application to inverse problem[END_REF].

Proof of the main result

This section is devoted to the proof of the Theorem 1.1. The idea of the proof is based on the Carleman estimate method in [START_REF] Bellassoued | Carleman estimate for Biot consolidation system in poroelasticity and application to inverse problem[END_REF]. A usual methodology by [START_REF] Bellassoued | Carleman estimates and inverse heat source problem for thermoelasticity system[END_REF][START_REF] Bellassoued | Carleman estimate for Biot consolidation system in poroelasticity and application to inverse problem[END_REF]. 

Preliminaries estimate

ω×(0,T ) σ 4 |v| 2 e 2sϕ dxdt ≤ C ω×(0,T ) σ 2 |∇v| 2 e 2sϕ dxdt ( 18 
)
for any v ∈ H 1 (ω × (0, T )) such that v(x, t) = 0 on ∂ω × (0, T ).
Proof We multiply ∇v by (∇ϕ)ve 2sϕ and using the divergence theorem, we obtain

ω ∇v • (∇ϕ)v e 2sϕ dx = - ω v div((∇ϕ) v e 2sϕ )dx = - ω |v| 2 ∆ϕ e 2sϕ dx -2s ω |v| 2 |∇ϕ| 2 e 2sϕ dx - ω ∇v • (∇ϕ) v e 2sϕ dx.
Therefore,

2 ω σ∇v • (∇ϑ) v e 2sϕ dx = -2 ω σ 2 |v| 2 |∇ϑ| 2 e 2sϕ dx - ω σ |v| 2 ∆ϑ e 2sϕ dx -γ ω σ |v| 2 |∇ϑ| 2 e 2sϕ dx.
Taking γ ≥ γ * and s ≥ s * sufficiently large, we obtain for any ε > 0

C ω σ 2 |v| 2 e 2sϕ dx ≤ C ε ω |∇v| 2 e 2sϕ dx + ε ω σ 2 |v| 2 e 2sϕ dx. (19) 
Integrating in (0, T ) and taking ε small we obtain

C ω×(0,T ) σ 2 |v| 2 e 2sϕ dx ≤ C ω×(0,T ) |∇v| 2 e 2sϕ dx. (20) 
Applying the last inequality to σ 2 v we obtain ω×(0,T )

σ 4 |v| 2 e 2sϕ dx ≤ C ω×(0,T ) σ 2 |∇v| 2 e 2sϕ dx, (21) 
for any γ ≥ γ * and s ≥ s * . This completes the proof. Hence, by Lemma 3.1, we obtain the following Lemma.

Lemma 3.2 Let (v, y) ∈ H 2 (Q) × H 2,1 (Q), satisfying    v tt -∆ µ,λ v -∇(λ * (x)divv t ) + 1 (x) ∇y = f (x, t) ∈ Q, y t -∆y + 2 (x) divv t = h (x, t) ∈ Q, v = 0, y = 0 (x, t) ∈ Σ, (22) 
and ∂ j t v(x, 0) = ∂ j t v(x, T ) = 0, y(x, 0) = y(x, T ) = 0 for all x ∈ Ω, j = 0, 1.

(23) There exist positive constants γ * and C > 0 such that, for any γ ≥ γ * we can find s * and D, the following inequality holds

Q e 2sϕ σ |∇ x,t v| 2 + σ 3 |v| 2 + σ 4 |divv| 2 + σ 3 |divv t | 2 + σ 2 |∇divv| 2 +σ |∇divv t | 2 + |∆y| 2 + σ 2 |∇y| 2 + σ 4 |y| 2 dxdt ≤ C Q γ -1 σ |h| 2 +σ 2 |f | 2 + |∇f | 2 dxdt + Ce Ds v 2 H 4 (ω×(0,T )) + v(•, t 0 ) 2 H 3 (Ω) + v t (•, t 0 ) 2 H 1 (Ω) , (24) 
for any s ≥ s * .

Proof Let ω ⊂ ω such that ∂ω ⊃ Γ. In order to apply Carleman estimate, we introduce a cut-off function

χ satisfying 0 ≤ χ ≤ 1, χ ∈ C ∞ (R 3 ), χ = 1 in Ω\ω and suppχ ⊂ Ω. Put v(x, t) = χ(x)v(x, t), y(x, t) = χ(x)y(x, t).
Noting that ( v, y) ∈ H 2 (Q) × H 2,1 (Q), and satisfying

v tt -∆ µ,λ v -∇(λ * div v t ) + 1 ∇ y = f (x, t) ∈ Q, y t -∆ y + 2 div v t = g (x, t) ∈ Q, ( 25 
) with Supp( v(•, t)) ⊂ Ω Supp( y(•, t)) ⊂ Ω, ∀ t ∈ (0, T ).
Here

f = χ(x)f (x, t) -[∆ µ,λ , χ]v -∇(λ * ∇χ.v t ) -λ * (∇χ)divv t + 1 y∇χ, ≡ χ(x)f (x, t) + P 1 v + Q 1 v t + A 0 y g = χ(x)h(x, t) -2∇χ • ∇y -y∆χ + 2 ∇χ • v t ≡ χ(x)h(x, t) + A 1 y + Q 0 v t and P 1 , Q 1 , A 1 
are a first order partial differential operators with the coefficients are supported in ω and A 0 , Q 0 are zeroth order partial diffrential operators supported also in ω .

Noting that ( v, y) satisfies (25), then we can apply the Carleman estimate for Biot's system (17) to ( v, y), we obtain

C (Ω\ω )×(0,T ) e 2sϕ σ |∇ x,t v| 2 + σ 3 |v| 2 + σ 4 |divv| 2 + σ 3 |divv t | 2 +σ 2 |∇divv| 2 + σ |∇divv t | 2 + |∆y| 2 + σ 2 |∇y| 2 + σ 4 |y| 2 dxdt ≤ Q e 2sϕ γ -1 σ | g| 2 + | f | 2 + |∇ f | 2 dxdt + Q γ -1 |∆div v(x, t 0 )| 2 +γ -1 |div v t (x, t 0 )| 2 + σ 4 |div v(x, t 0 )| 2 + σ 2 |∇div v(x, t 0 )| 2 e 2sϕ dxdt.( 26 
)
Using the first equation of system (22) after taking divergence, we obtain the following estimate By the last inequality and (26), we deduce

C Ω×(0,T ) e 2sϕ σ |∇ x,t v| 2 + σ 3 |v| 2 + σ 4 |divv| 2 + σ 3 |divv t | 2 + σ 2 |∇divv| 2 +σ |∇divv t | 2 + |∆y| 2 + σ 2 |∇y| 2 + σ 4 |y| 2 dxdt ≤ C Q γ -1 σ |h| 2 + |f | 2 + |∇f | 2 dxdt +C ω ×(0,T ) σ 4 |y| 2 e 2sϕ dxdt + ω ×(0,T ) σ 2 |∇y| 2 e 2sϕ dxdt +e Ds v 2 H 4 (ω×(0,T )) + v(•, t 0 ) 2 H 3 (Ω) + v t (•, t 0 ) 2 H 1 (Ω) . (27) 
Let χ 1 be a cut-off function satisfying 0 ≤ χ 1 ≤ 1, χ 1 ∈ C ∞ (R 3 ), χ 1 = 1 in ω and Supp(χ 1 ) ⊂ ω. Let us consider z(x, t) = χ 1 (x)y(x, t) ∈ H 1 (ω × (0, T )) and z(x, t) = 0 for all (x, t) ∈ ∂ω × (0, T ), so that by Lemma 3.1, we have

ω ×(0,T ) σ 4 |y| 2 σe 2sϕ dxdt ≤ ω×(0,T ) σ 4 |z| 2 e 2sϕ dxdt ≤ C ω×(0,T ) σ 2 |∇y| 2 e 2sϕ dxdt + C Q σ 2 |y| 2 e 2sϕ dxdt. (28) 
Furthermore by the first equation of ( 22), we have

ω ×(0,T ) σ 2 |∇y| 2 e 2sϕ dxdt ≤ Ce Ds v 2 H 3 (ω×(0,T )) + Ω×(0,T ) σ 2 |f | 2 e 2sϕ dxdt. (29) 
Inserting ( 28) and ( 29) in ( 27), we obtain (24). This completes the proof of the Lemma.

Let (v, y) ∈ H 2 (Q) × H 2,1 (Q) satisfying v tt -∆ µ,λ v -∇(λ * divv t ) + 1 ∇y = f (x, t) ∈ Q, y t -∆y + 2 div v t = h (x, t) ∈ Q, v = 0, y = 0 (x, t) ∈ Σ. Put v(x, t) = η(t)v(x, t), y(x, t) = η(t)y(x, t). Noting that ( v, y) ∈ H 2 (Q) × H 2,1 (Q) satisfies v tt -∆ µ,λ v -∇(λ * div v t ) + 1 ∇ y = ηf + η tt v + 2η t v t -η t ∇(λ * divv) (x, t) ∈ Q, y t -∆ y + 2 div v t = ηh + η t (y -2 divv) (x, t) ∈ Q, v = 0, y = 0 (x, t) ∈ Σ, (30 
) Henceforth we fix γ > 0 sufficiently large. By N s,ϕ we denote the quantity

N s,ϕ (v, y) = Q e 2sϕ s |∇ x,t v| 2 + s 3 |v| 2 + s 4 |divv| 2 + s 3 |divv t | 2 +s 2 |∇divv| 2 + s |∇divv t | 2 + |∆y| 2 + s 2 |∇y| 2 + s 4 |y| 2 dxdt. (31) 
We introduce a cut-off function

η satisfying 0 ≤ η ≤ 1, η ∈ C ∞ (R), η = 1 in (2ε, T -2ε) and Supp(η) ⊂ (ε, T -ε). Finally we denote v = ηv, y = ηy.
Setting d 0 = e (βM -δ/2)γ , by (9), we have

max x∈Ω ϕ(x, t) ≤ d 0 , t ∈ (0, 2ε) ∪ (T -2ε, T ). ( 32 
)
We have the following lemma :

Lemma 3.3 There exist three positive constants s * , C > 0 and D such that the following inequality holds :

CN s,ϕ ( v, y) ≤ Q s |h| 2 + s 2 |f | 2 + |∇f | 2 e 2sϕ dxdt +e Ds v 2 H 4 (ω×(0,T )) + v(•, t 0 ) 2 H 3 (Ω) + v t (•, t 0 ) 2 H 1 (Ω) +Cs 2 e 2d0s v 2 H 1 (0,T ;H 2 (Ω)) + y 2 L 2 (Q) ,
for any s ≥ s * and any

( v, y) ∈ H 2 (Q) × H 2,1 (Q) satisfying (30).
Proof Applying Carleman estimate (24) to ( v, y), we obtain

CN s,ϕ ( v, y) ≤ Q s |h| 2 + s 2 |f | 2 + |∇f | 2 e 2sϕ dxdt + e Ds v 2 H 4 (ω×(0,T )) + v(•, t 0 ) 2 H 3 (Ω) + v t (•, t 0 ) 2 H 1 (Ω) + Q (s 2 (|η tt | 2 + |η t | 2 )(|y| 2 + |v| 2 + |v t | 2 + |∇v| 2 + |∇v t | 2 + |∇(divv)| 2 )e 2sϕ dxdt,
for any γ ≥ γ * and s ≥ s * . Since Supp(η tt ), Supp(η t ) ⊂ (0, 2 ) ∪ (T -2 , T ), we obtain from (32)

Q (s 2 (|η tt | 2 + |η t | 2 )(|y| 2 + |v| 2 + |v t | 2 + |∇v| 2 + |∇v t | 2 + |∇(divv)| 2 )e 2sϕ dxdt ≤ Cs 2 e 2d0s v 2 H 1 (0,T ;H 2 (Ω)) + y 2 L 2 (Q) .
This completes the proof of the lemma.

Completion of the proof of the main result

Consider now the following system

u tt -∆ µ,λ u -∇(λ * divu t ) + 1 ∇θ = 0 (x, t) ∈ Q, θ t -∆θ + 2 div u t = g (x, t) ∈ Q, u = 0, θ = 0 (x, t) ∈ Σ, (33) 
where the heat source term g is given by g(x, t) = q(x)k(x, t).

Let v = u t and y = θ t . Then, we have

v tt -∆ µ,λ v -∇(λ * divv t ) + 1 ∇y = 0 (x, t) ∈ Q, y t -∆y + 2 div v t = g t (x, t) ∈ Q, v = 0, y = 0 (x, t) ∈ Σ. (34) 
We apply Lemma 3.3 to ( v, y) solution of the following system

v tt -∆ µ,λ v -∇(λ * div v t ) + 1 ∇ y = η tt v + 2η t v t -η t ∇(λ * divv) (x, t) ∈ Q, y t -∆ y + 2 div v t = ηg t + η t (y -2 divv) (x, t) ∈ Q, v = 0, y = 0 (x, t) ∈ Σ, (35) 
we obtain the following estimate :

CN s,ϕ ( v, y) ≤ Q s |g t | 2 e 2sϕ dxdt +e Ds v 2 H 4 (ω×(0,T )) + v(•, t 0 ) 2 H 3 (Ω) + v t (•, t 0 ) 2 H 1 (Ω) +Cs 2 e 2d0s v 2 H 1 (0,T ;H 2 (Ω)) + y 2 L 2 (Q) , (36) 
for sufficiently large s > 0.

We have the following Lemma Lemma 3.4 There exists a positive constant C > 0 such that the following estimate

Ω |z(x, t 0 )| 2 dx ≤ C Q (s |z(x, t)| 2 + s -1 |z t (x, t)| 2 )dxdt,
for any z ∈ H 1 (0, T ; L 2 (Ω)).

Proof By direct computations, we have

Ω η 2 (t 0 ) |z(x, t 0 )| 2 dx = t0 0 d dt Ω η 2 (t) |z(x, t)| 2 dx dt = 2 t0 0 Ω η 2 (t)z(x, t)z t (x, t)dxdt + 2 t0 0 Ω η t (t)η(t) |z(x, t)| 2 dxdt.
Then, we have

Ω |z(x, t 0 )| 2 dx ≤ C Q (s |z(x, t)| 2 + s -1 |z t (x, t)| 2 )dxdt.
This complete the proof of the lemma. Second, we apply lemma 3.4 to y 1 (x, t) = η(t)e 2sϕ(x,t) y(x, t) = e 2sϕ(x,t) y(x, t) and by the second equation of (35), we obtain

Ω e 2sρ(x) |y(x, t 0 )| 2 dx ≤ Q σe 2sϕ | y(x, t)| 2 dxdt + Q σ -1 e 2sϕ | y t (x, t)| 2 dxdt ≤ Q σe 2sϕ | y(x, t)| 2 dxdt + Q σ -1 e 2sϕ |g t (x, t)| 2 dxdt + Q σ -1 e 2sϕ |∆ y(x, t)| 2 dxdt + Q σ -1 e 2sϕ |div v t | 2 dxdt + Q σ -1 e 2sϕ |η t | 2 (|y| 2 + |divv| 2 )dxdt ≤ Q σe 2sϕ | y(x, t)| 2 dxdt + Q σ -1 e 2sϕ |g t (x, t)| 2 dxdt + Q σ -1 e 2sϕ |∆ y(x, t)| 2 dxdt + Q σ -1 e 2sϕ |div v t | 2 dxdt +e 2sd0 v 2 H 1 (Q) + y 2 L 2 (Q) . (37) 
Then,

Cs

Ω e sρ(x) |y(x, t 0 )| 2 dx ≤ Q e 2sϕ |g t (x, t)| 2 dxdt + Q e 2sϕ |∆ y| 2 + σ 2 | y| 2 + |div v t | 2 dxdt + s e 2sd0 ( v 2 
H 1 (Q) + y 2 L 2 (Q) ) ≤ Q e 2sϕ |g t (x, t)| 2 dxdt + CN s,ϕ ( v, y) + se 2sd0 ( v 2 H 1 (Q) + y 2 L 2 (Q) ). (38) 
Moreover, using (36), we get

s Ω e 2sρ(x) |y(x, t 0 )| 2 dx ≤ Cs Q e 2sϕ |g t (x, t)| 2 dxdt +e Ds v 2 H 4 (ω×(0,T )) + v(., t 0 ) 2 H 3 (Ω) + v t (., t 0 ) 2 H 1 (Ω) +Cs 2 e 2sd0 v 2 H 1 (0,T ;H 2 (Ω)) + y 2 L 2 (Q) . (39) 
On the one hand, by the second equation in (33), we have

y(x, t 0 ) = ∆θ(x, t 0 ) -2 divv(x, t 0 ) + q(x)k(x, t 0 ). (40) 
Moreover, we have

|q(x)| ≤ |q(x)| |k(x, t 0 )| ≤ |y(x, t 0 )| + |∆θ(x, t 0 )| + |divv(x, t 0 )| . (41) 
Then,

Ω e 2sρ(x) |q(x)| 2 dx ≤ Ω e 2sρ(x) |y(x, t 0 )| 2 dx + Ω e 2sρ(x) |divv(x, t 0 )| 2 dx + Ω e 2sρ(x) |∆θ(x, t 0 )| 2 dx. (42) 
We deduce that

s Ω e 2sρ(x) |q(x)| 2 dx ≤ s Ω e 2sρ(x) |y(x, t 0 )| 2 dx +s Ω e 2sρ(x) |divv(x, t 0 )| 2 dx + Ce sD ∆θ(x, t 0 ) 2 L 2 (Ω) . (43) 
Inserting (39) into (43), we get 

s Ω e 2sρ(x) |q(x)| 2 dx ≤ Cs Q e 2sϕ |g t (x, t)| 2 dxdt + Cs 2 e 2sd0 M 2 0 +Ce Ds v 2 H 4 (ω×(0,T )) + v(., t 0 ) 2 H 3 (Ω) + v t (., t 0 ) 2 H 1 (Ω) + ∆θ(x, t 0 ) 2 L 2 (Ω) . (44) 
Now we return to the first integral term in Q on the right-hand side term of (45). 

Finally, minimizing the right hand side with respect to s, we obtain q L 2 (Ω) ≤ C( v H 4 (ω×(0,T )) + θ(., t 0 ) H 2 (Q) + v(., t 0 ) H 3 (Ω) + v t (., t 0 ) H 1 (Ω) ) δ .

Thus proof of Theorem 1.1 is completed.

Lemma 3 . 1

 31 Let ω be an open subdomain of Ω with regular boundary ∂ω ⊃ Γ. There exists constants γ * , s * and C > 0 such that for any s ≥ s * and any γ ≥ γ * the following estimate holds :

ω ×(0,T ) |∆y| 2 e 2 H 4 ( 2 e

 2242 2sϕ dxdt ≤ Ce Ds v 2sϕ dxdt + Q e 2sϕ |∇f | 2 dxdt.

Qe 2 L 2 L 2 L 0 e

 2220 2sϕ |q(x)k t | 2 dxdt ≤ Ω e 2sρ(x) |q(x)| 2 T 0 e -2s(ρ-ϕ) k t (., t) ∞ (Ω) dt dx.(46) By the Lebesgue theorem, we obtainT 0 e -2s(ρ-ϕ) k t (., t) ∞ (Ω) dt = T 0 e -2sρ(x)(1-α(t)) k t (., t) ∞ (Ω) dtInverse heat source problem for a coupled hyperbolic-parabolic system 17 ≤ T -2s(

  Selecting κ ∈ (d 0 , d 1 ) such that Cs 2 e 2sd0 ≤ e 2κs for any s large, we get

	s	e 2sρ(x) |q(x)| 2 dx ≤ Cs	e 2sϕ |g t (x, t)| 2 dxdt + e 2κs M 2 0
	Ω		Q
	+Ce Ds v	2 H 4 (ω×(0,T )) + v(., t 0 )	2 H 3 (Ω)
	+ v t (., t 0 )	2 H 1 (Ω) + θ(., t 0 )

2

H 2 (Ω) .

  1-α(t)) k t (., t)

		2 L ∞ dt = o(1),	(47)
	as s → ∞. By (45), we have		
	s e sρ q	2 L 2 (Ω) ≤ o(1)	Q	se 2sρ |q(x)| 2 dxdt + e 2κs M 2 0
	+Ce Ds v		

2

H 4 (ω×(0,T )) + v(., t 0 )

2 H 3 (Ω) + v t (., t 0 ) 2 H 1 (Ω) + θ(., t 0 ) 2 H 2 (Ω) . (

48

)

for all s ≥ s * .

On the other hand, using the fact that ρ(x) ≥ d 1 for all x ∈ Ω. Then for sufficiently large s > 0, we have

q 2 L 2 (Ω) ≤ Ce γ1s ( v 2 H 4 (ω×(0,T )) + v(., t 0 ) 2 H 3 (Ω) + v t (., t 0 ) 2 H 1 (Ω) + θ(., t 0 ) 2 H 2 (Ω) ) + Ce -γ2s M 2 0 .