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We are interested in the large time behavior of the solutions to the growth-fragmentation equation. We work in the space of integrable functions weighted with the principal dual eigenfunction of the growth-fragmentation operator. This space is the largest one in which we can expect convergence to the steady size distribution. Although this convergence is known to occur under fairly general conditions on the coefficients of the equation, we prove that it does not happen uniformly with respect to the initial data when the fragmentation rate in bounded. First we get the result for fragmentation kernels which do not form arbitrarily small fragments by taking advantage of the Dyson-Phillips series. Then we extend it to general kernels by using the notion of quasi-compactness and the fact that it is a topological invariant.

Introduction

In this article, we study the asymptotic behavior of the growth-fragmentation equation $ ' ' & ' ' % B t f pt, xq `Bx pτ pxqf pt, xqq " Ff pt, xq, t, x ą 0, pτ f qpt, 0q " 0, t ą 0, f p0, xq " f in pxq, x ě 0.

(

) 1 
This equation appears in the modeling of various physical or biological phenomena [START_REF] Metz | The Dynamics of Physiologically Structured Populations[END_REF][START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Arlotti | Perturbations of Positive Semigroups with Applications[END_REF][START_REF] Gabriel | Global stability for the prion equation with general incidence[END_REF] as well as in telecommunication [START_REF] Bardet | Total variation estimates for the TCP process[END_REF]. The unknown f pt, xq represents the concentration at time t of some "particles" with "size" x ą 0, which can be for instance the volume of a cell, the length of a fibrillar polymer, or the window size in data transmission over the Internet. Each particle grows with a rate τ pxq and splits according to the fragmentation operator F which acts on a function f pxq through Ff pxq :" F `f pxq ´Bpxqf pxq.

The positive part F `is an integral operator given by F `f pxq :"

ż 1 0 B ´x z ¯f ´x z ¯℘pdzq z . ( 2 
)
When a particle of size x breaks with rate Bpxq, it produces smaller particles of sizes zx with 0 ă z ă 1 distributed with respect to the fragmentation kernel ℘.

The fragmentation kernel ℘ is a finite positive measure on the open interval p0, 1q which satisfies ż 1 0 z ℘pdzq " 1.

(

) 3 
This is a mass conservation condition since it ensures that if we sum the sizes of the offsprings we recover the size of the mother particle. Classical examples of fragmentation kernels are the mitosis kernel ℘ " 2δ 1{2 , the asymmetrical division kernels ℘ " δ ν `δ1´ν with ν P p0, 1{2q, and the power law kernels ℘pdzq " pν `2qz ν dz with ν ą ´2. Notice that the power law kernels are physically relevant only for ν ď 0 (see e.g. discussion in Section 8.2.1 of [START_REF] Arlotti | Perturbations of Positive Semigroups with Applications[END_REF]), which includes the uniform kernel ℘ " 2.

The long time behavior of the solutions is strongly related to the existence of pλ, G, φq solution to the following Perron eigenvalue problem: pτ Gq 1 `λG " FG, G ě 0,

ż 8 0 Gpxq dx " 1 (4) 
and the dual problem:

´τ φ 1 `λφ `Bφ " F ˚φ, φ ě 0,

ż 8 0 Gpxqφpxq dx " 1 (5) 
where

F ˚ϕpxq :" Bpxq ż 1 0 ϕpzxq℘pdzq.
When pλ, G, φq exists and for initial distributions which satisfy xf in , φy :"

ż 8 0 f in pyqφpyq dy ă `8, (6) 
the solutions to Equation (1) are expected to behave like f pt, xq " xf in , φy Gpxqe λt when t Ñ `8.

This property is sometimes called asynchronous exponential growth since it ensures that the shape of the initial distribution is forgotten for large times. Asymptotically the population grows exponentially fast with a Malthus parameter λ and is aligned to the stable size distribution G.

The question of the convergence to the stable size distribution for growthfragmentation dates back to [START_REF] Diekmann | On the stability of the cell size distribution[END_REF]. In this pioneer paper, Diekmann, Heijmans and Thieme consider the case when x lies in a bounded domain, which is made possible by imposing that the fragmentation rate B blows up in a non-integrable way at a finite maximal size, in order to prevent the particles to reach the maximal size. In this case and for the mitosis kernel, they prove that the rescaled solution f pt, xqe ´λt converges to the stable size distribution (times a constant) for a weighted L 8 -norm. They use semigroup techniques and the spectral results obtained in [START_REF] Heijmans | An eigenvalue problem related to cell growth[END_REF] for the mitosis kernel (and extended to smooth self-similar kernels in [START_REF] Heijmans | On the stable size distribution of populations reproducing by fission into two unequal parts[END_REF]). The result in [START_REF] Diekmann | On the stability of the cell size distribution[END_REF] has also been obtained in a L 1 setting: in [START_REF] Greiner | Growth of cell populations via one-parameter semigroups of positive operators[END_REF] for the mitosis kernel, with an exponential rate of convergence, and in [START_REF] Rudnicki | Markov semigroups and stability of the cell maturity distribution[END_REF][START_REF] Banasiak | Asynchronous exponential growth of a general structured population model[END_REF] for general kernels.

When the domain is R `, it is necessary to control what goes to infinity. If we want to have convergence to the stable size distribution, an obvious condition is that xf in , φy is finite. In particular we cannot expect a convergence in L 1 pR `q when φ is not bounded. The largest space in which we can work is then L 1 φ :" L 1 pR `, φpxq dxq. The rate of convergence of the solutions to Equation [START_REF] Arendt | One-parameter semigroups of positive operators[END_REF] in this critical functional space is the purpose of the present paper. It is known from [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] that for any initial data in L 1 φ the solution converges to the stable size distribution in the L 1 φ -norm. A further question concerns the existence of an exponential rate of convergence in L 1 φ . It was first addressed in [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF] for the mitosis kernel and a (almost) constant fragmentation rate B. It is proved that the exponential convergence occurs provided that the initial data is bounded for a stronger norm than the L 1 φ -norm. There is an additional term which corresponds to the Wasserstein distance between the initial data and the equilibrium (see [START_REF] Bardet | Total variation estimates for the TCP process[END_REF] for the statement with this distance). In [START_REF] Laurençot | Exponential decay for the growth-fragmentation/cell-division equation[END_REF] where the result is extended to more general kernels (see also [START_REF] Pakdaman | Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation[END_REF] for another generalization), the necessity of this term is questioned. Can we control the decay rate in the L 1 φ -norm by the same norm on the initial data? We know that it is possible in smaller spaces. It has been proved in Hilbert spaces by using functional inequalities [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF][START_REF] Gabriel | Exponential relaxation to self-similarity for the superquadratic fragmentation equation[END_REF][START_REF] Monmarché | On H 1 and entropic convergence for contractive PDMP[END_REF]. For weighted L 1 spaces we also have positive results [START_REF] Cáceres | Rate of convergence to self-similarity for the fragmentation equation in L 1 spaces[END_REF][START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF] but for weights which are stronger than φ. The question we address in this paper is then to know whether these weights can be replaced by φ. We prove that it is not possible when the fragmentation rate B is bounded, and this ensures a kind of optimality for the previous results.

Statement of the main result

We start by saying a few words about the moments of ℘ which will play a crucial role in the study of the problem. For any r P R the (possibly infinite) r-th moment of ℘ is denoted by

℘ r :" ż 1 0 z r ℘pdzq.
The zero-moment ℘ 0 represents the mean number of fragments produced by the fragmentation of one particle. The fact that the measure ℘ is finite means that ℘ 0 ă `8. Of course ℘ r can become infinite for negative r. Define r :" inftr P R, ℘ r ă `8u P r´8, 0s.

Clearly ℘ r ă `8 for any r ą r. Additionally since ℘ is a positive measure on the open interval p0, 1q, the function r Þ Ñ ℘ r is strictly decreasing on pr, `8q. The mass conservation requires ℘ 1 " 1 and because ℘ 0 ą ℘ 1 we deduce that the mean number of fragments is larger than one.

We are now ready to state the Hypotheses on the coefficients:

(Hτ ) The growth rate τ is a positive C 1 -function on R ˚which satisfies

1 τ P L 1 loc pR `q, (7) 
D α ď α ă 1, τ pxq " Opx α q and x α " O `τ pxq ˘when x Ñ `8.

(HB) The total fragmentation rate B is a nonnegative essentially bounded function on R `, with a connected support, and such that 

DA 0 , B 8 ą 0, @x ě A 0 , Bpxq " B 8 . ( 9 
The monotone convergence theorem together with condition [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF] ensure that r Þ Ñ ℘ r is a continuous function on pr, `8q and that its image is p0, `8q. This property will be fundamental in our study of the dual eigenfunction φ. In order to illustrate which pathological kernels we want to avoid with condition [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF], we give some examples.

Examples and counter-example

i) Consider the measure with Lebesgue density defined by ℘pzq "

´ż 1 0 | log z| ´2 dz ¯´1 z ´1| log z| ´2.
It satisfies the mass conservation condition (3) but not Assumption [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF]. In this case r " 0 and ℘ 0 ă `8. The image of r Þ Ñ ℘ r is p0, ℘ 0 s. ii) Consider a kernel which is absolutely continuous with respect to the Lebesgue measure close to the origin and has fast decrease when z Ñ 0, i.e. such that @µ P R, ℘pzq " opz µ q when z Ñ 0.

In this case Assumption [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF] is satisfied since r " ´8 and for any r ď 0 we have

℘ r " ż 1 0 z r ℘pdzq ě ´r ż 1 0 p1 ´zq℘pdzq " ´rp℘ 0 ´1q ÝÝÝÝÑ rÑ´8 `8.
A concrete example is given by the mitosis kernel ℘ " 2δ 1{2 or the asymmetrical division ℘ " δ ν `δ1´ν with 0 ă ν ă 1{2. iii) Consider a kernel which is absolutely continuous with respect to the Lebesgue measure close to the origin and such that Dp 0 , r 0 ą 0, ℘pzq " p 0 z r0´1 when z Ñ 0.

Then ℘ satisfies Assumption [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF] with r " ´r0 . For instance the power law kernels ℘pzq " pν `2qz ν belong to this class provided that ν ą ´1.

Existence of Perron eigenelements

There are many existence and uniqueness results for the Perron eigenvalue problem set on R `. We can mention [START_REF] Hall | A functional-differential equation arising in modelling of cell growth[END_REF][START_REF] Suebcharoen | Asymmetric cell division in a size-structured growth model[END_REF] in which the direct problem (4) is solved in the case of equal or asymmetrical mitosis with constant coefficients τ and B. The full problem (4)-( 5) is treated in [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF][START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF][START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF] for more and more general coefficients. We will use the following result, which is a particular case of [9, Theorem 1]: Theorem 1.1. Assume that (Hτ -HB-H℘) are satisfied. There exist a unique solution (in the distributional sense) pλ, Gq P R ˆL1 pR `q to the Perron eigenvalue problem (4) and a unique dual eigenfunction φ P W 1,8 loc pR `q such that pλ, φq satisfies (5) (in the sense of a.e. equality). Moreover λ ą 0.

In section 2 we prove fine estimates on the profile φpxq, which are needed for the proof of our main theorem. We do not need estimates on the profile Gpxq, but the interested reader can find some in [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF][START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF].

The main result

Define the rescaled growth-fragmentation operator Ag :" ´pτ gq 1 ´λg `Fg with domain DpAq " g P L 1 φ | pτ gq 1 P L 1 φ , pτ gqp0q " 0 ( and consider the abstract Cauchy problem

$ ' & ' % d dt g " Ag gp0q " f in . ( 11 
)
We will prove in Section 3 that the operator A generates a strongly continuous semigroup (also called C 0 -semigroup) pT t q tě0 on L 1 φ . This result ensures that there exists a unique (mild) solution to the abstract Cauchy problem [START_REF] Gabriel | Global stability for the prion equation with general incidence[END_REF] given by gptq " T t f in . As a direct consequence for any f in P L 1 φ , Equation (1) admits a unique solution given by f pt, ¨q " e λt gptq " e λt T t f in .

Clearly the Perron eigenfunction G is a steady-state for [START_REF] Gabriel | Global stability for the prion equation with general incidence[END_REF] since by definition AG " 0. In other words G is a fixed point for pT t q tě0 , i.e. T t G " G for all time t.

The dual eigenfunction provides a conservation law for pT t q tě0 @g P L 1 φ , @t ě 0, xT t g, φy " xg, φy. [START_REF] Gabriel | Exponential relaxation to self-similarity for the superquadratic fragmentation equation[END_REF] This motivates the definition of the projection P g :" xg, φy G.

In [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] 

}T t g ´P g} L 1 φ " 0 for all g P L 1 φ .
This is the asynchronous exponential growth property. In the vocabulary of semigroups, it is called strong convergence of the semigroup pT t q tě0 to the projection P.

In terms of spectral theory, it ensures that in L 1 φ the Perron eigenvalue λ is simple (i.e. has algebraic multiplicity one) and strictly dominant.

A stronger concept of convergence is the uniform convergence, i.e. the convergence for the norm of operators. The uniform convergence of pT t q tě0 to P would ensure the existence of a spectral gap. Indeed it is a standard result (see [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF]Prop. V.1.7] for instance) that for C 0 -semigroups the uniform convergence is equivalent to the uniform exponential convergence. Our main result is that the uniform convergence does not hold. Theorem 1.2. Under Hypotheses (Hτ -HB-H℘), the semigroup pT t q tě0 does not converge uniformly to the projection P. More precisely we have @t ě 0, }T t ´P } LpL 1 φ q ě 1.

Structure of the paper

We start by giving fine estimates on the dual eigenfunction φ in Section 2. These estimates are crucial all along the paper since we work in the space L 1 φ . In Section 3 we prove that the rescaled growth-fragmentation operator generates a positive contraction semigroup which provides the unique mild solution to our abstract Cauchy problem. This semigroup is given by a Dyson-Phillips series and this is a central ingredient to prove the main theorem in the case when the fragmentation kernel has a support away from zero. To make this more precise we define z 0 :" inf supp ℘ P r0, 1q.

In Section 4 we prove the main theorem in the case z 0 ą 0 by taking advantage of the Dyson-Phillips series which enables us to build solutions to our Cauchy problem that converge arbitrarily slowly to equilibrium, so that we can compute precisely the operator norm of T t ´P . In Section 5 we extend the result to the case z 0 " 0 by using an accurate truncation of the fragmentation kernel and a passage to the limit which relies on the notion of quasi-compactness of a semigroup, with the crucial remark that it is invariant up to equivalent norm. Finally in Section 6 we give some results which complete the main theorem.

The dual eigenfunction φ.

To prove Theorem 1.2, we need fine estimates on the dual eigenfunction φ given by the following theorem.

Theorem 2.1. Under Hypotheses (Hτ -HB-H℘), there exists a constant C ą 0 such that

@x ě 0, 1 C p1 `xq k ď φpxq ď Cp1 `xq k ,
where k ă 1 is uniquely defined by

℘ k " 1 `λ B 8 . ( 13 
)
The existence of a k satisfying ( 13) is guaranteed by condition [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF]. Notice that we recover the result in [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF]Theorem 3.1] in the case ℘ " 2δ 1 2 . The proof of Theorem 2.1 is based on a truncated problem on r0, Ls and uses a maximum principle. We need to consider two truncated problems:

´τ pxqpφ Ĺ q 1 pxq `pBpxq `λĹ qφ Ĺ pxq " Bpxq ż 1 0 φ Ĺ pzxq℘pdzq, φ Ĺ pLq " 0, (14) 
and ´τ pxqpφ L q 1 pxq `pBpxq `λL qφ L pxq " Bpxq

ż 1 0 φ L pzxq℘pdzq `1 L 1 0ďxď1 φ L pxq, φ L pLq " 0. ( 15 
)
The existence and uniqueness of a solution for these truncated problems can be obtained by using the Krein-Rutman theorem (see [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF] for more details). When L tends to `8 the solution to the truncated problem converges to the solution to (5).

Theorem 2.2.

There exist K ą 0 and q ą 0, independent of L, such that @L ą 0, @x P r0, Ls, φ L pxq ď Kp1 `xq q.

Additionally when L Ñ `8 we have the convergences

λ L Ñ λ, @A ą 0, φ L Ñ φ uniformly on r0, As.
Proof. We only recall the main arguments and we refer to [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF] for the details. The uniform bound on φ L is obtained by the same method we will use to prove Theorem 2.1. It is based on the maximum principle stated in Lemma 2.4 below. This uniform estimate combined with uniform bounds on λ L ensure compactness of the families pλ L q Lą1 and pφ L q Lą1 . This provides the convergence of subsequences, and the uniqueness of the limit leads to the convergence of the entire family.

The eigenvalue of first truncated problem approximates λ from below, and the second from above. This will be useful for the estimates on φ. Lemma 2.3. We have @L ą 0, λ Ĺ ă λ, and there exists L 0 such that @L ě L 0 , λ L ą λ.

Proof. For λ Ĺ we have by integration of (14

) against G λ Ĺ ´λ " ´ż L 0 φ Ĺ pyq ż y L 0 Bp y z qGp y z q ℘pdzq z dy ă 0.
For λ L the integration of ( 15) against G gives

λ L ´λ " 1 L ż 1 0 φ L pxqGpxq dx ´ż L 0 φ L pyq ż y L 0 Bp y z qGp y z q ℘pdzq z dy.
To prove that the right hand side is positive for L large enough, we use the convergence of φ L which ensures that

ż 1 0 φ L pxqGpxq dx Ý ÝÝÝÝ Ñ LÑ`8 ż 1 0 φpxqGpxq dx ą 0
and for the second term we write, using Theorem 2.2,

L ż L 0 φ L pyq ż y L 0 Bp y z qGp y z q ℘pdzq z dy ď KL ż 8 0 p1 `yq q ż y L 0 Bp y z qGp y z q ℘pdzq z dy " KL ż 1 0 ż 8 zL p1 `yq qBp y z qGp y z q dy z ℘pdzq " KL ż 1 0 ż 8 L p1 `zq x q qBpxqGpxq dx ℘pdzq ď K℘ 0 L ż 8 L p1 `xq qBpxqGpxq dx Ý ÝÝÝÝ Ñ LÑ`8 0.
The last term tends to zero because G decreases faster than any powerlaw at infinity (see [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF]Theorem 1.1]).

To get estimates on the truncated eigenfunctions φ ˘we will use the following maximum principle. We refer the interested readers to [3, Lemma 3.2] or [9, Appendix C] for a proof of this result. Lemma 2.4 (Maximum principle). Let 0 ă A ă L and assume that w ě 0 on r0, As, wpLq ě 0 and w is a supersolution on pA, Lq in the sense that for all x P pA, Lq we have S L wpxq :" ´τ pxqw 1 pxq `λL wpxq `Bpxqwpxq ´Bpxq

ż 1 0 wpzxq℘pdzq ą 0.
Then w ě 0 on r0, Ls.

We are now ready to prove Theorem 2.1. The behavior of φ at the origin is readily deduced from a result in [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF]. The more delicate point is the behavior at infinity and there is no result available in [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF] in the case B bounded. The difficulty lies in the construction of super-solutions and sub-solutions and it requires the strong assumption [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF]. We will use that for any r ą r and any x ą A 0 (so that Bpxq " B 8 ) we have, since λ " B 8 p℘ k ´1q, S L x r " ´rτ pxqx r´1 `λL x r `B8 p1 ´℘r qx r " ´rτ pxqx r´1 `rλ L ´λ `B8 p℘ k ´℘r qsx r .

We will combine this identity with λ Ĺ ă λ ă λ L and the decay of the function r Þ Ñ ℘ r .

Proof of Theorem 2.1. We split it into three steps.

Step #1: Convergence at the origin. Define Λpxq :"

ż x 1 λ `Bpyq
τ pyq dy the primitive of λ`B τ which vanishes at x " 1 (and thus is negative for 0 ă x ă 1 as λ`B τ is positive). From [3, Theorem 1.10] we know that φpxq behaves like a positive constant times e ´Λpxq . Condition [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF] ensures that Λp0q ă `8, so φpxq converges to a positive constant when x Ñ 0.

Step #2: Upper bound at infinity. We start with the case k ď 0 and define vpxq " x k . For x ą A 0 we have S L vpxq " ´kτ pxqx k´1 `pλ L ´λqx k ą 0, and for x ą 1 we have S L φ L pxq " 0. We deduce that if L ą A :" maxpA 0 , 1q then for any constant C ą 0 the function Cv ´φL is a supersolution for S L on pA, Lq. On the interval r0, As, the function v is bounded from below by A k ą 0 and since φ L Ñ φ uniformly on r0, As and φ is bounded on r0, As we can find C ą 0 such that Cv ě φ L on r0, As for all L large enough. For x " L we have CvpLq " CL k ą φ L pLq " 0. The assumptions of Lemma 2.4 are satisfied for w " Cv ´φL , A " maxp1, A 0 q and L large enough. The maximum principle ensures that φ L ď Cv on r0, Ls and then φ ď Cv on R `by passing to the limit L Ñ `8.

When k ą 0 we need to modify a bit the function v to get a supersolution. Define vpxq " x k ´xk´ `1 with 0 ă ă minpk, 1 ´αq, where α is defined in [START_REF] Diekmann | On the stability of the cell size distribution[END_REF]. This function v is bounded from below by a positive constant. We compute S L vpxq " ´τ pxqv 1 pxq `pλ L ´λqvpxq ´B8 p℘ k ´℘k´ qx k´ε `B8 p℘ k ´℘0 q ą ´τ pxqv 1 pxq `B8 p℘ k´ ´℘k qx k´ε `B8 p℘ k ´℘0 q.

When x Ñ `8, the dominant term in the last line above is B 8 p℘ k´ ´℘k qx k´ . Indeed we have chosen such that k ´ ą 0 and k ´ ą k ´1 `α, and when x Ñ `8 we have τ pxqv 1 pxq " τ kx k´1`α . Since r Þ Ñ ℘ r is a decreasing function, this dominant term is positive. We deduce that we can find A large enough such that for any L ą A and any C ą 0, Cv ´φL is a supersolution of S L on pA, Lq. We conclude as in the case k ď 0 that there exists C ą 0 such that φpxq ď Cvpxq for all x ě 0.

Step #3: Lower bound at infinity. Choose P p0, 1 ´αq such that k ´2 ą r and define v L pxq " px k `xk´ ´xk´2 qp1 ´x L q. We write

S Ĺ v L pxq " S Ĺ vpxq `1 L S Ĺ ṽpxq
where vpxq " x k `xk´ ´xk´2 and ṽpxq " ´xk`1 ´xk`1´ `xk`1´2 , and we compute

S Ĺ vpxq " ´τ pxqv 1 pxq `pλ Ĺ ´λqpx k `xk´ q `B8 p℘ k ´℘k´ qx k´ ´rλ Ĺ `B8 p1 ´℘k´2 qsx k´2 ă ´τ pxqv 1 pxq `rB 8 p℘ k ´℘k´ q `x´ B 8 ℘ k´2 sx k´ .
The last line is equivalent to B 8 p℘ k ´℘k´ qx k´ when x Ñ `8. We deduce that S Ĺ vpxq ă 0 for x large enough since ℘ k ă ℘ k´ . Using the convergence λ Ĺ Ñ λ when L Ñ `8 and the decay of r Þ Ñ ℘ r we have

S Ĺ ṽpxq " ´τ pxqṽ 1 pxq `pB 8 p℘ k`1 ´℘k q `λ ´λĹ qx k`1 `pB 8 p℘ k`1´ ´1q ´λĹ qx k`1´ ´pB 8 p℘ k`1´2 ´1q ´λĹ qx k`1´2 " xÑ`8
pB 8 p℘ k`1 ´℘k q `λ ´λĹ q looooooooooooooooomooooooooooooooooon ă0 for L large

x k`1 .

We deduce that for any c ą 0 and for A large enough, the function φ Ĺ ´c v L is a supersolution to S Ĺ on pA, Lq for any L ą A. Since v L is upper bounded on r0, As and v L pLq " φ Ĺ pLq " L we can conclude by arguing as in Step 2 that there exists c ą 0 small enough such that φ Ĺ ě c v L on r0, Ls for L large enough. Passing to the limit L Ñ `8 we get φpxq ě c vpxq for all x ě 0 and then φpxq ě c x k for all x ě 1.

Notice that when k ě 0 we can consider the simpler subsolution vpxq " x k p1´x L q.

Semigroup and mild solution

In this section we prove that the operator pA, DpAqq generates a positive C 0semigroup. This ensures that the abstract Cauchy problem (11) admits a unique mild solution. Recall that the rescaled growth-fragmentation operator A is defined by

Ag " ´pτ gq 1 ´λg ´Bg `F`g with domain DpAq " g P L 1 φ | pτ gq 1 P L 1 φ , pτ gqp0q " 0 ( . First we need to check that Ag is well defined for g P DpAq. Clearly pτ gq 1 , λg and Bg are well defined and belong to L 1 φ when g P DpAq. The only term which requires attention is F `g. Since we consider kernels ℘ which are not necessarily absolutely continuous with respect to the Lebesgue measure, the definition (2) of F `does not have a classical sense for an arbitrary function f in L 1 φ , or even in DpAq. It is well defined for functions in the dense subspace X :" g P L 1 φ , Bg P C c pR `q( . Lemma 3.1 below ensures that the operator F `: X Ă L 1 φ Ñ L 1 φ defined by (2) can be uniquely extended into a continuous operator on L 1 φ . From now on when talking about the operator F `we mean this extension and then Ag is well defined for g P DpAq.

Lemma 3.1. There exists a unique bounded operator

F `: L 1 φ Ñ L 1 φ such that (2) holds for any f P X . Additionally }F `}LpL 1 φ q ď C 2 maxp℘ 0 , ℘ k q}B} 8 where C is the constant which appears in Theorem 2.1.
Proof. It is a consequence of the continuous extension theorem, provided we prove

@f P X , › › › › ż 1 0 B ´z ¯f ´z ¯℘pdzq z › › › › L 1 φ ď C 2 maxp℘ 0 , ℘ k q}B} 8 }f } L 1 φ . Choose f P X . If k ě 0, Theorem 2.1 implies › › › › ż 1 0 B ´z ¯f ´z ¯℘pdzq z › › › › L 1 φ ď ż 8 0 ż 1 0 B ´x z ¯ˇˇf ´x z ¯ˇˇ℘ pdzq z φpxqdx ď ż 1 0 ż 8 0 Bpyq|f pyq|φpzyq dy ℘pdzq ď }B} 8 C ż 8 0 |f pyq| ż 1 0 p1 `zyq k ℘pdzq dy ď }B} 8 C ż 8 0 |f pyq|p1 `yq k ˆż 1 0 ℘pdzq ˙dy ď }B} 8 C 2 ℘ 0 }f } L 1 φ , and if k ă 0 › › › › ż 1 0 B ´z ¯f ´z ¯℘pdzq z › › › › L 1 φ ď }B} 8 C ż 8 0 |f pyq| ż 1 0 p1 `zyq k ℘pdzq dy ď }B} 8 C ż 8 0 |f pyq|p1 `yq k ˆż 1 0 z k ℘pdzq ˙dy ď }B} 8 C 2 ℘ k }f } L 1 φ .
The conclusion follows from the fact that maxp℘ 0 , ℘ k q " ℘ 0 if and only if k ě 0. Lemma 3.1 ensures that A is a bounded perturbation of the transport operator A 0 g :" ´pτ gq 1 ´λg ´Bg with domain DpA 0 q " DpAq.

To prove that A " A 0 `F`g enerates a C 0 -semigroup we first prove that A 0 generates a C 0 -semigroup and we then use a bounded perturbation theorem.

Proposition 3.2. The transport operator pA 0 , DpA 0 qq generates a positive contraction C 0 -semigroup pS t q tě0 .

Proof. We use the Lumer-Philipps theorem (see for instance [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF]Theorem II.3.15]).

Clearly DpA 0 q is dense in L 1 φ . It remains to prove that for all µ ą 0, @g P DpA 0 q, }pµ ´A0 qg}

L 1 φ ě µ}g} L 1 φ (dissipativity)
and @h P L 1 φ , Dg P DpA 0 q, pµ ´A0 qg " h (surjectivity)

or equivalently

@h P L 1 φ , Dg P DpA 0 q, pµ ´A0 qg " h and }h} L 1 φ ě µ}g} L 1 φ . Let µ ą 0 and h P L 1 φ . We want to solve µg `pτ gq 1 `λg `Bg " h, x ą 0, (16) 
with the condition pτ gqp0q " 0. We obtain τ pxqgpxq "

ż x 0 e ´şx y µ`λ`Bpzq τ pzq dz hpyq dy. ( 17 
)
We need to verify that g thus defined belongs to DpA 0 q. Recall that we have defined in the proof of Theorem 2.1 the function Λpxq "

ż x 1 λ `Bpyq τ pyq dy.
A direct computation gives that the function x Þ Ñ φpxqe ´Λpxq is decreasing since its derivative is equal to ´1 τ F ˚φ. Using this property we get 

" 1 µ }h} L 1 φ so g P L 1 φ and }g} L 1 φ ď 1 µ }h} L 1 φ .
It remains to check that pτ gq 1 P L 1 φ . Using Equation [START_REF] Heijmans | An eigenvalue problem related to cell growth[END_REF] it is an immediate consequence of the fact that g, h P L 1 φ and that B is bounded.

The positivity of the semigroup is a consequence of the positivity of the resolvent pµ´A 0 q ´1 (see for instance [10, Characterization Theorem VI.1.8]), which is obvious from [START_REF] Kavian | Introduction à la théorie des points critiques et applications aux problèmes elliptiques[END_REF].

Since F `is a positive bounded perturbation of A 0 , we have the following corollary.

Corollary 3.3. The rescaled growth-fragmentation operator pA, DpAqq generates a positive contraction C 0 -semigroup pT t q tě0 . This semigroup can be obtained from pS t q tě0 by the Dyson-Phillips series Proof. The bounded perturbation theorem III-1.3 in [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF] ensures that A is the generator of a C 0 -semigroup. The positivity of this semigroup follows from the positivity of pS t q tě0 and F `. The last result of this section, given by [10, Proposition II-6.4], concerns the existence of a unique solution to the abstract Cauchy problem [START_REF] Gabriel | Global stability for the prion equation with general incidence[END_REF]. Corollary 3.4. For every f in P L 1 φ the orbit map g : t Þ Ñ gptq " T t f in is the unique mild solution to the abstract Cauchy problem [START_REF] Gabriel | Global stability for the prion equation with general incidence[END_REF]. In other words it is the unique continuous function R `Ñ L 1 φ which satisfies ş t 0 gpsqds P DpAq for all t ě 0 and gptq " A ż t 0 gpsq ds `f in .

4. Non-uniform convergence in the case z 0 ą 0 The aim of this section is to establish the following theorem, which provides a more precise result than Theorem 1.2 in the case z 0 " inf supp ℘ ą 0. Theorem 4.1. We assume (Hτ -HB-H℘) and that ℘ is such that z 0 ą 0. Then @t ě 0, }T t ´P } LpL 1 φ q " 2.

To prove this theorem, we start with two lemmas. Define g a pxq " 1 φpxq 1 aďxďa`1 .

Lemma 4.2. Assume that ℘ is such that z 0 ą 0. Then for all X ą 0 we have

@n ă log 1{z0 a X , ż X 0 S pnq t g a pxqφpxq dx " 0.
Proof. We prove by induction on n that supppS pnq t g a q Ă rz n 0 a, `8q. For n " 0 the results follows from the fact that S t is the semigroup of a transport equation with positive speed.

To go from n to n `1 we check that if g is a function such that supp g Ă rA, `8q then supp F `g Ă rz 0 A, `8q. Indeed we have

F `gpxq " ż 1 z0 B ´x z ¯g´x z ¯℘pdzq z
and F `gpxq " 0 when x z0 ă A. Lemma 4.3. For all n P N and all t ě 0 we have

}S pnq t } LpL 1 φ q ď }F `}n t n n! .
Proof. It follows from the definition of S pnq t by an induction on n, using that F `is bounded and that }S t } LpL 1 φ q ď 1 since pS t q tě0 is a contraction. We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. First we have }T t ´P } LpL 1 φ q ď }T t } LpL 1 φ q `}P } LpL 1 φ q ď 2 because pT t q is a contraction and P is a projection.

For the other inequality we consider the initial distribution f in " g a which satisfies }g a } L 1 φ " xg a , φy " 1 and we write for X ą 0 to be chosen later

}T t g a ´P g a } L 1 φ " ż X 0 |T t g a pxq ´Gpxq|φpxq dx `ż 8 X |T t g a pxq ´Gpxq|φpxq dx ě ż X 0 Gpxqφpxq dx ´ż X 0 T t g a pxqφpxq dx `ż 8 X T t g a pxqφpxq dx ´ż 8 X Gpxqφpxq dx.
Let ą 0 and X ą 0 be such that ş X 0 Gpxqφpxqdx ě 1´ , and so 

ş 8 X Gpxqφpxqdx ď . Consider g a pxq "
ÿ nělog 1{z 0 p a X q }F `}n t n n!
Since the series is absolutely convergent and a Þ Ñ log 1{z0 a X converges to `8 when a Ñ `8, we deduce that lim aÑ`8 R t paq " 0 and we can find a ą X large enough so that ş X 0 T t g a pxqφpxq dx ď . Since the conservation law [START_REF] Gabriel | Exponential relaxation to self-similarity for the superquadratic fragmentation equation[END_REF] ensures that xgptq, φy " xg a , φy " 1, we have ş `8 X T t g a pxqφpxq dx ě 1 ´ and finally we get }T t g a ´P g a } L 1 φ ě 2 ´4 . The proof is complete since ą 0 is arbitrary and }g a } L 1 φ " 1.

The general case

In the previous section we have established Theorem 1.2 in the case of a fragmentation kernel which satisfies z 0 " inf supp ℘ ą 0 by computing exactly the norm of the operator T t ´P. This strategy cannot be applied when z 0 " 0. To treat this case we use the notion of quasi-compactness. Definition 5.1. Let pU t q tě0 be a C 0 -semigroup on a Banach space E. It is said to be quasi-compact if and only if there exists a compact operator K and t 0 ě 0 such that }U t0 ´K} LpEq ă 1.

The projection P being a compact operator (since it is rank one), if we prove that pT t q is not quasi-compact then the result of Theorem 1.2 follows immediately. To do so we start by truncating the fragmentation kernel in such a way that it satisfies z 0 ą 0. For this truncated problem we use Theorem 4.1 to check that the semigroup is not quasi-compact. Then we prove that this lack of quasi-compactness is preserved as the truncation parameter vanishes. The main difficulty in this procedure is that the dual eigenfunction φ is modified when we truncate the fragmentation kernel. Since this function is the weight of the L 1 space in which we work, we will need the following proposition.

Proposition 5.2. The notion of quasi-compactness is invariant under change of equivalent norm.

Proof. This is a direct consequence of [10, Proposition V-3.5], which states that a semigroup pU t q is quasi-compact if and only if

lim tÑ`8 inf }U t ´K} LpEq | K compact ( " 0.
5.1. The lack of quasi-compactness in the case z 0 ą 0. We use Theorem C-IV-2.1, p.343 in [START_REF] Arendt | One-parameter semigroups of positive operators[END_REF] which is recalled here.

Theorem 5.3. Let pU t q tě0 be a positive C 0 -semigroup on a Banach lattice E which is bounded, quasi-compact and has spectral bound zero. Then there exists a positive projection Q of finite rank and suitable constants M ě 1 and a ą 0 such that }U t ´Q} LpEq ď M e ´at for all t ě 0.

Corollary 5.4. If ℘ is such that z 0 ą 0, then the rescaled growth-fragmentation semigroup pT t q tě0 is not quasi-compact.

Proof. We refer to [START_REF] Arendt | One-parameter semigroups of positive operators[END_REF] for the definitions of a Banach lattice and the spectral bound of a semigroup. The following properties are readily deduced from the definitions: -L 1 φ is a Banach lattice; -a contraction semigroup is bounded and has nonpositive spectral bound; -a semigroup which admits a nonzero fixed point has a nonnegative spectral bound.

The semigroup pT t q tě0 is a contraction semigroup with a positive fixed point G. So the only missing condition on pT t q tě0 to apply Theorem 5.3 is the quasicompactness. We use this to prove by contradiction that pT t q tě0 cannot be quasicompact.

Assume that pT t q tě0 is quasi-compact. By Theorem 5.3 we deduce that it converges uniformly to a positive projection Q. If we can prove that Q " P then we get a contradiction with Theorem 4.1 and the result follows. The end of the proof consists in proving this identity.

Let f P L 1 φ and consider its positive part f `. Since the projection Q is positive we have that Qf `is positive. The conservation law [START_REF] Gabriel | Exponential relaxation to self-similarity for the superquadratic fragmentation equation[END_REF] which states that xT t f `, φy " xf `, φy implies by passing to the limit t Ñ `8 that xQf `, φy " xf `, φy, where x¨, ¨y is defined in p6q. From the semigroup property T t`s " T t T s we get by passing to the limit s Ñ `8 that Q " T t Q. Applying this identity to f `we get T t Qf `" Qf `. We have proved that Qf `is a positive fixed point of pT t q which satisfies xQf `, φy " xf `, φy. These properties together with the uniqueness of the Perron eigenfunction G in Theorem 1.1 imply that Qf `" xf `, φyG " P f `. Similarly we have Qf ´" P f ´and then Qf " P f. This means that Q " P and the proof is complete.

An accurate truncation.

The strategy for a kernel such that z 0 " 0 consists in truncating it by defining, for ε ď ε 0 where ε 0 ą 0 is small enough so that ş 1 ε0 z℘pdzq ą 0,

℘ ε :" 1 ş 1 ε z℘pdzq 1 rε,1s ℘.
This new kernel satisfies

z ε 0 " inf supp ℘ ε ě ε ą 0, ℘ ε 1 "
ş 1 0 z℘ ε pdzq " 1 and converges to ℘ when ε Ñ 0. We denote by λ ε and φ ε the Perron eigenvalue and the adjoint eigenfunction corresponding to ℘ ε . Corollary 5.4 applies and ensures that the semigroup associated to ℘ ε is not quasi-compact in L 1 φε . But using Theorem 2.1 we see that there is no reason for φ ε to be comparable φ at infinity, so the corresponding weighted L 1 -norms are not equivalent and L 1 φ ‰ L 1 φε . To overcome this problem we modify Bpxq by defining B η,A :" B `η1 rA,`8q for A ě A 0 and η ą ´B8 , so that B η,A pxq ą 0 for x ą 0. We denote by λ ε,η,A the Perron eigenvalue associated to the fragmentation coefficients ℘ ε and B η,A . The idea is to choose accurately A and η as functions of ε in such a way that the associated dual eigenfunction, denoted afterwards by φε , is comparable to φ. We start with two useful lemma.

Lemma 5.5. The function pε, η, Aq Þ Ñ λ ε,η,A is continuous on r0, ε 0 sˆp´B 8 , `8qr A 0 , `8q. Additionally we have for any pε, ηq P r0, 1q ˆp´B 8 , `8q,

lim AÑ`8 λ ε,η,A " λ ε . ( 18 
)
Proof. This result follows from uniform estimates on λ ε,η,A and the associated eigenfunctions G ε,η,A and φ ε,η,A as obtained in [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF]. It allows to prove compactness of the families which, combined to the uniqueness of the eigenelements, provides the continuity with respect to parameters and the limit (18).

Lemma 5.6. For any pε, η, Aq P r0, ε 0 s ˆp´B 8 , `8q ˆrA 0 , `8q we have

0 ă λ ε,η,A ď }B} 8 `η.
Proof. Integrating the equation satisfied by pλ ε,η,A , G ε,η,A q on R `we get 0 ă λ ε,η,A "

ż 8 0 pBpxq `η1 xěA qG ε,η,A pxq dx ď }B} 8 `η.
Now we are ready to prove the following proposition, which leads to the definitions of λε , φε and p T ε t q tě0 . Proposition 5.7. For any k ą r and any ε P p0, ε 0 q there exist η ą ´B8 and A η ą A 0 such that

℘ ε k " 1 `λε,η,Aη B 8
`η , and |η| Ñ 0 when ε Ñ 0. Definition 5.8. For any ε P p0, ε 0 q we denote by λε , φε and p T ε t q tě0 respectively the Perron eigenvalue, the dual eigenfunction and the semigroup corresponding to ℘ ε and B η,A with the choice of η and A " A η in Proposition 5.7.

Proof of Proposition 5.7. Fix ε P p0, ε 0 q and define

℘ ε k " ż 1 0 z k ℘ ε pdzq " ş 1 ε z k ℘pdzq ş 1 ε z℘pdzq ą 1.
We want to find η ą ´B8 (small when ε is small) and A ą A 0 (large) such that

λ ε,η,A " p℘ ε k ´1qpB 8 `ηq. (19) 
The right hand side does not depend on A and is an affine function of η. It tends to 0 when η Ñ ´B8 and to `8 when η Ñ `8. The strategy consists in proving that the left hand side is a continuous bounded function of η provided we choose A as a suitable function of η. For any η ą ´B8 we define the auxiliary number λε,η :" λ ε `ε 1 `|η| pλ ε,η,A0 ´λε q.

It is easy to see that minpλ ε , λ ε,η,A0 q ă λε,η ă maxpλ ε , λ ε,η,A0 q.

From Lemma 5.5 we know that the mapping A P pA 0 , `8q Þ Ñ λ ε,η,A varies continuously from λ ε,η,A0 to λ ε . We deduce that there exists A η ą A 0 such that λ ε,η,Aη " λε,η .

We get [START_REF] Metz | The Dynamics of Physiologically Structured Populations[END_REF] with A " A η if we find η such that λε,η " p℘ ε k ´1qpB 8 `ηq. From Lemma 5.5 we know that η Þ Ñ λε,η is continuous. We have the lower bound λε,η ě p1 ´εqλ ε ą 0 and using Lemma 5.6 we get the upper bound

λε,η ď λ ε `ε 1 `|η| λ ε,η,A0 ď λ ε `ε }B} 8 `η 1 `|η| ď λ ε `ε maxp1, }B} 8 q.
So necessarily the graph of η Þ Ñ λε,η (when η varies from ´B8 to `8) crosses the affine graph of η Þ Ñ p℘ ε k ´1qpB 8 `ηq. We choose η which realizes such an intersection.

The last step for completing the proof is to check that the η that we have defined is small when ε is small. The result of Lemma 5.6 for η " 0 gives λ ε ď }B} 8 . Using this estimate and the bounds on λε,η above we get ´ε}B} 8 ď λε,η ´λε ď ε maxp}B} 8 , 1q. This ensures that λε,η Ñ λ when ε Ñ 0 and, since

℘ ε k Ñ ℘ k , η " ℘ ε k ´1 λε,η ´B8 " ℘ ε k ´1 λε,η ´℘k ´1 λ Ñ 0.
Proposition 5.7 leads to the following corollaries.

Corollary 5.9. For any ε P p0, ε 0 q, there exist positive constants c ε and

C ε such that c ε φε ď φ ď C ε φε . As a consequence, L 1 φ " L 1 φε
and the natural norms of these two spaces are equivalent.

Proof. This is a direct consequence of Theorem 2.1 and Proposition 5.7.

Corollary 5.10. For all ε P p0, ε 0 q, the semigroup p T ε t q tě0 is not quasi-compact in L 1 φ . As a consequence @t ě 0, } T ε t ´P } LpL 1 φ q ě 1. Proof. Corollary 5.9 and Proposition 5.2 ensure that if a semigroup is not quasicompact in L 1 φε then it is not quasi-compact in L 1 φ either. But we know from Corollary 5.4 that p T ε t q tě0 is not quasi-compact in L 1 φε since z ε 0 ą 0.

The general case.

To get Theorem 1.2 in the case z 0 " 0 it suffices to prove the convergence in the following proposition and to use Corollary 5.10.

Proposition 5.11. For any time t ě 0 we have the convergence

} T ε t ´Tt } LpL 1 φ q Ñ 0 when ε Ñ 0.
The generator of p T ε t q tě0 is given by Âε g " ´pτ gq 1 ´λ ε g `F ε g where Fε is defined on L 

› › › › ż 1 0 pB `ηq ´x z ¯g´x z ¯℘pdzq z › › › › `› › › › ż ε 0 B ´x z ¯g´x z ¯℘pdzq z › › › › `η› › › › ż 1 0 g ´x z ¯℘pdzq z › › › › `η}g} ď pρ ´1 ε ´1qC 2 p}B} 8 `ηq℘ 0 }g} `C2 }B} 8 ˆż ε 0 ℘pdzq ˙}g} `ηC 2 ℘ 0 }g} `η}g} which gives } Fε ´F} LpL 1 φ q ď pρ ´1 ε ´1qC 2 p}B} 8 `ηq℘ 0 `C2 }B} 8 ˆż ε 0 ℘pdzq ˙`η ´C2 ℘ 0 `1¯.
Recall from Proposition 5.7 that η Ñ 0 when ε Ñ 0. Additionally we have by monotone convergence ρ ε Ñ 1 and ş ε 0 ℘pdzq Ñ 0. We conclude that Fε Ñ F in LpL 1 φ q.

We deduce the convergence of T ε t to T t by using the Duhamel formula.

Proof of Proposition 5.11. For g P L 

} T ε t ´Tt } LpL 1 φ q ď } Âε ´A} LpL 1 φ q ż t 0 }T s } LpL 1 φ q } T ε t´s } LpL 1 φ q ds ď } Âε ´A} ż t 0 }T s } `} T ε t´s ´Tt´s } `}T t´s } ˘ds.
Since pT t q is a contraction semigroup in L 1 φ we have }T t } LpL 1 φ q ď 1 and

} T ε t ´Tt } LpL 1 φ q ď } Âε ´A} LpL 1 φ q ż t 0 `} T ε t´s ´Tt´s } LpL 1 φ q `1˘d s.
By Grönwall's lemma we get } T ε t ´Tt } LpL 1 φ q ď exp `t} Âε ´A} LpL 1 φ q ˘´1. The conclusion follows from Lemma 5.12 and Lemma 5.13 since

} Âε ´A} LpL 1 φ q ď | λε ´λ| `} Fε ´F} LpL 1 φ q .
6. Complementary results

6.1. Bound on the spectral gap in smaller spaces. Here we consider fragmentation kernels such that z 0 ą 0 and we quantify the maximum size of the spectral gap we can hope in smaller weighted L 1 spaces. More precisely we consider spaces L 1 ψ with weights ψ which satisfy Dc, C, r ą 0, @x ě 0, cφpxq ď ψpxq ď Cp1 `xq r φpxq. [START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF] Define the decay rate

ω ψ :" sup w P R | DM ě 1, @t ě 0, }T t ´P } LpL 1 ψ q ď M e ´wt ( .
Because of the conservativeness of the semigroup pT t q tě0 in L 1 φ we have that ω φ ě 0, and our main result Theorem 1.2 ensures that ω φ " 0. Our proof strongly uses the fact that we work in the space L 1 φ and we cannot exclude the existence of a spectral gap for stronger weights ψ. Actually it is proved in [START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF] that there exists a spectral gap for strong enough weights, even for bounded fragmentation rates B. But our method can be used to bound this spectral gap. Theorem 6.1. Assume that (HB-Hτ -H℘) are satisfied and that ℘ is such that z 0 ą 0. For a weight ψ which satisfies [START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF] we have ω ψ ď ´e log z 0 }F `}LpL 1 φ q r. Proof. Similarly as in the proof of Theorem 4.1 (in which we take X " 1) we write for g a " We deduce that there exists a constant δ ą 0, independent of t, such that }T t g a ´P g a } L 1 ψ ě δ when w ą ´e log z 0 }F `}r. To conclude we estimate

}g a } L 1 ψ " ż a`1 a ψpxq φpxq dx ď C ż a`1 a p1 `xq r dx " O aÑ`8 `ar ˘" O tÑ`8
`ewt ˘.

Example. In the case of the mitosis kernel ℘ " 2δ 1{2 with constant fragmentation rate Bpxq " B, we have ℘ 0 " 2, z 0 " 1 2 , λ " B and φpxq " 1. From Lemma 3.1 we get }F `}LpL 1 φ q ď 2B. Consider the weight ψpxq " p1 `xq r . From Theorem 6.1 we deduce that ω ψ ď 2Beplog 2qr. We also know from [START_REF] Laurençot | Exponential decay for the growth-fragmentation/cell-division equation[END_REF] that ´B is an eigenvalue of the growth-fragmentation operator so that ω ψ ď 2B. On the other hand it is proved in [22, proof of Proposition 6.5] that there exists a spectral gap for r ą log 2 3 and more precisely that ω ψ ě max p0, p2 ´3 ˚21´r qBq. Finally we obtain the estimates 2B maxp0, 1 ´3 ˚2´r q ď ω ψ ď 2B minpeplog 2qr, 1q. 6.2. The homogeneous fragmentation kernel. In the case of the homogeneous fragmentation kernel ℘ " 2 we can say more about the asymptotic behavior of φpxq at infinity, under a stronger assumption on τ than (8) but a weaker assumption on B than (9). Theorem 6.2. Assume that ℘ " 2 and that when x Ñ `8, Bpxq " B 8 x γ and τ pxq " τ 8 x α with α ă γ `1. Then there exists φ 8 ą 0 such that φpxq " φ 8 x k when x Ñ `8

with k " 1 if γ ą 0, k " B 8 ´λ B 8
`λ P p´1, 1q if γ " 0, k " γ ´1 if γ ă 0.

Remark 6.3. Notice that in the case γ " 0 the result is consistent with Theorem 2.1. Indeed k " B8´λ B8`λ is the power for which the relation ℘ k " 1 `λ B8 is satisfied since for ℘ " 2 we have ℘ k " 2 k`1 . To our knowledge it is the first result which provides an equivalent of φpxq when x Ñ `8. In [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF] we only have an upper and a lower bound with the same power law but not an equivalent. 

We know from [START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF] x ´ατ pxq " τ 8 .

Conclusion and perspectives

We have proved that uniform exponential convergence does not hold in L 1 φ when the fragmentation rate is bounded. The weight φpxq, which is the dual Perron eigenfunction of the growth-fragmentation operator, behaves as a power k ă 1 of x at infinity. We know from [START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF] that an exponential rate of decay exists in smaller weighted L 1 spaces. More precisely it exists in L 1 ψ for ψpxq " p1 `xq r with r ą 1 large enough. A natural question is to know what is the critical exponent for which we have uniform exponential convergence. For instance does it occur for any r ą k?

Another natural question concerns the unbounded case. In the proof of Theorem 1.2 we crucially use the fact that the fragmentation rate is bounded. This condition allows to control the number of splittings uniformly with respect to arbitrarily large initial sizes. What happens when the fragmentation rate tends to infinity at infinity? Do we have an exponential rate of decay in L 1 φ or not? All these question will be addressed in future works.

  ) (H℘) The fragmentation kernel ℘ is a finite positive Borel measure on the open interval p0, 1q which satisfies the mass conservation condition (3) and is such that lim rÑr `℘r " `8.

8 0 8 0 8 0 8 0

 8888 For the contraction we use [17, Proposition 1.8.22] and the definition of φ to write for g P DpAq xAg, psgn gqφy " ż sgn g pA 0 g `F`g qφ " ż pA 0 |g| `sgn g F `gqφ ď ż pA 0 |g| `F`| g|qφ " ż |g|A ˚φ " 0. The formulation in terms of the Dyson-Phillips series is ensured by [10, Theorem III-1.10].

Proof.φ ¯f pxq e ş x 1 fBy integration we obtain ż x 1 f

 11 We start from the equation for φ τ pxqφ 1 pxq " pλ `Bpxqqφpxq ´2 Bpxq x ż x 0 φpyq dy and we test this equation against G on r0, Xs ż X 0 τ pxqφ 1 pxqGpxq dx " F 1 pxq " 0 so we have for any x ą 0, F pxq " F p1q " pyq dy .Using again the equation satisfied by G we can write f pxq " `logpτ Gq ˘1pxq `λ `Bpxq τ pxq . pyq dy " logpτ Gqpxq ´logpτ Gqp1q `Λpxq

  Before proving Proposition 5.11 we give two lemmas which ensure the convergence of Âε to A in a sense we will precise later. When ε Ñ 0 we have λε Ñ λ.Proof. At the end of the proof of Proposition 5.7 we have proved that λε,η Ñ λ. But by definition of η and A η , λε,η " λε .

	Proof. Denoting ρ ε "	ş 1 ε z℘pdzq we have	
	p Fε ´Fqgpxq " ρ ´1 ε	ż 1 ε	`B `η1 rAη,`8q	˘´x z	¯g´x z	¯℘pdzq z	´η1 rAη,`8q pxqgpxq
												´ż 1 0	B	´x z	¯g´x z	¯℘pdzq z
	" pρ ´1 ε ´1q	ż 1 ε	`B `η1 rAη,`8q	˘´x z	¯g´x z	¯℘pdzq z	´ż ε 0	B	´x z	¯g´x z	¯℘pdzq z
							`η ż minp1,x{Aηq ε	g	´x z	¯℘pdzq z	´η1 rAη,`8q pxqgpxq.
	Mimicking the proof of Lemma 3.1 we easily get
	}p Fε ´Fqg} ď pρ ´1 ε ´1q							
					1 φ by				
	Fε gpxq "	ż 1 0	B η,Aη	´x z	¯g´x z	¯℘ε pdzq z	´Bη,Aη pxqgpxq.
	Lemma 5.12. Lemma 5.13. When ε Ñ 0 we have		
							} Fε ´F} LpL 1 φ q Ñ 0.

  1 φ we define h ε " p T ε t ´Tt qg. Clearly h ε is the solution to B t h ε " Ah ε `p Âε ´Aq T ε t g with initial data h ε p0q " 0. Notice that Âε ´A " ´λ ε `λ `F ε ´F is a bounded operator on L 1 φ . The Duhamel formula allows to write

	ż t	
	h ε ptq "	T s p Âε ´Aq T ε t´s g ds
	0	
	and we deduce that	

  T t g a pxqφpxq dx ď 2CR t paq. last term is the reminder of a convergent series provided that w ą ´e log z 0 }F `}r.

	1 φpxq 1 aďxďa`1 ,				
	}T t g a ´P g a } L 1 ψ ě	0 ż 1	Gpxqψpxq dx	0 ´ż 1	T t g a pxqψpxq dx
	and we have					
	ż 1						ż 1
	T t g a p, xqψpxq dx ď 2C
	0						0
	Considering a " e	w r t for some w P R and letting t tend to `8 we get by using the
	Stirling formula					
		R t paq "	ně	ÿ ´r log z 0 wt	}F `}n LpL 1 φ q t n n!
		" O tÑ`8	´r log z 0 ˆÿ ně wt	p}F `}teq n n n	?	2πn 1	"
			O tÑ`8		

ˆÿ ně wt ´r log z 0 ´´e log z 0 }F `}r w ¯n˙ and the

  that there exists C ą 0 such that Gpxq " Cx ξ´α e ´Λpxq , Cτ 8 x ξ´1 e ´Λpxq if γ ą 0.Finally by Equation (21) we obtain the existence of φ 8 ą 0 such that when x Ñ `8φpxq " φ 8 x k ,where the power k is given by

	Using the L'Hôpital's rule we get			
	ż 8 x	Bpyq y	Gpyq dy "	' $ ' ' ' &	Cτ 8 Cτ 8	B8 λ x ξ`γ´1 e ´Λpxq B8 λ`B8 x ξ´1 e ´Λpxq	if γ ă 0, if γ " 0,
				%			
				$ '	γ ´1	if γ ă 0,
				'			
			k "	&	B8´λ B8`λ	if γ " 0,
				'			
				' %	1		if γ ą 0.
	where			$ '	0		if γ ă 0,
				'			
			ξ "	&	2B8 λ`B8	if γ " 0,
				'			
				' %	2		if γ ą 0.

Corollary 6.4. For the uniform fragmentation kernel ℘ " 2, our main result is still valid if we replace (9) by the more general condition lim xÑ`8 Bpxq " B 8 ă `8 while replacing (8) by the stronger condition D α ă 1, τ 8 ą 0, lim xÑ`8
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