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ASYMPTOTIC BEHAVIOR OF THE
GROWTH-FRAGMENTATION EQUATION

WITH BOUNDED FRAGMENTATION RATE

ÉTIENNE BERNARD AND PIERRE GABRIEL

Abstract. We are interested in the large time behavior of the solutions to the
growth-fragmentation equation. We work in the space of integrable functions
weighted with the principal dual eigenfunction of the growth-fragmentation
operator. This space is the largest one in which we can expect convergence
to the steady size distribution. Although this convergence is known to occur
under fairly general conditions on the coefficients of the equation, we prove
that it does not happen uniformly with respect to the initial data when the
fragmentation rate in bounded. First we get the result for fragmentation ker-
nels which do not form arbitrarily small fragments by taking advantage of the
Dyson-Phillips series. Then we extend it to general kernels by using the notion
of quasi-compactness and the fact that it is a topological invariant.

Introduction

In this article, we study the asymptotic behavior of the growth-fragmentation
equation
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Btfpt, xq ` Bx pτpxqfpt, xqq “ Ffpt, xq, t, x ą 0,

pτfqpt, 0q “ 0, t ą 0,

fp0, xq “ f inpxq, x ě 0.

(1)

This equation appears in the modeling of various physical or biological phenom-
ena [19, 25, 2, 11] as well as in telecommunication [5]. The unknown fpt, xq repre-
sents the concentration at time t of some “particles” with “size” x ą 0, which can
be for instance the volume of a cell, the length of a fibrillar polymer, or the window
size in data transmission over the Internet. Each particle grows with a rate τpxq
and splits according to the fragmentation operator F which acts on a function fpxq
through

Ffpxq :“ F`fpxq ´Bpxqfpxq.
The positive part F` is an integral operator given by

F`fpxq :“
ż 1

0
B
´x

z

¯

f
´x

z

¯℘pdzq
z

. (2)

When a particle of size x breaks with rate Bpxq, it produces smaller particles of
sizes zx with 0 ă z ă 1 distributed with respect to the fragmentation kernel ℘.
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The fragmentation kernel ℘ is a finite positive measure on the open interval p0, 1q
which satisfies

ż 1

0
z ℘pdzq “ 1. (3)

This is a mass conservation condition since it ensures that if we sum the sizes of
the offsprings we recover the size of the mother particle.

Classical examples of fragmentation kernels are the mitosis kernel ℘ “ 2δ1{2, the
asymmetrical division kernels ℘ “ δν ` δ1´ν with ν P p0, 1{2q, and the power law
kernels ℘pdzq “ pν ` 2qzνdz with ν ą ´2. Notice that the power law kernels are
physically relevant only for ν ď 0 (see e.g. discussion in Section 8.2.1 of [2]), which
includes the uniform kernel ℘ ” 2.

The long time behavior of the solutions is strongly related to the existence of
pλ,G, φq solution to the following Perron eigenvalue problem:

pτGq1 ` λG “ FG, G ě 0,
ż 8

0
Gpxqdx “ 1 (4)

and the dual problem:

´τφ1 ` λφ`Bφ “ F˚`φ, φ ě 0,
ż 8

0
Gpxqφpxqdx “ 1 (5)

where
F˚`ϕpxq :“ Bpxq

ż 1

0
ϕpzxq℘pdzq.

When pλ,G, φq exists and for initial distributions which satisfy

xf in, φy :“
ż 8

0
f inpyqφpyqdy ă `8, (6)

the solutions to Equation (1) are expected to behave like
fpt, xq „ xf in, φyGpxqeλt when tÑ `8.

This property is sometimes called asynchronous exponential growth since it ensures
that the shape of the initial distribution is forgotten for large times. Asymptotically
the population grows exponentially fast with a Malthus parameter λ and is aligned
to the stable size distribution G.

The question of the convergence to the stable size distribution for growth-
fragmentation dates back to [8]. In this pioneer paper, Diekmann, Heijmans and
Thieme consider the case when x lies in a bounded domain, which is made possi-
ble by imposing that the fragmentation rate B blows up in a non-integrable way
at a finite maximal size, in order to prevent the particles to reach the maximal
size. In this case and for the mitosis kernel, they prove that the rescaled solution
fpt, xqe´λt converges to the stable size distribution (times a constant) for a weighted
L8-norm. They use semigroup techniques and the spectral results obtained in [16]
for the mitosis kernel (and extended to smooth self-similar kernels in [15]). The
result in [8] has also been obtained in a L1 setting: in [13] for the mitosis kernel,
with an exponential rate of convergence, and in [27, 4] for general kernels.

When the domain is R`, it is necessary to control what goes to infinity. If we
want to have convergence to the stable size distribution, an obvious condition is
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that xf in, φy is finite. In particular we cannot expect a convergence in L1pR`q when
φ is not bounded. The largest space in which we can work is then

L1
φ :“ L1pR`, φpxqdxq.

The rate of convergence of the solutions to Equation (1) in this critical functional
space is the purpose of the present paper. It is known from [21] that for any initial
data in L1

φ the solution converges to the stable size distribution in the L1
φ-norm.

A further question concerns the existence of an exponential rate of convergence
in L1

φ. It was first addressed in [26] for the mitosis kernel and a (almost) constant
fragmentation rate B. It is proved that the exponential convergence occurs provided
that the initial data is bounded for a stronger norm than the L1

φ-norm. There is an
additional term which corresponds to the Wasserstein distance between the initial
data and the equilibrium (see [5] for the statement with this distance). In [18]
where the result is extended to more general kernels (see also [24] for another
generalization), the necessity of this term is questioned. Can we control the decay
rate in the L1

φ-norm by the same norm on the initial data? We know that it is
possible in smaller spaces. It has been proved in Hilbert spaces by using functional
inequalities [7, 12, 23]. For weighted L1 spaces we also have positive results [6, 22]
but for weights which are stronger than φ. The question we address in this paper
is then to know whether these weights can be replaced by φ. We prove that it is
not possible when the fragmentation rate B is bounded, and this ensures a kind of
optimality for the previous results.

1. Statement of the main result

We start by saying a few words about the moments of ℘ which will play a crucial
role in the study of the problem. For any r P R the (possibly infinite) r-th moment
of ℘ is denoted by

℘r :“
ż 1

0
zr ℘pdzq.

The zero-moment ℘0 represents the mean number of fragments produced by the
fragmentation of one particle. The fact that the measure ℘ is finite means that
℘0 ă `8. Of course ℘r can become infinite for negative r. Define

r :“ inftr P R, ℘r ă `8u P r´8, 0s.
Clearly ℘r ă `8 for any r ą r. Additionally since ℘ is a positive measure on
the open interval p0, 1q, the function r ÞÑ ℘r is strictly decreasing on pr,`8q. The
mass conservation requires ℘1 “ 1 and because ℘0 ą ℘1 we deduce that the mean
number of fragments is larger than one.

We are now ready to state the
Hypotheses on the coefficients:

(Hτ) The growth rate τ is a positive C1-function on R˚` which satisfies
1
τ
P L1

locpR`q, (7)

Dα ď α ă 1, τpxq “ Opxαq and xα “ O
`

τpxq
˘

when xÑ `8. (8)
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(HB) The total fragmentation rate B is a nonnegative essentially bounded func-
tion on R`, with a connected support, and such that

DA0, B8 ą 0, @x ě A0, Bpxq “ B8. (9)

(H℘) The fragmentation kernel ℘ is a finite positive Borel measure on the open
interval p0, 1q which satisfies the mass conservation condition (3) and is
such that

lim
rÑr`

℘r “ `8. (10)

The monotone convergence theorem together with condition (10) ensure that
r ÞÑ ℘r is a continuous function on pr,`8q and that its image is p0,`8q. This
property will be fundamental in our study of the dual eigenfunction φ. In order to
illustrate which pathological kernels we want to avoid with condition (10), we give
some examples.

Examples and counter-example
i) Consider the measure with Lebesgue density defined by

℘pzq “
´

ż 1

0
| log z|´2 dz

¯´1
z´1| log z|´2.

It satisfies the mass conservation condition (3) but not Assumption (10). In
this case r “ 0 and ℘0 ă `8. The image of r ÞÑ ℘r is p0, ℘0s.

ii) Consider a kernel which is absolutely continuous with respect to the Lebesgue
measure close to the origin and has fast decrease when z Ñ 0, i.e. such that

@µ P R, ℘pzq “ opzµq when z Ñ 0.

In this case Assumption (10) is satisfied since r “ ´8 and for any r ď 0 we
have

℘r “

ż 1

0
zr℘pdzq ě ´r

ż 1

0
p1´ zq℘pdzq “ ´rp℘0 ´ 1q ÝÝÝÝÑ

rÑ´8
`8.

A concrete example is given by the mitosis kernel ℘ “ 2δ1{2 or the asymmetrical
division ℘ “ δν ` δ1´ν with 0 ă ν ă 1{2.

iii) Consider a kernel which is absolutely continuous with respect to the Lebesgue
measure close to the origin and such that

Dp0, r0 ą 0, ℘pzq „ p0z
r0´1 when z Ñ 0.

Then ℘ satisfies Assumption (10) with r “ ´r0. For instance the power law
kernels ℘pzq “ pν ` 2qzν belong to this class provided that ν ą ´1.

Existence of Perron eigenelements
There are many existence and uniqueness results for the Perron eigenvalue prob-

lem set on R`. We can mention [14, 28] in which the direct problem (4) is solved in
the case of equal or asymmetrical mitosis with constant coefficients τ and B. The
full problem (4)-(5) is treated in [26, 20, 9] for more and more general coefficients.
We will use the following result, which is a particular case of [9, Theorem 1]:
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Theorem 1.1. Assume that (Hτ-HB-H℘) are satisfied. There exist a unique
solution (in the distributional sense) pλ,Gq P R ˆ L1pR`q to the Perron eigen-
value problem (4) and a unique dual eigenfunction φ P W 1,8

loc pR`q such that pλ, φq
satisfies (5) (in the sense of a.e. equality). Moreover λ ą 0.

In section 2 we prove fine estimates on the profile φpxq, which are needed for the
proof of our main theorem. We do not need estimates on the profile Gpxq, but the
interested reader can find some in [9, 3].

The main result
Define the rescaled growth-fragmentation operator

Ag :“ ´pτgq1 ´ λg ` Fg

with domain
DpAq “

 

g P L1
φ | pτgq

1 P L1
φ, pτgqp0q “ 0

(

and consider the abstract Cauchy problem
$

’

&

’

%

d
dt g “ Ag

gp0q “ f in.

(11)

We will prove in Section 3 that the operator A generates a strongly continuous
semigroup (also called C0-semigroup) pTtqtě0 on L1

φ. This result ensures that there
exists a unique (mild) solution to the abstract Cauchy problem (11) given by gptq “
Ttf

in. As a direct consequence for any f in P L1
φ, Equation (1) admits a unique

solution given by
fpt, ¨q “ eλtgptq “ eλtTtf in.

Clearly the Perron eigenfunction G is a steady-state for (11) since by definition
AG “ 0. In other words G is a fixed point for pTtqtě0, i.e. TtG “ G for all time t.
The dual eigenfunction provides a conservation law for pTtqtě0

@g P L1
φ, @t ě 0, xTtg, φy “ xg, φy. (12)

This motivates the definition of the projection

Pg :“ xg, φyG.

In [21], Perthame et al. prove by using General Relative Entropy techniques that

lim
tÑ`8

}Ttg ´ Pg}L1
φ
“ 0 for all g P L1

φ.

This is the asynchronous exponential growth property. In the vocabulary of semi-
groups, it is called strong convergence of the semigroup pTtqtě0 to the projection P.
In terms of spectral theory, it ensures that in L1

φ the Perron eigenvalue λ is simple
(i.e. has algebraic multiplicity one) and strictly dominant.

A stronger concept of convergence is the uniform convergence, i.e. the conver-
gence for the norm of operators. The uniform convergence of pTtqtě0 to P would
ensure the existence of a spectral gap. Indeed it is a standard result (see [10, Prop.
V.1.7] for instance) that for C0-semigroups the uniform convergence is equivalent
to the uniform exponential convergence. Our main result is that the uniform con-
vergence does not hold.
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Theorem 1.2. Under Hypotheses (Hτ-HB-H℘), the semigroup pTtqtě0 does not
converge uniformly to the projection P. More precisely we have

@t ě 0, }Tt ´ P }LpL1
φ
q ě 1.

Structure of the paper
We start by giving fine estimates on the dual eigenfunction φ in Section 2. These
estimates are crucial all along the paper since we work in the space L1

φ. In Section 3
we prove that the rescaled growth-fragmentation operator generates a positive con-
traction semigroup which provides the unique mild solution to our abstract Cauchy
problem. This semigroup is given by a Dyson-Phillips series and this is a central
ingredient to prove the main theorem in the case when the fragmentation kernel
has a support away from zero. To make this more precise we define

z0 :“ inf supp℘ P r0, 1q.

In Section 4 we prove the main theorem in the case z0 ą 0 by taking advantage of
the Dyson-Phillips series which enables us to build solutions to our Cauchy problem
that converge arbitrarily slowly to equilibrium, so that we can compute precisely
the operator norm of Tt´P . In Section 5 we extend the result to the case z0 “ 0 by
using an accurate truncation of the fragmentation kernel and a passage to the limit
which relies on the notion of quasi-compactness of a semigroup, with the crucial
remark that it is invariant up to equivalent norm. Finally in Section 6 we give some
results which complete the main theorem.

2. The dual eigenfunction φ.

To prove Theorem 1.2, we need fine estimates on the dual eigenfunction φ given
by the following theorem.

Theorem 2.1. Under Hypotheses (Hτ-HB-H℘), there exists a constant C ą 0
such that

@x ě 0, 1
C
p1` xqk ď φpxq ď Cp1` xqk,

where k ă 1 is uniquely defined by

℘k “ 1` λ

B8
. (13)

The existence of a k satisfying (13) is guaranteed by condition (10). Notice
that we recover the result in [26, Theorem 3.1] in the case ℘ “ 2δ 1

2
. The proof

of Theorem 2.1 is based on a truncated problem on r0, Ls and uses a maximum
principle. We need to consider two truncated problems:

´τpxqpφ´Lq
1pxq` pBpxq`λ´Lqφ

´
Lpxq “ Bpxq

ż 1

0
φ´Lpzxq℘pdzq, φ´LpLq “ 0, (14)

and

´τpxqpφ`Lq
1pxq ` pBpxq ` λ`Lqφ

`
Lpxq “ Bpxq

ż 1

0
φ`Lpzxq℘pdzq `

1
L
10ďxď1φ

`
Lpxq,

φ`LpLq “ 0.
(15)
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The existence and uniqueness of a solution for these truncated problems can be
obtained by using the Krein-Rutman theorem (see [9] for more details). When L
tends to `8 the solution to the truncated problem converges to the solution to (5).

Theorem 2.2. There exist K ą 0 and q ą 0, independent of L, such that
@L ą 0, @x P r0, Ls, φ¯Lpxq ď Kp1` xqq.

Additionally when LÑ `8 we have the convergences
λ¯L Ñ λ,

@A ą 0, φ¯L Ñ φ uniformly on r0, As.

Proof. We only recall the main arguments and we refer to [9] for the details. The
uniform bound on φ¯L is obtained by the same method we will use to prove Theo-
rem 2.1. It is based on the maximum principle stated in Lemma 2.4 below. This
uniform estimate combined with uniform bounds on λ¯L ensure compactness of the
families pλ¯LqLą1 and pφ¯LqLą1. This provides the convergence of subsequences, and
the uniqueness of the limit leads to the convergence of the entire family. �

The eigenvalue of first truncated problem approximates λ from below, and the
second from above. This will be useful for the estimates on φ.

Lemma 2.3. We have
@L ą 0, λ´L ă λ,

and there exists L0 such that
@L ě L0, λ`L ą λ.

Proof. For λ´L we have by integration of (14) against G

λ´L ´ λ “ ´

ż L

0
φ´Lpyq

ż

y
L

0
Bp

y

z
qGp

y

z
q
℘pdzq
z

dy ă 0.

For λ`L the integration of (15) against G gives

λ`L ´ λ “
1
L

ż 1

0
φ`LpxqGpxqdx´

ż L

0
φ`Lpyq

ż

y
L

0
Bp

y

z
qGp

y

z
q
℘pdzq
z

dy.

To prove that the right hand side is positive for L large enough, we use the conver-
gence of φ`L which ensures that

ż 1

0
φ`LpxqGpxqdx ÝÝÝÝÝÑ

LÑ`8

ż 1

0
φpxqGpxqdx ą 0

and for the second term we write, using Theorem 2.2,

L

ż L

0
φ`Lpyq

ż

y
L

0
Bp

y

z
qGp

y

z
q
℘pdzq
z

dy ď KL

ż 8

0
p1` yqq

ż

y
L

0
Bp

y

z
qGp

y

z
q
℘pdzq
z

dy

“ KL

ż 1

0

ż 8

zL

p1` yqqBpy
z
qGp

y

z
q
dy
z
℘pdzq

“ KL

ż 1

0

ż 8

L

p1` zqxqqBpxqGpxqdx℘pdzq

ď K℘0L

ż 8

L

p1` xqqBpxqGpxqdx ÝÝÝÝÝÑ
LÑ`8

0.
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The last term tends to zero because G decreases faster than any powerlaw at infinity
(see [9, Theorem 1.1]). �

To get estimates on the truncated eigenfunctions φ˘ we will use the following
maximum principle. We refer the interested readers to [3, Lemma 3.2] or [9, Ap-
pendix C] for a proof of this result.

Lemma 2.4 (Maximum principle). Let 0 ă A ă L and assume that w ě 0 on
r0, As, wpLq ě 0 and w is a supersolution on pA,Lq in the sense that for all x P
pA,Lq we have

S˘Lwpxq :“ ´τpxqw1pxq ` λ˘Lwpxq `Bpxqwpxq ´Bpxq
ż 1

0
wpzxq℘pdzq ą 0.

Then w ě 0 on r0, Ls.

We are now ready to prove Theorem 2.1. The behavior of φ at the origin is
readily deduced from a result in [3]. The more delicate point is the behavior at
infinity and there is no result available in [3] in the case B bounded. The difficulty
lies in the construction of super-solutions and sub-solutions and it requires the
strong assumption (9). We will use that for any r ą r and any x ą A0 (so that
Bpxq “ B8) we have, since λ “ B8p℘k ´ 1q,

S˘L x
r “ ´rτpxqxr´1 ` λ˘Lx

r `B8p1´ ℘rqxr

“ ´rτpxqxr´1 ` rλ˘L ´ λ`B8p℘k ´ ℘rqsx
r.

We will combine this identity with λ´L ă λ ă λ`L and the decay of the function
r ÞÑ ℘r.

Proof of Theorem 2.1. We split it into three steps.
Step #1: Convergence at the origin. Define

Λpxq :“
ż x

1

λ`Bpyq

τpyq
dy

the primitive of λ`Bτ which vanishes at x “ 1 (and thus is negative for 0 ă x ă 1 as
λ`B
τ is positive). From [3, Theorem 1.10] we know that φpxq behaves like a positive

constant times e´Λpxq. Condition (7) ensures that Λp0q ă `8, so φpxq converges
to a positive constant when xÑ 0.

Step #2: Upper bound at infinity. We start with the case k ď 0 and define vpxq “
xk. For x ą A0 we have

S`L vpxq “ ´kτpxqx
k´1 ` pλ`L ´ λqx

k ą 0,

and for x ą 1 we have S`L φ
`
Lpxq “ 0. We deduce that if L ą A :“ maxpA0, 1q

then for any constant C ą 0 the function Cv ´ φ`L is a supersolution for S`L on
pA,Lq. On the interval r0, As, the function v is bounded from below by Ak ą 0
and since φ`L Ñ φ uniformly on r0, As and φ is bounded on r0, As we can find
C ą 0 such that Cv ě φ`L on r0, As for all L large enough. For x “ L we have
CvpLq “ CLk ą φ`LpLq “ 0. The assumptions of Lemma 2.4 are satisfied for
w “ Cv ´ φ`L , A “ maxp1, A0q and L large enough. The maximum principle
ensures that φ`L ď Cv on r0, Ls and then φ ď Cv on R` by passing to the limit
LÑ `8.
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When k ą 0 we need to modify a bit the function v to get a supersolution. Define
vpxq “ xk ´ xk´ε ` 1 with 0 ă ε ă minpk, 1 ´ αq, where α is defined in (8). This
function v is bounded from below by a positive constant. We compute

S`L vpxq “ ´τpxqv
1pxq ` pλ`L ´ λqvpxq ´B8p℘k ´ ℘k´εqx

k´ε `B8p℘k ´ ℘0q

ą ´τpxqv1pxq `B8p℘k´ε ´ ℘kqx
k´ε `B8p℘k ´ ℘0q.

When x Ñ `8, the dominant term in the last line above is B8p℘k´ε ´ ℘kqx
k´ε.

Indeed we have chosen ε such that k ´ ε ą 0 and k ´ ε ą k ´ 1 ` α, and when
x Ñ `8 we have τpxqv1pxq „ τkxk´1`α. Since r ÞÑ ℘r is a decreasing function,
this dominant term is positive. We deduce that we can find A large enough such
that for any L ą A and any C ą 0, Cv ´ φ`L is a supersolution of S`L on pA,Lq.
We conclude as in the case k ď 0 that there exists C ą 0 such that φpxq ď Cvpxq
for all x ě 0.

Step #3: Lower bound at infinity. Choose ε P p0, 1 ´ αq such that k ´ 2ε ą r and
define vLpxq “ pxk ` xk´ε ´ xk´2εqp1´ x

L q. We write

S´L vLpxq “ S´L vpxq `
1
L

S´L ṽpxq

where vpxq “ xk ` xk´ε ´ xk´2ε and ṽpxq “ ´xk`1 ´ xk`1´ε ` xk`1´2ε, and we
compute

S´L vpxq “ ´τpxqv
1pxq ` pλ´L ´ λqpx

k ` xk´εq `B8p℘k ´ ℘k´εqx
k´ε

´ rλ´L `B8p1´ ℘k´2εqsx
k´2ε

ă ´τpxqv1pxq ` rB8p℘k ´ ℘k´εq ` x
´εB8℘k´2εsx

k´ε.

The last line is equivalent to B8p℘k ´ ℘k´εqx
k´ε when x Ñ `8. We deduce that

S´L vpxq ă 0 for x large enough since ℘k ă ℘k´ε. Using the convergence λ´L Ñ λ
when LÑ `8 and the decay of r ÞÑ ℘r we have

S´L ṽpxq “ ´τpxqṽ
1pxq ` pB8p℘k`1 ´ ℘kq ` λ´ λ

´
Lqx

k`1

` pB8p℘k`1´ε ´ 1q ´ λ´Lqx
k`1´ε ´ pB8p℘k`1´2ε ´ 1q ´ λ´Lqx

k`1´2ε

„
xÑ`8

pB8p℘k`1 ´ ℘kq ` λ´ λ
´
Lq

looooooooooooooooomooooooooooooooooon

ă0 for L large

xk`1.

We deduce that for any c ą 0 and for A large enough, the function φ´L ´ c vL is a
supersolution to S´L on pA,Lq for any L ą A. Since vL is upper bounded on r0, As
and vLpLq “ φ´LpLq “ L we can conclude by arguing as in Step 2 that there exists
c ą 0 small enough such that φ´L ě c vL on r0, Ls for L large enough. Passing to
the limit L Ñ `8 we get φpxq ě c vpxq for all x ě 0 and then φpxq ě c xk for all
x ě 1.

Notice that when k ě 0 we can consider the simpler subsolution vpxq “ xkp1´ x
L q.
�

3. Semigroup and mild solution

In this section we prove that the operator pA, DpAqq generates a positive C0-
semigroup. This ensures that the abstract Cauchy problem (11) admits a unique
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mild solution. Recall that the rescaled growth-fragmentation operator A is defined
by

Ag “ ´pτgq1 ´ λg ´Bg ` F`g
with domain

DpAq “
 

g P L1
φ | pτgq

1 P L1
φ, pτgqp0q “ 0

(

.

First we need to check that Ag is well defined for g P DpAq. Clearly pτgq1, λg and
Bg are well defined and belong to L1

φ when g P DpAq. The only term which requires
attention is F`g. Since we consider kernels ℘ which are not necessarily absolutely
continuous with respect to the Lebesgue measure, the definition (2) of F` does not
have a classical sense for an arbitrary function f in L1

φ, or even in DpAq. It is well
defined for functions in the dense subspace

X :“
 

g P L1
φ, Bg P CcpR`q

(

.

Lemma 3.1 below ensures that the operator F` : X Ă L1
φ Ñ L1

φ defined by (2)
can be uniquely extended into a continuous operator on L1

φ. From now on when
talking about the operator F` we mean this extension and then Ag is well defined
for g P DpAq.

Lemma 3.1. There exists a unique bounded operator F` : L1
φ Ñ L1

φ such that (2)
holds for any f P X . Additionally

}F`}LpL1
φ
q ď C2 maxp℘0, ℘kq}B}8

where C is the constant which appears in Theorem 2.1.

Proof. It is a consequence of the continuous extension theorem, provided we prove

@f P X ,
›

›

›

›

ż 1

0
B
´

¨

z

¯

f
´

¨

z

¯℘pdzq
z

›

›

›

›

L1
φ

ď C2 maxp℘0, ℘kq}B}8}f}L1
φ
.

Choose f P X . If k ě 0, Theorem 2.1 implies
›

›

›

›

ż 1

0
B
´

¨

z

¯

f
´

¨

z

¯℘pdzq
z

›

›

›

›

L1
φ

ď

ż 8

0

ż 1

0
B
´x

z

¯
ˇ

ˇ

ˇ
f
´x

z

¯
ˇ

ˇ

ˇ

℘pdzq
z

φpxqdx

ď

ż 1

0

ż 8

0
Bpyq|fpyq|φpzyqdy ℘pdzq

ď }B}8C

ż 8

0
|fpyq|

ż 1

0
p1` zyqk℘pdzqdy

ď }B}8C

ż 8

0
|fpyq|p1` yqk

ˆ
ż 1

0
℘pdzq

˙

dy

ď }B}8C
2℘0}f}L1

φ
,

and if k ă 0
›

›

›

›

ż 1

0
B
´

¨

z

¯

f
´

¨

z

¯℘pdzq
z

›

›

›

›

L1
φ

ď }B}8C

ż 8

0
|fpyq|

ż 1

0
p1` zyqk℘pdzqdy

ď }B}8C

ż 8

0
|fpyq|p1` yqk

ˆ
ż 1

0
zk℘pdzq

˙

dy

ď }B}8C
2℘k}f}L1

φ
.

The conclusion follows from the fact that maxp℘0, ℘kq “ ℘0 if and only if k ě 0. �



GROWTH-FRAGMENTATION WITH BOUNDED FRAGMENTATION RATE 11

Lemma 3.1 ensures that A is a bounded perturbation of the transport operator
A0g :“ ´pτgq1 ´ λg ´Bg

with domain
DpA0q “ DpAq.

To prove that A “ A0 ` F` generates a C0-semigroup we first prove that A0
generates a C0-semigroup and we then use a bounded perturbation theorem.

Proposition 3.2. The transport operator pA0, DpA0qq generates a positive con-
traction C0-semigroup pStqtě0.

Proof. We use the Lumer-Philipps theorem (see for instance [10, Theorem II.3.15]).
Clearly DpA0q is dense in L1

φ. It remains to prove that for all µ ą 0,

@g P DpA0q, }pµ´A0qg}L1
φ
ě µ}g}L1

φ
(dissipativity)

and @h P L1
φ, Dg P DpA0q, pµ´A0qg “ h (surjectivity)

or equivalently
@h P L1

φ, Dg P DpA0q, pµ´A0qg “ h and }h}L1
φ
ě µ}g}L1

φ
.

Let µ ą 0 and h P L1
φ. We want to solve

µg ` pτgq1 ` λg `Bg “ h, x ą 0, (16)
with the condition pτgqp0q “ 0. We obtain

τpxqgpxq “

ż x

0
e´

şx
y
µ`λ`Bpzq

τpzq
dzhpyqdy. (17)

We need to verify that g thus defined belongs to DpA0q. Recall that we have defined
in the proof of Theorem 2.1 the function

Λpxq “
ż x

1

λ`Bpyq

τpyq
dy.

A direct computation gives that the function x ÞÑ φpxqe´Λpxq is decreasing since
its derivative is equal to ´ 1

τF˚`φ. Using this property we get
ż 8

0
|gpxq|φpxqdx ď

ż 8

0

φpxq

τpxq
e´Λpxq

ż x

0
|hpyq|eΛpyqe´

şx
y

µ
τpzq

dzdydx

“

ż 8

0
|hpyq|eΛpyq

ż 8

y

φpxq

τpxq
e´Λpxqe´

şx
y

µ
τpzq

dzdxdy

ď

ż 8

0
|hpyq|φpyq

ż 8

y

1
τpxq

e´
şx
y

µ
τpzq

dzdxdy

“
1
µ
}h}L1

φ

so g P L1
φ and }g}L1

φ
ď 1

µ}h}L1
φ
. It remains to check that pτgq1 P L1

φ. Using Equa-
tion (16) it is an immediate consequence of the fact that g, h P L1

φ and that B is
bounded.

The positivity of the semigroup is a consequence of the positivity of the resolvent
pµ´A0q

´1 (see for instance [10, Characterization Theorem VI.1.8]), which is obvious
from (17). �
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Since F` is a positive bounded perturbation of A0, we have the following corol-
lary.

Corollary 3.3. The rescaled growth-fragmentation operator pA, DpAqq generates
a positive contraction C0-semigroup pTtqtě0. This semigroup can be obtained from
pStqtě0 by the Dyson-Phillips series

Tt “
8
ÿ

n“0
S
pnq
t

where Sp0qt :“ St and

S
pnq
t :“

ż t

0
St´sF`Spn´1q

s ds.

Proof. The bounded perturbation theorem III-1.3 in [10] ensures that A is the
generator of a C0-semigroup. The positivity of this semigroup follows from the
positivity of pStqtě0 and F`. For the contraction we use [17, Proposition 1.8.22]
and the definition of φ to write for g P DpAq

xAg, psgn gqφy “
ż 8

0
sgn g pA0g ` F`gqφ “

ż 8

0
pA0|g| ` sgn gF`gqφ

ď

ż 8

0
pA0|g| ` F`|g|qφ “

ż 8

0
|g|A˚φ “ 0.

The formulation in terms of the Dyson-Phillips series is ensured by [10, Theorem
III-1.10]. �

The last result of this section, given by [10, Proposition II-6.4], concerns the
existence of a unique solution to the abstract Cauchy problem (11).

Corollary 3.4. For every f in P L1
φ the orbit map

g : t ÞÑ gptq “ Ttf
in

is the unique mild solution to the abstract Cauchy problem (11). In other words it
is the unique continuous function R` Ñ L1

φ which satisfies
şt

0 gpsqds P DpAq for all
t ě 0 and

gptq “ A
ż t

0
gpsqds` f in.

4. Non-uniform convergence in the case z0 ą 0

The aim of this section is to establish the following theorem, which provides a
more precise result than Theorem 1.2 in the case z0 “ inf supp℘ ą 0.

Theorem 4.1. We assume (Hτ-HB-H℘) and that ℘ is such that z0 ą 0. Then
@t ě 0, }Tt ´ P }LpL1

φ
q “ 2.

To prove this theorem, we start with two lemmas. Define gapxq “ 1
φpxq1aďxďa`1.

Lemma 4.2. Assume that ℘ is such that z0 ą 0. Then for all X ą 0 we have

@n ă log1{z0

a

X
,

ż X

0
S
pnq
t gapxqφpxqdx “ 0.
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Proof. We prove by induction on n that supppSpnqt gaq Ă rz
n
0 a,`8q.

For n “ 0 the results follows from the fact that St is the semigroup of a transport
equation with positive speed.

To go from n to n`1 we check that if g is a function such that supp g Ă rA,`8q
then supp F`g Ă rz0A,`8q. Indeed we have

F`gpxq “
ż 1

z0

B
´x

z

¯

g
´x

z

¯℘pdzq
z

and F`gpxq “ 0 when x
z0
ă A. �

Lemma 4.3. For all n P N and all t ě 0 we have

}S
pnq
t }LpL1

φ
q ď

}F`}n tn

n! .

Proof. It follows from the definition of Spnqt by an induction on n, using that F` is
bounded and that }St}LpL1

φ
q ď 1 since pStqtě0 is a contraction. �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. First we have }Tt ´ P }LpL1
φ
q ď }Tt}LpL1

φ
q ` }P }LpL1

φ
q ď 2

because pTtq is a contraction and P is a projection.
For the other inequality we consider the initial distribution f in “ ga which

satisfies }ga}L1
φ
“ xga, φy “ 1 and we write for X ą 0 to be chosen later

}Ttga ´ Pga}L1
φ
“

ż X

0
|Ttgapxq ´Gpxq|φpxqdx`

ż 8

X

|Ttgapxq ´Gpxq|φpxqdx

ě

ż X

0
Gpxqφpxqdx´

ż X

0
Ttgapxqφpxqdx

`

ż 8

X

Ttgapxqφpxqdx´
ż 8

X

Gpxqφpxqdx.

Let ε ą 0 andX ą 0 be such that
şX

0 Gpxqφpxqdx ě 1´ε, and so
ş8

X
Gpxqφpxqdx ď ε.

Consider gapxq “ 1
φpxq1aďxďa`1. Using Lemma 4.2 and Lemma 4.3 we have

ż X

0
Ttgapxqφpxqdx ď Rtpaq

where
Rtpaq :“

ÿ

nělog1{z0 p
a
X q

}F`}ntn

n!

Since the series is absolutely convergent and a ÞÑ log1{z0
a
X converges to `8 when

aÑ `8, we deduce that limaÑ`8Rtpaq “ 0 and we can find a ą X large enough so
that

şX

0 Ttgapxqφpxq dx ď ε. Since the conservation law (12) ensures that xgptq, φy “
xga, φy “ 1, we have

ş`8

X
Ttgapxqφpxq dx ě 1´ ε and finally we get

}Ttga ´ Pga}L1
φ
ě 2´ 4ε.

The proof is complete since ε ą 0 is arbitrary and }ga}L1
φ
“ 1. �
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5. The general case

In the previous section we have established Theorem 1.2 in the case of a frag-
mentation kernel which satisfies z0 “ inf supp℘ ą 0 by computing exactly the norm
of the operator Tt ´ P. This strategy cannot be applied when z0 “ 0. To treat this
case we use the notion of quasi-compactness.

Definition 5.1. Let pUtqtě0 be a C0-semigroup on a Banach space E. It is said to
be quasi-compact if and only if there exists a compact operator K and t0 ě 0 such
that

}Ut0 ´K}LpEq ă 1.

The projection P being a compact operator (since it is rank one), if we prove that
pTtq is not quasi-compact then the result of Theorem 1.2 follows immediately. To do
so we start by truncating the fragmentation kernel in such a way that it satisfies z0 ą
0. For this truncated problem we use Theorem 4.1 to check that the semigroup is
not quasi-compact. Then we prove that this lack of quasi-compactness is preserved
as the truncation parameter vanishes. The main difficulty in this procedure is that
the dual eigenfunction φ is modified when we truncate the fragmentation kernel.
Since this function is the weight of the L1 space in which we work, we will need the
following proposition.

Proposition 5.2. The notion of quasi-compactness is invariant under change of
equivalent norm.

Proof. This is a direct consequence of [10, Proposition V-3.5], which states that a
semigroup pUtq is quasi-compact if and only if

lim
tÑ`8

inf
 

}Ut ´K}LpEq | K compact
(

“ 0.

�

5.1. The lack of quasi-compactness in the case z0 ą 0. We use Theorem C-
IV-2.1, p.343 in [1] which is recalled here.

Theorem 5.3. Let pUtqtě0 be a positive C0-semigroup on a Banach lattice E which
is bounded, quasi-compact and has spectral bound zero. Then there exists a positive
projection Q of finite rank and suitable constants M ě 1 and a ą 0 such that

}Ut ´Q}LpEq ďMe´at for all t ě 0.

Corollary 5.4. If ℘ is such that z0 ą 0, then the rescaled growth-fragmentation
semigroup pTtqtě0 is not quasi-compact.

Proof. We refer to [1] for the definitions of a Banach lattice and the spectral bound
of a semigroup. The following properties are readily deduced from the definitions:

- L1
φ is a Banach lattice;

- a contraction semigroup is bounded and has nonpositive spectral bound;
- a semigroup which admits a nonzero fixed point has a nonnegative spectral

bound.
The semigroup pTtqtě0 is a contraction semigroup with a positive fixed point

G. So the only missing condition on pTtqtě0 to apply Theorem 5.3 is the quasi-
compactness. We use this to prove by contradiction that pTtqtě0 cannot be quasi-
compact.



GROWTH-FRAGMENTATION WITH BOUNDED FRAGMENTATION RATE 15

Assume that pTtqtě0 is quasi-compact. By Theorem 5.3 we deduce that it con-
verges uniformly to a positive projection Q. If we can prove that Q “ P then we
get a contradiction with Theorem 4.1 and the result follows. The end of the proof
consists in proving this identity.

Let f P L1
φ and consider its positive part f`. Since the projection Q is positive we

have that Qf` is positive. The conservation law (12) which states that xTtf`, φy “
xf`, φy implies by passing to the limit t Ñ `8 that xQf`, φy “ xf`, φy, where
x¨, ¨y is defined in p6q. From the semigroup property Tt`s “ TtTs we get by passing
to the limit sÑ `8 that Q “ TtQ. Applying this identity to f` we get TtQf` “
Qf`. We have proved that Qf` is a positive fixed point of pTtq which satisfies
xQf`, φy “ xf`, φy. These properties together with the uniqueness of the Perron
eigenfunction G in Theorem 1.1 imply that Qf` “ xf`, φyG “ Pf`. Similarly we
have Qf´ “ Pf´ and then Qf “ Pf. This means that Q “ P and the proof is
complete. �

5.2. An accurate truncation. The strategy for a kernel such that z0 “ 0 consists
in truncating it by defining, for ε ď ε0 where ε0 ą 0 is small enough so that
ş1
ε0
z℘pdzq ą 0,

℘ε :“ 1
ş1
ε
z℘pdzq

1rε,1s℘.

This new kernel satisfies zε0 “ inf supp℘ε ě ε ą 0, ℘ε1 “
ş1
0 z℘

εpdzq “ 1 and con-
verges to ℘ when ε Ñ 0. We denote by λε and φε the Perron eigenvalue and the
adjoint eigenfunction corresponding to ℘ε. Corollary 5.4 applies and ensures that
the semigroup associated to ℘ε is not quasi-compact in L1

φε
. But using Theorem 2.1

we see that there is no reason for φε to be comparable φ at infinity, so the corre-
sponding weighted L1-norms are not equivalent and L1

φ ‰ L1
φε
. To overcome this

problem we modify Bpxq by defining

Bη,A :“ B ` η1rA,`8q

for A ě A0 and η ą ´B8, so that Bη,Apxq ą 0 for x ą 0. We denote by λε,η,A
the Perron eigenvalue associated to the fragmentation coefficients ℘ε and Bη,A.
The idea is to choose accurately A and η as functions of ε in such a way that the
associated dual eigenfunction, denoted afterwards by φ̂ε, is comparable to φ. We
start with two useful lemma.

Lemma 5.5. The function pε, η, Aq ÞÑ λε,η,A is continuous on r0, ε0sˆp´B8,`8qˆ
rA0,`8q. Additionally we have for any pε, ηq P r0, 1q ˆ p´B8,`8q,

lim
AÑ`8

λε,η,A “ λε. (18)

Proof. This result follows from uniform estimates on λε,η,A and the associated
eigenfunctions Gε,η,A and φε,η,A as obtained in [9]. It allows to prove compactness
of the families which, combined to the uniqueness of the eigenelements, provides
the continuity with respect to parameters and the limit (18). �

Lemma 5.6. For any pε, η, Aq P r0, ε0s ˆ p´B8,`8q ˆ rA0,`8q we have

0 ă λε,η,A ď }B}8 ` η.
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Proof. Integrating the equation satisfied by pλε,η,A, Gε,η,Aq on R` we get

0 ă λε,η,A “

ż 8

0
pBpxq ` η1xěAqGε,η,Apxqdx ď }B}8 ` η.

�

Now we are ready to prove the following proposition, which leads to the defini-
tions of λ̂ε, φ̂ε and pT̂ εt qtě0.

Proposition 5.7. For any k ą r and any ε P p0, ε0q there exist η ą ´B8 and
Aη ą A0 such that

℘εk “ 1`
λε,η,Aη
B8 ` η

,

and |η| Ñ 0 when εÑ 0.

Definition 5.8. For any ε P p0, ε0q we denote by λ̂ε, φ̂ε and pT̂ εt qtě0 respectively
the Perron eigenvalue, the dual eigenfunction and the semigroup corresponding to
℘ε and Bη,A with the choice of η and A “ Aη in Proposition 5.7.

Proof of Proposition 5.7. Fix ε P p0, ε0q and define

℘εk “

ż 1

0
zk℘εpdzq “

ş1
ε
zk℘pdzq

ş1
ε
z℘pdzq

ą 1.

We want to find η ą ´B8 (small when ε is small) and A ą A0 (large) such that
λε,η,A “ p℘

ε
k ´ 1qpB8 ` ηq. (19)

The right hand side does not depend on A and is an affine function of η. It tends
to 0 when η Ñ ´B8 and to `8 when η Ñ `8. The strategy consists in proving
that the left hand side is a continuous bounded function of η provided we choose
A as a suitable function of η. For any η ą ´B8 we define the auxiliary number

λ̃ε,η :“ λε `
ε

1` |η| pλε,η,A0 ´ λεq.

It is easy to see that
minpλε, λε,η,A0q ă λ̃ε,η ă maxpλε, λε,η,A0q.

From Lemma 5.5 we know that the mapping A P pA0,`8q ÞÑ λε,η,A varies contin-
uously from λε,η,A0 to λε. We deduce that there exists Aη ą A0 such that

λε,η,Aη “ λ̃ε,η.

We get (19) with A “ Aη if we find η such that
λ̃ε,η “ p℘

ε
k ´ 1qpB8 ` ηq.

From Lemma 5.5 we know that η ÞÑ λ̃ε,η is continuous. We have the lower bound
λ̃ε,η ě p1´ εqλε ą 0

and using Lemma 5.6 we get the upper bound

λ̃ε,η ď λε `
ε

1` |η|λε,η,A0 ď λε ` ε
}B}8 ` η

1` |η| ď λε ` εmaxp1, }B}8q.

So necessarily the graph of η ÞÑ λ̃ε,η (when η varies from ´B8 to `8) crosses
the affine graph of η ÞÑ p℘εk ´ 1qpB8 ` ηq. We choose η which realizes such an
intersection.
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The last step for completing the proof is to check that the η that we have defined
is small when ε is small. The result of Lemma 5.6 for η “ 0 gives λε ď }B}8. Using
this estimate and the bounds on λ̃ε,η above we get

´ε}B}8 ď λ̃ε,η ´ λε ď εmaxp}B}8, 1q.
This ensures that λ̃ε,η Ñ λ when εÑ 0 and, since ℘εk Ñ ℘k,

η “
℘εk ´ 1
λ̃ε,η

´B8 “
℘εk ´ 1
λ̃ε,η

´
℘k ´ 1
λ

Ñ 0.

�

Proposition 5.7 leads to the following corollaries.

Corollary 5.9. For any ε P p0, ε0q, there exist positive constants cε and Cε such
that

cεφ̂ε ď φ ď Cεφ̂ε.

As a consequence, L1
φ “ L1

φ̂ε
and the natural norms of these two spaces are equiva-

lent.

Proof. This is a direct consequence of Theorem 2.1 and Proposition 5.7. �

Corollary 5.10. For all ε P p0, ε0q, the semigroup pT̂ εt qtě0 is not quasi-compact in
L1
φ. As a consequence

@t ě 0, }T̂ εt ´ P }LpL1
φ
q ě 1.

Proof. Corollary 5.9 and Proposition 5.2 ensure that if a semigroup is not quasi-
compact in L1

φ̂ε
then it is not quasi-compact in L1

φ either. But we know from
Corollary 5.4 that pT̂ εt qtě0 is not quasi-compact in L1

φ̂ε
since zε0 ą 0. �

5.3. The general case. To get Theorem 1.2 in the case z0 “ 0 it suffices to prove
the convergence in the following proposition and to use Corollary 5.10.

Proposition 5.11. For any time t ě 0 we have the convergence
}T̂ εt ´ Tt}LpL1

φ
q Ñ 0 when εÑ 0.

The generator of pT̂ εt qtě0 is given by

Âεg “ ´pτgq
1 ´ λ̂εg ` F̂εg

where F̂ε is defined on L1
φ by

F̂ε gpxq “
ż 1

0
Bη,Aη

´x

z

¯

g
´x

z

¯℘εpdzq
z

´Bη,Aη pxqgpxq.

Before proving Proposition 5.11 we give two lemmas which ensure the convergence
of Âε to A in a sense we will precise later.

Lemma 5.12. When εÑ 0 we have λ̂ε Ñ λ.

Proof. At the end of the proof of Proposition 5.7 we have proved that λ̃ε,η Ñ λ.

But by definition of η and Aη, λ̃ε,η “ λ̂ε. �

Lemma 5.13. When εÑ 0 we have
}F̂ε ´ F}LpL1

φ
q Ñ 0.
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Proof. Denoting ρε “
ş1
ε
z℘pdzq we have

pF̂ε ´ Fqgpxq “ ρ´1
ε

ż 1

ε

`

B ` η1rAη,`8q
˘

´x

z

¯

g
´x

z

¯℘pdzq
z

´ η1rAη,`8qpxqgpxq

´

ż 1

0
B
´x

z

¯

g
´x

z

¯℘pdzq
z

“ pρ´1
ε ´ 1q

ż 1

ε

`

B ` η1rAη,`8q
˘

´x

z

¯

g
´x

z

¯℘pdzq
z

´

ż ε

0
B
´x

z

¯

g
´x

z

¯℘pdzq
z

` η

ż minp1,x{Aηq

ε

g
´x

z

¯℘pdzq
z

´ η1rAη,`8qpxqgpxq.

Mimicking the proof of Lemma 3.1 we easily get

}pF̂ε ´ Fqg} ď pρ´1
ε ´ 1q

›

›

›

›

ż 1

0
pB ` ηq

´x

z

¯

g
´x

z

¯℘pdzq
z

›

›

›

›

`

›

›

›

›

ż ε

0
B
´x

z

¯

g
´x

z

¯℘pdzq
z

›

›

›

›

` η

›

›

›

›

ż 1

0
g
´x

z

¯℘pdzq
z

›

›

›

›

` η}g}

ď pρ´1
ε ´ 1qC2p}B}8 ` ηq℘0}g} ` C

2}B}8

ˆ
ż ε

0
℘pdzq

˙

}g} ` ηC2℘0}g} ` η}g}

which gives

}F̂ε ´F}LpL1
φ
q ď pρ

´1
ε ´ 1qC2p}B}8 ` ηq℘0 `C

2}B}8

ˆ
ż ε

0
℘pdzq

˙

` η
´

C2℘0 ` 1
¯

.

Recall from Proposition 5.7 that η Ñ 0 when ε Ñ 0. Additionally we have by
monotone convergence ρε Ñ 1 and

şε

0 ℘pdzq Ñ 0. We conclude that F̂ε Ñ F in
LpL1

φq. �

We deduce the convergence of T̂ εt to Tt by using the Duhamel formula.

Proof of Proposition 5.11. For g P L1
φ we define hε “ pT̂ εt ´ Ttqg. Clearly hε is the

solution to
Bthε “ Ahε ` pÂε ´AqT̂ εt g

with initial data hεp0q “ 0. Notice that Âε ´A “ ´λ̂ε ` λ` F̂ε ´ F is a bounded
operator on L1

φ. The Duhamel formula allows to write

hεptq “

ż t

0
TspÂε ´AqT̂ εt´sg ds

and we deduce that

}T̂ εt ´ Tt}LpL1
φ
q ď }Âε ´A}LpL1

φ
q

ż t

0
}Ts}LpL1

φ
q}T̂

ε
t´s}LpL1

φ
q ds

ď }Âε ´A}
ż t

0
}Ts}

`

}T̂ εt´s ´ Tt´s} ` }Tt´s}
˘

ds.

Since pTtq is a contraction semigroup in L1
φ we have }Tt}LpL1

φ
q ď 1 and

}T̂ εt ´ Tt}LpL1
φ
q ď }Âε ´A}LpL1

φ
q

ż t

0

`

}T̂ εt´s ´ Tt´s}LpL1
φ
q ` 1

˘

ds.
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By Grönwall’s lemma we get
}T̂ εt ´ Tt}LpL1

φ
q ď exp

`

t}Âε ´A}LpL1
φ
q

˘

´ 1.

The conclusion follows from Lemma 5.12 and Lemma 5.13 since
}Âε ´A}LpL1

φ
q ď |λ̂ε ´ λ| ` }F̂ε ´ F}LpL1

φ
q.

�

6. Complementary results

6.1. Bound on the spectral gap in smaller spaces. Here we consider fragmen-
tation kernels such that z0 ą 0 and we quantify the maximum size of the spectral
gap we can hope in smaller weighted L1 spaces. More precisely we consider spaces
L1
ψ with weights ψ which satisfy

Dc, C, r ą 0, @x ě 0, cφpxq ď ψpxq ď Cp1` xqrφpxq. (20)
Define the decay rate

ωψ :“ sup
 

w P R | DM ě 1, @t ě 0, }Tt ´ P }LpL1
ψ
q ďMe´wt

(

.

Because of the conservativeness of the semigroup pTtqtě0 in L1
φ we have that ωφ ě 0,

and our main result Theorem 1.2 ensures that ωφ “ 0. Our proof strongly uses the
fact that we work in the space L1

φ and we cannot exclude the existence of a spectral
gap for stronger weights ψ. Actually it is proved in [22] that there exists a spectral
gap for strong enough weights, even for bounded fragmentation rates B. But our
method can be used to bound this spectral gap.

Theorem 6.1. Assume that (HB-Hτ-H℘) are satisfied and that ℘ is such that
z0 ą 0. For a weight ψ which satisfies (20) we have

ωψ ď ´ e log z0}F`}LpL1
φ
q r.

Proof. Similarly as in the proof of Theorem 4.1 (in which we take X “ 1) we write
for ga “ 1

φpxq1aďxďa`1,

}Ttga ´ Pga}L1
ψ
ě

ż 1

0
Gpxqψpxqdx´

ż 1

0
Ttgapxqψpxqdx

and we have
ż 1

0
Ttgap, xqψpxqdx ď 2C

ż 1

0
Ttgapxqφpxqdx ď 2CRtpaq.

Considering a “ ewr t for some w P R and letting t tend to `8 we get by using the
Stirling formula

Rtpaq “
ÿ

ně wt
´r log z0

}F`}nLpL1
φ
q
tn

n!

“ O
tÑ`8

ˆ

ÿ

ně wt
´r log z0

p}F`}teqn

nn
1

?
2πn

˙

“ O
tÑ`8

ˆ

ÿ

ně wt
´r log z0

´

´e log z0}F`}r
w

¯n
˙
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and the last term is the reminder of a convergent series provided that w ą ´ e log z0}F`}r.
We deduce that there exists a constant δ ą 0, independent of t, such that

}Ttga ´ Pga}L1
ψ
ě δ

when w ą ´ e log z0}F`}r. To conclude we estimate

}ga}L1
ψ
“

ż a`1

a

ψpxq

φpxq
dx ď C

ż a`1

a

p1` xqr dx “ O
aÑ`8

`

ar
˘

“ O
tÑ`8

`

ewt
˘

.

�

Example. In the case of the mitosis kernel ℘ “ 2δ1{2 with constant fragmentation
rate Bpxq ” B, we have ℘0 “ 2, z0 “

1
2 , λ “ B and φpxq ” 1. From Lemma 3.1 we

get }F`}LpL1
φ
q ď 2B. Consider the weight ψpxq “ p1` xqr.

From Theorem 6.1 we deduce that ωψ ď 2Beplog 2qr. We also know from [18] that
´B is an eigenvalue of the growth-fragmentation operator so that ωψ ď 2B.
On the other hand it is proved in [22, proof of Proposition 6.5] that there exists a
spectral gap for r ą log2 3 and more precisely that ωψ ě max p0, p2´ 3 ˚ 21´rqBq.
Finally we obtain the estimates

2Bmaxp0, 1´ 3 ˚ 2´rq ď ωψ ď 2Bminpeplog 2qr, 1q.

6.2. The homogeneous fragmentation kernel. In the case of the homogeneous
fragmentation kernel ℘ ” 2 we can say more about the asymptotic behavior of φpxq
at infinity, under a stronger assumption on τ than (8) but a weaker assumption on
B than (9).

Theorem 6.2. Assume that ℘ ” 2 and that when x Ñ `8, Bpxq „ B8x
γ and

τpxq „ τ8x
α with α ă γ ` 1. Then there exists φ8 ą 0 such that

φpxq „ φ8x
k when xÑ `8

with
k “ 1 if γ ą 0,

k “
B8 ´ λ

B8 ` λ
P p´1, 1q if γ “ 0,

k “ γ ´ 1 if γ ă 0.

Remark 6.3. Notice that in the case γ “ 0 the result is consistent with Theo-
rem 2.1. Indeed k “ B8´λ

B8`λ
is the power for which the relation ℘k “ 1 ` λ

B8
is

satisfied since for ℘ ” 2 we have ℘k “ 2
k`1 .

To our knowledge it is the first result which provides an equivalent of φpxq when
xÑ `8. In [3] we only have an upper and a lower bound with the same power law
but not an equivalent.

Proof. We start from the equation for φ

τpxqφ1pxq “ pλ`Bpxqqφpxq ´ 2Bpxq
x

ż x

0
φpyqdy

and we test this equation against G on r0, Xs
ż X

0
τpxqφ1pxqGpxqdx “

ż X

0
pλ`BpxqqφpxqGpxqdx´2

ż X

0

Bpxq

x
Gpxq

ż x

0
φpyqdy dx
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to obtain, using τp0qφp0qGp0q “ 0 (see [9]),

τpXqφpXqGpXq ´

ż X

0
φpxqpτGq1pxqdx “

ż X

0
pλ`BpxqqGpxqφpxqdx´ 2

ż X

0
φpyq

ż X

y

Bpxq

x
Gpxqdx dy.

Using the equation satisfied by G we get

τpXqφpXqGpXq “ 2
ż X

0
φpyq

ż 8

X

Bpxq

x
Gpxqdxdy

which can be written as
φpxq “ fpxq

ż x

0
φpyqdy

where we have defined

fpxq :“ 2
τpxqGpxq

ż 8

x

Bpyq

y
Gpyqdy.

Denote by F the function defined by

F pxq :“ e´
şx
1 fpyq dy

ż x

0
φpyqdy.

This function satisfies F 1pxq “ 0 so we have for any x ą 0, F pxq “ F p1q “
ş1
0 φ

which gives
ż x

0
φpyqdy “

´

ż 1

0
φ
¯

e
şx
1 fpyq dy

and then
φpxq “

´

ż 1

0
φ
¯

fpxq e
şx
1 fpyq dy.

Using again the equation satisfied by G we can write

fpxq “
`

logpτGq
˘1
pxq `

λ`Bpxq

τpxq
.

By integration we obtain
ż x

1
fpyqdy “ logpτGqpxq ´ logpτGqp1q ` Λpxq

and then
e
şx
1 fpyq dy “

τpxqGpxq

τp1qGp1q eΛpxq.

Finally we get

φpxq “
´

ż 1

0
φ
¯ 2 eΛpxq

τp1qGp1q

ż 8

x

Bpyq

y
Gpyqdy. (21)

We know from [3] that there exists C ą 0 such that

Gpxq „ Cxξ´αe´Λpxq,

where

ξ “

$

’

’

&

’

’

%

0 if γ ă 0,
2B8
λ`B8

if γ “ 0,

2 if γ ą 0.
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Using the L’Hôpital’s rule we get

ż 8

x

Bpyq

y
Gpyqdy „

$

’

’

&

’

’

%

Cτ8
B8
λ xξ`γ´1e´Λpxq if γ ă 0,

Cτ8
B8

λ`B8
xξ´1e´Λpxq if γ “ 0,

Cτ8 x
ξ´1e´Λpxq if γ ą 0.

Finally by Equation (21) we obtain the existence of φ8 ą 0 such that when xÑ `8

φpxq „ φ8x
k,

where the power k is given by

k “

$

’

’

&

’

’

%

γ ´ 1 if γ ă 0,
B8´λ
B8`λ

if γ “ 0,

1 if γ ą 0.

�

Corollary 6.4. For the uniform fragmentation kernel ℘ ” 2, our main result is
still valid if we replace (9) by the more general condition

lim
xÑ`8

Bpxq “ B8 ă `8

while replacing (8) by the stronger condition

Dα ă 1, τ8 ą 0, lim
xÑ`8

x´ατpxq “ τ8.

7. Conclusion and perspectives

We have proved that uniform exponential convergence does not hold in L1
φ when

the fragmentation rate is bounded. The weight φpxq, which is the dual Perron
eigenfunction of the growth-fragmentation operator, behaves as a power k ă 1 of x
at infinity. We know from [22] that an exponential rate of decay exists in smaller
weighted L1 spaces. More precisely it exists in L1

ψ for ψpxq “ p1` xqr with r ą 1
large enough. A natural question is to know what is the critical exponent for which
we have uniform exponential convergence. For instance does it occur for any r ą k?

Another natural question concerns the unbounded case. In the proof of The-
orem 1.2 we crucially use the fact that the fragmentation rate is bounded. This
condition allows to control the number of splittings uniformly with respect to ar-
bitrarily large initial sizes. What happens when the fragmentation rate tends to
infinity at infinity? Do we have an exponential rate of decay in L1

φ or not?
All these question will be addressed in future works.
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