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Unbounded Second-Order State-Dependent Moreau’s
Sweeping Processes in Hilbert Spaces

Samir Adly1 · Ba Khiet Le2

Abstract In this paper, an existence and uniqueness result of a class of second-order
sweeping processes, with velocity in the moving set under perturbation in infinite-
dimensional Hilbert spaces, is studied by using an implicit discretization scheme. It is
assumed that the moving set depends on the time, the state and is possibly unbounded.
The assumptions on the Lipschitz continuity and the compactness of the moving set,
and the linear growth boundedness of the perturbation force are weaker than the ones
used in previous papers.

Keywords Moreau’s sweeping process ·Quasi-variational inequalities ·Differential
inclusion

1 Introduction

In 1971, the sweeping process was introduced and deeply studied by J. J. Moreau
in a series of papers (see, e.g., [1–4]). This kind of problems plays an important
role in elasto-plasticity, quasi-statics and nonsmooth dynamics with unilateral con-
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straints. Roughly speaking, a point is swept by a moving closed and convex set, which
depends on time in a Hilbert space and can be formulated in the form of first-order dif-
ferential inclusion involving normal cone operators. Sweeping processes represent a
nice and powerful mathematical framework for many nonsmooth dynamical systems,
including Lagrangian systems. There are plenty of existence and uniqueness results
(see, e.g., [5–10]) for variants of first-order sweeping processes in the literature. The
second-order sweeping processes have been also considered by many authors (see,
e.g., [7,10–14]). In [11], Castaing studied for the first time the second-order sweeping
processes, where themoving set depends on the state with convex, compact values. Let
us note that the boundedness assumption on themoving set for the second-order case is
essential in most previous works: see, for example, some recent papers [7,10,13,14].
In [15] , Castaing et al. considered the possibly unbounded moving set satisfying the
classical Lipschitz continuity assumption with respect to Hausdorff distance. How-
ever, it is difficult for unbounded set to hold this assumption since the Hausdorff
distance of two unbounded sets may equal the infinity, for example, the case of rotat-
ing hyperplane. In this paper, we propose an implicit discretization scheme based
on the Moreau’s catching-up algorithm [3] with different techniques to analyze the
second-order sweeping processes under perturbation in Hilbert spaces. The moving
set depends on the time, the state and is possibly unbounded. The set is supposed to
be closed, convex and to have a Lipschitz variation of intersection with some partic-
ular ball (with a Lipschitz constant depending on the radius of the ball). It is obvious
that this kind of Lipschitz continuity assumption is more feasible than the classical
one for the unbounded moving set. The perturbation force is supposed to be upper
semicontinuous with convex and weakly compact values and only need to satisfy the
weak linear growth condition (i.e., the intersection between the perturbation force and
the ball with linear growth is nonempty). In addition, the compactness assumption on
the moving set is weaker than the one used in previous works[7,10,13–15], since it
only requires to check the Kuratowski measure of noncompactness for a fixed ball.
We also consider the case when the moving set is anti-monotone (which replaces the
compactness assumption) as in [14] under the current settings. Our methodology is
based on convex and variational analysis [16,17].

The paper is organized as follows. In Sect. 2, we recall some basic notations, def-
initions and useful results which are used throughout the paper. The existence and
uniqueness of solutions are thoroughly analyzed in Sect. 3. Some conclusions end up
the paper in Sect. 4.

2 Notation and Preliminaries

We begin with some notations used in the paper. Let H be a real Hilbert space. Denote
by 〈·, ·〉 , ‖ · ‖ the scalar product and the corresponding norm in H . Denote by I the
identity operator, by B the unit ball in H . The distance from a point x to a set K is
denoted by d(x, K ). If K is closed and convex, then for each x ∈ H , there exists
uniquely a point y ∈ K which is nearest to x and set y := proj(K ; x). The normal
cone of K is given by
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NK (x) := {p ∈ H : 〈p, y − x〉 ≤ 0, for all y ∈ K }.

The support function of K is defined as follows

σ(K ; z) := sup
x∈K

〈x, z〉, z ∈ H.

It is not difficult to see that

z ∈ NK (x) if and only if σ(K ; z) = 〈z, x〉 and x ∈ K .

The Hausdorff distance between the sets A and B is given by

dH (A; B) := max{e(A, B); e(B, A)}, (1)

where e(A; B) := supx∈A d(x, B) is the excess of A over B.
A sequence (xn) ⊂ H converges weakly to x ∈ H , provided that 〈xn, z〉 → 〈x, z〉,
as n → +∞ for all z in H . Let us recall a known property of an integral function-
als with respect to the weak convergence of functions with values in H (see [18,
Corollary, p. 227] or [10, Lemma 3]).

Lemma 2.1 Suppose that for all t ∈ [0, T ], the set C(t) ⊂ H is nonempty, closed,
convex and satisfies

dH
(
C(t),C(s)

) ≤ LC |t − s| ∀s, t ∈ [0, T ],

for some LC > 0. Set

Φ(v) :=
∫ T

0
σ
(
C(s); v(s)

)
ds for v ∈ L∞([0, T ]; H). (2)

Then, Φ is weakly lower semicontinuous, i.e.,

Φ(v) ≤ lim inf
n→+∞ Φ(vn),

where vn → v in weak-star topology of L∞([0, T ]; H).

The following lemma is a discrete version of Gronwall’s inequality.

Lemma 2.2 Let α > 0 and (un), (βn) be nonnegative sequences satisfying

un ≤ α +
n−1∑

k=0

βkuk ∀n = 0, 1, 2, . . . (with β−1 := 0). (3)
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Then, for all n, we have

un ≤ α exp
( n−1∑

k=0

βk

)
.

Finally, we recall the Kuratowski measure of noncompactness for a bounded set B in
H , which is defined as follows

γ (B) := inf
{
r > 0 : B =

n⋃

i=1

Bi for some n and Bi with diam(Bi ) ≤ r
}
.

One has the following lemma (see, e.g., [19, Proposition 9.1]).

Lemma 2.3 Let B1 and B2 be bounded sets of the infinite-dimensional Hilbert space
H. Then,

(i) γ (B1) = 0 ⇔ B1 is relative compact.
(ii) If B1 ⊂ B2, then γ (B1) ≤ γ (B2).

(iii) γ (B1 + B2) ≤ γ (B1) + γ (B2).
(iv) γ (x0 + rB) = 2r for some x0 ∈ H and r > 0.

3 Main Result

In this section, the existence and uniqueness of solutions of the following second-order
sweeping processes

(S)

⎧
⎨

⎩

ü(t) ∈ −NC(t,u(t))(u̇(t)) − F(t, u(t), u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0, u̇(0) = v0 ∈ C(0, u0),

are analyzed thoroughly under weaker assumptions, by using an implicit discretization
scheme and techniques different from previous works. The moving set C is supposed
to be nonempty, closed, convex and to have a Lipschitz variation of intersection with
some particular ball. The perturbation force F is upper semicontinuous with convex,
weakly compact values and satisfies the weak linear growth condition. For details,
let us make the assumptions below. Let H be a real Hilbert space and let be given
u0 ∈ H, v0 ∈ C(0, u0).

Remark 1 Let us consider the simple case when C(·) depends only on t and is
expressed in the form of unilateral inequality constraints, i.e.,

C(t) = {x ∈ R
n : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0}, (4)

where function gk : [0, T ] × R
n → R is supposed to be of class C1 for each

k = 1, 2, . . . ,m. Clearly, the convexity of the functions gk implies the convexity
of the set C(t). In order to go beyond the convexity assumption of the set C(·), the
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class of prox-regular sets is more appropriate. However, the sublevels of prox-regular
functions and levels of differentiable mappings with Lipschitz derivatives may fail to
be prox-regular. We need some qualification conditions on the functions gk to ensure
the prox-regularity of the set C(t) (see [20] for more details). In the present paper, we
will content ourselves with the convexity assumption.

The following assumptions will be useful.

Assumption 1 (i) For all t ∈ [0, T ] and x ∈ H , C(t, x) ⊂ H is nonempty, closed,
convex and there exists LC > 0 such that

Γ (t, x, s, y) ≤ LC (|t − s| + ‖x − y‖), (5)

for all s, t ∈ [0, T ] and x, y ∈ M1B where

�(t, x, s, y)

:=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dH
(
C(t, x) ∩ M1B;C(s, y) ∩ M1B

)
, if C(t, x) ∩ M1B = ∅,C(s, y) ∩ M1B =∅,

e
(
C(t, x) ∩ M1B;C(s, y)

)
, if C(t, x) ∩ M1B = ∅,C(s, y) ∩ M1B=∅,

0, if C(t, x) ∩ M1B = ∅,C(s, y) ∩ M1B=∅,

and

M1 := 1 + ‖u0‖ + ‖v0‖ + (LC + 2LF )T + e(LC+2LF+1)T . (6)

(ii) For all t ∈ [0, T ], C(t, M1B) ∩ 2M1B is relatively compact in H , or equivalently

γ
(
C(t, M1B) ∩ 2M1B

) = 0, (7)

where γ is the Kuratowski measure of noncompactness.

Assumption 2 The set-valued mapping F : gph(C) ⇒ H is upper semicontinuous
with convex, weakly compact values in H and satisfies the weak linear growth con-
dition, i.e., there exists LF > 0 such that, for all t ∈ [0, T ], x ∈ H and y ∈ C(t, x),
then

F(t, x, y) ∩ LF (1 + ‖x‖ + ‖y‖)B = ∅. (8)

Here gph(C) denotes the graph of C .

Now we are ready for the main result.

Theorem 3.1 (Existence) Let H be a Hilbert space and let Assumptions 1, 2 hold.
Then, for given initial condition u0 ∈ H, v0 ∈ C(0, u0), there exists a solution u in
the following sense

1. (S) is satisfied for a.e. t ∈ [0, T ];
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2. u(0) = u0, u̇(0) = v0;
3. u ∈ C1([0, T ]; H) and ü ∈ L∞([0, T ]; H).

Proof We choose some positive integer n such that M1T/n < 1 and set hn := T/n,
tni := ih for 0 ≤ i ≤ n. For 0 ≤ i ≤ n−1, given uni and vni , we want to find u

n
i+1, v

n
i+1

satisfying

vni+1 − vni

hn
+ f ni ∈ −NC(tni+1,u

n
i+1)

(vni+1), uni+1 = uni + hnv
n
i , (9)

where f ni ∈ F(tni , uni , v
n
i ). Clearly uni+1 is defined uniquely in terms of uni and vni .

The first line of (9) can be rewritten as

vni+1 − vni + hn f
n
i ∈ −NC(tni+1,u

n
i+1)

(vni+1), (10)

which is equivalent to

vni+1 = proj
(
C(tni+1, u

n
i+1); vi − hn f

n
i

)
.

Wehave the algorithm to construct the sequences (uni )
n
i=0, (v

n
i )

n
i=0, ( f

n
i )ni=0 as follows.

Algorithm
Initialization. Let un0 := u0, vn0 := v0 ∈ C(0, u0), choose
f n0 ∈ F(0, u0, v0) ∩ LF (1 + ‖u0‖ + ‖v0‖)B.

Iteration. One has current points uni , v
n
i , f ni . Compute uni+1 := uni + hnvni and

vni+1 := proj(C(tni+1, u
n
i+1); vni − hn f

n
i ). (11)

Then, choose f ni+1 ∈ F(tni+1, u
n
i+1, v

n
i+1) ∩ LF (1 + ‖uni+1‖ + ‖vni+1‖)B and set i :=

i + 1.
The algorithm is well defined thanks to (i) of Assumption 1. Now we prove that

the sequences (uni )
n
i=0, (v

n
i )

n
i=0, (

vni+1−vni
hn

)ni=0 and ( f ni )ni=0, generated by the algorithm
above, are uniformly bounded. Particularly, we show that

‖uni ‖ + ‖vni ‖ ≤ M1 − 1. (12)

It is obviously true for i = 0. Suppose that (12) holds for up to some i ∈ {0, 1, . . . , n−
1}, we will prove that (12) also holds for i +1. Indeed, one has max{‖uni |‖, ‖uni+1‖} ≤
M1 and

‖vni+1 − vni + hn f
n
i ‖ ≤ ‖vni+1 − vni ‖ + hn‖ f ni ‖

= d(C(tni+1, u
n
i+1); vni ) + hn f

n
i ≤ e(C(tni , uni ) ∩ M1B;C(tni+1, u

n
i+1)) + hn‖ f ni ‖

≤ �(tni , uni , t
n
i+1, u

n
i+1) + hn‖ f ni ‖

≤ hnLC (1 + ‖vi‖) + hn‖ f ni ‖ (by using (i) of Assumption 1 ). (13)
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It implies that

‖vni+1‖ ≤ ‖vni ‖ + hnLC (1 + ‖vi‖) + 2hn‖ f ni ‖
≤ ‖vni ‖ + hnLC (1 + ‖vi‖) + 2hnLF (1 + ‖uni ‖ + ‖vni ‖)
≤ ‖vni ‖ + hn

(
LC + 2LF + 2LF‖ui‖ + (LC + 2LF )‖vi‖

)
. (14)

Consequently

‖vni+1‖ ≤ ‖v0‖ + (i + 1)hn(LC + 2LF )

+ hn
(
2LF

i∑

j=0

‖u j‖ + (LC + 2LF )

i∑

j=0

‖v j‖
)
. (15)

On the other hand

‖uni+1‖ ≤ ‖uni ‖ + hn‖vni ‖ ≤ . . . ≤ ‖u0‖ + hn

i∑

j=0

‖v j‖. (16)

From (15) and (16), one has

‖uni+1‖ + ‖vni+1‖ ≤ α + βhn

i∑

j=0

(‖u j‖ + ‖v j‖),

where α = ‖u0‖ + ‖v0‖ + (LC + 2LF )T and β = LC + 2LF + 1. Using Lemma
2.2, we obtain

‖uni+1‖ + ‖vni+1‖ ≤ α + eβihn ≤ α + eβT = M1 − 1. (17)

Consequently, by induction we have

‖uni ‖ + ‖vni ‖ ≤ M1 − 1, i = 1, 2, . . . , n. (18)

On the other hand, one has

‖ f ni ‖ ≤ LF (1 + ‖uni ‖ + ‖vni ‖) ≤ LFM1, i = 1, 2, . . . , n. (19)

Furthermore, from (13) one draws that

‖vni+1 − vni

hn
‖ ≤ LC (1 + ‖vi‖) + 2‖ f ni ‖ ≤ LCM1 + 2LFM1

= (LC + 2LF )M1 =: M2, i = 1, 2, . . . , n. (20)

In conclusion, the sequences (uni )
n
i=0, (v

n
i )

n
i=0 are uniformly bounded by M1 (more

precisely by M1 − 1) and (
vni+1−vni

hn
)ni=0, ( f ni )ni=0 are uniformly bounded by M2. We
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construct the sequences of functions (un(·))n, (vn(·))n, ( fn(·))n, (θn(·))n, (ηn(·))n
from [0, T ] to H as follows: on [tni , tni+1[ for 0 ≤ i ≤ n − 1, we set

un(t) := uni + uni+1 − uni
hn

(t − tni ), vn(t) := vni + vni+1 − vni

hn
(t − tni ),

and

fn(t) := f ni , θn(t) := tni , ηn(t) := tni+1. (21)

Then, for all t ∈]tni , tni+1[

u̇n(t) = uni+1 − uni
hn

= vni ∈ C(tni , uni ), v̇n(t) = vni+1 − vni

hn
,

and

max{ sup
t∈[0,T ]

|θn(t) − t |, sup
t∈[0,T ]

|ηn(t) − t |} ≤ hn → 0 as n → +∞. (22)

The sequence
(
vn(·)

)
n is equi-Lipschitz with ratio M2 since

‖v̇n(t)‖ = ‖vni+1 − vni

hn
‖ ≤ M2.

Next we prove that the set �(t) = {vn(t)} is relatively compact for all t ∈ [0, T ].
Suppose to the contrary that there exists t0 ∈ [0, T ] such that �(t0) is not relative
compact. Then, let 3σ := γ (�(t0)) > 0. Note that �(t0) ⊂ M1B, hence 3σ =
γ (�(t0)) ≤ γ (M1B) = 2M1, which particularly implies that σ ≤ M1. For each n,
we can find i such that t0 ∈ [tni , tni+1[. Then,

‖vn(t0) − vni ‖ = ‖vni+1 − vni

hn
‖‖(t0 − tni )‖ ≤ M2hn . (23)

On the other hand, vni ∈ C(tni , uni ) ∩ M1B ⊂ C(t0, uni ) + LChnB ⊂ C(t0, M1B) +
LChnB. Thus

vn(t0) ∈ C(t0, M1B) + (LC + M2)hnB.

We can find n0 large enough such that, for all n ≥ n0, we have (LC + M2)hn =
(LC + M2)T/n ≤ σ. Furthermore for all n, ‖vn(t0)‖ ≤ M1, hence

vn(t0) ∈ (
C(t0, M1B) ∩ (M1 + σ)B

) + σB ⊂ (
C(t0, M1B) ∩ 2M1B

)

+σB for all n ≥ n0.

Note that the set C(t0, M1B) ∩ 2M1B is relative compact (Assumption 1), hence
γ
(
C(t0, M1B) ∩ 2M1B

) = 0. Then, by using Lemma 2.3, one has
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3σ = γ
(
�(t0)

) = γ ({vn(t0) : n ≥ n0}) ≤ γ
(
(C(t0, M1B) ∩ 2M1B) + σB

)

≤ γ
(
(C(t0, M1B) ∩ 2M1B)

) + γ (σB) = 2σ,

which is a contradiction. Thus the set �(t) = {vn(t), n ≥ 1} is relatively compact for
all t ∈ [0, T ]. By applying the Arzelà–Ascoli theorem (see, e.g., [10]), there exists a
Lipschitz function v(·) : [0, T ] → H with Lipschitz constant M2 and

• (vn) converges strongly to v(·) in C([0, T ]; H);
• (v̇n) converges weakly to v̇(·) in L∞([0, T ]; H).

In particular, v(0) = v0. Let u : [0, T ] → H, t �→ u(t) = u0 + ∫ t
0 v(s)ds. Then,

u(0) = u0, u̇ = v and ü ∈ L∞([0, T ]; H). Let us show that un(·) converges strongly
in C([0, T ]; H) to u(·). Indeed, we have

max
t∈[0,T ] ‖un(t) − u(t)‖ = max

t∈[0,T ] ‖un(0) +
∫ t

0
vn(θn(s))ds − u(0) −

∫ t

0
v(s)ds‖

= max
t∈[0,T ] ‖

∫ t

0
(vn(θn(s)) − vn(s) + vn(s) − v(s))ds‖

≤ max
t∈[0,T ]

∫ t

0
(M2|θn(s) − s| + ‖vn(s) − v(s)‖ds

≤
∫ T

0
(M2|θn(s) − s| + ‖vn(s) − v(s)‖)ds → 0,

as n → +∞ since vn(·) converges strongly to v(·) in C([0, T ]; H) and (22).
In next step, we prove that for every t ∈ [0, T ], u̇(t) ∈ C(t, u(t)). From the fact

that vni ∈ C(tni , uni ) for all i , we deduce for every t ∈ [0, T ] that

vn(θn(t)) ∈ C
(
θn(t), un(θn(t))

) ∩ M1B ⊂ C(t, u(t))

+ LC {|θn(t) − t | + ‖un(θn(t)) − u(t)‖}B.

It is easy to see that for every t ∈ [0, T ], vn(θn(t)) → v(t) = u̇(t) and |θn(t) − t | +
‖un(θn(t)) − u(t)‖ → 0 as n → +∞ because of (22) and the strongly convergence
of vn(·) to v(t), un(·) to u(·) in C([0, T ]; H). Since C(t, u(t)) is closed, we obtain
that u̇(t) ∈ C(t, u(t)) for every t ∈ [0, T ]. It remains to prove that

ü(t) ∈ −NC(t,u(t))(u̇(t)) − F(t, u(t), u̇(t)) a.e. t ∈ [0, T ]. (24)

Let us define

D(t) := C(t, u(t)) ∩ M1B, ∀t ∈ [0, T ], (25)

then D is nonempty, closed and convex and for all t, s ∈ [0, T ], one has

dH
(
D(t), D(s)

) ≤ LC (|t − s| + ‖u(t) − u(s)‖) ≤ LC (1 + M1)|t − s|. (26)
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From (9) we have, for almost every t ∈ [0, T ], that

v̇n(t) + fn(t) ∈ −N
C
(
ηn(t),un(ηn(t))

)(vn(ηn(t))
)

= −ND(ηn(t))
(
vn(ηn(t))

)
(since ‖vn(ηn(t))‖ ≤ M1 − 1). (27)

Let

γn(t) := −[v̇n(t) + fn(t)] for all t ∈ [0, T ]. (28)

Then, for all c ∈ D
(
ηn(t)

)
, we get

〈
γn(t), c − vn(ηn(t))

〉 ≤ 0.

Hence

σ
(
D

(
ηn(t)

); γn(t)
)

+ 〈 − γn(t), vn(ηn(t))
〉 ≤ 0.

Then, integrating on [0, T ], one obtains
∫ T

0
σ
(
D

(
ηn(t)

); γn(t)
)
dt +

∫ T

0

〈 − γn(t), vn(ηn(t))
〉
dt ≤ 0. (29)

Let us begin by estimating the second term in (29). First we prove that

∫ T

0
〈ü(t), u̇(t)〉dt = lim

n→+∞

∫ T

0
〈v̇n(t), vn(ηn(t))〉dt. (30)

Indeed
∫ T

0
〈ü(t), u̇(t)〉dt = 1

2

∫ T

0

d

dt
u̇2(t)dt = 1

2
(v2(T ) − v2(0))

= 1

2
lim

n→+∞
(
v2n(T ) − v2n(0)

) = 1

2
lim

n→+∞

∫ T

0

d

dt
v2n(t)dt

= lim
n→+∞

∫ T

0
〈v̇n(t), vn(t)〉dt.

Note that we also have

lim
n→+∞

∫ T

0
〈v̇n(t), vn(t)〉dt = lim

n→+∞

∫ T

0
〈v̇n(t), vn(ηn(t))〉dt,

since
∫ T

0

∣∣〈v̇n(t), vn(t) − vn(ηn(t))〉|dt ≤ M2
2

∫ T

0
|t − ηn(t)|dt → 0,

as n → +∞. So we get (30).
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Since ‖ fn(t)‖ ≤ M2 for all t ∈ [0, T ], the sequence ( fn) is bounded in
L∞([0, T ]; H). Therefore we can extract a subsequence, without relabeling for sim-
plicity, converging weakly to some mapping f (·) in L∞([0, T ]; H). On the other
hand, vn(ηn(·)) converges strongly to u̇(·) in L1([0, T ]; H), so one has

∫ T

0
〈 f (t), u̇(t))〉dt = lim

n→+∞

∫ T

0
〈 fn(t), vn(ηn(t))〉dt. (31)

From (30) and (31), one deduces that

∫ T

0
〈v̇(t) + f (t), u̇(t)〉dt = lim

n→+∞

∫ T

0
〈−γn(t), vn(ηn(t))〉dt. (32)

For the first term in (29), we will show that

∫ T

0
σ
(
D(t);−v̇(t) − f (t)

)
dt ≤ lim inf

n→+∞

∫ T

0
σ
(
D

(
ηn(t)

); γn(t)
)
dt. (33)

Let us recall that (Lemma 2.1) the convex function x(·) �→ ∫ T
0 σ

(
D(t); x(t)

)
dt is

weakly lower semicontinuous in L∞([0, T ]; H) and γn(t) = −[v̇n(t) + fn(t)] for all
t ∈ [0, T ]. In addition, v̇n(·), fn(·) weakly converges to v̇(·), f (·) in L∞([0, T ]; H),
respectively. Consequently, one implies that

γn(·) → −v̇(·) − f (·) weakly in L∞([0, T ]; H).

Therefore

∫ T

0
σ
(
D(t);−v̇(t) − f (t)

)
dt ≤ lim inf

n→+∞

∫ T

0
σ
(
D(t); γn(t)

)
dt. (34)

On the other hand

D(t) ⊂ D
(
ηn(t)

) + LC (1 + M1)|t − ηn(t)|B ⊂ D
(
ηn(t)

) + LC (1 + M1)hnB.

Hence

∫ T

0
σ
(
D(t); γn(t)

)
dt ≤

∫ T

0
σ
(
D

(
ηn(t)

); γn(t)
)
dt + LC (1 + M1)hn

∫ T

0
‖γn(t)‖dt

≤
∫ T

0
σ
(
D

(
ηn(t)

); γn(t)
)
dt + 2LC (1 + M1)T M2hn .

It leads to the following inequality

lim inf
n→+∞

∫ T

0
σ
(
D(t); γn(t)

)
dt ≤ lim inf

n→+∞

∫ T

0
σ
(
D

(
ηn(t)

); γn(t)
)
dt. (35)

11



From (34) and (35), we get the desired result (33). From (29), (32) and (33), we deduce
that

∫ T

0
σ
(
D(t);−v̇(t) − f (t)

)
dt +

∫ T

0
〈v̇(t) + f (t), u̇(t)〉dt ≤ 0. (36)

Note that u̇(t) ∈ D(t) for every t ∈ [0, T ], we have

σ(D(t);−v̇(t) − f (t)) + 〈v̇(t) + f (t), u̇(t)〉 ≥ 0 a.e. t ∈ [0, T ]. (37)

From (36) and (37), one infers that

σ
(
D(t);−v̇(t) − f (t)

)
+ 〈v̇(t) + f (t), u̇(t)〉 = 0 a.e. t ∈ [0, T ], (38)

or equivalently,

ü(t) + f (t) ∈ −ND(t)
(
u̇(t)

) = −NC(t,u(t))
(
u̇(t)

)
a.e. t ∈ [0, T ]. (39)

On the other hand, onehas fn(t) ∈ F
(
θn(t), un(θn(t)), vn(θn(t))

)
for all t ∈ [0, T ] and

F is upper semicontinuous with convex and weakly compact values in H . Classically,
we obtain that f (t) ∈ F

(
t, u(t), u̇(t)

)
for almost all t ∈ [0, T ] (see, e.g., [21, Theorem

V-14]). Thus

ü(t) ∈ −NC(t,u(t))
(
u̇(t)

) − F
(
t, u(t), u̇(t)

)
a.e. t ∈ [0, T ]. (40)

The result has been proved. ��
Remark 2 (i) It is obvious that the result is still true if we replace Assumption 1-(i)

by the classical Lipschitz continuity assumption (see, e.g., [15]):

‖dH
(
C(t, x);C(s, y)

)‖ ≤ LC (|t − s| + ‖x − y‖),∀ 0 ≤ t, s ≤ T

and x, y ∈ H for some constant LC > 0. (41)

However, it is difficult for unbounded set to hold this kind of assumption, since the
Hausdorff distance of two unbounded sets may equal the infinity. For example,
the rotating hyperplane never satisfies (41), but satisfies Assumption 1-(i) with
suitable parameters. This observation was also stated in [22], when the author
studied the first-order sweeping processes with the convexmoving set depending
on the time. Note that in our paper, the local Lipschitz variation of the moving
set is assumed in a fixed ball, while in [22], it is necessary to consider in any
ball. Particularly, if F ≡ 0 and 0 ∈ C(t, x) for all t ∈ [0, T ] and x ∈ H , then
(5) can be replaced by

dH
(
C(t, x) ∩ M1B;C(s, y) ∩ M1B

) ≤ LC (|t − s| + ‖x − y‖), (42)

12



where M1 := ‖u0‖ + ‖v0‖T . Indeed, from (11) and 0 ∈ C(ti+1, v
n
i+1) one has

〈vni − vni+1, 0 − vni+1〉 ≤ 0 ⇒ ‖vni+1‖ ≤ ‖vni ‖ ≤ . . . ≤ ‖v0‖.

Thus

‖uni ‖ ≤ ‖uni−1‖ + hn‖vni−1‖≤ . . . ≤‖u0‖ + ‖v0‖T .

(ii) The compactness assumption on the moving set C is also weaker than the one
used in previous works [7,10,13–15] since it only requires to check the Kura-
towskimeasure of noncompactness for a fixed ball. Furthermore, the perturbation
force F only needs to satisfy the weak linear growth condition.

(iii) In many applications, in practice, the set C(·) could be unbounded. This is the
case, e.g., when C(·) coincides with a moving convex and closed cone. Such
systems are called nonlinear complementarity systems and are of great interest
in the modeling of nonregular electrical systems (see, e.g., Section 3.4 in [5]).

(iv) The compactness assumption can be replaced by the anti-monotonicity of C as
in [14]. Again, one does not need the boundedness and the classical Lipschitz
continuity of C .

Theorem 3.2 Let Assumptions 1-(i), 2 hold and suppose that −C(t, ·) is monotone
for each t ∈ [0, T ]. Furthermore, assume that F is monotone with respect to the third
variable on gph(C), i.e., for all (ti , xi , yi ) ∈ gph(C) and zi ∈ F(ti , xi , yi ) (i = 1, 2),
one has

〈z1 − z2, y1 − y2〉 ≥ 0.

Then, for each initial condition, there exists a solution in the sense of Theorem 3.1.

Proof We construct the sequences (uni )
n
i=0, (v

n
i )

n
i=0, ( f

n
i )ni=0 and the sequences of

functions (un(·))n , (vn(·))n, ( fn(·))n, (θn(·))n, (ηn(·))n as in Theorem 3.1. From the
proof of Theorem 3.1, it is sufficient to prove the strong convergence of sequence
vn(·) in C([0, T ]; H). First we prove the convergence of un(·). For all positive integers
m ≥ n, let

ϕm,n(t) := 1

2
‖um(t) − un(t)‖2.

Then, ϕm,n is differentiable almost every t ∈ [0, T ]. Let t ∈ [0, T ], at which ϕm,n is
differentiable. Then, there exist i, j such that t ∈ [tmi , tmi+1[∩[tnj , tnj+1[ and hence

d

dt
ϕm,n(t) = 〈um(t) − un(t), u̇m(t) − u̇n(t)〉 = 〈um(t) − un(t), v

m
i − vnj 〉.

Wehave vmi ∈ C(tmi , umi )∩M1B ⊂ C(t, umi )+hmLCB, vnj ∈ C(tnj , u
n
j ) ⊂ C(t, unj )+

hnLCB. From the monotonicity of −C(t, ·) and the boundedness of umi , unj by M1,
one has
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〈vmi − vnj , u
m
i − unj 〉 ≤ 2M1LC (hn + hm) ≤ 4M1LChn .

Hence

d

dt
ϕm,n(t) = 〈um(t) − un(t), v

m
i − vnj 〉

≤ 〈um(t) − umi , vmi − vnj 〉+〈umi − unj , v
m
i − vnj 〉+〈unj − un(t), v

m
i − vnj 〉

≤ 2M2
1hm + 4M1LChn + 2M2

1hn
≤ 4M1(M1 + LC )hn,

due to the M1-Lipschitz continuity of um(·), un(·) and the boundedness by M1 of
umi , unj . Consequently,

1

2
‖um(t) − un(t)‖2 = ϕm,n(t) ≤ 4M1T (M1 + LC )hn for all t ∈ [0, T ], (43)

which implies that (un(·))n is a Cauchy sequence in C([0, T ]; H). Thus, there exists
a M1-Lipschitz function u(·) such that un(·) converges to u(·) uniformly and

‖un(t) − u(t)‖ ≤ 2
√
2M1T (M1 + LC )hn .

Next we show the uniform convergence of (vn(·))n . By using (22), (43) and the Lip-
schitz continuity of C, un(·), vm(·), one has the following estimation

d
C
(
ηn(t),un(ηn(t))

)(vm(t)) ≤ e
(
C

(
ηm(t), um(ηm(t)

) ∩ M1B;C(
ηn(t), un(ηn(t))

))

+‖vm(ηm(t)) − vm(t)‖
≤ LC

(
hm + hn + ‖un(ηn(t)) − um(ηm(t))‖) + M2hm

≤ (2LC + M2)hn + LC (‖un(ηn(t)) − un(ηm(t))‖
+‖un(ηm(t)) − um(ηm(t))‖)

≤ (2LC + M2)hn + 2LCM1hn + 2
√
2M1T (M1 + LC )hn .

In particular, we imply that d
C
(
ηn(t),un(ηn(t))

)(vm(t)) → 0 asm, n → +∞. From (27)

and the fact that ‖v̇n(t) + fn(t)‖ ≤ 2M2, one has

−v̇n(t) − fn(t) ∈ N
C
(
ηn(t),un(ηn(t))

)(vn(ηn(t))
)

= 2M2∂dC(ηn(t),un(ηn(t)))(vn(ηn(t))). (44)

Thus

〈v̇n(t) + fn(t), vn(ηn(t)) − vm(t)〉 ≤ 2M2dC
(
ηn(t),un(ηn(t))

)(vm(t)).
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It implies that

〈v̇n(t), vn(t) − vm(t)〉
≤ 〈v̇n(t), vn(t) − vn(ηn(t))〉 − 〈 fn(t), vn(ηn(t)) − vm(t)〉

+ 2M2dC
(
ηn(t),un(ηn(t))

)(vm(t))

≤ 2M2
2hn − 〈 fn(t), vn(t) − vm(t)〉 + 2M2dC

(
ηn(t),un(ηn(t))

)(vm(t))

= −〈 fn(t), vn(t) − vm(t)〉 + βn,m(t),

where

βn,m(t) := 2M2
2hn + 2M2dC

(
ηn(t),un(ηn(t))

)(vm(t)),

and

‖βn,m‖∞ → 0 as m, n → +∞.

Similarly, one has

〈v̇m(t), vm(t) − vn(t)〉 ≤ −〈 fm(t), vm(t) − vn(t)〉 + βm,n(t).

As a consequence, we have, for almost every t ∈ [0, T ], that

〈v̇m(t) − v̇n(t), vm(t) − vn(t)〉
≤ −〈 fm(t) − fn(t), vm(t) − vn(t)〉 + βm,n(t) + βn,m(t)

≤ −〈 fm(t) − fn(t), vm(θm(t)) − vn(θn(t))〉 + αm,n(t) ≤ αm,n(t), (45)

where

αm,n(t) := βm,n(t) + βn,m(t) − 〈 fm(t) − fn(t), vm(t) − vm(θm(t))〉
−〈 fm(t) − fn(t), vn(θn(t)) − vn(t)〉.

The last inequality holds since

fm(t) ∈ F
(
θm(t), um(θm(t)), vm(θm(t))

)
, fn(t) ∈ F

(
θn(t),

un(θn(t)), vn(θn(t))
)
,

and F is monotone with respect to the third variable. Note that

‖〈 fm(t) − fn(t), vm(t) − vm(θm(t))〉 + 〈 fm(t) − fn(t), vn(θn(t))

−vn(t)〉‖ ≤ 2M2
2 (hm + hn).

Hence

‖αn,m‖∞ → 0 as m, n → +∞.
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From (45), one has

d

dt
‖vm(t) − vn(t)‖2 ≤ 2αm,n(t) ≤ 2‖αn,m‖∞.

Since vm(0) = vn(0) = v0, one obtains, for all t ∈ [0, T ], that

‖vm(t) − vn(t)‖2 ≤ 2T ‖αn,m‖∞ → 0 as m, n → +∞.

It deduces that (vn(·))n is a Cauchy sequence in C([0, T ]; H), which leads to the
uniform convergence of (vn(·))n . Thus, the result has followed. ��
Theorem 3.3 (Uniqueness) Suppose that F satisfies the one-sided Lipschitz-like con-
dition:
for all t ∈ [0, T ]; x1, x2 ∈ H; y1 ∈ C(t, x1), y2 ∈ C(t, x2) and z1 ∈
F(t, x1, y1), z2 ∈ F(t, x2, y2), one has

〈z1 − z2, y1 − y2〉 ≥ −k(t)(‖x1 − x2‖2 + ‖y1 − y2‖2), (46)

for some function k(·) ∈ L1([0, T ];R). Then, for given initial condition, the sweeping
process (S) has at most a solution.

Proof Suppose that there are two solutions u1(·), u2(·) of (S) such that u1(0) =
u2(0) = u0 and u̇1(0) = u̇2(0) = v0. Then, there exist fi (t) ∈ F

(
t, ui (t), u̇i (t)

)
,

i = 1, 2 such that

üi (t) + fi (t) ∈ −NC(t,ui (t))
(
u̇i (t)

)
a.e. t ∈ [0, T ]. (47)

Using the monotonicity property of the normal cone and the condition (46), we have
for almost every t ∈ [0, T ] that

〈ü1(t) − ü2(t), u̇1(t) − u̇2(t)〉 ≤ k(t)(‖u1(t) − u2(t)‖2 + ‖u̇1(t) − u̇2(t)‖2).

Thus

1

2

d

dt
{‖u̇1(t) − u̇2(t)‖2 + ‖u1(t) − u2(t)‖2}

= 〈ü1(t) − ü2(t), u̇1(t) − u̇2(t)〉 + 〈u1(t) − u2(t), u̇1(t) − u̇2(t)〉
≤ (

k(t) + 1/2
)
(‖u1(t) − u2(t)‖2 + ‖u̇1(t) − u̇2(t)‖2).

Then, the result follows by using Gronwall’s inequality. ��

4 Conclusions

In this paper, by using tools from convex and variational analysis, the existence and
uniqueness result of a class of second-order state-dependent sweeping processes in
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Hilbert space, has been studied carefully. It is remarkable that themoving set is possibly
unbounded and all main assumptions (the Lipschitz continuity and the compactness
of the moving set, the linear growth boundedness of the perturbation force) are weaker
than the ones used in previous works, which allows more applications in practice.
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