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Abstract: We present here an experimental protocol to reproduce the effects of linear internal 
waves (LIW) on acoustic wave propagation in a very controlled and reproducible manner. In 
fact, the experiment consists in propagating an ultrasonic wave through an acoustic lens 
presenting a plane input face and a randomly rough output face. The so-called RAFAL 
(Random Faced Acoustic Lens) was designed so that the roughness of the output face induce 
resulting acoustic pressure field featuring typical characteristics of propagation though 
LIW.To ensure representativeness of our model, we conducted analytical calculations leading 
to dimensionless parameters equivalent to the ones developed by Flatté (strength parameter 
Φ and diffraction parameter Λ). In our case, the strength parameter was calculated after 
evaluation of the phase of the average acoustic field propagated through the RAFALS, 
whereas our diffraction parameter was evaluated using the phase sensitivity kernel. On the 
other hand, we calculated the ratio of correlation length of the acoustic field to wavelength. 
Measurements were conducted on several RAFALS, corresponding to various realistic 
configurations. The regimes of saturation (full and partial) and unsaturation were explored. 
The results are presented in terms of order 2 (coherence function) and order 4 (intensity) 
statistics and demonstrate the accuracy of our experimental scheme with respect to real scale 
simulations and simplified theory. Other representations, such as phasors, also show a very 
meaningful behavior. 
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1. INTRODUCTION.  

This paper addresses the topic of acoustic wave distortions when they travel through an ocean 
subject to linear internal waves (LIW). Transverse to many scientific fields [1-3], the 
phenomena associated with this topic are of great influence on the system performance 
(detection, localization) [4-7]. A novel experimental protocol is proposed here: it allows to 
isolate the fluctuations due to LIW from other sources of signal de-coherence (scattering from 
the sea surface or the seabed) and provide reproducibility and control. Our scheme differs 
from what can be found in the literature [8-10] since we propagate a signal through a Random 
Faced Acoustic Lens (or RAFAL), whose characteristics are given in the present paper. The 
relevance of our scheme is demonstrated using a statistical study (second and fourth order 
moments of the received acoustic pressure). 

2. EXPERIMENTAL PROTOCOL. 
 

The experiments conducted here follow the scheme described in reference [11]. An ultrasonic 
signal (f=2.25MHz) is propagated through the RAFAL (manufactured as presented in 
reference [11]), and the measurement of the acoustic pressure field throughout specific 
regions of the three-dimensional space is conducted. A diagram of the experimental 
configuration is given in Fig.2: 

 

Fig.2: Experimental configuration diagram. 

3. CONFIGURATIONS STUDIED 

3.1 CORRESPONDANCE WITH OCEANIC CONFIGURATIONS. 



To ensure the representativeness of our experiment, the dimensionless parameters defined 
by Flatté in [12] are used. Because they both depend on environmental parameters 
(correlation length and amplitude of the sound speed fluctuations), they are not adapted to our 
experimental configuration. In reference [11], statistics of rays were used to obtain Λ and Φ in 
our case. A more robust method is proposed here: Φ is obtained from the averaged acoustic 
field (from 2D Fourier transforms based analytical calculations), and Λ is calculated using the 
Fréchet derivative of the acoustic field, leading to the evaluation of the Fresnel radius (linked 
to the phase sensitivity kernel [13,14]). The expressions obtained for the scaled dimensionless 
parameters, denoted SΛ  and SΦ  , are: 
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where k  is the wavenumber in water, 0ξ  is the standard deviation of the RAFAL’s output 

face amplitude, 1c  is the sound speed in water and 2c  is the sound speed in the RAFAL.We 

also define two others dimensionless parameters: the ratio of the acoustic field correlation 
length to the wavelength (in both vertical and horizontal directions). In an oceanic 
environment, these parameters are obtained using Tatarskii’s work [3]. Here, they derive from 
calculation of the intercorrelation of the analytically calculated acoustic field: 
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Overall, the scaled experiment configurations studied and their correspondence in an oceanic 
medium are given in Figure 3: 



 

Fig.3: Λ-Φ plane. 

4. EXPERIMENTAL RESULTS. 
4.1 RADIUS OF COHERENCE. 

The mutual coherence function (MCF) is often used to evaluate the correlation of the acoustic 
wave received by a linear array. The interspectral matrix is first computed, then averaged 
across the iso-spaced sensors, leading to a function of the sensor spacing( )lΓ , such that 

[5,15]:  
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In Figure 4, the radius of coherence (sensor spacing cρ  for which ( ) ( )exp 0.5cρΓ = − [16]) is 

displayed for the configurations explored in this series of experiments (see Figure 3). The 
calculation is performed using the measurements (red circles), simulations of the RAFAL 
experiment (magenta diamonds), simulations in the corresponding oceanic environment [17] 
(cyan squares) and simplified theory [18] (blue crosses).  

A good agreement is found in most configurations (except FS1 and PS1), since the value and 
evolution of the radius of coherence is consistent throughout the explored configurations. We 

may explain the higher differences in cρ in the case of configurations FS1 and PS1 because of 

the experimental parameter that they have in common: the distance between the source and 
the receiving VLA was the highest in these configurations. The propagation and diffraction of 
the acoustic wave may have overcompensated the effects of the presence of the RAFAL. This 
phenomenon is not observed in the case of P3DCOM because the perturbation, in the ocean, 
is not local but continuous. 



 

Fig.4: cρ  estimation. 

4.2 COMPLEX PRESSURE DISTRIBUTION. 

The real and imaginary parts of the complex pressure are displayed for each realization of the 
medium. The distribution of the complex pressure is compared to the mean pressure 

distribution (
2

0
rN

p p= , displayed with the dashed line). The CPDs exhibited in the 

regimes of fluctuations show characteristic behaviours [19]: in the fully saturated regime, 
important phase variations are noticed, inducing a chaotic representation of the so-called 
phasor. In the regime of unsaturation, the CPD is supposed to follow the circle of mean 
complex pressure. A transition between these is found in the partial saturation case, with a 
more uniform CPD. Figure 5 depicts the CPD for three configurations (FS3, PS1 and US1, 
from left to right) in three different environments: the first line displays the CPD 
corresponding to the experimental data, the second line displays the same quantity calculated 
using P3DTEx, with ten times more realizations than the experimental data ; finally, the third 
line displays the CPD calculated using P3DCOM, again, with ten times more realizations than 
the experimental data. 



 

Fig.5: Complex pressure distribution. 

4.3 INTENSITY DISTRIBUTION. 

In this section, the higher order moment (4th order) is studied: the acoustic intensityI . More 
precisely, the distribution of the normalized intensity /I I  is computed in three typical 

configurations (FS3, PS1 and US1, similarly as in section 4.2) for the experimental data and 
the simulations (P3DTEx and P3DCOM). The results, displayed in Figure 6, clearly show the 
relevance of our experimental scheme. In fact, the intensity distribution ( )/W I I  follows an 

exponential curve in the fully saturated case, and a log-normal distribution in the unsaturated 
case in all cases, despite the fact that the experimental data display far less realizations than 
the simulations. This results echoes the analysis in reference [10]. 
The partially saturated case is, once again, a transition between the two other cases. 



 

Fig.6: Intensity distribution. 

5. CONCLUSION 

We developed a highly reproducible experimental protocol in a controlled environment. The 
use of RAFAL to reproduce LIW effects on underwater acoustic propagation was proven to 
be relevant, since statistical tools such as the radius of coherence, the complex pressure 
distribution and the normalized intensity distribution displayed behaviours representative of 
oceanic configurations. The ability to acquire experimental data perturbed in a very controlled 
fashion is therefore provided here. It can be used to measure the influence of the type of 
medium fluctuations studied here on signal processing techniques. 
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