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Abstract: Our study focuses on the subject of acoustic wave propagation through spatially 
fluctuating ocean. The fluctuations are here linear internal waves (LIW) and we developed an 
experimental protocol in water tank in order to reproduce the effects of LIW on ultrasound 
propagation. The present paper gathers the results obtained in terms of coherence function 
(second-order moment) for various configurations. Typical regimes of the ΛΦ plane 
developed by Flatté were explored, resulting into coherence function becoming narrower as 
the saturation increases. We also relate the coherence function to an array gain degradation 
parameter, δAG, which accounts for how the system performance will be mitigated in a given 
configuration. δAG was calculated for various sizes of vertical linear array (VLA) and 
showed an important dependence on the VLA’s length. Typically, in any case (scaled 
experiment, computer simulations and simplified theory), we note that the longer the VLA, the 
greater the corresponding δAG. Moreover, as the saturation induced by medium fluctuations 
increases, δAG increases as well. This highlights the need for corrective signal processing 
techniques when large VLAs are used in a fluctuating environment. Signal processing 
techniques from various domains (e.g. adaptive optics, radio) are also studied. 
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1. INTRODUCTION.  

Since the early XVIIIth century, scientists studied the limitations of systems performance due 
to medium fluctuations [1]. The topic of wave propagation through randomly fluctuating 
media is addressed in many references [2,3]. The influence of these fluctuations on the system 
performance (detection, localization) is critical in acoustics (in air and underwater) [4-7]. A 
novel experimental protocol was proposed in [8] and detailed in a companion paper [9]: it 
allows to isolate the fluctuations due to LIW from other sources of signal de-coherence 
(scattering from the sea surface or the seabed) and provide reproducibility and control. 
Calculations of the second-order moment (or mutual coherence function, MCF) are proposed 
in this paper, using the experimental data acquired in our scaled experiment. A parameter 
accounting for the array gain degradation is deduced from the MCF [10]. These results are 
compared, with a satisfying agreement, with simulations [11,12], empirical calculations [6] 
and simplified theory [13]. 

2. EXPERIMENTAL PROTOCOL. 
 

The experiments conducted here follow the scheme described in reference [9]. An ultrasonic 
signal (f=2.25MHz) is propagated through the RAFAL (manufactured as presented in 
reference [9]), and the measurement of the acoustic pressure field throughout specific regions 
of the three-dimensional space is conducted. A diagram of the experimental configuration is 
given in Fig.2: 

 

Fig.1: Experimental configuration diagram. 

The configurations studied spanned from the unsaturated regime (USi) to the fully saturated 
regime (FSi) through the partially saturated regime (PSi) defined in [14]. In this paper, the 
index i increases with increasing saturation. 



3. COHERENCE FUNCTION 

The mutual coherence function (MCF) is often used to evaluate the correlation of the acoustic 
wave received by a linear array. The interspectral matrix is first computed, then averaged 
across the iso-spaced sensors, leading to a function of the sensor spacing( )lΓ , such that 

[5,15]:  
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Four calculations are proposed: the simplified theoretical results [13], the scaled experiments 
results, and simulations from PE codes (Propagation in 3D Tank Experiment configuration – 
P3DTEx, Propagation in 3D Corresponding Ocean Medium – P3DCOM). The results in terms 
of MCF are satisfying: in the fully saturated regime, the simulations match the scaled 
experiments results. The simplified theory provides a narrower coherence function, meaning 
that it overestimates the de-coherence. In the partial saturation case, similar conclusions can 
be drawn (though P3DCOM is close to the simplified theory case). Finally, the unsaturated 
case shows a good agreement between all calculations. 

 
Fig.2: MCF ( )/s λΓ  calculated in full (left), partial saturation (middle) and unsaturation 

(right). 

The evolution of the MCF is very consistent as a function of the saturation. In fact, a more 
saturated case leads to a narrower coherence function and, hence, to a more degraded array 
performance.  

 



4. ARRAY GAIN DEGRADATION. 

Following [10], the array gain degradation can be evaluated from the MCF: 
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where ( )10logthG N=  is the theoretical array gain, and N  is the number of sensors. The 

results obtained with this calculation are presented in Figure 3. They are compared with the 
same calculations as the MCF, and also to the results obtained by Fattaccioli et al. [6], given 
by: 
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where aL  is the array length (expressed as a function of the normalized sensor spacing /s λ  

and  /VL λ  is the normalized correlation length.  

A very good agreement is found in the unsaturated regime for all array lengths in all cases. 
The simplified theory and empirical calculations are in very good agreement. Our scaled 
experiment results are consistent with the simulations carried out. Despite some differences 
between simplified theory, empirical calculations and our measurements and simulations in 
the other saturation regimes, the evolution of AGδ  is very consistent throughout the cases 
studied: the effect of increasing fluctuations is noticed on the AG degradation. We also notice 
the critical influence of the array length: as anticipated, the longer the VLA the more 
important the AG degradation (as predicted by the coherence function). 



 
Fig.3: Array gain degradation AGδ calculated in all saturation configurations for four VLA 

sizes (8, 16, 32 and 64 sensors).  

5. CONCLUSION 

 In this paper, the array gain degradation due to environmental fluctuations was calculated 
using the mutual coherence function (or MCF). Theoretical and empirical results were 
compared to simulations and scaled experiments data, with satisfying agreement. The size of 
the linear array plays a decisive role in the sensitivity to the medium fluctuations. Indeed, in 
an unperturbed environment, a large array would perform better than a smaller one, but in our 
case, the degradation increases with the array size. In order to compensate for the observed 
degradations, corrective signal processing techniques should be used. Algorithms from other 
domains (optics, radio [16]) may be tested for underwater acoustic detection. 
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